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Abstract

Neural based approaches to automatic evalua-001
tion of subjective responses have shown supe-002
rior performance and efficiency compared to003
traditional rule-based and feature engineering004
oriented solutions. However, it remains unclear005
whether the suggested neural solutions are suf-006
ficient replacements of human raters as we find007
recent works do not properly account for rubric008
items that are essential for automated essay009
scoring during model training and validation.010
In this paper, we propose a series of data aug-011
mentation operations that train and test an auto-012
mated scoring model to learn features and func-013
tions overlooked by previous works while still014
achieving state-of-the-art performance in the015
Automated Student Assessment Prize dataset.016

1 Introduction017

Automated Essay Scoring (AES) is defined as the018

task of applying automation algorithms to evaluate019

the quality of written essay responses without the020

intervention of a human grader. Recently, neural021

applications involving deep neural networks and022

representation learning quickly proved to be flexi-023

ble and effective (Ramesh and Sanampudi, 2021)024

in AES. Consequently, series of neural based ap-025

proaches to AES including recurrent neural net-026

works (Taghipour and Ng, 2016), attention mecha-027

nism (Dong et al., 2017), and pre-trained language028

models (Yang et al., 2020; Jeon and Strube, 2021)029

have been researched and tested on the Automated030

Student Assessment Prize (ASAP) dataset.1031

However, the ongoing AES performance compe-032

tition overlooks several critical problems. Specif-033

ically, multiple attributes commonly found from034

scoring rubrics are left out from consideration dur-035

ing AES model training and validation. Instead of036

evaluating the AES model’s alignment with items037

outlined in the rubric, previous neural approaches038

1https://www.kaggle.com/c/asap-aes

to ASAP focus on achieving state-of-the-art sim- 039

ilarity scores between a human rater and an AES 040

model. While similarity score is one important 041

aspect of functioning AES systems, it alone does 042

not guarantee that an AES model can replace a hu- 043

man rater (Bennett and Bejar, 1997; Attali, 2007; 044

Zhang, 2013; Perelman, 2014; Madnani and Cahill, 045

2018). Therefore, previous neural approaches must 046

be evaluated for additional AES functions other 047

than similarity (Kabra et al., 2022) before being 048

deployed for service. 049

A deeper investigation into previous works re- 050

veals a potential source for the aforementioned 051

problem. One common trait shared by previous 052

neural approaches to ASAP is the implementation 053

of prompt-specific models (Attali and Burstein, 054

2005; Ridley et al., 2021). The approach is defined 055

by how the training dataset is segmented. Given a 056

dataset comprised of essays to n question prompts, 057

prompt-specific approach segments the dataset into 058

n subsets based on prompt (prompt-segmented 059

dataset) and trains one AES model on each subset, 060

resulting in n prompt-specific models for n ques- 061

tion prompts even when the prompts share the same 062

rubric. The n models train to learn the same scor- 063

ing rubric, but the scoring standard learned by each 064

model will likely diverge as the model optimizes 065

on each data segments (Attali et al., 2010; Chen 066

and He, 2013), resulting in models that no longer 067

embody the original scoring rubric. Moreover, seg- 068

menting the dataset based on features eliminates 069

the need for AES models to account for those fea- 070

tures during training and validation. For instance, 071

once the dataset is segmented based on question 072

prompts, the AES model is never tested on its abil- 073

ity to assess relevance of essay responses in relation 074

to varying question prompts. Similarly, once the 075

training dataset is segmented based on features re- 076

lating to a specific rubric item, the resulting AES 077

model will not be able to account for the rubric 078

item during training and inference (Madnani and 079
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Cahill, 2018).080

In this research, we propose an alternative081

approach to AES termed rubric-specific model.082

Rubric-specific models are trained and tested on083

datasets segmented by scoring rubrics (rubric-084

segmented dataset), resulting in n rubric-specific085

models for n scoring rubrics. Each rubric-specific086

model is trained to be the best and only repre-087

sentation of it’s respective scoring rubric regard-088

less of how many prompts are tied to the same089

rubric. The proposed approach is general and ef-090

ficient as it is aligned with human raters who are091

trained to learn each scoring rubric instead of each092

question prompt. Most importantly, since rubric-093

segmented datasets include features precluded in094

prompt-segmented datasets, rubric-specific mod-095

els must consider the following rubric items over-096

looked by prompt-specific models:097

• Rubric-segmented dataset includes essay re-098

sponses to multiple question prompts. There-099

fore, rubric-specific models must be able to100

distinguish various response-prompt combi-101

nations and assess the relevance of an essay102

in relation to the question prompt. Relevance103

assessment is not only essential in essay scor-104

ing, but is also crucial in AES service applica-105

tion. For instance, the inability to detect and106

evaluate irrelevant responses leaves the AES107

model unprepared against adversarial attacks108

and could potentially debunk the effectiveness109

and reliability of AES systems in their entirety110

(Ding et al., 2020; Kabra et al., 2022).111

• Rubric-segmented dataset includes essay re-112

sponses written by students from varying113

grade levels. Along with individual writing114

skills, student grade level is also a significant115

predictor of essay scores (Burdick et al., 2013).116

Therefore, the quality of writing a human rater117

expects from a well-written essay should be118

different and adjusted based on the student’s119

grade level. Similar to a human rater, a rubric-120

specific model must be able to identify and in-121

corporate grade level differences in automated122

scoring (Zhang, 2013).123

In addition to the previously precluded factors, our124

research seeks to address another rubric item that125

is fundamental to essay scoring, yet insufficiently126

investigated during the performance competition at127

ASAP:128

• Human raters are expected to detect and pe- 129

nalize incoherently ordered words or sen- 130

tences. However, the same cannot be expected 131

from neural AES systems (Pham et al., 2020). 132

Consequently, rubric-specific models must be 133

equipped with and tested on the ability to pe- 134

nalize permuted text and distinguish adversar- 135

ial inputs (Farag et al., 2018; Ding et al., 2020; 136

Singla et al., 2021; Kabra et al., 2022). 137

Our experiment demonstrates training an AES 138

model to learn the above rubric items while 139

maintaining significant similarity score requires 140

more than simply training on a rubric-segmented 141

dataset. We introduce three data augmentation 142

methods, Prompt Swap, Grade Match, and 143

Response Distortion, to guide the AES model 144

to learn the intended features without suffering 145

from robustness-accuracy trade-off (Su et al., 2018). 146

Moreover, we introduce a neural network architec- 147

ture, Response− Prompt AES, capable of pro- 148

cessing the suggested augmentation training. Our 149

experiment results show the proposed augmenta- 150

tion methods resolve the functional limitations of 151

previous neural approaches to AES. In addition 152

to the added functions, we also demonstrate our 153

proposed AES model achieves state-of-the art per- 154

formance in the ASAP dataset. 155

2 Related Work 156

Neural AES Neural approaches to AES adopted 157

learned representations such as pre-trained word 158

vectors (Taghipour and Ng, 2016; Mathias et al., 159

2020) and contextual embeddings from pre-trained 160

language models (Yang et al., 2020; Jeon and 161

Strube, 2021; Xue et al., 2021) to replace conven- 162

tional handcrafted features utilized in AES. In addi- 163

tion to learned features, recent works experimented 164

with training strategies such as multi-task learning 165

(Muangkammuen and Fukumoto, 2020; Yang et al., 166

2020; Mathias et al., 2020) to achieve enhanced 167

performance in the ASAP dataset. 168

Generic AES While neural applications in AES 169

proved to be effective, prompt-specific AES models 170

required large amounts of labeled training data and 171

were limited to scoring essays from only one ques- 172

tion prompt. To address the problems of efficiency, 173

researches including Jin et al. (2018) and Ridley 174

et al. (2021) proposed a prompt-independent ap- 175

proach to AES utilizing essay responses from mul- 176

tiple prompts for AES model training. However, 177
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while generic AES model training involved essay178

responses to multiple question prompts, the topic179

of irrelevant responses or adversarial inputs was180

never properly discussed.181

Robust AES The performance race at ASAP182

sparked another important discussion in AES. Mul-183

tiple researches raised questions regarding the ro-184

bustness of neural AES systems. According to re-185

lated works, state-of-the-art AES models were un-186

able to detect essays with randomly shuffled word187

ordering (Farag et al., 2018; Ding et al., 2020), off-188

topic content (Liu et al., 2019; Kabra et al., 2022),189

and abnormal inputs (Perelman, 2014). While re-190

lated works proposed various adversarial training191

methods as potential remedies, increase in AES192

model robustness was accompanied with loss in193

accuracy, architecture overhead, and added opti-194

mization tasks (Liu et al., 2019; Ding et al., 2020;195

Sun et al., 2022).196

3 Response-Prompt AES197

We first introduce the neural network architecture198

implemented in our experiments and describe the199

computation flow and reasoning behind the model200

structure. Our AES model includes a pre-trained201

language model, a response self-attention layer,202

and a response-prompt attention layer which are all203

fine-tuned on the ASAP dataset. Implementation204

details on each module are listed below in order of205

computation.206

Pre-trained Language Model To generate con-207

textual embeddings from essays and prompts, we208

utilize the widely successful pre-trained language209

model BERT (Devlin et al., 2019) and its imple-210

mentation (bert-base-uncased) in the Python lan-211

guage.2 Essay responses and question prompts are212

tokenized into list of tokens and used as inputs to213

BERT. To address the maximum token length re-214

striction imposed on BERT, token lists longer than215

512 are segmented and stacked into token groups of216

size 512. After forward passing through BERT, we217

collapse the segment axis of the output embedding218

matrix.219

Response Self-Attention Layer The collapsed220

embedding matrix passes through a custom de-221

signed self-attention layer without predefined222

length restriction. The response self-attention layer223

implements self-attention (Vaswani et al., 2017)224

2https://github.com/huggingface/transformers

with relative position embeddings (Shaw et al., 225

2018) to simulate human reading pattern on long 226

texts with multiple sentences and paragraphs. Re- 227

sponse self-attention is computed as follows: 228

eij =
xiW

Q(xjW
K)T + xiW

Q(RK
ij )

T

√
d

(1) 229

230

aij =
exp eij∑n
k=1 exp eik

(2) 231

232

zi =
n∑

j=1

aij(xjW
V +RV

ij) (3) 233

where {x1, x2, ..., xn} is the embedding matrix out- 234

put from BERT, WQ,WK ,W V trainable parame- 235

ters from the attention layer, and RK and RV rel- 236

ative position representation matrices also trained 237

during the fine-tuning process. 238

Finally, the contextualized embedding vector 239

from equation 3 corresponding to the CLS token 240

position index, z1, is used as essay response repre- 241

sentation. 242

Response-Prompt Attention Layer Attention 243

mechanism (Bahdanau et al., 2015) is implemented 244

in the response-prompt attention layer. Essay 245

response representation matrix {z1, z2, ..., zn} at- 246

tends the prompt embedding matrix P to compute 247

response-prompt attention vector as shown below. 248

eij =
ziW

Q(PjW
K)T√

d
(4) 249

250

aij =
exp eij∑n
k=1 exp eik

(5) 251

252

ri =
n∑

j=1

aijPjW
V (6) 253

The resulting response-prompt attention vector cor- 254

responding to the CLS token position index, r1, is 255

used as response-prompt relevance representation. 256

Regression Layer Lastly, the essay response 257

representation vector z1 is concatenated with the 258

response-prompt attention vector r1 to form the fi- 259

nal representation vector used for score prediction. 260

The concatenated vector passes through a dense 261

layer to compute the model output, ô, as shown in 262

equation 7. 263

ô = concat(z1, r1)W + b (7) 264
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The Response-Prompt AES model is trained265

with the Mean Squared Error (MSE) loss func-266

tion. Specifically, given training label score oi,267

the model is trained to minimize the following loss268

function over the training dataset:269

MSE =
1

n

n∑
i=1

(oi − ôi)
2 (8)270

4 Experiment271

In this section, we outline the details of training a272

rubric-specific model. Specifically, we describe our273

experimental procedure for implementing Prompt274

Swap, Grade Match, and Response Distortion on275

the Response-Prompt AES model. Our experiment276

is focused on the following investigations:277

• Measure the isolated effect of each data aug-278

mentation method and establish it’s functional279

significance in AES.280

• Assess the isolated and combined effect of281

data augmentation methods on the ASAP282

dataset against benchmark performance.283

Hyper-parameter settings for all training and test-284

ing experiments are summarized in Appendix B.285

Our source code and experiment logs are publicly286

available for review and replication.3287

4.1 Dataset288

Our experiment uses the Automated Student As-289

sessment Prize dataset from Kaggle. This dataset290

includes essay responses to eight different question291

prompts, and each essay response is labeled with292

an evaluation score given by a human grader ac-293

cording to the prompt’s respective scoring rubric.294

Statistical summary and metadata of the dataset are295

provided in Tables 5 and 6 of Appendix A, respec-296

tively.297

Aligned with the definition of rubric-specific298

models, we segment the dataset into six subsets cor-299

responding to the number of unique scoring rubrics300

and train one AES model from each subset. For301

easier comparison, our six AES models are labeled302

Prompt 1, 2, 7, 8, 3-4, and 5-6 model.303

4.2 Performance Evaluation304

For performance assessment in the ASAP dataset,305

we use 5-fold cross validation to evaluate our AES306

model with 60% / 20% / 20% data split amongst307

3Anonymized URL

training, develop, and test sets. Fold indices are 308

adopted from Taghipour and Ng (2016). All of 309

the selected performance benchmarks listed in the 310

Results and Analysis section follow the same fold 311

indices for accurate performance comparison. Con- 312

sistent with previous works, we select our best AES 313

model based on the performance in the develop set 314

and adopt Quadratic Weighted Kappa (QWK) 4 315

as evaluation metric. 316

For performance assessment of each data aug- 317

mentation method, we employ specific metrics fur- 318

ther explained in the following subsections. Data 319

augmentation performances are also reported in 320

averages computed over 5 folds. 321

4.3 Data Augmentation Implementation 322

4.3.1 Prompt Swap 323

The fundamental fact that an essay’s score is depen- 324

dent on the question prompt is often overlooked. 325

For example, an essay response to question prompt 326

3 that received a perfect score is no longer consid- 327

ered relevant when paired with question prompt 4 328

regardless of writing quality. The idea of relevance 329

is also embedded in the ASAP scoring rubric which 330

is shown in Table 7 of Appendix A. While distin- 331

guishing essays to prompt 3 from essays to prompt 332

4 is easy task for human raters, the same cannot 333

be expected from AES systems. Accordingly, we 334

apply Prompt Swap to Prompt 3-4 and 5-6 models 335

to train relevance aware AES models. 336

Prompt Swap generates prompt mismatched 337

essay samples with known labels for aug- 338

mentation training. For a given training 339

batch b = {t1, t2, ..., tn} where ti = 340

{essay, prompt, score}, we select k samples 341

from the training batch, swap the prompt to mis- 342

match the essay response, and add the gener- 343

ated irrelevant response-prompt sample to the 344

training batch with known label of score zero 345

(lowest possible score). For example, if s = 346

{essay4, prompt4, score = 3} is a relevant 347

response-prompt sample addressing prompt 4 with 348

a perfect score, the AES model should also 349

be able to train from and accurately predict ir- 350

relevant response-prompt sample such as s′ = 351

{essay4, prompt3, score = 0}. When selecting 352

the k samples for augmentation, Prompt Swap is 353

only applied to essay responses with original label 354

scores greater than the average score. Such con- 355

4https://www.kaggle.com/competitions/asap-aes/
overview/evaluation
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dition is necessary as low score essays have low356

writing quality regardless of relevance, making it357

difficult to isolate the effect of Prompt Swap.358

The contribution of Prompt Swap is reported359

in two folds. First, irrelevant response detec-360

tion rate is measured with prompt swapped sam-361

ples generated from the test set. The AES model362

should predict the lowest label score for the prompt363

swapped samples, which we count as detection suc-364

cess. All other score predictions are counted as365

detection failures. Irrelevant response detection366

rate is computed and compared against baseline367

models trained without Prompt Swap. Second, we368

investigate whether Prompt Swap improves both369

robustness and accuracy of AES models by compar-370

ing test set QWK against baseline models trained371

without Prompt Swap.372

4.3.2 Grade Match373

Unlike Prompts 3 and 4 which are written by stu-374

dents in the same grade level, Prompts 5 and 6375

are written by students in different grade levels as376

shown in Table 6 of Appendix A. Therefore, we377

hypothesized that while essay responses to prompts378

5 and 6 are graded with the same scoring rubric, a379

human rater must adjust the expectation for a well-380

written essay based on the student’s grade level.381

Accordingly, we apply Grade Match in Prompt 5-382

6 model to not only differentiate scores, but also383

differentiate essays from different grade levels.384

The process of recognizing differences between385

essays is analogous to training an AES model to386

learn distances between essay representations in387

the embedding space. Particularly, Grade Match388

seeks to map essays from the same grade level close389

together while distancing them from essays from390

other grade levels. Grade Match is inspired by the391

methodologies proposed in Supervised Contrastive392

Learning (Khosla et al., 2020), which leverages393

label information to contrast batch items from one394

class against batch items from another class. Fol-395

lowing the same strategy, Prompt 5-6 model utilizes396

score and grade level as labels during Grade Match.397

Given essay batch E = {e1, e2, ..., en}, corre-398

sponding score label S = {s1, s2, ..., sn}, corre-399

sponding grade level label G = {g1, g2, ..., gn},400

and augmentation sample count k, the essay re-401

sponse representation set Z = {z1, z2, ..., zn} is402

calculated for each corresponding batch item in E403

according to Equation 3. Next, cosine similarity cs404

is calculated for batch items with the same score405

and same grade level as follows.406

cs =
∑

gi=gj∈G,
i ̸=j

∑
si=sj∈S,

i ̸=j

Cos(zi, zj) (9) 407

Similarly, cosine similarity cd is calculated for 408

batch items with the same score but different grade 409

level and batch items with the same grade level but 410

different score as follows. 411

cd =
∑

gi ̸=gj∈G

∑
si=sj∈S,

i ̸=j

Cos(zi, zj)

+
∑

gi=gj∈G,
i ̸=j

∑
si ̸=sj∈S

Cos(zi, zj)

(10) 412

Finally, Prompt 5-6 model is trained to minimize 413

the following loss function which incorporates both 414

the MSE from Equation 8 and cosine similarities 415

computed in Equations 9 and 10. 416

L = MSE − 1

k
(cs − cd) (11) 417

The contribution of Grade Match is measured 418

with test set QWK, and the results are compared 419

against baseline models trained without Grade 420

Match. 421

4.3.3 Response Distortion 422

A service ready AES model must be able to detect 423

and penalize incoherent word ordering. Our ex- 424

periment investigates whether supervised training 425

on the ASAP dataset alone leads to such results. 426

Moreover, we experiment with a data augmenta- 427

tion method, Response Distortion, for adversarial 428

training. Since adversarial input detection is appli- 429

cable to all scoring rubrics, Response Distortion is 430

applied to all six AES models. 431

Response Distortion generates a partially per- 432

muted essay sample from a normal essay response. 433

Compared to similar works in AES adversarial 434

training, Response Distortion is unique in that it 435

only augments essays with a particular label score. 436

For a given training batch b = {t1, t2, ..., tn}, 437

we first filter essay samples with the lowest la- 438

bel score to get b′ = {t′1, t′2, ..., t′m} where t′i = 439

{essay, prompt, score = 0}. Next, we randomly 440

select maximum of k samples from the filtered 441

set b′ for Response Distortion. For each selected 442

k sample, we count the number of words w in 443

the essay and select two indices i and j such that 444

0 ≤ i < j ≤ w. Finally, we randomly permute the 445

ordering of all words between the ith and jth word 446
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index of the essay and add the generated distorted447

sample to the training batch with known label of448

score zero (lowest possible score). Since essays449

from b′ are already assigned with the lowest label450

score, any distortions that further lowers the quality451

of writing will not change the assigned label score.452

Following the same logic, Response Distortion is453

also applied to prompt mismatched samples gen-454

erated from Prompt Swap to introduce to the AES455

model various types of traits shared by low quality456

essay responses.457

The contribution of Response Distortion is re-458

ported in two folds. First, distorted response de-459

tection rate is measured with distorted samples460

generated from the test set. Unlike the training461

stage in which Response Distortion is only applied462

to essays with the lowest label score, distortion is463

applied to essays without score condition during464

testing. Moreover, since Response Distortion only465

applies partial permutation to word ordering, we466

cannot assign the lowest label score to distorted467

test samples with certainty. Therefore, given nor-468

mal essay t, distorted essay t′, and AES model469

f(essay) → score, distorted response detection is470

successful when f(t) > f(t′) (Kabra et al., 2022).471

Distorted response detection rate is computed and472

compared against baseline models trained without473

Response Distortion. Second, in response to previ-474

ous work that reported a trade-off between anomaly475

detection rate and QWK performance (Ding et al.,476

2020), we test how Response Distortion affects test477

set QWK and compare the results against baseline478

models trained without Response Distortion.479

5 Results and Analysis480

In this section, we analyze and discuss our experi-481

ment findings. Specifically, we evaluate the perfor-482

mance metric of each data augmentation method483

against baseline performances and examine the con-484

tribution of each method in terms of AES applica-485

tion. Moreover, we test a Response-Prompt AES486

model trained with our proposed data augmenta-487

tions on the ASAP dataset and investigate how the488

results compare against those of previous neural ap-489

proaches. Statistical significance is computed using490

paired t-tests between augmentation and baseline491

results. Statistical significance is denoted by · for492

p < 0.1, * for p < 0.05 and ** for p < 0.01.493

5.1 Data Augmentation Results 494

5.1.1 Prompt Swap 495

Experiment result for Prompt 3-4 and Prompt 5- 496

6 models trained with Prompt Swap is compared 497

against two baseline models using irrelevant re- 498

sponse detection rate as performance metric. The 499

first baseline implements the Response-Prompt 500

AES model structure and includes a response- 501

prompt attention layer. However, the first baseline 502

model is trained without Prompt Swap. The sec- 503

ond baseline is a replicated model with the same 504

model structure implemented in previous research, 505

which consists of a regression layer attached to a 506

pre-trained language model. Consistent with previ- 507

ous works, the second baseline model does not use 508

the question prompt as input and is trained without 509

Prompt Swap. Irrelevant response detection test 510

results are summarized in Table 1. 511

Response Irrelevant Response
Prompt Detection Rate

Baseline Attention 3-4 5-6
w/o Prompt Swap No 2.5% 0.0%
w/o Prompt Swap Yes 2.5% 0.0%
w/ Prompt Swap Yes 100%** 100%**

Table 1: Mean test set irrelevant response detection rate
reported in averaged percentages over 5 folds.

Experiment results indicate both baseline models 512

trained without Prompt Swap fail to detect irrele- 513

vant responses. In other words, baseline models 514

predict non-zero points to completely irrelevant 515

essays. In contrast, Response-Prompt AES model 516

trained with Prompt Swap records perfect detection 517

rate in the test set. The results also demonstrate that 518

the response-prompt attention layer is only relevant 519

when implemented with Prompt Swap. 520

Furthermore, we analyze the response-prompt 521

attention scores computed during Prompt Swap to 522

investigate what is being learned by the AES model. 523

Our findings summarized in Table 8 of Appendix 524

C show the learned attention mechanism closely 525

resembles the decision making process of a human 526

rater. 527

5.1.2 Grade Match 528

Experiment result for Prompt 5-6 model trained 529

with Grade Match is compared against baseline 530

model using QWK as performance metric. The 531

baseline model implements the Response-Prompt 532

AES model structure but is trained without Grade 533

Match. Grade Match test results are summarized 534

in Table 2. 535
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QWK
Prompt 5 Prompt 6

Baseline (Grade 8) (Grade 10)
w/o Grade Match 0.818 0.823
w/ Grade Match 0.829· 0.837·

Table 2: Mean test set QWK for Prompt 5 (Grade 8)
and Prompt 6 (Grade 10) computed over 5 folds. Perfor-
mance levels are computed from test set segmented by
grade level for better comparison.

When an AES model trains from essay responses536

written by students from different grade levels, our537

experiment results indicate applying Grade Match538

leads to QWK improvements in both grade levels.539

Moreover, our results confirm student grade level540

is indeed a factor to be considered during rubric-541

specific model training.542

5.1.3 Response Distortion543

Experiment result for Prompt 1, 2, 3-4, and 5-6544

models trained with Response Distortion is com-545

pared against baseline models using distorted re-546

sponse detection rate as performance metric (Re-547

sponse Distortion is not applicable in Prompt 7 and548

8 models due to lack of lowest label score data in549

each rubric-segmented dataset). All baseline mod-550

els implement the Response-Prompt AES model551

structure but are trained without Response Distor-552

tion. Test results summarized in Table 3 clearly553

indicate AES models trained with Response Distor-554

tion record higher detection rates than their baseline555

counterparts for both partial and whole permuta-556

tions.557

Test results from Prompt 1 model show the con-558

tribution of Response Distortion is relatively small559

in datasets with smaller portion of lowest label560

score samples (See, Table 5 of Appendix A). How-561

ever, test results from Prompt 3-4 and 5-6 mod-562

els suggest having more samples for augmentation563

does not guarantee linear increase in Response Dis-564

tortion contribution. Lastly, Prompt 2 model shows565

even when the vanilla model performs well against566

full permutation, Response Distortion is still effec-567

tive when processing partial permutations.568

5.2 ASAP Performance569

So far, experiment results indicate a Response-570

Prompt AES model trained with our proposed aug-571

mentation is equipped with functions necessary to572

handle rubric items overlooked by previous neural573

approaches to ASAP. Nonetheless, since QWK is574

still a key component of AES assessment, we inves-575

Distort Response Distortion Detection Rate
Baseline Rate 1 2 3-4 5-6
w/o R.D. 25% 38.5% 42.8% 21.8% 10.3%
w/ R.D. 25% 41.6% 44.8% 43.0%* 24.7%*
w/o R.D. 50% 39.8% 65.2% 32.2% 17.7%
w/ R.D. 50% 43.9% 74.2% 75.6%** 51.6%*
w/o R.D. 100% 60.1% 100.0% 51.6% 26.8%
w/ R.D. 100% 65.3% 100.0% 97.5%** 83.8%**

Table 3: Mean test set distorted response detection rate
reported in averaged percentages over 5 folds. Dis-
tort Rate is set during testing to control the level of
permutation. For example, when Distort Rate is 50%,
permutation indices i and j are sampled to cover 50%
of the original response.

tigate the relationship between the added functions 576

and the AES model’s performance on the ASAP 577

dataset. 578

We evaluate six AES models corresponding to 579

six unique rubrics provided in ASAP and com- 580

pare the results against benchmark performances 581

in Table 4. Evaluation result reveals the follow- 582

ing: a Response-Prompt AES model trained with 583

Prompt Swap, Grade Match, and Response Distor- 584

tion record the highest average QWK on the ASAP 585

dataset when compared to previous neural based 586

and state-of-the-art approaches (0.797 > 0.794). 587

Performance comparison analysis at the model 588

level exhibits the following strengths and areas for 589

improvements of our proposed method. 590

Prompt 1 & Prompt 2 Models Rows 7 and 8 591

of Table 4 indicate adding Response Distortion re- 592

sults in QWK performance gain in both prompts 593

1 and 2. Such finding goes against previous stud- 594

ies reporting a performance trade-off (Ding et al., 595

2020) between distorted response detection rate 596

and QWK. As described in the experiment proce- 597

dures, Response Distortion is different from related 598

works in that it only augments essays with the low- 599

est label score during training. The score condition 600

is essential as it resolves the ambiguous task of 601

assigning a score label to the generated sample 602

without compromising overall label consistency. In 603

line with related works, we confirm removing the 604

score condition and extending Response Distortion 605

to all score labels results in QWK performance 606

loss. 607

Prompt 7 & Prompt 8 Models Response Dis- 608

tortion cannot be applied to datasets with insuf- 609

ficient number of low-score samples. Therefore, 610

Prompt 7 and 8 model training is conducted with- 611

out augmentations. Without augmentations, QWK 612

performance in prompts 7 and 8 can be attributed 613

7



ASAP Prompt ID
Row AES Model 1 2 3 4 5 6 7 8 Average
1 Taghipour and Ng (2016) 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761
2 Dong et al. (2017) 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764
3 Yang et al. (2020) 0.817 0.719 0.698 0.845 0.841 0.847 0.839 0.744 0.794
4 Muangkammuen and Fukumoto (2020) 0.833 0.685 0.690 0.795 0.812 0.816 0.798 0.673 0.763
5 Mathias et al. (2020) 0.833 0.681 0.698 0.818 0.815 0.821 0.806 0.699 0.771
6 Jeon and Strube (2021) 0.828 0.706 0.694 0.827 0.806 0.820 0.838 0.769 0.786
7 Response-Prompt AES 0.823 0.707 0.695 0.816 0.818 0.823 0.842 0.763 0.786
8 Response Distortion 0.830· 0.719* 0.699 0.821· 0.823 0.827 - - -
9 Prompt Swap - - 0.702 0.830* 0.823 0.829 - - -
10 Prompt Swap + Response Distortion - - 0.716** 0.832** 0.824 0.834· - - -
11 Grade Match - - - - 0.829· 0.837· - - -
12 Prompt Swap + Response Distortion + Grade Match - - - - 0.833* 0.839· - - -
13 Response-Prompt AES + Best Augmentations 0.830 0.719 0.716 0.832 0.833 0.839 0.842 0.763 0.797

Table 4: Test set QWK performance for Response-Prompt AES model trained without augmentation (row 7),
Response-Prompt AES model trained with various combinations of augmentations (rows 8-13), and AES models
proposed in related works (rows 1-6). Augmented samples are only utilized during training and not included in test
set QWK computation.

to the Response-Prompt AES model structure as614

shown in Row 7 of Table 4. Scoring rubric for615

prompt 7 deducts points based on the essay’s focus616

on the topic.5 Compared to benchmark models that617

only utilize the essay as input, Response-Prompt618

AES model utilizes both the essay and prompt as619

inputs and measures the essay’s congruence with620

the prompt via response-prompt attention. Prompt621

8 includes long essays that cannot be processed622

by previous approaches that inherit the 512 token623

length restriction from BERT. Response-Prompt624

AES model trains a self-attention layer without in-625

put length restriction to process longer essays and626

achieve better performance. However, Jeon and627

Strube (2021) suggests adopting a pre-trained lan-628

guage model without length restriction can also629

be an alternative to training a custom layer from630

scratch.631

Prompt 3-4 Model While 18% of essays written632

in response to prompt 4 have zero label scores, only633

2% of essays in prompt 3 have zero label scores,634

which makes low-score predictions particularly dif-635

ficult in prompt 3. However, Prompt 3-4 model636

(i.e., rubric-specific model) is resilient to the label637

imbalance problem as it has access to zero label638

data from both prompts 3 and 4. Therefore, con-639

sistent with our findings from distorted response640

detection, we expect having access to sufficient641

number of zero label data will be an advantage for642

Prompt 3-4 model during augmentation training.643

Rows 8, 9, and 10 of Table 4 not only demonstrate644

the individual effect of each augmentation, but also645

show Prompt Swap complements Response Distor-646

tion by generating additional low score samples for647

5https://www.kaggle.com/competitions/asap-aes/
data

distortion, resulting in QWK improvement espe- 648

cially in prompt 3. 649

Prompt 5-6 Model Rows 7 and 11 of Table 4 650

confirm our hypothesis regarding rater expectation 651

of writing quality and student grade level. Despite 652

the QWK performance gain from Grade Matching, 653

Prompt 5-6 model is outperformed by Yang et al. 654

(2020) in both prompts 5 and 6. The results are 655

aligned with the idea that prompt-specific models, 656

when compared to generic models, are optimized to 657

be the better performing model for a given prompt 658

(Chen and He, 2013). However, our results also 659

indicate in exchange for prompt-specific perfor- 660

mance, rubric-specific models benefit from effi- 661

ciency (Attali and Burstein, 2006) as summarized 662

in Table 9 of Appendix C. 663

6 Conclusion 664

In this paper, we seek to resolve the limitations of 665

prompt-specific models while maintaining notable 666

performance in the ASAP dataset. As a solution, 667

we propose rubric-specific model training, which 668

consists of a custom designed AES model trained 669

from rubric-segmented datasets with series of data 670

augmentations called Prompt Swap, Grade Match, 671

and Response Distortion. Finally, we show the 672

resulting AES model is capable of irrelevant re- 673

sponse detection, student grade level adjustment, 674

and distorted response detection while achieving 675

state-of-the art performance in the ASAP dataset. 676

7 Limitation 677

Throughout this research, we identified several 678

limitations relating to the performance metric and 679

dataset utilized in the experiment. 680

8
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First, while our research evaluates statistical sig-681

nificance among internal experiment results, sta-682

tistical significance test was not applicable against683

external benchmark performances due to unavail-684

ability in released source code and limitations in685

replication.686

Second, the ability to detect irrelevant response687

is a fundamental and expected feature of AES sys-688

tems. Nevertheless, our experiments have demon-689

strated that the ASAP dataset and QWK do not test690

such fundamental attributes of AES models. More-691

over, QWK provides limited information regarding692

the AES model’s performance in other expected693

features such as fact checking or negation detection.694

Accordingly, while our experiment attains notable695

QWK performance in the ASAP dataset, we have696

insufficient understanding of our AES model’s ex-697

pected behavior against various data augmentation698

methods likely to be observed during real-world699

application.700

Lastly, the QWK performance metric may not be701

aligned with the purpose of real-world application702

of autograding systems. Given that student perfor-703

mance in any academic field is mostly populated704

around the average, accurate evaluation is essential705

to identify the relatively smaller population of stu-706

dents who are falling behind or displaying talent.707

QWK is not an ideal performance metric for this708

purpose as capturing the majority around the av-709

erage is a better strategy than capturing the small710

groups at both ends of the performance grid.711

The ASAP dataset is one of many problems712

needed to be solved before real-world application713

of autograding systems. The limitations described714

above will be further discussed in our future work715

on AES focusing on service applications.716
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A Data Tables891

No. Score Avg. Lowest Label
Prompt Essays Range Length Score %

1 1,783 2-12 350 0.56%
2 1,800 1-6 350 1.33%
3 1,726 0-3 150 2.26%
4 1,772 0-3 150 17.61%
5 1,805 0-4 150 1.33%
6 1,800 0-4 150 2.44%
7 1,569 0-30 250 0.0%
8 723 0-60 650 0.0%

Table 5: Summary statistics of the ASAP dataset. Score
Range column indicates integer range of score labels.
Lowest Label Score Percentage measures the portion
of essays assigned with the lowest label score for each
prompt. For example, in prompt 1, 0.56% of 1,783
essays are assigned with the lowest label score of 2.

Prompt Genre Level Rubric
1 ARG 8
2 ARG 10
3 RES 10 ×
4 RES 10 ×
5 RES 8 △
6 RES 10 △
7 NAR 7
8 NAR 10

Table 6: Metadata of the ASAP dataset. Genre column
indicates the type of essays including argumentative es-
says, response essays (source-dependent), and narrative
essays. Level column indicates the grade level of the
essay writers. Rubric column indicates prompts sharing
the same scoring rubric. Scoring rubrics are identical
for prompts 3 and 4 and prompts 5 and 6.

Prompt Scoring Guide for Irrelevant Essay
3 assign lowest score
4 assign lowest score
5 assign lowest score
6 assign lowest score

Table 7: Scoring rubric for source dependant essays
require evaluation of relevance between essay response
and question prompt.
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B Hyper-parameters892

Our experiments are conducted with 4 NVIDIA893

GeForce RTX 3090 GPUs, and training batch size894

for each AES model is set to match the maximum895

GPU memory limit.896

Prompt 3-4 Model We train Prompt 3-4 model897

on the rubric-segmented dataset for 20 epochs. We898

apply learning rate of 4× 10−5 for the pre-trained899

BERT and 8× 10−5 for the custom attention lay-900

ers which are trained from scratch. For accurate901

performance comparison, develop and test set per-902

formances are recorded and reported separately for903

each prompt. Training batch of size 40 is applied904

with 5% Prompt Swap rate, resulting in total of 42905

training data samples for each batch.906

Prompt 5-6 Model Prompt 5-6 model is trained907

for 40 epochs in total, and cosine similarity is opti-908

mized for the first 20 epochs only. After 20 epochs,909

Prompt 5-6 model training only optimizes the MSE910

loss. To make sure a given training batch is suf-911

ficiently diverse, each batch item is paired with912

a positive and negative sample randomly selected913

from outside the training batch, resulting in train-914

ing batch of size 16. We apply learning rate of915

8 × 10−5 for the pre-trained BERT, 1 × 10−4 for916

the custom attention layers, and 3×10−4 for cosine917

similarity optimization. Training batch of size 16 is918

applied with 2 Prompt Swap samples per batch, but919

prompt swapped samples are excluded from cosine920

similarity computation.921

Prompt 1, 2, 7, and 8 Models Prompts 1, 2, 7,922

and 8 have distinct scoring rubrics and therefore923

are trained separately with distinct hyper-parameter924

settings. Response Distortion is applied to essay925

responses that have the lowest label scores when926

applicable. Learning rates ranging from 1× 10−5927

to 4× 10−5 are applied for the pre-trained BERT928

and 8× 10−5 to 1× 10−4 for the custom attention929

layers. Batch size ranges from 10 to 16 with a930

response distortion rate of 1 augmented sample per931

batch over 10 to 20 training epochs.932

Irrelevant Response Detection During irrele-933

vant response detection testing for Prompt 3-4 and934

Prompt 5-6 models, we apply Prompt Swap rate935

of 10% to generate 72 prompt mismatched test936

samples for each prompt and each fold. To better937

capture the contribution of Prompt Swap, Prompt938

Swap is only applied to essays with scores greater939

than the average score during testing. Prompt mis- 940

matched samples are only used to compute irrele- 941

vant response detection rate and are not included 942

in test set QWK calculation. 943

Distorted Response Detection During distorted 944

response detection testing for Prompt 1, 2, 3-4 and 945

5-6 models, we apply Response Distortion to all 946

samples in each rubric-segmented test set for all 947

folds. Response Distortion is applied to essay sam- 948

ples without score conditions during testing. More- 949

over, the same test is conducted with different Dis- 950

tort Rate values. Distort Rates are only applied 951

during testing to control the magnitude of permuta- 952

tion applied on each test sample. Distorted samples 953

are only used to compute distorted response de- 954

tection rate and are not included in test set QWK 955

calculation. 956
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C Additional Results 957

Attention Score Sentences from Question Prompt
0.0368 “Winter Hibiscus by Minfong Ho Saeng, a teenage girl, and her family

have moved to the United States from Vietnam.”

0.0325 “A wave of loss so deep and strong that it stung Saeng’s eyes now swept
over her.”

0.0280 “I’d read once that sucking on stones helps take your mind off thirst by
allowing what spit you have left to circulate.”

0.0019 “Write a response that explains why the author concludes the story
with this paragraph.”

0.0029 “How did it go? Did you-?”

0.0029 “Goodness, it’s past five. What took you so long?”

Table 8: Response-prompt attention scores computed during Prompt 3-4 model training with Prompt Swap. Table
includes three largest and three smallest attention score values with their corresponding question prompt sentence.
Sentences corresponding to the first two largest attention scores can be easily associated with prompt 4, which is a
story describing the struggles of immigration. Similarly, the third largest attention score can be associated with
prompt 3, which is an essay describing a cyclist’s battle against thirst and dehydration. On the contrary, prompt
sentences with the lowest attention scores cannot be directly associated with either prompt 3 or prompt 4.

QWK
AES Model 3-4 5-6 No. of Trained Models
Yang et al. (2020) 0.772 0.844 4
Jeon and Strube (2021) 0.761 0.813 4
Rubric-Specific Model w/ Augmentation Training 0.774 0.836 2

Table 9: Test set QWK performance (prompt averages) and number of trained AES models for benchmark models
utilizing pre-trained language models. Prompt-specific approach requires training n models for n question prompts.
On the other hand, rubric-specific approach only requires training 1 model for n question prompts as long as the
prompts share the same rubric.
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