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Abstract

Learning-based mobility planning has proven effective in op-
timizing performance metrics like latency, throughput, and
cost in applications such as path planning and network se-
curity. However, real-world networks often face partial or dy-
namic observability, limiting the applicability of existing ro-
bust optimization approaches, which can be conservative, in-
efficient, or require extensive retraining under changing con-
ditions. This paper introduces LAMPS, a new learning-based
mobility planning framework that leverages Gaussian Cox
processes to estimate spatiotemporal network states and their
uncertainty, enabling robust decision-making under varying
observability without retraining. These posterior estimates
are integrated into a utility-based planning algorithm that
adapts policies trained under full observability to diverse con-
ditions, optimizing average performance or ensuring robust-
ness in near-worst-case scenarios. We analyze the LAMPS
framework in a real-world situation involving UAV mobility
and wireless resource management, demonstrating the frame-
work’s scalability, adaptability, and efficiency in dynamic net-
work environments. Our evaluation results demonstrate the
remarkable adaptability and robustness of the LAMPS. It
consistently outperforms other methods under different ob-
servability conditions and setups, proving its effectiveness in
dynamic environments without requiring retraining.

Introduction
Learning-based mobility planning and optimization has
demonstrated great potential in many problem domains,
such as path planning, network security, and traffic predic-
tion. These domains benefit from efficient resource alloca-
tion, routing, and threat detection (Wang and Lin 2021; Lu-
ong et al. 2019; Nie et al. 2020). Such mobility planning
problems are often formulated as a Markov Decision Pro-
cess (MDP). The goal is to learn a decision-making policy
π : S → A, which maps each network state to an optimal
control action or a distribution over possible actions. This
includes re-routing data, reallocating resources, or adjusting
operational parameters to optimize performance metrics like
latency, throughput, or cost efficiency.

In practice, obtaining complete network state information
is often hard, especially when the network is decentralized,
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operates in dynamic settings, or needs to provide connec-
tivity under unknown environments. In case of static par-
tial observability (i.e., the level of partial observability does
not change over time or during execution), existing work
has considered robust optimization techniques (Moos et al.
2022) and partially-observable MDP (POMDP) models (Liu
et al. 2022). Robust optimization, e.g., with respect to un-
certainty set (Zhang, Feng, and Rong 2017) or worst-case
analysis (Poursoltani and Delage 2022), can be too conser-
vative and resource inefficient. For the POMDP approach,
the idea is typically to extrapolate a belief state distribution
from past observations, e.g., using LSTM (Meng, Gorbet,
and Kulić 2021), RNN (Carr, Jansen, and Topcu 2020), or
attention networks (Yang et al. 2023). However, these exist-
ing solutions for extrapolating belief states using neural net-
works are often not explainable. They can be ineffective in
cases where the level of observability is dynamic and may
vary during execution – thus leading to a distribution shift
problem. As a result, the learned policies are either brittle
or require expensive retraining – using data collected under
new observability conditions or through additional interac-
tions, e.g., under diminished observability due to congestion
or adversaries.

This paper introduces LAMPS, a learning-based mobility
planning framework that leverages the Gaussian Cox pro-
cess – a doubly stochastic process model renowned for its ef-
ficacy in spatiotemporal data analysis (Møller, Syversveen,
and Waagepetersen 1998) – to obtain efficient posterior es-
timates of network states and thus support utility-based de-
cision making by augmenting a trained policy to work un-
der dynamic observability changes. The framework extrap-
olates spatiotemporal network state information from avail-
able observations, providing efficient posterior estimates of
the global network state, including its mean and variance.
These estimates reflect the event density across the network
and the uncertainty of the predictions. Building on these
results, we propose a robust mobility planning algorithm
capable of reusing decision-making policies trained under
full observability while adapting to varying observability
conditions without retraining. More precisely, we sample
the underlying network state distribution from the posterior
estimates, obtain the action value corresponding to differ-
ent network states, and combine the results using a utility
function for mobility planning and decision-making. The



LAMPS framework can incorporate many different utilities,
from maximizing the average performance based on net-
work state inference to robust optimization with respect to
95th-percentile performance to ensure robustness in near-
worst-case conditions.

As a foundational step, we adopt the Gaussian Cox pro-
cess model with smooth link functions to perform maximum
a posteriori inference of the latent intensity function’s pos-
terior and the covariance of point events distributed across a
2D map. LAMPS builds on the intensity estimation in (Mei,
Imani, and Lan 2024), which utilizes Laplace approxima-
tion and kernel transformations to reformulate the estima-
tion problem within a reproducing kernel Hilbert space. In
mobility planning, this method provides the probabilistic es-
timates necessary for integration into a reinforcement learn-
ing algorithm, where it explicitly informs the state represen-
tation (and associated uncertainty) of the network states.

Next, we design a robust mobility planning algorithm
based on the posterior estimates of network state distribu-
tion. It quantifies the uncertainty due to partial observability
and enables us to develop robust mobility planning under
different utility functions, e.g., maximizing worst-case, 95-
percentile, and average performance objectives. Specifically,
we consider a mobility planning problem involving joint
wireless resource management and unmanned aerial vehicle
(UAV) mobility planning. The policy – using a multi-agent
reinforcement learning (MARL) algorithm involving multi-
ple UAVs – is initially trained under full observability, lever-
aging complete state information to develop robust decision-
making policies. Using Gaussian Cox process-based inten-
sity estimates, this framework extends its adaptability to en-
vironments with partial or dynamic observability without
retraining. By integrating these estimates into the decision-
making process, UAVs will adjust their actions dynamically
to optimize data collection and transmission while maintain-
ing resource efficiency. This approach ensures scalability
and robustness, enabling UAVs to operate effectively across
diverse and unpredictable network conditions.

To validate the effectiveness of the proposed method, we
test LAMPS on our defined environment—spanning a range
of setups with varying map sizes, numbers of UAVs, and
observability conditions. These setups are intended to sim-
ulate a variety of real-world scenarios, ranging from envi-
ronments with limited visibility to expansive settings that
provide extensive initial information. Our evaluation results
demonstrate that LAMPS can effectively adapt to changes in
observability conditions and consistently outperforms base-
line methods. It notably achieves better performance in situ-
ations with dynamic partial observability, where other algo-
rithms often struggle due to the need for retraining or man-
ual adjustments. This adaptability is crucial in dynamic par-
tially observable environments, demonstrating the method’s
robustness and practical application to changing challenges.
LAMPS consistently delivers high performance in various
scenarios, proving to be a reliable and efficient solution for
navigation and decision-making in UAV operations.

Background
Partially Observable Markov Decision Process
We consider a multi-agent sequential decision-making prob-
lem under a fully cooperative setting, formalized as a de-
centralized partially observable Markov decision process,
Dec-POMDP, (Oliehoek and Amato 2016). This framework
is represented by the tuple G = ⟨S,U ,P,R,Z,O, n, γ⟩.
Here, S denotes the global state of the environment, and
n is the number of agents involved in the task. At each
timestep, each agent a ∈ A = {1, . . . , n} selects an ac-
tion ua ∈ U , with these actions collectively forming the
joint action u ∈ Un. Then, the environment transitions to
a new state according to the transition function P (s′|s,u) :
S ×U×S → [0, 1]. All agents share the same reward func-
tion r(s,u) : S ×U → R, with a discount factor γ ∈ [0, 1]
applied to future rewards.

In this partially observable environment, each agent re-
ceives an individual observation z ∈ Z , generated by the
observation function O(s,u) : S × U → Z . The his-
tory of an agent’s actions and observations is represented
as τa ∈ Ta ≡ (Z ×U)∗. Based on this history, each agent’s
policy is given by πa(ua|τa) : T × U → [0, 1]. The joint
policy π defines the joint action-value function:

Qπ(st, ut) = Est+1:∞,ut+1:∞ [Rt | st, ut] ,
where t represents the current timestep, and Rt =∑∞

i=0 γ
irt+i is the discounted cumulative reward. In this

study, we adopt a centralized training paradigm with de-
centralized execution: the learning algorithm has access to
the global state s and the complete set of action-observation
histories Ta during training, while each agent, during exe-
cution, can only access its individual action-observation his-
tory.

2D Intensity Estimation with Gaussian Cox Process
Given a 2D observation space, we consider a Lebesgue mea-
surable compact observation space S ⊂ R2 and a latent ran-
dom function g(·) : S → R following Gaussian Process
(GP), denoted by GP(g(t̄)|µ,Σ) with mean and covariance
θµ,Σ ≜ (µ,Σ), respectively. Observations are generated
from a point process modulated by the latent random func-
tion g(t̄) through a deterministic, non-negative link function
that connects g(t̄) with latent intensity λ(t̄) = κ(g(t̄))).
Given a set of n̂ observed point events {t̄i}n̂i=1 in the obser-
vation space S, we consider the likelihood function (regard-
ing GP parameters θµ,Σ) that is formulated as an expectation
over the space of latent random functions, i.e.,

p({t̄i}n̂i=1|θµ,Σ) =

∫
g(t̄)

p({t̄i}n̂i=1|g(t̄)) p(g(t̄)|θµ,Σ) dg(t̄),

(1)
where p(g(t̄)|θµ,Σ) is the Gaussian prior. Within equa-
tion (1), the log-probability conditioned on a specific ran-
dom function g(t̄) takes the following form:

log p({t̄i}n̂i=1|g(t̄)) =
n̂∑

i=1

log λ(t̄i)−
∫
S
λ(t̄) dt̄, (2)



where latent intensity function λ(t̄) = κ(g(t̄)) is obtained
using the deterministic non-negative link function κ(·) :
R → R+. For simplicity of notations, we will use a short
form g to represent g(t̄) in the rest of the paper.

Problem Definition
Dynamic Decision-Making/Planning
We consider a mobility planning problem involving joint
wireless resource management and UAV mobility planning
in environments with dynamic partial observability. Wire-
less resource management focuses on allocating bandwidth,
constrained by the total available bandwidth, with the ob-
jective of transmitting as many events as possible to the
central office. UAV mobility planning involves controlling
movements to maximize event discovery while balancing
the trade-off of staying close to the central office to improve
data rates and transmission efficiency. Constraints include
map boundaries and collision avoidance as illustrated in Fig-
ure 1. The goal is to maximize the efficiency of collecting
and transmitting data to a central office (CO) while adapt-
ing to changes in observability, event locations, and network
demands.

Figure 1: System model.

A major challenge of this joint network and mobility
planning problem is the dynamic change of observability,
which can be caused by adversarial conditions or environ-
mental factors (such as network congestion or interference
during execution). It means that, unlike static observabil-
ity, the amount of network state information that is observ-
able and available to the planning model can vary over time.
This dynamic partial observability introduces unpredictabil-
ity, forcing UAVs to operate with incomplete and/or shifting
data, leading to distribution shifts that make existing solu-
tions unreliable and often require resource-intensive retrain-
ing. Our key idea is to leverage Gaussian Cox process mod-
els to obtain posterior network state distribution from avail-
able partial observations. Then, during planning, we sample
the posterior network state distribution, estimate the action-
value distribution, and employ a utility function for robust
decision-making. By leveraging such state estimation and
utility-based planning, we can avoid retraining existing poli-
cies and ensure robust performance in uncertain and evolv-
ing environments. An illustration of LAMPS is provided in
Figure 2.

This problem formulation allows us to capture a wide
range of design objectives. Each UAV’s decision-making
policy involves multiple concurrent objectives, such as min-
imizing latency, avoiding congestion, and conserving band-

Figure 2: An illustration of LAMPS, mobility planning
with Gaussian Cox Process for network state inference and
utility-based decision-making.

width. Rewards are structured to reflect successful data
transmissions, timeliness, and network reliability, while
penalties discourage undesirable behaviors such as UAV col-
lisions. This multi-objective approach encourages UAVs to
balance exploring new events with efficient data relays to the
central office.

Our System & Channel Model
The scenario includes multiple UAVs serving as surveillance
devices and a CO needing necessary data processing and
computing. UAVs will capture related data from a 2D map.
We assume different events can occur in the spatial domain,
and each event may have a fixed packet size, σ (bits), or
importance. The main objective for UAVs is to explore the
events and send CO the required packets with low latency.
Assuming that all the UAVs are located at the same flight
altitude H , the impact of altitude can be disregarded.

The map is represented by a grid where each cell has a
fixed distance, d (meters), between adjacent cells. Any UAV
can move one cell at each time slot with a duration of tM
(seconds) in one of the four cardinal directions. Each UAV
operates with its queue and sends packets immediately if the
queue is not empty. If there is a queue, a UAV transmits
packets following a first-come-first-serve (FCFS) order. Ad-
ditionally, if an event occurs at the UAV’s current position,
the UAV captures the event data and places it in the queue
if there is space, and the grid cell is left without the event
afterward.

Consider the set of UAVs denoted by A = {1, 2, ..., A}
and central office is denoted by Θ. We consider slotted time
and index the time using t ∈ {1, 2, ..., T}. The location of
UAV a at time slot t can be represented as wa

t = [xat , y
a
t ] .

The location of CO can be represented as wΘ = [xΘ, yΘ].
The free-space path loss model between the UAV a and

CO in the t-th time slot can be characterized by:

ga,Θt =
αa

da,Θ[t]2

where αa represents the channel power gain for the UAV
a under the reference distance d = 1m and da,Θ[t] =√
H2 + ∥wa

t −wΘ∥22 is the Euclidean distance between
the UAV a and central office Θ in tth time slot. Then, we



introduce a set of bandwidth assignment ratios but ∈ [0, 1]
to represent the proportion of bandwidth that each UAV can
get from the central office and consider the total bandwidth
as B. ∑

u∈U
but ≤ 1. (3)

Bandwidth is allocated among UAVs based on their
weights ωt. These weights directly impact the bandwidth
allocation to each UAV, allowing them to manage traffic
load dynamically. Increasing the weight of a UAV results
in higher bandwidth allocation, enabling it to process tasks
faster and reduce queue lengths, especially in congested ar-
eas. A UAV with a higher weight, ωa

t receives a larger share
of the total available bandwidth, while those with lower
weights receive less. The allocation formula is:

bat =
ωa
t∑A

j=1 ω
j
t

×B

where bat is the bandwidth for the a-th UAV at time slot
t, ωa

t is its weight, and B is the total available bandwidth.
This approach enables adaptive resource allocation, allow-
ing higher-weight UAVs to address critical areas more ef-
fectively. Then, we denote the transmit power of the central
office to be pmax, and the corresponding signal-to-noise ra-
tio (SNR) at the receiver can be derived by:

ψa,Θ
t =

pmaxg
a,Θ
t

BbatN0
,

where N0 denotes the power spectral density of Gaussian
White Noise. Then, we can derive the corresponding achiev-
able channel capacity:

Ca,Θ
t = Bbat log2(1 + ψa,Θ

t ).

Finally, the number of transmitted bits in each time slot
for UAV u in slot t can be calculated as:

Transmitted bits per slot = Ca,Θ
t · tM .

Mobility Planning with State Predictions
We aim to develop a mobility planning framework capa-
ble of operating successfully in various maps, even when
obtaining a complete network state is hard to reach. Our
approach incorporates MDP formulations, state estimation
techniques, utility-based decision-making, and reinforce-
ment learning algorithms, enabling UAVs to perform dy-
namic and robust mobility planning. Specifically, we train
a fully observable policy π : S → U using an MDP frame-
work to optimize cumulative rewards. To handle partial ob-
servability, we use the Gaussian Cox process model to es-
timate event intensities, providing posterior mean and co-
variance data. These estimates are then used as inputs to
the fully observable model, allowing it to adapt dynamically
to partially observable environments. Following the estima-
tion, we generate sampled maps based on the intensity data,
which are then used in utility functions, such as Uavg(u)
for average return and U95(u) for near-worst-case perfor-
mance, ensuring robust and efficient decision-making under
dynamic conditions.

Markov Decision Process Formulation
We consider a mobility planning problem involving joint
wireless resource management and UAV mobility planning.
The training of a fully observability policy for mobility plan-
ning is considered as an MDP, represented by the tuple:
G = ⟨S,U ,P,R,O, γ⟩ where:

• S: The state space includes:

– The locations of UAVs on a grid: wa
t = [xat , y

a
t ] for

each UAV a.
– Queue lengths indicating the number of packets each

UAV is waiting to transmit.
– Weights ωa

t for UAV a at time t, affecting bandwidth
allocation and task prioritization, bounded between 0
and 5.

– Event distribution grid representing spatial event oc-
currences.

• U : The action space such that each UAV can perform one
of the following actions at any given time step:

– Move in one of four cardinal directions.
– Adjust weights by increments or decrements.

• P(s′|s, u): The state transition probability function,
modeling system dynamics, including UAV position up-
dates and changes in event grids.

• R(s, u): The reward function:

– Positive rewards for successful data transmission.
– Negative rewards for collisions, time delays, and out-

of-bound movements.

• O: The observation space, capturing the partial or full
view of the state, including:

– Current location of UAVs
– Weights
– Queue Lengths
– The observation of the event distribution at any given

time can be either fully or partially observable, de-
pending on the scenario.

• γ ∈ [0, 1]: The discount factor balancing immediate and
future rewards.

Our goal is to learn a policy π for the joint wireless re-
source management and UAV mobility planning problem
with full observability. Later, we will leverage the learned
policy with network state estimates to enable robust mobil-
ity planning under changing levels of partial observability.
We denote this learned policy by π : S → U that maximizes
the expected cumulative discounted reward:

J(π) = E

[ ∞∑
t=0

γtR(st, ut) | π

]
.

Such a policy with full observability can be obtained using
any MARL algorithms (e.g., QMIX) and do not require ex-
tensive training data.



State Prediction using Posterior Mean and
Covariance Estimation
Given the partially observable environment, UAVs estimate
the probability of events occurring in each cell using inten-
sity functions. This estimation leverages a trained model de-
veloped in fully observable conditions. The intensity of each
cell is estimated using a specific kernel density estimation
(Hastie and TIBSHIRANI 2001) approach, computing event
occurrence probabilities from the estimated intensity func-
tion over all given events.

The intensity estimation of events on the 2D map can be
obtained via approximations. As proposed by Mei, Imani,
and Lan (2024), we can project the original problem into
reproducing kernel Hilbert space (RKHS) and acquire the
mean and covariance estimation of the intensity over the
map based on given observations. The optimization objec-
tive is the minimization of the Poisson point process likeli-
hood, which is:

min
g

{
−

n̂∑
i=1

log κ(g(t̄i)) +

∫
S
κ(g(t̄)) dt̄

}
. (4)

Given a non-empty domain S and a symmetric positive
definite kernel k : S × S → R, a unique RKHS Hk can be
constructed. If we can formulate a regularized empirical risk
minimization (ERM) problem as minh∈Hk

R({h(t̄i)}n̂i=1)+
γΩ(∥h(t̄)∥Hk

), where R(·) denotes the empirical risk of h,
γ is the penalty factor, and Ω(·) is a non-decreasing error in
the RKHS norm, a unique optimal solution exists given by
representer theorem (Schölkopf, Herbrich, and Smola 2001)
as h∗(·) =

∑n̂
i=1 αik(t̄i, ·), and the optimization can be cast

regarding dual coefficients α ∈ R2.
Since κ(·) is non-negative smooth link function, we define

h(t̄) ≜ κ
1
2 (g(t̄)) so that h2(t̄) = κ(g(t̄)) : S → R+. This

definition will provide us access to the property of L2-norm
that simplifies the problem-solving in the next. Then, we can
formulate a minimization problem of the penalized negative
log-likelihood as regularized ERM, with a penalty factor γ,
given by:

min
h(t̄)

{
−

n̂∑
i=1

log h2(t̄i) +

∫
S
h2(t̄) dt̄+ γ∥h(t̄)∥2Hk

}
.

(5)
To solve this optimization problem, we show that the term

can be merged into the square norm term γ∥h(t̄)∥2Hk
by

a change of kernel technique (resulting in a new RKHS)
and using the Mercer’s theorem (Rasmussen and Williams
2006). The result is stated in the following lemma (Mei,
Imani, and Lan 2024).
Lemma 1 (Kernel transformation). The minimization objec-
tive J(h) in equation (5) can be written using a new kernel
k̃(t̄, t̄′) as:

J(h) = −
n̂∑

i=1

log h2(t̄i) + ∥h(t̄)∥2Hk̃
, (6)

where the new kernel function defined by Mercer’s theorem
is k̃ =

∑∞
i=1 ηi(ηi + γ)−1ϕi(t̄)ϕi(t̄

′) given that {ηi}∞i=1,

{ϕi(t̄)}∞i=1 represent the eigenvalues and orthogonal eigen-
functions of the kernel function k, respectively.

The transformed new objective (6) is now solvable by ap-
plying the representer theorem. Based on this, we have the
mean and covariance estimation of the intensity given by the
following lemmas.

Lemma 2 (Intensity mean (Mei, Imani, and Lan 2024)).
Given observations {t̄i}n̂i=1 in S, the posterior mean µ of
GP is the solution ĝ of the minimization problem (6), taking
the form ĝ = κ−1(ĥ2(t̄)), where ĥ(·) =

∑n̂
i=1 αik̃(t̄i, ·).

Lemma 3 (Intensity covariance (Mei, Imani, and Lan
2024)). Given observations {t̄i}ni=1 in S, the posterior co-
variance matrix A−1 is given by:

A−1 =
[
Σ−1−

diag

({
κ̈(ĝi)κ(ĝi)−κ̇2(ĝi)

κ2(ĝi)
− κ̈2(ĝi)∆t̄ i = j

−κ̈2(ĝj)∆t̄ i ̸= j

)]−1

,

(7)
where ĝi, ĝj represent ĝ(t̄i), ĝ(t̄j), and j and ∆t̄ are from
the m-partition Riemann sum of the second term in equa-
tion (4) as

∫
S κ(ĝ) dt̄ ≈

∑m
j=1 κ(ĝj)∆t̄.

We note that in Lemma 3, the diagonal values of the co-
variance matrix A−1 exhibit two distinct patterns, depend-
ing on whether the observation point t̄i overlaps with the
partition of the Riemann sum t̄j . However, the computation
of intensity mean and covariance requires solving the new
kernel function k̃ in Lemma 1, which may not yield a closed-
form solution for kernels that cannot be expanded explic-
itly by Mercer’s theorem. To tackle this, we usually adopt
the Nyström approximation (Williams and Seeger 2000) to
compute the results numerically.

Utility-based Decision-Making
After generating the intensity map, we use it to create mul-
tiple grid maps by producing M possible realizations of the
event distribution. These realizations reflect the probabilis-
tic estimation derived from the intensity function. Each sam-
pled grid represents a potential configuration of event occur-
rences, which supports robust decision-making under uncer-
tainty.

In this paper, we illustrate our utility-based decision-
making using two different utility functions: maximizing the
average return and maximizing the 95th percentile perfor-
mance. The LAMPS framework can be applied to a wide
range of utility functions to capture different design trade-
offs in mobility planning. For each sampled grid map, we
calculate the Q-function Q(s, u) for all possible actions
u ∈ U based on the expected cumulative reward from the
current state s:

Q(s, u) = E

[ ∞∑
t=0

γtR(st, ut) | s0 = s, u0 = u, π

]
.

To evaluate the utility of each action across the sampled
grids, we define two utility functions, offering different cri-
teria for decision-making



1. Maximizing the Average Return: The first utility func-
tion computes the mean Q-value across all sampled grid
maps:

Uavg(u) =
1

M

M∑
m=1

Q(s, u;Gm),

where Gm is the m-th sampled grid.
2. Maximizing the 95th Percentile Performance: The

second utility function evaluates the 95th percentile of
Q-values across the sampled grids, capturing the action’s
performance in near-worst-case scenarios:

U95(u) = P95

(
{Q(s, u;Gm)}Mm=1

)
.

Action u∗ is chosen to maximize the utility function, ensur-
ing either the highest average return or strong performance
under challenging conditions.

u∗ = argmax
u∈U

(Uavg(u) or U95(u)).

By combining these utility functions, the UAVs can dynam-
ically adapt their decision-making strategy based on opera-
tional requirements. Specifically, Uavg(u) is suited for envi-
ronments that prioritize overall efficiency and high through-
put, while U95(u) is ideal for scenarios demanding ro-
bust performance under uncertainty. This approach enables
UAVs to account for both average-case and worst-case sce-
narios, ensuring resilient and efficient mobility planning
across a variety of operational conditions. Utility-based
decision-making leverages the posterior distribution net-
work states and can be easily extended to incorporate more
design objectives.

Learning Algorithm for Decentralized Planning
In the LAMPS framework that is a multi-agent, decentral-
ized mobility planning framework, a key requirement is en-
abling a team of agents, such as UAVs, to learn effective
coordination strategies even under decentralized execution.
We aim to establish a robust decision-making system that
allows each UAV to act optimally based on localized obser-
vations and individual past experiences while contributing
to the team’s overall goals. This capability is essential for
tasks demanding rapid response and adaptability, such as dy-
namic data collection and transmission within network en-
vironments that experience fluctuating event intensities and
congestion.

To handle decentralized execution with partial observabil-
ity, we employ QMIX (Rashid et al. 2020). QMIX facilitates
centralized training with decentralized execution (CTDE) by
factorizing the joint action-value functionQtotal into individ-
ual agent utilities, ensuring monotonicity:

Qtotal(s,u) = fmix(Q1(s1, u1), . . . , Qn(sn, un)),

where Qtotal is the global action-value function, Qi(si, ui)
is the local action-value function of agent i, and fmix is a
mixing network preserving monotonicity. During training,
we use the global reward with standard Temporal Difference
(TD) loss to guide the learning of Qtotal, i.e.,

L(θ) =
∑
b

[
ytotb −Qtotal(s,u, θ)

]2
,

Algorithm 1: The LAMPS Framework

1: Initialize UAV states and parameters.
2: while Step Number < Episode Length do
3: Observe the current state st partially
4: Estimate the intensity map using observations and κ.
5: Generate M sampled grids from the intensity map.
6: for each grid m ∈ M do
7: Compute Q(st, u;Gm) across sampled grids.
8: end for
9: Evaluate utility functions Uavg(u) or U95(u).

10: Select action ut based on the desired utility function.
11: Execute ut and transition to the next state st+1.
12: Update the reward R(st, ut).
13: end while

where b is a summation over the batch size of transi-
tions sampled from the replay buffer, and ytotb = r +
γmaxuQtotal(s,u, θ

−), and θ− are the parameters of a
target network. The gradient updates are back-propagated
through the mixing network to update the models of per-
agent networks. During execution, each agent makes her
local decisions using only the local action-value functions
Qi(si, ui), based on the local observation si. The mono-
tonicity of the mixing network ensures the individual-
global-maximum (IGM) property, i.e., choosing local ac-
tions to maximize each local action value also ensures global
optimality. We note that by leveraging QMIX for distributed
decision-making, we only need to pool UAV observations
for posterior network state estimates while the decision-
making process is fully decentralized.

The QMIX framework and its implementation (Hu et al.
2021) enable UAVs to optimize their actions based on local
observations and historical experiences while aligning with
global objectives in this work. This design is particularly ef-
fective in dynamic and partially observable environments,
enhancing robustness and adaptability. The LAMPS frame-
work is summarized in Algorithm 1.

Evaluation
We evaluated the LAMPS framework1 across six distinct
experimental setups, each designed to test scalability and
adaptability under varying network sizes and UAV counts.
Specifically, each setup differs in the number of UAV agents
deployed, the size of the operational map, and observability,
creating unique challenges in data relay and spatial cover-
age. LAMPS is compared to four baseline models based on
the partially observable Markov decision process (POMDP)
framework, including (i) a fully observable model, (ii) a par-
tially observable model with low observability that is a ra-
dius of 2, and (iii) a partially observable model with high
observability that is a radius of 10 (iv) random action selec-
tion. To ensure consistency, we define specific constant pa-
rameters across setups. These include simulation constants
essential to the framework’s reproducibility, as shown in Ta-

1This code has been made available at https://github.com/
erbayat/LAMPS



Table 1: Comparison of Algorithms by Average Total Return Across Setups

Algorithm Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7 Total Reward
LAMPS 690 818 811 2660 2647 2845 3111 13582
MDP† 55 332 695 1464 1523 2557 3008 9634
POMDP1 740 602 327 2431 2168 1290 439 7997
POMDP2 581 656 770 2312 2329 2329 1840 10817
Random 326 281 319 1011 1007 998 994 4936

† fully observable model, 1 a model trained with low observability (radius = 2), 2 a model trained with high observability (radius = 10)
Setup 1: 25x25 map with 2 UAVs and observability radius = 4, Setup 2: 25x25 map with 2 UAVs and observability radius = 7
Setup 3: 25x25 map with 2 UAVs and observability radius = 12, Setup 4: 50x50 map with 7 UAVs and observability radius = 4
Setup 5: 50x50 map with 7 UAVs and observability radius = 7, Setup 6: 50x50 map with 7 UAVs and observability radius = 12
Setup 7: 50x50 map with 7 UAVs and observability radius = 20

ble 2. At the start of each simulation, a random position is
selected as the center of the event distribution. A radius is
then chosen such that the probability of an event occurring
in each cell within this radius is 0.9, while outside the ra-
dius, it is 0.1, ensuring an overall mean probability of 0.5.
Then, UAVs are placed randomly within the map. At the
same time, the central office is consistently positioned at the
center of the map to act as a focal point for data relay and
communication. This setup introduces realistic spatial dy-
namics, requiring UAVs to efficiently balance coverage and
connectivity to the central office.

Parameter Value Parameter Value
H 100 m N0 -167dB
dcell 20 m Episode Length 100
tM 3 seconds Collision R. -1
σ 1Mb Out of Bound R. -0.5
αa -40dB Event Transfer R. 10
B 100kHz Timestep R. -0.1

pmax 100 mW γ 0.99

Table 2: Constant parameters in the UAV network model.

In each setup, we tested LAMPS approach using a thresh-
olding approach. Since observations tend to change gradu-
ally, we update our estimation every five steps and use the
same estimate until the next update. After estimating event
distribution intensity, we apply min-max scaling and the use
threshold of 0.5 to decide whether there is an event or not.
Then, we use the average utility function. Table 1 summa-
rizes the average total returns of each algorithm across the
six setups for 30 different episodes.

Table 1 compares the performance of algorithms across
two main groups of setups: Setups 1-3, which involve a
25x25 map with 2 UAVs and varying observability radii,
and Setups 4-7, which involve a 50x50 map with 7 UAVs.
The second group has more initial information about the
map due to the larger number of UAVs, which directly af-
fects the results. In the first group, as observability increases,
the performance of the model trained with low observability
(radius = 2) decreases, while the performance of the model
trained with high observability (radius = 10) improves sig-

nificantly. In the second group, however, the increase in per-
formance for the model trained with high observability is
less pronounced, as the higher number of UAVs already pro-
vides a richer understanding of the environment. When the
evaluation observability radius becomes very high (r = 20),
performance declines for most algorithms due to observ-
ability shifts. Random action selection remains unaffected
by changes in observability, while MDP without estimation
performs better and converges to fully observable results as
evaluation observability increases. Notably, the LAMPS ap-
proach outperforms all other methods in almost all cases,
demonstrating its exceptional adaptability to changing ob-
servability conditions without requiring retraining. Unlike
other methods that need adjustments or retraining to main-
tain performance in environments with varying levels of ob-
servability, this approach seamlessly adapts to different en-
vironments, whether they feature low or high observability.
This adaptability ensures that the model remains effective
across a wide range of scenarios, including dynamic partial
observability, where conditions may shift unpredictably. Its
ability to consistently deliver superior performance, regard-
less of changes in observability, highlights its robustness and
makes it a highly effective and reliable solution for complex
and evolving environments.

Conclusion

This paper presents a novel mobility planning framework
that successfully bridges the gap between learning-based
optimization and real-world network uncertainty. By inte-
grating Gaussian Cox processes and utility-based planning,
we have demonstrated that robust decision-making can be
achieved without the traditional tradeoffs of retraining re-
quirements. The framework’s performance in UAV mobil-
ity and wireless resource management scenarios confirms
its ability to maintain optimal performance across varying
levels of network observability. LAMPS offers a scalable
and practical solution for dynamic network environments
by enabling adaptive policy deployment without retraining.
These results mark a significant advancement in learning-
based mobility planning, providing a foundation for robust
and efficient network management systems that can operate
reliably under real-world conditions.
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