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Abstract

Following the success of GPT4, there has been a surge in interest in multimodal
large language model (MLLM) research. This line of research focuses on de-
veloping general-purpose LLMs through fine-tuning pre-trained LLMs and vision
models. However, catastrophic forgetting, a notorious phenomenon where the
fine-tuned model fails to retain similar performance compared to the pre-trained
model, still remains an inherent problem in multimodal LLMs (MLLM). In this
paper, we introduce EMT: Evaluating MulTimodality for evaluating the catas-
trophic forgetting in MLLMs, by treating each MLLM as an image classifier. We
first apply EMT to evaluate several open-source fine-tuned MLLMs and we dis-
cover that almost all evaluated MLLMs fail to retain the same performance levels
as their vision encoders on standard image classification tasks. Moreover, we
continue fine-tuning LLaVA, an MLLM and utilize EMT to assess performance
throughout the fine-tuning. Interestingly, our results suggest that early-stage fine-
tuning on an image dataset improves performance across other image datasets,
by enhancing the alignment of text and visual features. However, as fine-tuning
proceeds, the MLLMs begin to hallucinate, resulting in a significant loss of gener-
alizability, even when the image encoder remains frozen. Our results suggest that
MLLM:s have yet to demonstrate performance on par with their vision models on
standard image classification tasks and the current MLLM fine-tuning procedure
still has room for improvement.

1 Introduction

The recent progress in language models (LMs) has demonstrated impressive competency in engag-
ing in a natural dialogue and in complex examinations [12, 6, 37, 39]. Besides text generation,
GPT4 [38] has recently shown impressive multimodal capability by performing a range of tasks
with visual and language inputs. The emergent multimodal reasoning capabilities of GPT4 have
propelled a surge of interest in multimodal large language models (MLLMs) [29, 32, 59, 28, 11].
This line of research typically involves (1) integrating pre-trained vision encoders [41, 23] with
open-source LLMs [10, 48, 49], and (2) applying instruction tuning on the resulting vision-language
models [11, 32, 28].

While many of these fine-tuned MLLMs have demonstrated remarkable capabilities in general pur-
pose vision-language comprehension [54, 15], these models still suffer from catastrophic forget-
ting [8, 13, 36, 26]. That is, the models tend to overfit to the fine-tuning dataset and consequently
experience a decline in performance on pre-training tasks. Catastrophic forgetting in image classi-
fication has been extensively studied in computer vision and machine learning [16, 53]. However,
recent developments in MLLMs [29, 32, 59, 28, 11] have mainly focused on creating multimodal
chatbots for visual question answering [2], without evaluating their fundamental image classification
capabilities, let alone explore the catastrophic forgetting in MLLM. That being said, prior MLLM
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evaluation frameworks [30, 15] mainly focus on assessing cognitive reasoning capability or hallu-
cinations, which overlooks the necessity to critically examine how well MLLMs inherit the image
classification capability from their base vision encoders [41, 23].

To comprehensively investigate the catastrophic forgetting in fine-tuned MLLM, we present the
Evaluating MulTimodality (EMT) framework, which, to the best of our knowledge, is the first
evaluation framework that studies the catastrophic forgetting in MLLMs. The EMT framework is a
two-stage approach that treats each MLLM as an image classifier. In particular, for an input text and
image pair, EMT first prompts the testing MLLM by asking it to classify the input image, and then
post-processes the outputs to obtain a classification accuracy.
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Figure 1: The EMT evaluation pipeline for MLLM. We prompt each MLLM as an image classifier by (1)
inputting an image from a classification task; (2) asking the MLLM to explicitly answer a single label from the
classification task. We evaluate the correctness of each output using another LLM.

We first apply EMT to several open-source fine-tuned MLLMs [28, 32, 5, 11] and observe a severe
catastrophic forgetting phenomenon among all the tested models. That is, the majority of the tested
MLLMs fail to retain a comparable classification accuracy when compared to the zero-shot per-
formance of their vision encoders. After analyzing the results from the tested open-source models,
we identify hallucination [59, 30, 24, 17] as one the major factors contributing to the performance
degradation in MLLMSs. Specifically, the tested MLLMs hallucinate by generating additional out-
puts that are irrelevant to the input question, including outputting more than one label or generating
unverifiable descriptions of a label.

To gain deeper insights into how fine-tuning impacts the performance of MLLMs, we continue to
fine-tune LLaVA [32], a popular MLLM achieving state-of-the-art accuracy on Science QA [33],
and then apply the EMT evaluation to the fine-tuned LLaVA. Our fine-tuning experiments reveal
two main observations. [Initially, fine-tuning on one dataset demonstrates generalization to other
datasets, as it improves the alignment between textual and visual features. However, as the fine-
tuning progresses, LLaVA starts to hallucinate by disregarding the questions and exclusively gener-
ating text based on the examples in the fine-tuning datasets.

To summarize, this paper makes two key contributions.

* We propose EMT, an evaluation framework designed specifically to evaluate the phe-
nomenon of catastrophic forgetting in MLLMs. To the best of our knowledge, EMT is the
first evaluation framework to investigate catastrophic forgetting in MLLM through clas-
sification. Through EMT, we discover that nearly all the tested models fail to retain the
classification performance of their vision encoders.

* We conduct fine-tuning experiments on LLaVA. Our fine-tuning results indicate that while
moderate fine-tuning is advantageous for non-fine-tuned tasks, excessive fine-tuning ulti-
mately leads to catastrophic forgetting in these tasks.

Our findings suggest that the fine-tuning process of MLLMs can still be further improved, particu-
larly in mitigating catastrophic forgetting and reducing hallucinations.

2 Related Works

Fine-Tuning and Catastrophic Forgetting. Fine-tuning large pre-trained models has signifi-
cantly transformed the field of natural language processing [12, 42, 43, 6]. Despite its ubiquity



and remarkable achievements, fine-tuning LLM still suffers from core machine learning prob-
lems such as catastrophic forgetting [34]. Catastrophic forgetting widely appears in LLM fine-
tuning [20, 27, 13, 57, 26] or in-context learning [ 1, 50], as the LLMs tend to overfit to the small fine-
tuning dataset resulting in losing performance on other tasks [20]. Various approaches have been
proposed to mitigate the catastrophic forgetting problem in LLM fine-tuning, including pre-trained
weight decay [57], learning rate decay [20], regularizations [27], and adversarial fine-tuning [13].
However, in MLLM, such a catastrophic forgetting phenomenon has not been thoroughly studied
yet. Our work is most related to several evaluation metrics for MLLMs [15, 30], which proposed a
comprehensive framework for evaluating the perception and recognition [15] or hallucinations [30],
while the proposed EMT specifically aims at evaluating the catastrophic forgetting in MLLMs.

Multimodal Large Language Models. Multimodal Large Language Models (MLLMs) have
emerged as a significant advancement in vision-language models, which significantly improves the
model’s reasoning capability. These models are designed to process and interpret information from
multiple modalities, such as text and images, to perform complex tasks that require a comprehensive
understanding of the context. Recent works [29, 11, 28, 5, 32, 59, 3, 56, 22, 7] have contributed
to the development and enhancement of MLLMs by leveraging the strong reasoning capability of
LLMs such as LLaMA [48, 49]. LLaVA [32], as presented in the paper under discussion, rep-
resents a novel approach to instruction tuning on machine-generated multimodal language-image
instruction-following data, achieving impressive multimodal chat abilities and state-of-the-art ac-
curacy on Science QA [33]. Following the instruction tuning approach, various works came out
focusing on other modalities such as video [55] and point cloud [19]. See [54] for a more compre-
hensive overview of the current state and future directions of MLLMs.

A Theoretical Perspective of Catastrophic Forgetting through Minority Collapse. Recently,
[53] introduced an approach to address the issue of catastrophic forgetting, drawing inspiration from
the principles of Neural Collapse (NC) [40, 60, 14, 47, 4, 58]. In particular, [14] proposes minority
collapse as a subsequent research direction of NC. Minority collapse describes a phenomenon in su-
pervised learning with imbalanced data, where the classifiers of the minority classes converge to one
vertex when the sample size ratio between the majority and minority classes reaches infinity. This
result implies that all minority classes are indistinguishable when the imbalance ratio reaches infin-
ity. To connect the fine-tuning with minority collapse: (1) Treating the absent class in fine-tuning as
minority classes with a sample size of zero, directly implies the imbalanced training scenarios with
a ratio of infinity; (2) Such an imbalance training in the fine-tuning phase will make the classifiers
of the pre-trained classes converges to one vertex [14]; (3) Hence, the pre-trained classes become
indistinguishable during fine-tuning, which results in catastrophic forgetting.

3 Fine-Tuning Image Classification

To verify the theoretical results inspired by minority collapse [14, 47], where supervised fine-tuning
leads to catastrophic forgetting, we first perform pre-training and fine-tuning of image classifica-
tion via ResNet [18]. Next, to further investigate the catastrophic forgetting in the vision-language
model, we conduct experiments in fine-tuning the Contrastive Language-Image Pre-Training net-
work (CLIP) [41].

3.1 Pre-Training and Fine-Tuning for Image Classification

To initiate our investigation, we train ResNet18 [18] on conventional image classification bench-
marks. In particular, we first pre-train using the initial 50% of classes for 100 epochs. Then, we
fine-tune with the remaining 50% of classes for 100 epochs, so that the fine-tuning classes and the
pre-training classes do not overlap. Since the NC theory [40, 60] mainly focuses on analyzing the
training loss, we only present the average training accuracy for the first 50% pre-trained classes (See
Figure 2). Notably, when the fine-tuning starts, the training accuracy of pre-trained classes rapidly
diminishes to zero across all datasets. As discussed in previous sections, such a catastrophic for-
getting phenomenon can be directly associated with minority collapse, where the classifiers of all
minority classes converge to a single vertex, when the imbalance ratio between majority and mi-
nority classes approaches infinity. Therefore, the observed decline in performance is in line with



our expectations. For completeness, we provide the theoretical formulation of minority collapse of
fine-tuning in Appendix A and implementation details in Appendix B.
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Figure 2: Catastrophic forgetting happens in traditional classification tasks. To corroborate the NC the-

ory [40, 60, 14, 47], we only plot the average training accuracy of the first 50% classes of MNIST, CIFAR-10,
CIFAR-100, and minilmagenet, respectively.

3.2 Fine-Tuning Contrastive Language-Image Pre-Training Network

We then fine-tune the vision encoder from the CLIP ViT-L-14 model [41], starting from a checkpoint
provided by OpenAl’s CLIP, available through openCLIP [23]. In our experiments, we employ
the standard cross-entropy loss, consistent with the approach used in CLIP pre-training and the
analysis in Neural Collapse [40, 60] as well as minority collapse [14]. Text inputs are created by
concatenating labels with short descriptions. See examples in Appendix B.
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Figure 3: Accuracy of 1-14 epoch fine-tuned CLIP on MNIST, CIFAR-10, CIFAR-100, and minilmagenet.
Detailed accuracy numbers are presented in Table 4 of Appendix B.2.

Empirical results demonstrate that vision-language models like CLIP are susceptible to neural col-
lapse after fine-tuning. In particular, we observe a significant rise in the in-domain performance,
while the out-of-domain dataset performance begins to decline. By the time we reach 15 epochs,
nearly all in-domain performance metrics have escalated to close to 99%, but the out-of-domain
performance has suffered.

4 EMT: Evaluating Multimodal Large Language Models

Since prior MLLM evaluation frameworks [15, 30] focus on assessing cognitive reasoning [15] or
hallucinations [30] rather than the catastrophic forgetting from an image classification perspective,
we propose EMT, a framework for Evaluating MulTimodal LLM. EMT works as follows: (1) We
start by inputting an image from a classification task; (2) Then we prompt the testing MLLM by
asking it to classify the input images and collect its outputs via the prompt provided below, according
to each dataset. (3) Next, since the output from MLLMs may not adhere to a specific format,
we apply GPT-3.5 to evaluate the classification accuracy;’ (4) Finally, we output the prediction
accuracy of the testing MLLM on different datasets.

EMT Prompt:

What is the number/object in the image? Please only answer a
single number/object in [class labels].

The detailed prompts for predictions and evaluations for each dataset are provided in Appendix C.1.

It is a common practice to adopt openaiAPI for evaluating the performance of different LMs, e.g., see [44,
17]. See more discussion on other potential evaluation methods in Section 7.



4.1 Catastrophic Forgetting in Open-Source MLLMs

In this subsection, we initially apply EMT to assess four MLLMs: LLaVA [32], Otter [28], In-
structBLIP [11], and LENS [5]. As shown in Figure 4, most of the tested open-source MLLMs
suffer from catastrophic forgetting by failing to retain a similar classification performance, com-
pared to the zero-shot classification outcome of their respective vision encoders. A notable ex-
ception is InstructBLIP-7b, which performs slightly better on the CIFAR-10 dataset. De-
spite InstructBLIP slightly performing better than its base vision model, InstructBLIP cannot
achieve similar performance in CIFAR-100 and minilmagenet, compared to LLaVA and Otter.’ It
may seem surprising that most of the tested MLLMs fail to retain similar performance of their foun-
dational vision models, but such a performance degradation can be anticipated in hindsight. This
performance degradation may stem from the fact that classifications of MNIST, CIFAR-10, CIFAR-
100, and minilmagenet are not incorporated into the training dataset of the evaluated MLLMs.*
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Figure 4: EMT evaluation accuracy of different MLLMs on MNIST, CIFAR-10, CIFAR-100, and
minilmagenet, against the zero-shot performance of their vision encoders. Models are grouped according
to their underlying vision encoder architecture. Detailed accuracy numbers are presented in Table 2 in Ap-
pendix C.2.

4.2 Reasons for the Performance Degradation

After checking the outputs of different models using our EMT prompt, we have identified three
major issues causing performance degradation: incorrect prediction, intrinsic hallucination, and
extrinsic hallucination. It is evident that MLLMs could produce incorrect predictions, just like
classifiers. In the example shown below, LLaVA-7B incorrectly predicts “0” as “8” in the MNIST
classification.

img Label: 0 — LLaVA-7b
m The number in the image is 8:

Aside from incorrect prediction, the performance is also significantly impacted by hallucina-
tion [24, 31] — the tested MLLMs sometimes generate seemingly related but incorrect or unverifiable
contents. [24] further characterizes hallucinations into two distinct categories: intrinsic and extrin-
sic hallucinations. Intrinsic hallucinations are defined as instances in which the generated output
directly contradicts the source content. Extrinsic hallucinations, on the other hand, are those where
the output bears no verifiable connection to the original source content.

Intrinsic Hallucination. Our EMT prompt has identified intrinsic hallucinations within the tested
MLLMs. One example can be drawn from asking LENS to perform a classification on CIFAR-10:

3We hypothesize that the performance variations amongst these MLLM:s are attributable to differences in
their training methodologies. However, the precise causes contributing to the performance discrepancy in these
open-source MLLMs are beyond the scope of this research.

“For completeness, we leave the detailed discussion of different datasets adopted by each tested MLLM:s in
Appendix C.3. We also have some examples of the outputs by EMT prompt in Appendix C.4



img Label: horse — LENS
n airplane, automobile, bird, cat, deer, dog, frog, horse,

It is important to note that EMT prompt explicitly instructed the testing MLLM to identify only
a single object within all class labels. Despite these clear instructions, LENS still produces an
intrinsically hallucinated output - airplane, automobile, bird, cat, deer, dog, frog,
horse,, an answer that contains multiple labels.

Extrinsic Hallucination. In addition to intrinsic hallucination, we have also discovered extrinsic
hallucinations when applying InstructBLIP to classify CIFAR-100:

img Label: aquarium_fish — InstructBLIP-7b
a picture of a fish in a tank

In the example provided above, while the generated output text partially includes the label “aquarium
fish”, it also exhibits additional descriptors that are not only challenging to verify, but also extraneous
to the original request outlined by the prompt.

Base LMs are Important. Among all the tested MLLMs, Figure 4 shows that LENS achieves the
worst performance, compared to all other models, in each individual task and overall performance.
Considering that ViT-H-14, the underlying vision encoder of LENS, does not exhibit a signifi-
cant performance shortfall, we hypothesize that the observed performance gap is attributed to the
base LM. This is because Otter, LLaVA, and InstructBLIP all adopt the LLaMA model [48], while
LENS uses the Flan-T5 model [10], which is less potent than LLaMA. Nonetheless, our results do
not necessarily imply that larger LMs consistently yield superior performance, as our experiments
have revealed varying outcomes. For instance, although LLaVA-13b generally surpasses LLaVA-7b,
InstructBLIP-13b does not demonstrate superiority over InstructBLIP-7b. Therefore, we be-
lieve that additional experiments are required to conclusively determine whether larger LMs improve
the integration of vision and text data in MLLMs.

S EMT on Multimodal Large Language Models Fine-Tuning

Equipped with EMT, we now investigate the hallucinations in MLLM fine-tuning. We use
LLaVA-7b and LLaVA-13b as our based MLLM for fine-tuning. And we conduct fine-tuning exper-
iments on MNIST, CIFAR-10, CIFAR-100, and minilmagenet, respectively. All of our fine-tuning
experiments were conducted based on the LLaVA model released on July 4", 2023.

Linear and LoRA Fine-Tuning As discussed by [32], the LLaVA model contains a frozen base
vision encoder g(-) and a pre-trained LLM f4(-) parameterized by ¢. For an input image X,
LLaVA first maps X, into a visual feature vector Z, by applying the visual encoder Z, = g(X,).
Then, LLaVA applies a linear adapted layer W, that maps the visual features into text feature spaces
H, = W-Z,, and concatenate H, with the embedding of language queries H into a visual and text
embedding vector [H,, Hgy]. Finally, LLaVA feeds [H,, Hg]| as the input to the pre-trained LLM
fo(+) to obtain responses. As for specific fine-tuning methods: (1) Linear fine-tuning method only
fine-tunes the linear adapter layer W; (2) LoRA fine-tuning method fine-tunes the linear adapter
layer W and the pre-trained LLM fy4(-) with LoRA [21].

5.1 Experimental Setup and Overview

Given that LLaVA relies on visual and language instruction data for training and fine-tuning pro-
cesses, we have manually reformatted several datasets, namely MNIST, CIFAR-10, CIFAR-100,
and minilmagenet to comply with the required format for fine-tuning. For more detailed informa-
tion on the format of the fine-tuning data used, as well as the specifics of the LLaVA fine-tuning
process, please refer to Appendix D.1. All of our fine-tuning experiments were conducted using

>See this git commit.


https://github.com/haotian-liu/LLaVA/tree/7ace501183c4bdec6052ec1a30039cdc3242a67c

2 Nvidia A100 GPUs. We fine-tune LLaVA-7b and LLaVA-13b using linear and LoRA [21] fine-
tuning respectively, due to the limitation of computational resources, we cannot afford to fine-tune
the entire LLaMA model. We first report the EMT evaluated accuracy of fine-tuned LLaVA-7b and
LLaVA-13Db after 3 epochs of linear and LoRA fine-tuning in Figure 5. To assess accuracy variations
during training, we then report the EMT evaluation results from 1-3 fine-tuning epochs in Figure 6
and 7.

5.2 Excessive Fine-Tuning Causes Forgetting

We first present the 3-epoch fine-tuning results in Figure 5. While LLaVA’s performance indeed
improves on the fine-tuning dataset, Figure 5 unveils a critical issue of MLLM fine-tuning:

Fine-tuning MLLM on one dataset decreases the performance on another non-fine-tuning dataset.

This phenomenon, though not unexpected, is noteworthy. As the model doesn’t have exposure to
datasets other than the one it has been fine-tuned on, it stands to reason that a similar effect to
catastrophic forgetting would be observed, as discussed previously in Section 4.1.
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Figure 5: EMT evaluation accuracy of 3-epoch fine-tuned LLaVA-7b and LLaVA-13b on MNIST, CIFAR-10,
CIFAR-100, and minilmagenet, against the zero-shot performance of their vision encoders. Detailed accuracy
numbers are presented in Table 3 of Appendix D.3.

As we examine the output from fine-tuned LLaVA, we discover that

Fine-tuning MLLM causes hallucinations, by outputting texts that are related to its fine-tuned
dataset while ignoring the question related to its original prompt.

To further illustrate this phenomenon, we provide explicit examples of classifying the LLaVA-7b
and LLaVA-13b, which have been fine-tuned on different datasets using the EMT prompt.

EMT Prompt:

What is the object in the image? Please only answer a single
object in airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck.

img Label: airplane — LLaVA-7b-lora-ft-cifari10
The object is an airplane.
-

The earlier demonstration illustrates that, when the CIFAR-10 fine-tuned model is tested on CIFAR-
10, LLaVA indeed successfully identifies the object. Nevertheless, the LLaVA model begins to
hallucinate in CIFAR-10 classifications after being fine-tuned on other datasets.

img Label: airplane — LLaVA-7b-lora-ft-mnist
The airplane is 8.
b

In the preceding example, the classification of CIFAR-10 through an MNIST fine-tuned model, the
model not only partially generates the keyword “airplane”, but concurrently produces hallucinated



outputs by yielding the representation of the number “8”. Similar phenomena are also observed in
the CIFAR-100 and minilmagenet fine-tuned models. Specifically, these fine-tuned models begin to
hallucinate by predicting “airplane” as classes that bear resemblance or are related to an “airplane”,
such as “butterfly” and “aircraft carrier” in the CIFAR-100 and minilmagenet models, respectively.

img Label: airplane — LLaVA-7b-lora-ft-cifar100
The object is a(n) butterfly.

img Label: airplane — LLaVA-7b-lora-ft-miniimagenet

The object is a(n) aircraft carrier.

For completeness, we attach additional outputs of different fine-tuned LLaVA models in Ap-
pendix D.2 for further reference.

5.3 Moderate Fine-Tuning is Beneficial

In the preceding subsection, we have demonstrated that 3-epoch fine-tuned LLaVA achieves superior
performance on the fine-tuned dataset, at the expense of generating hallucinated texts when tested
on other datasets. However, this outcome does not necessarily imply that fine-tuning undermines the
performance. Notably, we actually observe performance improvement on non-fine-tuned datasets.
For instance, as shown in Figure 5, LLaVA-7b exhibits improved performance on minilmagenet after
3 epochs of fine-tuning on CIFAR-10. To better understand the generalizability in fine-tuning, we
conduct fine-tuning experiments on all four datasets for 3 epochs and report their accuracy at each
epoch.

Fine-Tuning Adapter Improves Feature Alignments. As illustrated in Figure 6, we observe that
the linear fine-tuned LLaVA achieves generalization performance upon being fine-tuned on RGB
datasets, namely, CIFAR-10, CIFAR-100, and minilmagenet. Given that linear fine-tuning only
affects the linear projection layer connecting visual features to the text embedding space, Figure 6
implies that early-stage fine-tuning contributes to the enhancement of alignment between visual and
textual features. However, in subsequent fine-tuning epochs (2-3), LLaVA starts to overfit the fine-
tuning dataset by generating hallucinated texts.
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Figure 6: EMT evaluation accuracy of 1-3 epoch linear fine-tuned LLaVA-7b on MNIST, CIFAR-10, CIFAR-
100, and minilmagenet. Detailed accuracy numbers are presented in Table 4.

Fine-Tuning LLM and Adapter Causes Hallucinations. Contrary to the linear fine-tuning, Fig-
ure 7 implies that jointly fine-tuning both the LLM and the linear adapter directly causes overfitting
on the fine-tuning dataset. This is evidenced by the significant degradation in the LoRA fine-tuned
model’s performance on the non-fine-tuning datasets after just a single epoch of training.

6 Conclusions

In this paper, we have studied how fine-tuning affects catastrophic forgetting in MLLMs. To quan-
titatively evaluate this issue, we propose EMT, a framework for evaluating the fine-tuning perfor-
mance of MLLMs. We then conduct extensive experiments in fine-tuning LLaVA, an MLLM, and
apply EMT to evaluate the performance of different fine-tuned LLaVA models. We have discovered
that: (1) Almost all the open-source MLLMs tested in this paper fail to achieve a similar level of
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Figure 7: EMT evaluation accuracy of 1-3 epoch LoRA fine-tuned LLaVA-7b on MNIST, CIFAR-10, CIFAR-
100, and minilmagenet. Detailed accuracy numbers are presented in Table 5.

accuracy, compared to the zero-shot performance of their base vision encoder; (2) After excessive
fine-tuning on one dataset, LLaVA’s performance on non-fine-tuning datasets deteriorate as it starts
to overfit and hallucinate; (3) Moderate fine-tuning actually improves the performance of LLaVA on
similar tasks, as fine-tuning helps visual and text feature alignment in the early-stage.

7 Discussions and Future Work

Dataset Diversity is Important for Fine-Tuning. Figure 6 shows that LLaVA fine-tuned on
CIFAR-10, CIFAR-100, and minilmagenet for one epoch, could generalize to the other two datasets,
while fine-tuning LLaVA on MNIST leads to performance degradation on all remaining datasets.
This observation implies that having a diverse fine-tuning dataset is important. This is because a
more diverse dataset will have features of more modes, hence making the fine-tuned MLLMs suffer
less from catastrophic forgetting.

Catastrophic Forgetting Beyond Image Classifications. As a starting point, we only study the
catastrophic forgetting in MLLM from the image classification perspective, since it is a standard
classification problem. In the future, we believe similar evaluation methods can be developed for
other scenarios, such as reducing bias towards unsafe outputs [3], degrading visual localization
reasoning capabilities [59], or even hallucinations [30].

Post-processing the Outputs. Note that in step (3) of EMT, using the openaiAPI is not the only
solution for evaluating the correctness of the outputs generated by MLLMs. In the future, there are
several solutions. (1) Utilize a sentence embedding model. N formatted ground truth phrases can
be fed into a sentence embedding model such as CLIP text encoding resulting in N ground truth
embedding {e;}, where i € {1,---, N}. Given a generated text y for a test sample, we can feed its
CLIP text embedding e(y) and compute the matching ground truth ¢ using arg min, ||e; — e(y)]|,.
(2) One can also hard code (such as finding the existence of the label names) the decision criteria
for dealing with hallucination. Note that finding a perfect post-processing method for EMT is not
easy, as the labels from different datasets may have many synonyms. For example, when evaluating
LLaVA on the label African_hunting dog in minilmagenet, it is hard to determine whether a
prediction of “dog” should be correct or not. Hence, we believe such confusion in synonyms should
also be taken into consideration in the future when building post-processing methods.
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