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ABSTRACT

Unsupervised Reinforcement Learning (RL) aims to discover diverse behaviors
that can accelerate the learning of downstream tasks. Previous methods typically
focus on entropy-based exploration or empowerment-driven skill learning. How-
ever, entropy-based exploration struggles in large-scale state spaces (e.g., images),
and empowerment-based methods with Mutual Information (MI) estimations have
limitations in state exploration. To address these challenges, we propose a novel
skill discovery objective that maximizes the deviation of the state density of one
skill from the explored regions of other skills, encouraging inter-skill state diver-
sity similar to the initial MI objective. For state-density estimation, we construct a
novel conditional autoencoder with soft modularization for different skill policies
in high-dimensional space. To incentivize intra-skill exploration, we formulate
an intrinsic reward based on the learned autoencoder that resembles count-based
exploration in a compact latent space. Through extensive experiments in challeng-
ing state and image-based tasks, we find our method learns meaningful skills and
achieves superior performance in various downstream tasks.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved remarkable success in game AI (Silver et al., 2018; Ye
et al., 2021), autonomous cars (Cao et al., 2023; Wu et al., 2022), and embodied agents (Hansen
et al., 2022; Miki et al., 2022). Traditionally, RL agents rely on well-designed reward functions
to learn specific tasks (Luo et al., 2023). However, designing these reward functions is resource-
intensive and often requires domain-specific expertise (Kwon et al., 2023; Gu et al., 2023), making
the learned policies dependent on handcrafted rewards and potentially unable to capture the com-
plexity of real-world scenarios. This reliance limits the agent’s generalization capability across
diverse tasks and results in poor adaptability. In contrast, recent advances in Large Language Mod-
els (LLMs) (Han et al., 2021; Achiam et al., 2023) signify that unsupervised auto-regression has
led to powerful pre-trained language models, which can be adapted to downstream tasks via super-
vised fine-tuning (Ouyang et al., 2022; Touvron et al., 2023). A powerful vision encoder can also
be pre-trained via masked prediction without annotations or labels (He et al., 2022; Bardes et al.,
2024; Grill et al., 2020), and the encoder can be used to solve various vision tasks (Majumdar et al.,
2023; Nair et al., 2023). Inspired by these breakthroughs, it is desirable to further explore similar
unsupervised learning methods within the RL field. The goal is for unsupervised RL to learn useful
behaviors in the absence of external rewards, thus equipping them with the capacity to quickly adapt
to new tasks with limited interactions (Laskin et al., 2021).

The formulation of unsupervised RL has been studied in many prior works, which can be roughly
categorized into empowerment-based skill discovery (Gregor et al., 2016) and pure exploration
methods (Liu & Abbeel, 2021b). Empowerment-based methods aim to maximize the Mutual In-
formation (MI) between states and skills, and the MI term can be estimated by different variational
estimators (Song & Ermon, 2020). These methods have shown effectiveness in learning discrimi-
native skills for state-based locomotion tasks (Eysenbach et al., 2019). However, the learned skills
often have limited state coverage due to the inherent sub-optimality in the MI objective (Yang et al.,
2023), which can lead to sub-optimal adaptation performance in downstream tasks and becomes
more severe in large-scale state space (Park et al., 2024). Recent works introduce additional tech-
niques like Lipschitz constraints and metric-aware abstraction to enhance the exploration abilities
(Park et al., 2022; 2023; 2024). Pure exploration methods encourage the agent to explore the envi-
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ronment with maximum state coverage; however, this can lead to extremely dynamic skills rather
than meaningful behaviors for downstream tasks (Liu & Abbeel, 2021b; Laskin et al., 2022). Mean-
while, both the MI estimator and entropy estimation are not directly scalable to large-scale spaces,
such as pixel-based environments (Rajeswar et al., 2023; Park et al., 2024).

To overcome the aforementioned limitations, this work proposes a novel skill discovery method by
maximizing the State Density Deviation of Different skills (SD3). Specifically, we construct a con-
ditional autoencoder for state density estimation of different skills in high-dimensional state spaces.
Each skill policy is then encouraged to explore regions that deviate significantly from the state den-
sity of other skills, which encourages inter-skill diversity and leads to discriminative skills. For a
stable state-density estimation of significantly different skills, we adopt soft modularization for the
conditional autoencoder to make the skill-conditional network a weighted combination of the shared
modules according to a routing network determined by the skill. We show the skill-deviation ob-
jective of SD3 resembles the initial MI objective in a special case. Further, to incentivize intra-skill
exploration, we formulate an intrinsic reward from the autoencoder based on the learned latent space,
which extracts the skill-relevant information and is scalable to large-scale problems. Theoretically,
such an intrinsic reward is closely related to the provably efficient count-based exploration in tabular
cases. To summarize, SD3 encourages inter-skill diversity via density deviation and intra-skill ex-
ploration via count-based exploration in a unified framework. We conduct extensive experiments in
Maze, state-based Unsupervised Reinforcement Benchmark (URLB), and challenging image-based
URLB environments, showing that SD3 learns exploratory and diverse skills.

Our contribution can be summarized as follows. (i) We propose a novel skill discovery objective
based on state density deviation of skills, providing a straightforward way to learn diverse skills with
different state occupancy. (ii) We propose a novel conditional autoencoder with soft modularization
to estimate the state density of significantly different skills stably. (iii) The learned latent space of the
autoencoder provides an intrinsic reward to encourage intra-skill exploration that resembles count-
based exploration in tabular MDPs. (iv) Our method achieves state-of-the-art performance in various
downstream tasks in challenging URLB benchmarks and demonstrates scalability in image-based
URLB tasks. The open-sourced code is available at https://github.com/s7p77/SD3.

2 PRELIMINARIES

Markov Decision Process A Markov Decision Process (MDP) constitutes a foundational model
in decision-making scenarios. We consider the process of an agent interacting with the environment
as an MDP with discrete skills, defined by a tuple (S,A,Z,P, r, γ), where S is the state space,A is
the action space, Z is the skill space, P : S ×A → ∆(S) is the transition function, r : S ×A → R
is the reward function, and γ is the discount factor. In this work, we consider a discrete skill space
Z that contains n skills since calculating the skill density deviation requires density estimation of
all skills, while SD3 can also be extended to a continuous skill space by sampling skills from a
continuous distribution for approximation. In each timestep, an agent follows a skill-conditional
policy π(a|s, z) to interact with the environment. Given clear contexts, we refer to ‘skill-conditional
policy’ as ‘skill’.

Unsupervised RL Unsupervised RL typically contains two stages: unsupervised pre-training and
fast policy adaptation. In the unsupervised training stage, the agent interacts with the environment
without any extrinsic reward. The policy π(a|s, z) is learned to maximize some intrinsic rewards
rt formulated by an estimation of the MI term or the state entropy. The aim of unsupervised pre-
training is to learn a set of useful skills that potentially solve various downstream tasks via fast policy
adaptation. In the adaptation stage, the policy π(a|s, z⋆) with a chosen skill z⋆ is optimized by RL
algorithms with certain extrinsic rewards to adapt to specific downstream tasks. In the following,
we denote I(·; ·) by the MI between two random variables and H(·) by either the Shannon entropy
or differential entropy, depending on the context. We use uppercase letters for random variables and
lowercase letters for their realizations. We denote dπ(s) ≜ (1 − γ)

∑∞
t=0 γ

tP (st = s|π) as the
normalized probability that a policy π encounters state s.

The empowerment-based skill discovery algorithms try to estimate the MI between S and Z
via I(S;Z) = Ez∼p(z),s∼pπ(s|z)[log p(z|s) − log p(z)]. Given the computational challenges
associated with the posterior p(z|s), a learned skill discriminator qϕ(z|s) is employed (Eysen-
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bach et al., 2019) and a variational lower bound is established for the MI term as I(Z;S) ≥
Ez∼p(z),s∼pπ(s|z)[log qϕ(z|s) − log p(z)]. Alternatively, pure exploration methods estimate state
entropy by summing the log-distances between each particle and its k-th nearest neighbor, as
H(s) ∝

∑
si
ln ∥si −NNk(si)∥.

3 METHOD

In this section, we first introduce the proposed SD3 algorithm that performs skill discovery by
maximizing inter-skill diversity via state density estimation. Next, we present the formulation of
intrinsic rewards for intra-skill exploration. Finally, we provide a qualitative analysis of SD3.

3.1 SKILL DISCOVERY VIA DENSITY DEVIATION

We develop our skill discovery strategy from a straightforward intuition: The explored region of
each skill should deviate from other skills as far as possible. Formally, the optimizing objective for
skill discovery, denoted as ISD3 and referred to as density deviation, is defined by

ISD3 ≜ Ez∼p(z),s∼dπz (s)

[
log

λ dπz (s)

λ dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

]
, (1)

where z is sampled from p(z), s is sampled from the state distribution induced by the skill policy
π(a|s, z), and λ > 0 is a weight parameter. The numerator dπz (·) is the state density of skill z, and the
denominator is the weighted average of the state density of z and those of other skills {z′}. Since we
uniformly sample skills from the skill set that contains n skills, we have p(z) = 1/n for each skill z.
According to Eq. (1), it is easy to check that ISD3 attains its maximum when

∑
z′ ̸=z d

π
z′(s)→ 0 for

all (s, z) such that p(z)·dπz (s) > 0, and the maximum value isH(Z). In this case, the state s ∼ dπz (·)
visited by skill z has zero visitation probability by other skills, which means the explored regions
of all skills do not overlap, and the learned skills are fully distinguishable. However, enforcing
such a strong objective to separate the overlapping explored areas of skills may lead to limited state
coverage for each skill. In extreme cases, each skill might only visit a distinct state that other skills
do not access. Although this leads to distinguishable skills, the overall state coverage becomes
overly limited, making them undesirable for learning meaningful behaviors.

In SD3, we adopt two mechanisms for addressing this problem. (i) A weight parameter λ is used in
the learning objective to regularize the gradients of ISD3 to other skills. To see this, for each (s, z),
we denote the state density of other skills {z′} except z as ρzc ≜

∑
z′ ̸=z d

π
z′(s), then the gradient of

ISD3(s, z) to ρzc becomes

∇ρzc ISD3(s, z) = −1/(λdπz (s) + ρzc(s)), (2)

where ISD3(s, z) is the density ratio for a specific (s, z) and the proof is attached in A.1. Thus, for
skill z, increasing λ will weaken the gradient of SD3 in reducing the state densities of other skills,
which prevents skill collapse in SD3. (ii) We introduce explicit intra-skill exploration based on the
latent space learned in estimating the skill density, which will be discussed in §3.2. To maximize
ISD3, we adopt a modified Conditional Variational Auto-Encoder (CVAE) to stably estimate the
state density for skills, which we introduce as follows.

CVAE for State Density Estimation In SD3, we adopt a lower bound of skill-conditional state
density (i.e., log dπz (s)) via stochastic gradient variational Bayes. We adopt CVAE with a latent
representation h to obtain a variational form as

logdπz (s) = EQ(h|s,z) log [P (s|z)] = EQ(h|s,z) log

[
P (s, h|z)
Q(h|s, z)

]
+ EQ(h|s,z) log

[
Q(h|s, z)
P (h|s, z)

]
≥ EQ(h|s,z) log

[
P (s|h, z)P (h|z)

Q(h|s, z)

]
= EQ(h|s,z) log [P (s|h, z)]−DKL [Q(h|s, z)∥P (h|z)]︸ ︷︷ ︸

Lelbo
z (s)

,

(3)
where the latent vector h is sampled from a variational posterior distribution (i.e., Q(h|s, z)) con-
ditioned on the state and skill, and the inequality holds by dropping off the non-negative second
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Figure 1: An overview of the CVAE architecture. (a) The encoder-decoder network with soft mod-
ularization. The feature extractor of state can be MLPs or convolution layers according to state- or
image-based environment. (b) The inter-skill diversity objective for skill discovery and the intra-
skill intrinsic reward for exploration can be derived from the learned CVAE.

term, which is the definition of DKL(Q(h|s, z)∥P (h|s, z)). Meanwhile, we use P (s, h|z) =
P (h|z)P (s|h, z) to decompose the joint distribution. According to Eq. (3), maximizing the Evi-
dence Lower-Bound (ELBO) Lelbo

z (s) can approximate the skill-conditioned state distribution, as
log dπz (s) ≈ maxQ Lelbo

z (s). To maximize Lelbo
z (s), we learn an encoder network Qϕ(h|s, z) to ob-

tain the posterior of latent representation, where the posterior is represented by a diagonal Gaussian.
Then, a latent vector h is sampled from the posterior, and a decoder network Pψ(s|h, z) is used to
reconstruct the state. The KL-divergence in Lelbo

z (s) regularizes the latent space via a prior distri-
bution P (h|z), which is set to a standard Gaussian. The whole objective is optimized via stochastic
gradient ascent with a reparameterization trick (Kingma & Welling, 2013; Kingma et al., 2019). To
calculate ISD3, we perform state density estimations for all skills via forward inference based on
the learned encoder and decoder. In calculating ISD3, we adopt efficient parallelization to calculate
Lelbo
z (s) for all skills z ∈ Z in one forward pass, which minimizes the run-time increase with the

number of skills.

Soft Modularization for CVAE As we maximize the state-density deviation in skill discovery,
the resulting skills become diverse, and the corresponding state occupancy for different skills tends
to be very different. In CVAE-based density estimation, since different skills share the same network
parameters, optimizing Lelbo

z for one skill can negatively affect the density estimation of other skills
with significantly different state densities. Empirically, we also find obtaining an accurate estimation
of dπz (s) for all skills z ∈ Z can be difficult. As a result, we adopt a soft modularization technique
that automatically generates soft network module combinations for different skills without explicitly
specifying structures. As shown in Figure 1, the soft modularized CVAE contains an unconditional
basic network and a routing network, where the routing network takes the skill and state embedding
as input to estimate the routing strategy. Suppose each layer of the encoder/decoder network has
m modules, then the routing network gives the probabilities p ∈ Rm×m to weight modules con-
tributing to the next layer. Specifically, considering l-th layer has probabilities pl ∈ Rm×m, then the
probability in the next layer is

pl+1 =W l
(
ReLU(g(pl)⊙ (u⊙ v))

)
, u = f1(s), v = f2(z), (4)

where ⊙ denotes element-wise product, g(·), f1(·) and f2(·) are all fully connected layers that f1(·)
and f2(·) map state s and skill z to the same dimensions (e.g., d), and g(·) maps pl to the dimension
d. Then we haveW l ∈ Rm2×d to project the joint feature to a probability vector of layer l+1. In the
basic network, we denote the input feature for the j-th module in the l-the layer as glj ∈ Rd; then we
have gl+1

i =
∑
j p̂

l
i,j(ReLU(W l

jg
l
j)) for the next layer, where p̂li,j = exp(pli,j)/(

∑m
j=1 exp(p

l
i,j))

is the normalized vector that weights the j-th module in the l-th layer to contribute to the i-th module
in the l + 1-th layer. We remark that the soft modularization technique was originally proposed in
multi-task RL (Yang et al., 2020), while we extend it to encoder-decoder-based CVAE for density
estimation. The detailed architecture is given in §B.2.
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(ⅰ) Initialize (ⅱ) Skill Discovery

(ⅳ) Skill Discovery (ⅲ) Exploration

Algorithm 1: SD3 Algorithm
Initialize CVAE Qϕ, Pψ , policy πθ , Q-func, Qφ, buffer D;
while not converged do

Randomly choose z from the skill set Z
Interact with environment with πθ(a|s, z)
Store the transitions in a replay buffer D
Sample a batch of transitions {(st, at, s′t, z)} ∼ D
Calculate rsd3z and rexpz for transitions via Eqs. (6)-(7)
Update CVAE parameters via Lelbo in Eq. (3)
Update policy and Q-value via off-policy algorithm

Figure 2: An illustration of skill discovery in SD3. The skills start with overlapping areas and are
separated via state-density deviation. Then, each skill explores the environment independently, re-
sulting in overlapped but expanded areas. SD3 separates the areas again and leads to distinguishable
skills. Such a process repeats and ultimately leads to exploratory and diverse skills.

3.2 LATENT SPACE EXPLORATION

As we discussed above, the SD3 objective that only maximizes the density deviation may lead to skill
collapse. In addition to introducing an additional parameter λ in Eq. (1), we find the learned CVAE
in Figure 1 can provide a free-lunch intrinsic reward for efficient intra-skill exploration. In SD3, we
derive an intrinsic reward based on the latent space that learns skill-conditioned representations for
states. Specifically, the KL-divergence term DKL

[
Q(h|s, z)∥r(h)

]
in CVAE objective serves as an

upper bound of the conditional MI term I(S;H|Z), as

I(S;H|Z) = Ep(s,z),Qϕ(h|s,z)
[
logQϕ(h|s, z)/P (h|z)

]
≤ Ep(s,z),Qϕ(h|s,z)

[
logQϕ(h|s, z)/r(h)

]
,

(5)
where H denotes the random variable of the sampled latent representation h, and r(h) the prior
distribution set to a standard Gaussian, and P (h|z) ≜ EP (s|z)Qϕ(h|s, z). The inequality holds
since DKL[P (h|z)∥r(h)] ≥ 0 for all z ∈ Z . Since DKL[Qϕ(h|s, z)∥r(h)] is constrained in CVAE
learning, the MI between states and latent representations for each skill is also compressed according
to Eq. (5). Thus, the latent space in CVAE learns a compressive representation while retaining
important information as the representation is then used for reconstruction. Based on the learned
representation, we define the intrinsic reward for intra-skill exploration as

rexpz (s) = DKL[Qϕ(h|s, z)∥r(h)], (6)

where Qϕ(h|s, z) is the posterior network learned in CVAE. The intrinsic reward in Eq. (6) quan-
tifies the degree of compression of representation with respect to the state, which measures skill-
conditioned state novelty in a compact space for intra-skill exploration. Intuitively, if a state s(1) is
frequently visited by skill z, then the corresponding latent distribution is close to r(h) according to
Eq. (5), and the resulting reward rexpz (s(1)) will be close to zero. In contrast, if a state s(2) is novel for
skill z, then the corresponding intrinsic reward will be high since the latent posterior Qϕ(h|s(2), z)
can be very different from the prior r(h). Thus, in exploration, such reward encourages the policy to
find the scarcely visited states {s+} (with a high DKL[Qϕ(h|s, z)∥r(h)]) and explore these states.

An illustration of the skill learning process of SD3 is shown in Figure 2. The state occupancy of
different skills overlaps initially in Figure 2(i), then we maximize ISD3 via per-instance estimation
and set it to an intrinsic reward as

rsd3z (s) = log
λ dπz (s)

λ dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)
, (7)

which encourages skill density deviation and leads to more diverse skills with separate state cover-
age, as in Figure 2(ii). Then the exploration reward rexpz (s) is used to encourage intra-skill explo-
ration, which makes each skill explore unknown areas independently. After exploration, the state
coverage of each skill increases and may lead to state-coverage overlapping again among skills, as
in Figure 2(iii). Then the density-derivation reward rsd3z (s) re-separates the updated areas to ob-
tain distinguished skills, as in Figure 2(iv). The above process repeats for many rounds and SD3
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finally learns exploratory and diverse skills. The algorithmic description of our method is given in
Algorithm 1.

3.3 QUALITATIVE ANALYSIS

In this section, we give a qualitative analysis of the proposed SD3 objective and exploration reward,
which encourage inter-skill diversity and intra-skill exploration, respectively.

The skill discovery objective ISD3 in Eq. (1) leads to diverse skills with separate explored areas,
which is similar to the MI-based skill discovery objectives. As we usually set λ ≥ 1 to prevent skill
collapse, the following theorem connects ISD3 and the previous MI objectives.
Theorem 3.1. With λ ≥ 1, we have

I(S;Z) ≤ ISD3 ≤ c0 + I(S;Z). (8)

where c0 = log λ. Specially, ISD3 = I(S;Z) if λ = 1.

The above theorem shows when we maximize skill deviation via ISD3, the MI between S and Z
also increases. The previous MI objective becomes a special case of ISD3, where the introduced
λ provides flexibility to control the strength of skill deviation. In the following, we connect the
proposed intrinsic reward to the provably efficient count-based exploration in tabular cases.

Note that since λ only relates to the overall objective ISD3 and does not affect the estimation of state
density, the exploration bonus holds for arbitrary λ ≥ 1.
Theorem 3.2. In tabular MDPs, optimizing the intra-skill exploration reward is equivalent to count-
based exploration, as

rexpz (s) ≈ |S|/2
N(s, z) + κ

. (9)

where N(s, z) is the count of visitation of state-skill pair (s, z) in experiences, |S| is the total number
of states in a tabular case, and κ > 0 is a small non-negative constant.

As a result, maximizing the intra-skill exploration reward is equivalent to performing count-based
exploration in previous works (Kolter & Ng, 2009; Strehl & Littman, 2008), which is provable
efficient in tabular MDPs (Bellemare et al., 2016; Ostrovski et al., 2017). Through the approximation
in a compact latent space, the intra-skill exploration encourages skill-conditional policy to increase
the pseudo-count of rarely visited state-skill pairs in a high-dimensional space.

4 RELATED WORK

Unsupervised Skill Discovery Unsupervised skill discovery in RL aims to acquire a repertoire of
useful skills without relying on extrinsic rewards. Early efforts, such as VIC (Gregor et al., 2016),
DIAYN (Eysenbach et al., 2019), and DADS (Sharma et al., 2020), maximize the MI between the
skill and the state to discover diverse skills. However, as noted in EDL (Campos et al., 2020),
LSD (Park et al., 2022), and CSD (Park et al., 2023), such MI-based methods usually prefer static
skills caused by poor state coverage and may hinder the application for downstream tasks. Recent
methods strive to address this limitation to learn dynamic and meaningful skills. These methods
perform explicit exploration or enforce Lipschitz constraints in the representation to maximize the
traveled distances of skills. Further, CIC (Laskin et al., 2022) employs contrastive learning between
state transitions and skills to encourage agent’s diverse behaviors. BeCL (Yang et al., 2023) uses
contrastive learning to differentiate between various behavioral patterns and maximize the entropy
implicitly. ReST (Jiang et al., 2022) encourages the trained skill to stay away from the estimated state
visitation distributions of other skills. Some methods, like DISCO-DANCE (Kim et al., 2023), APS
(Liu & Abbeel, 2021a), SMM (Lee et al., 2020) and DISDAIN (Strouse et al., 2022), focus on in-
troducing an auxiliary exploration reward to address insufficient exploration. Furthermore, to verify
the effectiveness of skill discovery in large-scale state space (e.g., images), recent methods including
Choreographer (Mazzaglia et al., 2023) and Metra (Park et al., 2024) evaluate the effectiveness of
methods on pixel-based URLB (Rajeswar et al., 2023), which often relies on model-based agents to
learn meaningful knowledge from imagination, and skills are discovered in the latent space. Metra
(Park et al., 2024) constructs a latent space associated with the original state space via a temporal
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DIAYN CICDADS SD3

Figure 3: Results for maze experiment. We visually demonstrate the agent’s ability to explore the
environment and the diversity of skills discovered by the agent. The agent starts from the black dot
of the maze and interacts for 250K steps. Both DIAYN and DADS do not reach the right side of the
maze while obtaining distinguishable trajectories highlighted by different colors. The trajectories of
CIC span the entire maze but appear chaotic. In contrast, SD3 can reach the farthest position from
the starting point and facilitates easy differentiation of trajectories of different skills.

distance metric, which enables skill learning in high-dimensional environments by maximizing the
coverage. In contrast, our method promotes skill diversity by encouraging deviations in skill density
and enhances state coverage through latent space exploration. We validate our approach’s efficacy
through experiments on state-based and pixel-based tasks across various environments.

Unsupervised RL According to URLB (Laskin et al., 2021), URL algorithms are classified into
three main categories: knowledge-based, data-based, and competence-based. Knowledge-based al-
gorithms (Pathak et al., 2017; 2019; Burda et al., 2019) leverage the agent’s predictive capacity
or understanding of the environment, and the intrinsic reward is tied to the novelty of the agent’s
behaviors, encouraging the agent to explore areas where its model is less certain. Data-based al-
gorithms (Liu & Abbeel, 2021b; Yarats et al., 2021) maximize the state entropy to maximize state
coverage of skills. Competence-based algorithms (Lee et al., 2020; Eysenbach et al., 2019; Liu
& Abbeel, 2021a; Nieto et al., 2021) pre-train the agent to learn useful skills that can be utilized
to complete downstream tasks. Our method can be categorized as competence-based, while also
combining the benefit of knowledge-based algorithms to encourage exploration. In addition, some
recent algorithms do not easily fit into these categories. For example, LCSD (Ju et al., 2024) estab-
lishes connections between skills, states, and linguistic instructions to guide task completion based
on external language directives. DuSkill (Kim et al., 2024) utilizes a guided diffusion model to gen-
erate versatile skills beyond dataset limitations, thereby enhancing the robustness of policy learning
across diverse domains. EUCLID (Yuan et al., 2023) improves downstream policy learning per-
formance by jointly pre-training dynamic models and unsupervised exploration strategies. VGCRL
(Choi et al., 2021) applies variational empowerment to learn effective state representations, thereby
improving exploration.

5 EXPERIMENTS

We start by introducing experiments in Maze to visualize the skills. Subsequently, we validate the
effectiveness of SD3 by conducting experiments on challenging tasks from the DeepMind Control
Suite (DMC) (Tassa et al., 2018), with both state-based (Laskin et al., 2021) and pixel-based (Ra-
jeswar et al., 2023) observations. Finally, we conduct ablation studies to demonstrate the factors that
influence the effectiveness of SD3.

5.1 MAZE EXPERIMENT

We conduct experiments in a 2D maze to visually demonstrate the learned skills, as shown in Fig-
ure 3. The agent’s initial state is represented by a black dot, with different colored lines indicating
the trajectories corresponding to the different skills it has learned. The agent’s state is the current
positional information, and the actions represent the velocity and direction of movement. Building
on this, we compare SD3 with two classical MI-based methods, DIAYN (Eysenbach et al., 2019)
and DADS (Sharma et al., 2020), whose objectives correspond to the reverse formH(Z)−H(Z|S)
and the forward formH(S)−H(S|Z) of the MI term I(S;Z), respectively. Additionally, we com-
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Figure 4: Results for state-based URLB. The aggregate statistics (Agarwal et al., 2021) indicate the
adaptation performance of different unsupervised RL methods in 12 downstream tasks. In terms of
IQM, Mean, and OG metrics, SD3 outperforms other competence-based methods and significantly
surpasses pure exploration methods, achieving 77.37%, 76.19%, and 23.91%, respectively.

pare SD3 with an entropy-based CIC algorithm (Laskin et al., 2022), whose primary objective is to
maximize state-transition entropy H(τ) to generate diverse behaviors. We employ the PPO as the
backbone and train n = 10 skills for each algorithm.

We delineate the learned skills of each algorithm within the maze environment in Figure 3 and intro-
duce two key metrics for comparing SD3 with other methods: state coverage and distinguishability
of skills, where insufficient state coverage may impede the acquisition of dynamic skills, and the
lack of distinguishability leads to similar behaviors of skills. According to the results, (i) DIAYN
and DADS fail to extend to the upper-right corner of the maze, but exhibit clear distinctions among
trajectories of skills, indicating that merely maximizing I(S;Z) can learn discriminable skills but
lack effective exploration of the state space; (ii) CIC demonstrates the best state coverage while
learns skills with mixed trajectories due to the maximization of H(s) as its primary objective; (iii)
In contrast, SD3 strikes a balance between state coverage and empowerment in skill discovery. It
learns discriminable skills by maximizing the deviation between the state densities of a certain skill
and others. Meanwhile, SD3 achieves commendable state coverage through latent space exploration.

5.2 STATE-BASED URLB

According to state-based URLB (Laskin et al., 2021), we evaluate our approaches in 12 downstream
tasks across 3 distinct continuous control domains, each designed to evaluate the effectiveness of
algorithms under high-dimensional state spaces. The three domains are Walker, Quadruped, and
Jaco Arm. Specifically, Walker involves a biped constrained to a 2D vertical plane with a state
space S ∈ R24 and an action space A ∈ R6. The agent in the Walker domain must learn to
maintain balance and move forward, completing four downstream tasks: stand, walk, run, and flip.
Quadruped features a four-legged robot in a 3D environment, characterized by a state space S ∈ R78

and an action space A ∈ R16. The downstream tasks, including stand, run, jump, and walk, pose
challenges to the agent due to the complex dynamics of its movements. Jaco employs a 6-DOF
robotic arm with a three-finger gripper, functioning within a state space S ∈ R55 and an action
state A ∈ R9. Primary downstream tasks in Jaco Arm include reaching and manipulating objects at
various positions.

Baselines. We conduct comparisons between SD3 and the baselines delineated across the three
URL algorithm categories as defined by URLB (Laskin et al., 2021). These categories encompass
knowledge-based baselines, which consist of ICM (Pathak et al., 2017), Disagreement (Pathak et al.,
2019), and RND (Burda et al., 2019); data-based baselines, which include APT (Liu & Abbeel,
2021b) and ProtoRL (Yarats et al., 2021); and competence-based baselines, comprising SMM (Lee
et al., 2020), DIAYN (Eysenbach et al., 2019), and APS (Liu & Abbeel, 2021a). Furthermore, we
extend our comparisons to include other novel competence-based algorithms such as CSD (Park
et al., 2023), Metra (Park et al., 2024), BeCL (Yang et al., 2023), and CIC (Laskin et al., 2022).

Evaluation. We employ a rigorous evaluation to assess the performance of SD3 alongside other
algorithms, involving a two-phase process. Initially, a pre-training of 2M steps is performed using
only intrinsic rewards, followed by a fine-tuning phase of 100K steps on each downstream task using
extrinsic rewards. Building upon prior work (Laskin et al., 2021), we utilize DDPG as the backbone
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(a) Results for Pixel-based URLB (b) Results for robustness experiment

Figure 5: (a) We conduct experiments on pixel-based URLB to demonstrate the scalability of SD3
for large-scale problems. (b) It can be observed that SD3 retains higher performance ratio than CIC
in the noisy domain.

algorithm. To ensure statistical rigor and mitigate the impact of incidental factors in RL training,
we conduct experiments across multiple seeds (10 seeds per algorithm), resulting in a substantial
volume of experimental runs (i.e., 1560 = 13 algorithms × 10 seeds × 3 domains × 4 tasks). We
employ four statistical metrics to assess performance: Median, interquatile mean (IQM), Mean, and
optimality gap (OG) (Agarwal et al., 2021). IQM focuses on the central tendency of the middle
50%, excluding the top and bottom quartiles. OG understands the extent to which the algorithm
approaches the optimal level, where the optimal level is determined by the expert models’ ultimate
score obtained on each downstream task.

Results. According to Figure 4, SD3 achieves the highest IQM score at 77.37%, slightly surpassing
CIC and BeCL, which scores 75.19% and 75.38% respectively, and significantly outperforming
other competence-based algorithms such as Metra (61.01%), CSD (54.93%), and APS (43.61%). On
the OG metric, SD3’s gap to optimal performance is 23.91%, marginally better than CIC and BeCL
at 25.65% and 25.44%, respectively, and far superior to Metra (39.25%), CSD (42.43%), and APS
(55.76%). Additionally, compared to purely exploratory methods, SD3 significantly outperforms
the best-performing method, APT, on both IQM and OG metrics, with APT scoring 67.74% and
34.98% on these metrics, respectively. The remarkable performance of SD3 stems from two main
factors. First, the use of rsd3 facilitates the learning of distinguishable skills by the agent, thereby
facilitating effective adaptation across various downstream tasks. Second, the learned compressed
representation of the high-dimensional state space leads to efficient intra-skill exploration within a
compact space, which not only maintains skill consistency but also enhances exploration ability.

5.3 PIXEL-BASED URLB

To further validate the effectiveness of SD3, we conduct experiments on pixel-based URLB (Ra-
jeswar et al., 2023), which includes Walker and Quadruped domains with 8 downstream tasks. The
pixel-based environment employs raw pixel data as input, foregoing abstracted features, or pro-
cessed sensor information. The challenge of deriving meaningful skills from such unrefined inputs
is substantial, particularly in the absence of external rewards. Meanwhile, exploration becomes
more difficult in image-based spaces, thereby testing the exploration ability of algorithms under
conditions that closely resemble practical applications.

Baselines. We compared SD3 with the top three performing algorithms in state-based experi-
ments, i.e., BeCL (Yang et al., 2023), CIC (Laskin et al., 2022), and APT (Liu & Abbeel, 2021b),
as well as with the recently proposed skill discovery algorithms including CSD (Park et al., 2023)
and Metra (Park et al., 2024). Among these, APT stands out as a data-based algorithm, which can
also be considered a representative of pure exploration algorithms and demonstrates strong perfor-
mance in exploring environments. The others are competence-based algorithms, which accomplish
downstream tasks by learning useful and diverse skills.

Evaluation. We conduct 2M steps of pre-training solely based on intrinsic rewards in each do-
main, followed by 100K steps of fine-tuning on the downstream tasks using extrinsic rewards. The
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scores achieved in the downstream tasks are used to evaluate the algorithm. According to the offi-
cial benchmark of the pixel-based URLB (Rajeswar et al., 2023), unsupervised RL algorithms often
perform poorly when combined with a model-free method (e.g., DDPG (Lillicrap et al., 2016) or
DrQv2 (Yarats et al., 2022)) with image observations, while performing much better when using a
model-based backbone (e.g., Dreamer (Hafner et al., 2021)). Thus, we follow this setting and con-
duct experiments with Dreamer backbone. We report the average adaptation performance in Figure
5(a). In the relatively simple Walker domain, SD3 achieves the best performance (93.42%), slightly
outperforming other methods (i.e., CIC-91.29%, APT-88.17%, CSD-84.26%). In the challenging
Quadruped domain, SD3 outperforms CIC (77.57% and 75.89%, respectively) and shows signif-
icant improvement over other competence-based methods (i.e., CSD-65.89%, Metra-53.53%) and
the best pure-exploration method in state-based URLB (i.e., APT-61.96%). This highlights SD3’s
commendable advantages in both various image-based tasks.

5.4 ROBUSTNESS EXPERIMENT

Unlike CIC, APS, and BeCL, which rely on entropy-based exploration strategies, SD3 introduces
a novel exploration reward that resembles a UCB-style bonus. Such a UCB-term in exploration
is provable efficient in linear and tabular MDPs, which has been rigorously studied in previous
research (Jin et al., 2023; ZHANG et al., 2021). In contrast, the entropy-based exploration used
in previous methods has the disadvantage of being non-robust (e.g., adding small noise will signifi-
cantly affect its entropy). Thus, to further verify that the robustness of SD3, we conduct experiments
in noisy domains of URLB by adding noise during pre-training, which is sampled from N(0, 0.1),
followed by noise-free fine-tuning to assess the learned skills.

Evaluation. We choose CIC for comparison, which performs competitively with our method in
standard URLB. Each technique is evaluated across 5 random seeds and the results are given in
Figure 5(b). The Performance Ratio (PR) denotes the ratio of the adaptation score in the noisy
domain to that in the normal setup. According to the results, it is evident that the UCB-bonus used
in SD3 is more robust than entropy-based rewards in noisy environments, achieving significantly
higher Performance Ratio than CIC. The detailed results are attached in Appendix E.

5.5 ABLATION STUDIES AND VISUALIZATION

We provide ablation studies for components in skill discovery and skill adaptation of SD3. For skill
discovery, we perform the comparison on (i) density estimation with and without soft modulariza-
tion, and (ii) the different settings of temperatures in the routing network. The final rewards for skill
discovery contain rsd3z (s) and rexpz (s). We conduct ablation studies on (iii) different settings of λ in
calculating rsd3z (s), as well as (iv) the different balance factors of the two rewards. For skill adap-
tation, we sampled skills randomly to evaluate their generalization ability in our main results. In
ablation studies, (v) we evaluate two more skill-choosing strategies in adaptation for a comparison.
We refer to Appendix D for detailed results and analysis. We also provide visualizations of skills
learned in tree-like Maze and DMC tasks in Appendix C. The results show that SD3 learns dynamic
and valuable skills, enabling the agent to adapt to downstream tasks quickly.

6 CONCLUSION

We propose a novel skill discovery method that promotes skill diversity by encouraging skill devi-
ations in state density and enhancing state coverage through latent space exploration. We realize
a novel soft modularization architecture for state density estimation of different skills. Theoreti-
cally, the skill discovery objective also maximizes the initial MI term, and the resulting intra-skill
exploration bonus resembles count-based exploration. Moreover, our four experiments complement
each other and collectively provide sufficient evidence that SD3 demonstrates superior and more
comprehensive performance compared to other methods. One limitation of our method is that the
soft modularization architecture is limited to discrete skill spaces, and the theoretical analysis of the
exploration bonus requires the assumption of tabular MDPs. In the future, we will extend the idea
of skill discovery to LLM-based agents to learn meaningful skills in more complex environments.
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7 ETHICS STATEMENT

This work does not involve any human subjects or personally identifiable information. This work
focuses on the field of unsupervised RL, and therefore does not involve any datasets. No sensitive
data or unethical methodologies are employed. We declare no conflicts of interest related to the
sponsorship or publication of this work. The research has adhered to the ICLR Code of Ethics, with
special attention to fairness and bias concerns.

8 REPRODUCIBILITY

All experiments and results reported in this paper can be reproduced using the provided anony-
mous source code. Details regarding the model architecture and training parameters are included
in Appendix B. The theorems discussed in section 3.3 are supported by detailed proofs provided in
Appendix A.
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A THEORETICAL PROOFS

A.1 PROOF OF EQ. 2

Proof. As we discussed in 3.1, since we uniformly sample skills from the skill set that contains n
skills, we have p(z) = 1/n for each skill. Then we have

ISD3(s, z) = log
λndπz (s)

λdπz (s) +
∑
z′ ̸=z d

π
z′(s)

= log
λndπz (s)

λdπz (s) + ρzc(s)
. (10)

Then, the gradient of ISD3(s, z) to ρzc(s) becomes

∇ρzc ISD3(s, z) =
λdπz (s) + ρzc(s)

λndπz (s)

−λndπz (s)
(λdπz (s) + ρzc(s))

2

= − 1

λdπz (s) + ρzc(s)
.

(11)

This completes the proof.

A.2 PROOF OF THEOREM 3.1

Proof. For clarity, we write ISD3 as ISD3(λ) to explicitly highlight its dependency on the parameter
λ in the following context. We first note that the function ISD3(λ) is monotonically increasing
relative to λ, and ISD3(λ) is equal to I(S;Z) when λ = 1. Therefore, the first inequality

I(S;Z) ≤ ISD3(λ)

always holds for λ ≥ 1. Next, it remains to prove the second inequality, which suffices to give an
upper bound of ISD3(λ)− I(S;Z). Note that

ISD3(λ)− I(S;Z)

=Ez∼p(z),s∼dπz (s)

[
log

λ dπz (s)

λ dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)
·
dπz (s)p(z) +

∑
z′ ̸=z d

π
z′(s)p(z

′)

dπz (s)

]

= log λ+ Ez∼p(z),s∼dπz (s)

[
log

dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

λ dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

]

= log λ− Ez∼p(z),s∼dπz (s)

[
log

dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′) + (λ− 1)dπz (s)p(z)

dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

]

= log λ− Ez∼p(z),s∼dπz (s)

[
log

(
1 + (λ− 1)

dπz (s)p(z)

dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

)]
.

(12)

Recalling that dπz (·) denotes the state density of skill z, and p(z) is the probability density function
of skill z, we know that the term

log

(
1 + (λ− 1)

dπz (s)p(z)

dπz (s)p(z) +
∑
z′ ̸=z d

π
z′(s)p(z

′)

)
(13)
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is always non-negative for λ ≥ 1. Therefore, we have

ISD3(λ) ≤ log λ+ I(S;Z). (14)

This completes the proof.

A.3 PROOF OF THEOREM 3.2

Proof. In this proof, we first give a formulation of the intrinsic reward in a linear parameterized
assumption, and then discuss the special case of tabular MDPs.

With linear assumptions, we denote η(st, zt) ∈ Rd as the feature vector of (st, zt), which is ex-
tracted by the encoder network of CVAE. The decoder network is assumed to be a linear function
of the feature vector as ŝt = Wtη(st, zt), where Wt ∈ Rc×d and ŝt ∈ Rc. Then the reconstruction
of the state becomes a regularized least-squared problem that captures the prediction error given a
dataset Dm, where m is the number of episodes in the dataset. Thus, we have

Wt = argmin
W

m∑
i=0

∥∥sit −Wη(sit, z
i
t)
∥∥2
F
+ κ · ∥W∥2F , (15)

where ∥ · ∥F denotes the Frobenius norm. We further define the following noise with respect to the
least-square problem in Eq. (15) as

st = Wtη(st, zt) + ϵ, ϵ ∼ N (0, I). (16)

Here we consider the estimation error ϵ in Eq. (15) to follow the standard multivariate Gaussian
distribution.

Recall that our practical intra-skill exploration reward is DKL[Qϕ(h|s, z)∥ r(h)], where Qϕ is a
posterior network compressing the representation of each state and skill with parameter ϕ, and r(h)
is the marginal distribution of the latent variable, where we follow previous works (Alemi et al.,
2017; Bai et al., 2021) to consider the marginal as the standard normal distribution. Then we re-
define the intrinsic reward in a Bayesian perspective, where we introduce Φ to denote the total
parameters, as

rexpz (s) = EΦDKL[Qϕ(h|s, z)∥ r(h)] = H(Qmargin)−H(Qϕ(h|s, z)), (17)

where Qmargin = Q(s, z)|Dm is the margin distribution of the encoding over the posterior of the
parameters Φ. In practice, we replace the expectation over posterior Φ by the corresponding point
estimation, namely the parameter ϕ of the neural networks trained with SD3 model on the dataset
Dm. Formally, considering the Bayesian form of learning objective, we have

rexpz (s) = H(Qmargin)−H(Qϕ(h|s, z)) = H(Q(s, z, S)|Dm)−H(Q(s, z, S)|Φ,Dm), (18)

where Q is a neural network in practice. We adopt the mapping

Q(s, z, S)|Φ,Dm = Qϕ(h|s, z) (19)

since Qϕ is trained to reconstruct the variable S, where ϕ constitutes a part of the parameters of the
total parameters Φ. According to Data Processing Inequality, the post-processing of the signal does
not increase information, and we can understand Q as post-processing mapping the state-skill vector
via an encoder network. Then we have the following inequality for the information-gain term:

rexpz (s) = H(Q(s, z, S)|Dm)−H(Q(s, z, S)|Φ,Dm)

≤ H(s, z, S|Dm)−H(s, z, S|Φ,Dm) = I(Φ; (s, z, S)|Dm),
(20)

where we denote (s, z) as realizations as they are sampled from the dataset as input, and S is a
random variable that is learned to reconstruct by parameter Φ. The inequality can be tight since
Q(·) is trained by reconstruction, which contains sufficient information about (s, z, S).

In the following, we will prove the following inequality in a linear case with a parameter Wt con-
sidered in Eq. (15), as

rexpzt (st) ≤ I(Wt; (st, zt, St)|Dm) ≤ c

2
[η(st, zt)

⊤Λ−1
t η(st, zt)], (21)
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the [η(st, zt)
⊤Λ−1

t η(st, zt)] term is known as an upper-confidence-bound (UCB)-term in linear
MDPs (Jin et al., 2023; Cai et al., 2020), and Λt =

∑m
j=1 η(sj , zj)η(sj , zj)

⊤ + κ · I is the covari-
ance matrix of the samples in the dataset. Finally, we will connect the UCB-term to the count-based
bonus in the tabular case.

Let denote vec(Wt) as vectorization of Wt ∈ Rc×d, and also η̃(st, zt)

vec(Wt) =



w11

...
w1d
w21

...
w2d

...

...
wc1

...
wcd


∈ Rcd, η̃(st, zt) =

 η(st,zt) 0 ··· 0
0 η(st,zt) ··· 0

...
...

. . .
...

0 0 ··· η(st,zt)

 =



η1 0 ··· 0

...
ηd 0 ··· 0

η1 ··· 0

...
...

...
ηd ··· 0

...
...

...
...

...
...

0 0 ··· η1
...

...
...

0 0 ··· ηd


∈ Rcd×c,

(22)
then it is not difficult to verify that vec(Wt)

⊤η̃(st, zt) = Wtη(st, zt). By the definition of the
mutual information, we observe

I(Wt; [st,zt, St] | Dm) = I(vec(Wt); [st, zt, St] | Dm)

= H(vec(Wt) | Dm)−H(vec(Wt) | Dm ∪ (st, zt, St))

=
1

2
log det

(
Var(vec(Wt) | Dm)

)
− 1

2
log det

(
Var(vec(Wt) | Dm ∪ (st, zt, St))

)
.

(23)
Next, we need to obtain Var(vec(Wt) | Dm) and Var(vec(Wt) | Dm ∪ (st, zt, St)). Recalling that
ϵ satisfies the standard Gaussian distribution in Eq. (16), we can conclude that

st|ηt,Wt ∼ N (vec(Wt)
⊤η̃(st, zt), I).

Assuming the prior distribution W ∼ N (0, I/κ), then the prior of vec(W ) also follows from
N (0, I/κ). Moreover, using Bayes’ theorem and plugging the probability of p(vec(Wt)), we have

log p(vec(Wt) | Dm) = log p(vec(Wt)) + log p(Dm | vec(Wt))− log p(Dm)

= −∥vec(Wt)∥2/2−
m∑
i=1

∥vec(Wt)η̃(s
i
t, z

i
t)− sit+1∥2/2 + Const

= −(vec(Wt)− µ̃t,m)⊤Λ̃−1
t,m(vec(Wt)− µ̃t,m)/2 + Const,

(24)

where µ̃t and Λ̃t in the last equality are defined as

µ̃t,m = Λ̃−1
t

m∑
i=0

η̃(sit, z
i
t)s

i
t+1 ∈ Rcd, Λ̃t,m =

m∑
i=0

η̃(sit, z
i
t)η̃(x

i
t, z

i
t)

⊤ + κ · I ∈ Rcd×cd.

Taking the left-hand side of log to the right. The Eq. (24) implies the distribution of vec(Wt) |
Dm ∼ N(µ̃t,m, Λ̃−1

t,m). Hence, we can get

Var(vec(Wt) | Dm) = Λ̃−1
t,m, Var(vec(Wt) | Dm ∪ (st, zt, St)) = Λ̃−1

t,m+1. (25)

We proceed to derive Eq. (23) by applying Eq. (25), from which we obtain

I(vec(Wt); [st, zt, St+1]|Dm) =
1

2
log det

(
Λ̃−1
t,m

)
− 1

2
log det

(
Λ̃−1
t,m+1

)
=

1

2
log det

(
Λ̃t,m+1 + η̃(st, zt)η̃(st, zt)

⊤)− 1

2
log det

(
Λ̃t,m

)
=

1

2
log det

(
η̃(st, zt)

⊤Λ̃−1
t η̃(st, zt) + I

)
,

(26)
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where the last equality holds by applying the Matrix Determinant Lemma to the first term. Recalling
our definition of η̃(st, zt), the state-skill pairs are finite in the tabular case, so we have

Λ̃t =

m∑
i=0

η̃(sit, z
i
t)η̃(x

i
t, z

i
t)

⊤ + κ · I

=


∑
η(s0,z0)η(s0,z0)

⊤+κI 0 ··· 0

0
∑
η(s1,z1)η(s1,z1)

⊤+κI ··· 0

...
...

. . .
...

0 0 ···
∑
η(sm,zm)η(sm,zm)⊤+κI

 .

(27)

Then, η̃(st, zt)⊤Λ̃−1
t η̃(st, zt) can be rewritten as

η̃(st, zt)
⊤Λ̃−1

t η̃(st, zt)

=


η(st,zt)

⊤ 0 ··· 0

0 η(st,zt)
⊤ ··· 0

...
...

. . .
...

0 0 ··· η(st,zt)⊤


 Λ−1 0 ··· 0

0 Λ−1 ··· 0
...

...
. . .

...
0 0 ··· Λ−1


 η(st,zt) 0 ··· 0

0 η(st,zt) ··· 0

...
...

. . .
...

0 0 ··· η(st,zt)



=


η(st,zt)

⊤Λ−1η(st,zt) 0 ··· 0

0 η(st,zt)
⊤Λ−1η(st,zt) ··· 0

...
...

. . .
...

0 0 ··· η(st,zt)⊤Λ−1η(st,zt)

 ∈ Rc×c.

(28)

Therefore, by eliminating the determinant based on the expression in Eq. (28) and applying the
inequality log(1 + x) ≤ x for x ≥ 0, we can further bound Eq (26) from above as

I(vec(Wt); [st, zt, St+1]|Dm) =
1

2
· log det

(
η̃(st, zt)

⊤Λ̃−1
t η̃(st, zt) + I

)
=

c

2
· log

(
η(st, zt)

⊤Λ−1η(st, zt) + 1
)

≤ c

2
· η(st, zt)⊤Λ−1η(st, zt).

(29)

Hence, based on Eq. (20) and Eq. (29), we conclude that

rexpz (st) ≤ I(Wt; [st, zt, St+1]|Dm) = I(vec(Wt); [st, zt, St+1]|Dm) ≤ c

2
·η(st, zt)⊤Λ−1η(st, zt).

(30)

In tabular cases (Auer & Ortner, 2006), the state and skill are considered as finite and countable. Let
d = |S| × |Z|. Recall that η(st, zt) ∈ R|S||Z| is the one-hot vector with a value of 1 at position
(st, zt) ∈ S × Z , i.e.,

η(sj , zj) =


0
...
1
...
0

 ∈ Rd, and η(sj , zj)η(sj , zj)
⊤ =


0 · · · 0 · · · 0
...

. . .
...

0 1 0
...

. . .
...

0 · · · 0 · · · 0

 ∈ Rd×d. (31)

We denote the gram matrix Λj =
∑m
i=0 η(s

i
j , z

i
j)η(s

i
j , z

i
j)

⊤ + κ · I for κ > 0 as covariance matrix
given a dataset Dm. Since we denote η as a one-hot vector, and Λ as the sum of all the matrices
η(sj , zj)η(sj , zj)

⊤, each diagonal element of Λ can be seen as the corresponding count N(sj , zj)
for the state-skill pair, i.e.

Λ =



N(s0, z0) + κ 0 · · · 0
0 N(s1, z1) + κ · · · 0
...

. . .
...

0 N(sj , zj) + κ 0
...

. . .
...

0 · · · · · · N(sm, zm) + κ

 .
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Moreover, given a dataset, the expression on the right side of the theorem’s inequality is inversely
proportional to the total number of state-skill pairs; in other words,

η(sj , zj)
⊤Λ−1

t η(sj , zj) =
1

N(sj , zj) + κ
. (32)

According to Eq. (21), we have the following relationship in the tabular case:

rexpzt (st) ≤ I(Wt; (st, zt, St)|Dm) ≤ c

2
[η(st, zt)

⊤Λ−1
t η(st, zt)] =

|S|/2
N(st, zt) + κ

. (33)

The first inequality is due to the Data Processing Inequality according to Eq. (20). The bound is
tight since Q(·) is trained by reconstruction, which contains sufficient information about (s, z, S).
The second inequality is tight when η(st, zt)

⊤Λ−1
t η(st, zt) → 0, which means that the count of

state-action pair is large. In the last equation, c is the count of all states in the tabular space. Thus,
we have

rexpz (s) ≈ |S|/2
N(s, z) + κ

, (34)

if the count of N(s, z) is large. Intuitively, optimizing the reward η(s, z)⊤Λ−1η(s, z) incentivizes
the agent to increase the visitation of (s, z). Furthermore, since we have proven that Eq. (21) holds,
we can state that in the tabular case, maximizing the intra-skill reward is equivalent to maximizing
the count-based rewards (Bellemare et al., 2016; Ostrovski et al., 2017). The intra-skill exploration
reward encourages the skill-conditional policy to increase the visitation times of those rare state-skill
pairs.

B HYPER-PARAMETERS AND IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETERS

We utilize the baselines from the open-source implementations of URLB (https:
//github.com/rll-research/url_benchmark), CIC (https://github.com/
rll-research/cic), and BeCL (https://github.com/Rooshy-yang/BeCL),
keeping their hyper-parameters fixed throughout both the pre-training and fine-tuning
stages. For CSD and Metra, due to the absence of their experiments in state- and pixel-
based URLBs, we re-implement them in these benchmarks on their official implemen-
tations (CSD https://github.com/seohongpark/CSD-locomotion, Metra
https://github.com/seohongpark/METRA ). Table 1 details the hyper-parameters
used for SD3 and DDPG.

B.2 IMPLEMENTATION DETAILS

Soft Modularized CVAE To achieve SD3, we utilize a soft modularized CVAE to estimate the
state density dπz (s) of one skill. Specifically, we forward the state s through an MLP or CNN to
obtain a d-dimensional state embedding f1(s) and, similarly, obtain a d-dimensional skill embedding
f2(z). We use f1(s) as the input to the unconditional basic network, and f1(s)⊙ f2(z) as the input
to the routing network. The basic network comprises n layers, each containing m modules, for
progressively extracting features. The routing network contains n− 1 gating layers, which provide
a probability vector pl based on the input as shown in Eq. (4) to weight the contribution of the l-th
layer’s modules to the l + 1-th layer’s modules. Particularly, the probability vector which outputs
from the first layer of the routing network is represented as

pl=1 =W l
(
ReLU(f1(s)⊙ f2(z))

)
. (35)

Then, the probability vector is normalized using the softmax function as p̂l and the input to each
module in the basic network can be expressed as

gl+1
i =

∑
j

p̂li,j(ReLU(W l
jg
l
j)), (36)
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Table 1: Hyper-parameters used for SD3 and DDPG.

SD3 hyper-parameter Value
Skill dim 16 discrete
Softmax Temperature T 1
Skill sampling frequency (steps) 50
Exploration ratio α {0.04, 2.0}
Weight Parameter λ 1.5
CVAE Encoder arch. dim(S) → 1024 → 1024 → 1024 → 40 ∗ 2 ReLU (MLP)
CVAE Decoder arch. 40 → 1024 → 1024 → 1024 → dim(S) ReLU (MLP)

DDPG hyper-parameter Value
Replay buffer capacity 106

Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 1024
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pretraining frames 2× 106

Number finetuning frames 1× 105

where p̂li,j weights the j-th module in the l-th layer to contribute to the i-th module in the l + 1-th
layer, glj is the input to the j-th module in the l-th layer andW l

j represents the module parameters.

By progressively extracting features of state s while incorporating the weight information, the en-
coder transforms the state s into the mean µ(s|z) and variance σ2(s|z) of the latent space condi-
tioned on the skill z. The latent representation h is generated using the reparameterization trick,
ensuring gradients can be backpropagated through the sampling process. Specifically, this is done
as h = µ + σ · ϵ, where ϵ is the noise sampled from a standard Gaussian distribution. The decoder
then progressively up-samples and reconstructs the output state ŝ from the latent representation h,
incorporating the weight information generated by the routing network. We train the entire soft
modularized CVAE by maximizing Lelbo as given in Eq. (3), enabling it to more accurately estimate
dπz (s).

Practical Implementation We propose the complete SD3 algorithm in Algorithm 2. We conduct
our experiments using an RTX 4090 GPU. Each run in the state-based URLB environment takes
approximately 1 day, while runs in the Maze environment requires about 3 hours each. For the
pixel-based URLB environment, each run takes around 4 days or less.

C VISUALIZATION

C.1 TREE-LIKE MAZE

As shown in Figure 6, we conduct additional experiments in the tree-like maze to visualize the
skills learned by SD3. It can be observed that DIAYN and DADS only reach the middle of the
maze, whereas SD3 successfully reaches the bottom of the maze. The proposed latent space reward
in SD3 demonstrates strong exploration ability in large-scale mazes. Moreover, the trajectories of
different skills remain distinguishable in SD3.
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Algorithm 2: Complete SD3 algorithm
Input: number of pre-training frames NPT ,number of fine-tuning frames NFT , batch size N ,
skill sampling frequency Nupdate, skill set Z , exploration ratio α.
Initialize Environment, CVAE Qϕ, actor πθ, critic Qφ, replay buffer D.

//Pre-training
for t = 1 to NPT do

Randomly choose z from the skill set Z every Nupdate steps
Interact with environment by πθ(a|s, z)
Store the transition in replay buffer D ← D ∪ (st, at, s

′
t, z).

if t ≥ 4, 000 then
Sample a batch from D : {st, at, s′t, z}N ∼ D.
Update CVAE Qϕ via Lelbo in Eq. (3).
Use CVAE Qϕ to compute dπz (s) and dπz′ ̸=z(s).
Compute rsd3z (s) and rexpz (s) with Eqs. (6)-(7).
Compute the intrinsic reward rint = rsd3z (s) + α · rexpz (s)
Update actor πθ and critic Qφ using intrinsic reward rint.

end if
end for

//Fine-tuning
for t = 1 to NFT do

Use pre-training models to initialize actor πθ′ and critic Qφ′ .
Randomly sample a skill z∗ from Z and fix the z∗.
Interact with environment by πθ′ .
Store the transition in replay buffer D ← D ∪ (st, at, rt, s

′
t, z

∗).
if t ≥ 4, 000 then

Sample a batch from D : {st, at, rt, s′t, z∗}N ∼ D.
Use extrinsic reward rt obtained from downstream task to update πθ′ and Qφ′ .

end if
end for

C.2 DEEPMIND CONTROL SUITE

Figure 7 shows the learned skills in the Walker, Quadruped, and Jaco Arm domains. The result
shows SD3 can learn various locomotion skills, including standing, walking, rolling, moving, and
somersault; and also learns various manipulation skills by moving the arm to explore different areas,
opening and closing the gripper in different locations. The learned meaningful skills lead to superior
generalization performance in the fine-tuning stage of various downstream tasks.

D ABLATION STUDIES

D.1 THE EXPLORATION RATIO

We conduct an ablation on the different exploration ratios α, Specifically, with the hyper-parameter
α, the reward is represented as:

rtotalz (s) = rsd3z (s) + α · rexpz (s). (37)

As illustrated in Figure 8(a), when α is set to 0 and 0.02, the agent can learn distinguishable and
convergent skills but fails to fully explore the maze. When α is set to 0.08, the agent explores
sufficiently, but the trajectories at the endpoints are quite scattered, indicating that the learned skill
strategies lack stability. In contrast, α = 0.04 balances exploration and the skill diversity.

According to our analysis, when the proportion of exploration is deficient or even absent, SD3 solely
maximize ISD3. Conversely, an excessively high α can overly prioritize intra-skill exploration,
resulting in instability within the learned skills. Empirically, we have found that α = 0.04 can lead
to promising results in downstream tasks in the Quadruped domain.
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5 skills

DIAYN

10 skills 20 skills 30 skills

DADS

SD3

Figure 6: Additional experiments in the tree-like Maze with different numbers of skills. Under
different environmental conditions, SD3 demonstrates superior exploration capabilities while still
learning distinguishable skills, outperforming DIAYN and DADS.

             

       

Walker swings its thigh to rise from a supine position and initiate walking.

Walker contracts its calf to stand up.

        

     

Quadruped robot performs a rotational jump to get up.

Quadruped robot performs a dynamic backflip.

Jaco Arm reaches the top-left corner and clasps its gripper.

Jaco Arm reaches the bottom-right corner and opens its gripper.

Figure 7: Skill visualization in DMC. It can be observed that SD3 learns dynamic and valuable
skills, which enable the agent to quickly adapt to downstream tasks.
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(a) The impact of exploration ratio in maze environment (b) The impact of exploration ratio in state-based Quadruped 

α=0

α=0.08

α=0.02

α=0.04

Figure 8: Results for the impact of exploration ratio. (a) We conduct experiments with different α
in the maze and found that varying α values significantly impact both the state coverage and the
stability of learned skills. (b) In the Quadruped domain, different α also have a notable effect on the
performance of various downstream tasks.

Figure 9: Ablation on the soft modularization structure.

D.2 IMPACT OF SOFT MODULARIZATION

As mentioned in section 3.1, we use CVAE to estimate the state density of different skills. To en-
hance the accuracy of estimation in complex state spaces, we have introduced soft modularization
into the traditional CVAE structure. Consequently, we conduct an ablation study on the soft modu-
larization. Aggregated scores are reported in Figure 9. We observe that SD3 with soft modularized
CVAE obtains superior performance, as it has sufficient capacity to learn the density information of
different skills for the same state in complex state spaces, while the skill density estimation of one
skill may intervene with those of other skills in the traditional CVAE.

D.3 TEMPERATURE IN SOFTMAX

In section 3.1, we mentioned that the normalized weight p̂li,j for the routing network is computed
with the equation p̂li,j = exp(pli,j)/(

∑m
j=1 exp(p

l
i,j)). This is implemented using Softmax, where

we follow the previous work (Hinton et al., 2015) to introduce a temperature T to control the level
of uncertainty in output probabilities. The formula is as follows:

p̂li,j =
exp(pli,j/T )∑m
j=1 exp(p

l
i,j/T )

. (38)

From the above formula, it can be observed that when the temperature T = 1, it resembles the
original softmax function. As T decreases, the distribution output by softmax gradually becomes
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(b) T=100 in maze(a) Impact of softmax temperature

Figure 10: Results for the impact of softmax temperature. (a) We exhibit the performance of the
agent with different temperatures in the Quadruped domain. (b) When the temperature is set to
100, SD3 becomes a count-based pure exploration method. It demonstrates a certain degree of
environment exploration capability but lacks empowerment in the environment.

more extreme, eventually converging to a deterministic distribution. Conversely, as T increases, the
softmax gradually tends to derive a uniform distribution. Here we perform the ablation study on the
temperature coefficient.

The result is illustrated in Figure 10(a). When T values are 0.1 and 0.01, the output of the softmax
function in the routing network will gradually approximate argmax(pli), at which point each training
iteration utilizes only a single module from each layer. This practice inevitably diminishes the
accuracy of estimating dπz (s); when T values are 10 and 100, the routing network tends to output
uniformly distributed weight values, causing the routing network to fail. The entire network structure
can be approximated as a VAE composed of multiple modules. Given the loss of skill z information
in the basic network, the intrinsic reward of SD3 can be repsented as follows:

rtotalz (s) = rsd3z (s) + rexpz (s)

= log
λ dπ(s)

λ dπ(s)p(z) +
∑
z′ ̸=z d

π(s)p(z′)
+DKL[Qϕ(·|s)∥r(h)]

= log
λ · n

λ+ n− 1
+DKL[Qϕ(·|s)∥r(h)]

= c+DKL[Qϕ(·|s)∥r(h)],

(39)

where c represents a constant. Furthermore, based on Theorem 3.2, the right-hand side of the equa-
tion can be approximated as |S|/2

N(s)+κ . Substituting into Eq. (39), we can obtain:

rtotalz (s) ≈ c+
|S|/2

N(s) + κ
. (40)

At this point, the SD3 method transforms into a count-based exploration approach. As presented in
Figure 10(b), the agent learns extremely dynamic behavior, thereby preventing it from adequately
adapting downstream tasks.

D.4 IMPACT OF WEIGHT PARAMETER λ

The discussion in section 3.1 introduces a weight parameter λ in Eq.(1). To investigate the impact
of λ, we conduct an ablation study by varying λ from [0.5, 1.0, 1.5, 2.0, 3.0]. The results, exhibited
in Figure 11, indicate that the performance of SD3 fluctuates within a narrow range when lambda is
greater than 1. Therefore, we conclude that λ is generally applicable in a wider range, and SD3 is
not sensitive to the parameter when λ >= 1.5.
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Figure 11: Results for the impact of weight pa-
rameter in the Quadruped. When λ is set to 0.5
or 1, SD3 performs poorly. However, it is ob-
served that increasing lambda beyond 1 does not
significantly impact the performance of SD3.

Figure 12: Skill adaption strategies ablation.
We test several adaptation methods in the fine-
tuning phase and find that randomly select-
ing skills perform comparably to using regress-
meta, but employing the meta-controller results
in a decline in the performance.

D.5 SKILL ADAPTION STRATEGIES IN FINE-TUNING

Previous work (Laskin et al., 2021) has shown that during the fine-tuning phase, performance across
different skills does not always level equally; some skills demonstrate weaker adaptability in down-
stream tasks, while others show the opposite. Therefore, we investigate various skill adaptation
methods in the state-based environment to assess their impact on algorithm performance in down-
stream tasks.

In the experiment described in section 5.2, for a fair comparison, we adhere to the standards set in
the URLB, employing a random sampling skills method during the fine-tuning stage to evaluate the
average performance of skills. Therefore, here we introduce two additional skill adaptation methods:
regress-meta and meta-controller. Regress-meta computes the expected reward for each skill during
the first 4K steps of the fine-tuning phase to determine its skill-value, and then selects the skill
with the highest skill-value to perform the downstream task. Meta-controller trains an upper-level
controller µ(z|s) in the fine-tuning phase to select the most appropriate skill for the current state s,
thereby combining it with the policy π(a|s, z) trained in the pre-training phase and optimizing the
high-level policy based on π(a|s) =

∑
z∈Z µ(z|s)π(a|s, z).

Results are shown in Figure 12. The performance of using regress-meta to select skills shows im-
provements compared to randomly selecting skills in Quadruped Stand, Walk, and Run but a slight
drop in Quadruped Jump. We attribute this to the fact that regress-meta consistently selects the
skill with the highest expected reward during the initial steps of the fine-tuning phase. While this
approach does increase the probability of choosing a skill with good adaptability, there is also a risk
of choosing a skill that performs well during the initial 4K steps but exhibits mediocre performance
thereafter. In contrast, the meta-controller exhibits relatively poor performance. We hypothesize
that the meta-controller usually requires a large number of examples to train, which is difficult to
converge within the 100K fine-tuning steps.

E NUMERICAL RESULT

In Table 2 and Table 3, we present the mean normalized scores and standard errors of all algorithms
across 12 downstream tasks within the state-based URLB experiments. SD3 demonstrates superior
performance across multiple downstream tasks. In Table 4, we present the results of the pixel-based
URLB experiments. Across 8 downstream tasks, SD3 displays notable competitiveness compared
to other baselines. Additionally, we showcase the results of robustness experiments in Table 5.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 2: Results of SD3 and novel competence-based methods on state-based URLB.

Domain Task DDPG CSD Metra CIC BeCL SD3

Walker

Flip 538±27 615±17 600±48 641±26 611±18 595±25
Run 325±25 445±13 302±23 450±19 387±22 451±23

Stand 899±23 962±7 951±7 959±2 952±2 930±5
Walk 748±47 857±51 756±67 903±21 883±34 914±11

Quadruped

Jump 236±48 357±39 300±9 565±44 727±15 676±29
Run 157±31 362±60 276±20 445±36 535±13 471±13

Stand 392±73 455±36 637±85 700±55 875±33 847±17
Walk 229±57 224±18 200±27 621±69 743±68 752±40

Jaco

Reach bottom left 72±22 99±7 143±9 154±6 148±13 151±7
Reach bottom right 117±18 106±6 142±8 149±4 139±14 152±9

Reach top left 116±22 101±7 130±13 149±10 125±10 142±7
Reach top right 94±18 154±11 158±16 163±9 126±10 152±7

Table 3: Results of other baselines on state-based URLB.

Domain Task ICM Disagreement RND APT ProtoRL SMM DIAYN APS

Walker

Flip 390±10 332±7 506±29 606±30 549±21 500±28 361±10 448±36
Run 267±23 243±14 403±16 384±31 370±22 395±18 184±23 176±18

Stand 836±34 760±24 901±19 921±15 896±20 886±18 789±48 702±67
Walk 696±46 606±51 783±35 784±52 836±25 792±42 450±37 547±38

Quadruped

Jump 205±47 510±28 626±23 416±54 573±40 167±30 498±45 389±72
Run 125±32 357±24 439±7 303±30 324±26 142±28 347±47 201±40

Stand 260±45 579±64 839±25 582±67 625±76 266±48 718±81 435±68
Walk 153±42 386±51 517±41 582±67 494±64 154±36 506±66 385±76

Jaco

Reach bottom left 88±14 117±9 102±9 143±12 118±7 45±7 20±5 84±5
Reach bottom right 99±8 122±5 110±7 138±15 138±8 60±4 17±5 94±8

Reach top left 80±13 121±14 88±13 137±20 134±7 39±5 12±5 74±10
Reach top right 106±14 128±11 99±5 170±7 140±9 32±4 21±3 83±11

F MORE DISCUSSIONS

F.1 THE UNIQUE FAVORABLE PROPERTIES OF SD3

Previous skill discovery methods, such as CIC, APS, and BeCL, also encourage exploration while
discovering diverse skills. However, in comparison, SD3 possesses its own distinctive properties.

First, SD3 introduces a new objective for skill discovery, which is not derived from maximizing
MI. The core principle of SD3 is to promote deviation in exploration regions across different skills,
thereby facilitating more effective skill discovery. Unlike previous methods focusing on maximizing
a lower-bound of MI, SD3 uses a novel CVAE architecture for density estimation to directly estimate
the original objective. Further, as shown in Theorem 3.1, a qualitative analysis reveals that the
previous MI objective is merely a special case of SD3.

Second, different from APS, CIC, and BeCL, which explicitly or implicitly maximizes state entropy
for exploration, SD3 adopts a novel exploration strategy that resembles count-based exploration.
In section 5.4, we confirm that such UCB-style reward is more robust than entropy-based reward.
Meanwhile, this exploration reward can be estimated as an byproduct in from the learned CVAE,
avoiding the additional mechanisms compared to other methods.

F.2 THE PERFORMANCE OF SD3 COMPARED TO CIC

The quantitative results in Figs 4 and 5(a) indicate that SD3 and CIC are comparable. While SD3
slightly outperforms CIC, the improvement may not be statistically significant. In fact, in the ex-
perimental section of the main text, our focus is on showcasing SD3’s overall performance and
advantages.

Regarding the skill discovery objective, we believe that evaluating the fine-tuning performance of
skills is somewhat limited. As demonstrated in the maze experiment (see Figure 3), although CIC
achieves the best state coverage, it learns very disorganized skills with mixed trajectories. While
CIC attains high scores after fine-tuning, it fails to reflect the core objective of skill discovery, which
aims to learn diverse and distinguishable skills. SD3, on the other hand, excels in discovering easily
distinguishable skills and also demonstrates competitive performance in downstream tasks.
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Table 4: Results of SD3 and baselines on pixel-based URLB.

Domain Task APT CSD Metra CIC BeCL SD3

Walker

Flip 803±26 681±56 665±32 836±12 539±8 864±27
Run 506±4 451±41 454±29 504±21 456±14 543±22

Stand 961±5 958±13 968±4 973±2 968±4 982±1
Walk 880±37 948±5 949±3 953±5 939±1 945±3

Quadruped

Jump 557±67 580±74 677±27 723±16 340±32 729±16
Run 396±9 390±21 276±46 439±3 162±4 438±16

Stand 785±18 854±20 788±29 873±13 583±56 921±3
Walk 475±55 530±19 181±39 672±15 283±39 680±43

Table 5: Results of robustness experiments.

Task CIC
(Noisy)

CIC
(Normal)

Performance
Ratio

SD3
(Noisy)

SD3
(Normal)

Performance
Ratio

walker flip 511±6 641±26 79.72% 554±24 595±25 93.11%
walker run 319±20 450±19 70.89% 330±25 451±23 73.17%

walker stand 845±12 959±2 88.11% 909±11 930±5 97.74%
walker walk 784±46 903±21 86.82% 877±27 914±11 95.95%
quad jump 384±61 565±44 67.96% 560±48 676±29 82.84%
quad run 276±48 445±36 62.02% 421±47 471±13 89.38%

quad stand 424±25 700±55 60.57% 746±93 847±17 88.07%
quad walk 356±99 621±69 57.32% 529±55 752±40 70.34%
Average – – 71.68% – – 86.33%

Additionally, we conduct experiments to confirm that SD3 is more robust than CIC in noisy environ-
ments. Our four experiments in the main text complement each other and collectively provide suffi-
cient evidence that SD3 demonstrates superior and more comprehensive performance compared to
other methods, including the ability to discover distinguishable skills (i.e., in maze/URLB domains),
superior performance in downstream tasks (i.e., in state/pixel URLB), and scalability to large-scale
problems (i.e., pixel-based domains). Therefore, we believe that SD3 will be favored over CIC and
other methods for a wide range of tasks.

F.3 THE INTEGRATION OF EXPLORATION AND DIVERSITY REWARDS DURING TRAINING

As vividly displayed in Figure 2, to better explain the key idea behind our algorithm and to illustrate
the skill discovery process of SD3, we describe the learning process in an iterative manner. However,
in practice, we first obtain a combined intrinsic reward rint = rsd3 + αrexp of two objectives, and
then adopt DDPG as a backbone RL algorithm to learn the policy. We adopt such an optimization
approach because using a combined reward rint only requires learning a single Q-function, which
is more computationally efficient than an iterative process that requires learning two Q-functions.

Table 6: Results of SD3 without soft-modularized CVAE.

Task CIC BeCL SD3 SD3(w/o soft-modu)
Quad Stand 700 ± 55 875 ± 33 847 ± 17 752 ± 64
Quad Walk 621 ± 69 743 ± 68 752 ± 40 642 ± 80
Quad Run 445 ± 36 535 ± 13 471 ± 13 422 ± 34

Quad Jump 565 ± 44 727 ± 15 676 ± 29 589 ± 45
Walker Stand 959 ± 2 952 ± 2 930 ± 5 910 ± 16
Walker Walk 903 ± 21 883 ± 34 914 ± 11 870 ± 30
Walker Run 450 ± 19 387 ± 22 451 ± 23 409 ± 55
Walker Flip 641 ± 26 611 ± 18 595 ± 25 523 ± 33

Jaco Top Left 149 ± 10 125 ± 10 142 ± 7 125 ± 5
Jaco Top Right 163 ± 9 126 ± 10 152 ± 7 117 ± 5

Jaco Bottom Left 154 ± 6 148 ± 13 151 ± 7 134 ± 8
Jaco Bottom Right 149 ± 4 139 ± 14 152 ± 9 122 ± 8
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Table 7: Results for different number of modules.

Task Quad Stand Quad Walk Quad Run Quad Jump
Module = 2 777 ± 26 638 ± 45 377 ± 38 499 ± 32
Module = 3 862 ± 25 650 ± 29 456 ± 26 590 ± 20
Module = 5 781 ± 31 799 ± 31 390 ± 32 541 ± 24
Module = 6 680 ± 27 323 ± 32 261 ± 31 375 ± 34
Module = 4 847 ± 17 752 ± 40 471 ± 13 676 ± 29

G ADDITIONAL ABLATION STUDY

G.1 STATE-BASED URLB WITHOUT SOFT-MODULARIZED CVAE

We conduct experiments without the soft-modularized CVAE in state-based URLB, using a standard
CVAE where the encoder consists of a 4-layer MLP network. The results, shown in the Table 6,
demonstrate that even without the soft-modularized CVAE, our method still achieves competitive
performance on several downstream tasks.

G.2 THE NUMBER OF MODULES IN SOFT-MODULARIZED CVAE

We conduct ablation experiments on the number of modules in the state-based quadruped environ-
ment, and the results are shown in Table 7. From the table, it can be observed that the performance
differences are minimal when the number of modules is set to 2, 3, or 5. However, when the num-
ber is increased to 6, there is a significant performance drop. We attribute this to the difficulty in
effectively training the soft-modularized structure as the number of modules becomes too large. The
relatively comprehensive performance is achieved when the number of modules is set to 4.
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