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ABSTRACT

Wireless Signal Recognition (WSR) aims to identify the property of received sig-
nals using Artificial Intelligence (AI) without any prior knowledge, which has
been widely used in civil and military radios. The current Al trend of pre-training
and fine-tuning has shown great performance, and the existing pre-trained WSR
models also achieve impressive results. However, they either apply the “mask-
reconstruction” pre-training strategy, which may disrupt intricate local depen-
dencies of signals, or overlook latent spectral characteristics. Therefore, in this
paper, we follow the diffusion models and propose a pre-training framework
for WSR, named the Temporal-Spectral Denoising Diffusion AutoEncoder (TS-
DDAE), which learns signal representations by corrupting signals with temporal
and spectral noise, and then reconstructing the original data with a learned neu-
ral network. Moreover, we design a novel neural architecture, named TS-Net,
which couples self-attention for temporal encoder with channel attention for spec-
tral encoder. Extensive experiments on several datasets and WSR tasks show that
TS-DDAE achieves superior performance compared to state-of-the-art (SOTA)
baselines, which demonstrate the potential to be a foundation model for WSR.

1 INTRODUCTION

Various signals are generated and play key roles in our daily communication activities |Vinciarelli
et al.| (2008)). As the scale of signal data continues to expand, intelligent communication technol-
ogy |[Huang et al.|(2018)) that uses artificial intelligence (AI) Wang et al.| (2020) for signal analysis is
gradually becoming one of the most important characteristics of the sixth-generation (6G) network
due to its high efficiency and accuracy |Alsharif et al.|(2020). Wireless signal recognition (WSR) [Li
et al.| (2019) is to identify the basic property without any prior knowledge of the signals, such as
its modulation type Meng et al.| (2018) and wireless technology Bitar et al.| (2017)), which requires
experts to capture subtle features in the time and the spectral domains. Once prior knowledge of the
signals is known, the receiver can choose the corresponding demodulator, and later processing steps
run faster and more reliably Eldemerdash et al.| (2016). WSR is now routine in civil and military
radios and is a basic building block of intelligent communication systems |Li et al.[(2019).

Currently, deep learning models for WSR such as IQFormer Shao et al.| (2024) have delivered com-
petitive accuracy on individual benchmark, while they are difficult to generalize to multiple tasks.
The pre-training and fine-tuning paradigm Han et al.|(2021)) has proven that generic representations
can be fine-tuned to a wide range of downstream objectives with minimal effort. However, wireless
signals have not yet enjoyed the same benefit. The few existing models like SpectrumFM |[Zhou
et al.| (2025) choose the “mask-reconstruction” strategy Devlin et al| (2019) by setting the ampli-
tude of part of the signal to O and restoring the original one, which risks scrambling the delicate
temporal-spectral structure of waveforms [Yang et al|(2023). Moreover, these methods usually fo-
cus exclusively on time-series, ignoring the rich information embedded in the spectral domain. A
robust pre-training framework that respects the inherent temporal and spectral nature of wireless
signals remains an open challenge.

To retain the original data information rather than directly eliminating it, we refer to the “noise-
reconstruction” strategy proposed by diffusion models Ho et al.| (2020), which is adding random
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Gaussian noise to the clean data and restoring it as the pre-training objective, and propose our frame-
work, named the Temporal Spectral Denoising Diffusion AutoEncoder (TS-DDAE) for WSR pre-
training. The pre-training strategy used by the TS-DDAE can maintain the temporal-spectral struc-
ture of the original waveform compared to the “mask-reconstruction” strategy, and the TS-DDAE
applies a neural network to reconstruct the signal from both temporal and spectral perspectives.
Following the diffusion paradigm, the TS-DDAE contains a forward Markov process that incremen-
tally corrupts the data and a learned backward process that iteratively restores it. During the forward
phase, we add random noise to both the time and the spectral domains to form noisy signals. In
the backward phase, we design a novel neural network architecture named TS-Net to reconstruct
the original data. The TS-Net can be divided into the temporal encoder and the spectral encoder,
where we apply the self-attention Hu|(2019) for the temporal encoder and the channel attention Guo
et al. (2022) for the spectral encoder. The encoders interact with each other to jointly learn the
temporal and spectral characteristics of the signal data. Pre-trained and fine-tuned on various signal
datasets and WSR tasks have achieved state-of-the-art (SOTA) performance, with 1.32% improve-
ments on average over the best baseline, and about 8.75% improvements on average compared to
IQFormer |Shao et al.| (2024), the SOTA Automatic Modulation Classification (AMC) model. Sup-
plementary and ablation experiments also demonstrate the effectiveness of our designed model.

‘We summarize our contributions as follows.

* To the best of our knowledge, we are the first to adapt the diffusion theory to pre-train
models for WSR. We formulate the TS-DDAE, which contains a principled self-supervised
learning objective from both temporal and spectral perspectives.

* We design a novel neural network architecture named TS-Net that jointly refines temporal
sequence and spectral structure, allowing each encoder to inform the other and extract a
richer, complementary representation of signals.

* Related experiments demonstrate the effectiveness of our solution with most of the SOTA
performance compared to 11 baseline models. Furthermore, we provide a code repository
in supplementary materials that integrates signal data processing and various WSR models
to facilitate user-replicated benchmarks and the design of their own solutions.

2 RELATED WORK

2.1 DENOISING DIFFUSION MODELS

In the past five years, Denoising Diffusion Models (DDM) Yang et al.| (2023)) have rapidly be-
come a cornerstone of modern generative modeling and have demonstrated unprecedented success
in computer-vision (CV) tasks such as high-definition image generation Dong et al.| (2021)), text-to-
image generation [Li et al|(2023)), etc. The most typical DDPM [Ho et al.| (2020) has established the
“noise-and-denoise” paradigm, which is to add noise to the data in the forward process, and restore
it step by step in the backward process to train the generative abilities of a neural network such as
U-Net Ronneberger et al.|(2015). The DDIM [Song et al.| (2021) further expands the solution space
based on the DDPM and sets the variance as a hyperparameter. Beyond image generation, recent
studies show that DDM can also serve as a powerful self-supervised pre-training objective. The
DDAE [Xiang et al.| (2023) takes the “noise-and-denoise” paradigm as its pre-training task, which
has also achieved a superior image classification Sanghvi et al.| (2020) performance.

In the area of signals, RF-Diffusion |Chi et al.| (2024)) has also adapted the diffusion theory to con-
ditional signal generation. However, our goal is not to generate signals but to learn robust repre-
sentations for WSR without any conditional assumptions. Therefore, we depart from RF-Diffusion
and instead build upon the theory of the DDAE and propose an unconditional diffusion-based pre-
training pipeline tailored to wireless signals.

2.2  WIRELESS SIGNAL RECOGNITION MODELS

Traditional signal analysis methods usually rely on hand-crafted statistics for tasks such as AMC,
but crafting these features is labor intensive Dobre et al.|(2007). Therefore, CNN and Transformer|L1
et al.| (2021))|Vaswani et al.|(2017)) based deep learning models have emerged to replace most manual
feature extraction, such as AMC_Net Zhang et al.| (2023)), MSNet Zhang et al.| (2021), etc. Recent
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studies, such as IQFormer |Shao et al.| (2024), jointly model raw signal samples and their spectro-
grams, achieving excellent performance in AMC task.

Self-supervised pre-training strategies for wireless signals can be grouped into five categories: deep
clustering methods, contrastive methods, reconstruction-based methods, generative methods, and
predictive methods Milosheski et al.|(2025). Among them, SpectrumFM |Zhou et al.| (2025) borrows
the idea of masked-language-modeling from NLP, randomly masks signals, and reconstructs them
to build a foundation model that supports multiple WSR tasks. In contrast, we corrupt the original
signals by adding noise to both the time and the spectral domains, and train the neural network to
denoise the corrupted signals. As corruption is additive rather than masking, the input does not
lose too much content, so the pre-text task retains finer-grained information while still requiring the
model to learn semantically rich, transferable representations.

3 METHODOLOGY

3.1 OVERVIEW
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Figure 1: The overview of the TS-DDAE framework.

The real-world received signal is usually represented as IQ data, where I and Q are the in-phase
and quadrature components, respectively, which is often represented using complex data, i.e. x =
I+ 3jQ,7 = +/(—1). However, we believe that the two components are related and should be
considered simultaneously when analyzing signals. Moreover, the real data calculations are usually
more efficient than the complex data. Therefore, we represent the IQ data of length L as a two-row
matrix 2 € R?*%, where the two rows represent the I and Q components, respectively. However,
users can only obtain limited information through time series. Most signal analysis methods convert
IQ data into spectral data by applying the Fourier transformation z = §(x) € R?* %, which describes
the distribution of the signal amplitude across frequencies. The spectrum of signal data can better
reflect the essential characteristics of the signal.

Both the time series and spectrum of IQ data contain strong local dependencies, so pre-train a WSR
model using “mask-reconstruction” will seriously damage the original information. Therefore, we
take the “noise-reconstruction” strategy from the diffusion models and propose a novel diffusion
theory named Temporal-Spectral Denoising Diffusion AutoEncoder (TS-DDAE), which is shown
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in Figure[I] During the forward process, we corrupt both the time and the spectral domains of the
IQ data by adding the corresponding Gaussian noise, which can perturb the data while preserving
its original characteristics. To address the two potential distortions, the reverse learning process
needs to restore not only the temporal characteristics of the original data, but also the spectral char-
acteristics. Therefore, we specially design a hybrid Temporal-Spectral neural Network (TS-Net),
which uses temporal encoders and spectral encoders to jointly learn the feature representations of
the signal in the time and the spectral domains. At the pre-training stage, the TS-DDAE learns to
reconstruct the original IQ data from the noisy one. At the fine-tuning stage, we optimize the model
with task-specific data to adapt to downstream tasks like AMC, WTC, etc. Detailed TS-DDAE and
TS-Net are introduced in Section [3.2]and Section [3.3] respectively.

3.2 TEMPORAL-SPECTRAL DENOISING DIFFUSION MODEL

Forward Process. Given IQ signal data 2y € R?*, the forward process gradually corrupts the
temporal and spectral information of signals by adding 7" steps of Gaussian noise. The results of
each step can be denoted as 1, x2, - - -, xp. To corrupt the spectrum, we need to apply the Fourier
transformation zy = §(z¢), and formulate the spectral noise addition process as

2 = S (xi—1) + (7t/0) - &, (1
where ji7 + (7;/0)? = 1, and §; ~ N(0, ). Then, we add noise to the time domain,

2y = & § Hz) + Bier, 2

where a7 + Btz =1,and e; ~ N(0,I), which is a standard Gaussian noise. By combining Equation
and 2] we can formulate the noise addition from step ¢ — 1 to ¢ as

Ty = dtgil(/]tS(xt—l) + (7e/o) - 6) + Bté't = Qufuxi—1 + & - (7/0) '371(5& + Bté‘t- 3)

The inverse Fourier transformation of a Gaussian function is still a Gaussian function. Therefore, we
denote n; = § _1(6t) ~ N(0, I), which we require to be a standard Gaussian noise. Furthermore,

we denote oy = iy, V¢ = &y =+, and simplify Bt as ;. The Equationcan be rewritten as

Ty = ayTi—1 + Bege + Ve, €]

where the coefficients satisfy a? + 32 + v2 = 1. By iterating the Equation 4| recursively and
incorporating the reparameterization trick Kingma et al. (2015)), we can describe the relationship
between the IQ data x( and noisy data x; as

T = uxo + Beér + Vet )

where &; = szl a;, B = Zle(%ﬂl) Y = ZLJ%%) ¢, ~ N(0,1),and &2 + B +77 =
1. Therefore, we can directly obtain the noisy data from the original IQ data given any step ¢.

Backward Process. After we get the noisy data, we try to restore it back to the original IQ data.
Here, we describe this process using the Bayesian theorem. According to the superposition of the
Gaussian distribution, Equation E]can be rewritten as a Gaussian distribution conditioned on g,

p(xilo) ~ N (e auwo, (B +37)1). (6)

Since the added noise from each step does not affect each other during the forward process, it can
be approximated as a Markov process, i.e. p(x¢|zi—1,70) ~ p(x|zi—1) ~ N(z; w1, (67 +
42)I). Therefore, we can get the probability function p(x;_1 |z, xo) for the backward process with
the Bayes’ theorem. Detailed formulation is shown in Appendix [Al However, p(x:_1|xs, o) is
conditioned on xg, which is unseen during the backward process. We can apply a neural network
(NN) to fit 2. Suppose that we use the NN fi(x;) to estimate x based on z;, the loss function
can be defined as ||zo — fi(z;)||. Following the Equation [5 the NN can be formulated as fi(z;) =
&%(a:t — Bieg, (x4,t) — 4o, (x4, 1)). Then, our final loss function is
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22
E(xta t) = 2%[(5 - 591 (l‘ta t)) + )\<77 - 7792 (mt7t>)]2?8777 ~ N(Ovl)a (7)

where A\ = 7;/[3; can be seen as a hyperparameter, which is the ratio between the spectral noise and
temporal noise intensity in the noisy data, and 64, 6, are learnable parameters. During pre-training,
we need to sample 1Q data =y from the dataset, a diffusion step ¢, and two noise ¢, 7 from a standard

Gaussian distribution.

3.3 MODEL ARCHITECTURE
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Figure 2: The model architecture of the TS-Net encoder.

To jointly capture temporal structure and spectral signatures, we introduce TS-Net, a diffusion-
inspired architecture that performs hybrid analysis in both domains. The detailed TS-Net architec-
ture is shown in Figure |2l The TS-Net comprises two tightly coupled encoders based on Equation
The temporal encoder learns to denoise raw 1Q samples z; by predicting the temporal noise €y, ,
while the spectral encoder operates on the spectral counterpart z; = F(z;) to estimate the spectral
noise 7),. Before feeding into each encoder, a 1D convolution layer (denoted as Conv1D) with ker-
nel size k = 1 projects the respective input into a C-dimensional embedding space, simulating the
initial processing of complex-valued IQ data.

X" = ConvID(X), X € RP***E, (8)
where B is the batch size of the data, and the default kernel size of Conv1D is 1. At the same time,
the diffusion step ¢ is also encoded with sinusoidal position embeddings from Transformer.

Then, following the theory outlined in Section we input the IQ sequence into the temporal
encoder. However, this input does not contain the spectral information, so we also feed the spectrum
data into this encoder and fuse these inputs with the encoded step ¢, i.e. X "V = X "V 4 Z "V +¢,
The same is true for the spectral encoder. The following is a detailed description of the temporal
encoder and the spectral encoder.

Temporal Encoder The time sequence of IQ data is similar to traditional data like text. Therefore,
we borrow the idea from Transformer, and apply the self-attention mechanism and residual paths
throughout. Concretely, each block first expands the features through a feed-forward network (FFN)
that injects non-linearity, then lets a multi-head self-attention layer (MultiHead) aggregate long-
range temporal dependencies. Formally,

X" = X" 4 MultiHead (WO X /et WH X Tt WV X Teat), ©)
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where X /¢t = Xcomv 4 FEN(X ™), and W@ WK WV € R ¢, = ¢/H denotes the
dimension of each attention head, and H is the number of head. Inspired by SpectrumFM, we
next refine the feature map X °%* and timestep embedding t through a 1D point-wise convolution
followed by a Gated Linear Unit (GLU). A 1D depth-wise convolution with kernel size 3 then
harvests local signal structure, after which a second 1D convolution compresses the result into the
final local representations.

Xlocal — xout 1 ConvlD(BN(ConvID(GLU(ConvID(X %) + t), kernel = 3))), (10)

where BN represents the BatchNorm. Finally, we use another FEN to combine the results above and
output the temporal embeddings, i.e. X /il = Xlocal 1 FEN( X lecal),

Spectral Encoder The spectrum of 1Q data typically has high amplitudes at certain frequencies,
while other frequencies have very low amplitudes. This means that using the self-attention mech-
anism is not suitable for capturing sequence dependency information in the spectrum of 1Q data.
Therefore, we use the convolution layers to extract the local features and use the channel attention to
obtain the key feature dimensions. Moreover, we also apply residual paths throughout the encoder.
Specifically, we learn from the IQFormer and first encode the spectral dimension with a lightweight
1D depth-wise convolution followed by a 1D point-wise convolution, which is formulated as

z'ocal — zeonv 4 Conv1D(ConvID(BN(ConvID(Z™, kernel = 3)))). (11)

Next, we highlight the most informative channels through a channel attention module: the feature
map is globally pooled, refined by a FFN network, and the resulting attention scores are multiplied
with the original features. This re-weighting suppresses irrelevant bands and amplifies discrimina-
tive ones, yielding a more compact and representative spectral signature for downstream learning.
We formulate the channel attention as

Z/eat — FEN(Pool(Z'¢a!)) « Zz'eea!, (12)

Finally, we feed the feature map into the feedforward convolution network (FCN) that contains two
1D point-wise convolution layers for spectral embeddings, i.e. Z/" = Zfeat | FCN(Z ),

During pre-training, the two embeddings are optimized by minimizing Equation At the fine-
tuning stage, we first apply global average pooling to each embedding, concatenate the resulting
vectors into a single representation, and feed it to a classifier for the WSR task. The entire network
is fine-tuned with standard cross-entropy loss.

4 EXPERIMENTS

In this section, we evaluate the performance of TS-DDAE on several datasets and WSR tasks.
Specifically, we design a series of experiments to address the following questions. Q1: How ef-
fective is TS-DDAE in solving multiple WSR tasks? Q2: What is the quality of representation
obtained by TS-DDAE pre-training? Q3: How do the temporal encoder and the spectral encoder
contribute to the overall performance?

4.1 EXPERIMENTAL SETTINGS

The TS-DDAE is pre-trained and fine-tuned on NVIDIA Tesla A100 GPUs, using PyTorch |Ansel
et al.| (2024)) for implementation and Optuna |Akiba et al.[(2019) for hyperparameter optimization.
The hyperparameters used for TS-DDAE are listed in Appendix [C] To evaluate the performance
of TS-DDAE, we implement 11 models as our baseline models, which can be categorized as deep
learning models, SOTA WSR models, and a WSR foundation model. Deep learning models contain
ResNet|Liu et al.|(2017), MCNet/Huynh-The et al.|(2020), VGG |O’Shea et al.|(2018)), CNN2 |0’ Shea
et al.[(2018)), GRU2 Hong et al.| (2017), CGDNN |Njoku et al.[ (2021}, Transformer Vaswani et al.
(2017), MSNet Zhang et al.[(2021). SOTA WSR models are AMC_Net |Zhang et al.| (2023) and
IQFormer Shao et al.|(2024). The WSR foundation model is SpectrumFM [Zhou et al.| (2025)).

4.2 MAIN RESULTS (Q1)

In this part, we present the overall results of the TS-DDAE, which demonstrates the ability of our
pre-trained TS-DDAE model to handle multiple WSR tasks. The Automatic Modulation Classifica-
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Table 1: The overall results of different models (percentage), where the “Average” represents the
average performance and the “Best” represents the best performance among all SNRs on 4 datasets

(The best performance is represented in bold, and the second-best performance is underlined).

RML2016.10A RML2016.10B RML2018 TechRec

Model Average Best Average Best Average Best Average Best
ResNet 4825 7936  63.87 9298 4342 7694  66.29  80.00
MCNet 60.37 90.86  57.18 87.43 5270 89.22  67.12  85.68
VGG 39.99 62.18  38.11 56.63 4253  66.73  79.83  94.07
CNN2 54.18 80.68 5470 7924 41.67 61.16 60.52  71.38
GRU2 60.39 90.86 6393 9334 5257 8244 37.80  39.09
CGDNN 51.62 7659 4790 70.68 3534 5256 4927  58.15
Transformer 54.77 8236  61.17 9042 5822  93.18 71.77 79.74
MSNet 58.94 8859 6337 9334 5773 9192 8580 97.71
AMC _Net 60.82  90.68  63.87 9298 41.14 60.54  88.71 98.66
SpectrumFM 60.01 90.00 53.12 76.28 59.86 95.87 6222 6947
IQFormer 64.05 9377 65.00 94.14 40.22  60.71 7774  88.92
TS-DDAE 63.61 93.82 6550 9472 64.15 96.80 89.62 9947
TS-DDAE (probe) 5440 8091 56.15 8344 3341 4956  86.00 97.72
TS-DDAE (25-shot) 48.91 7391  47.11 7137 4395 6743 8042  94.56
TS-DDAE (100-shot)  55.47 8495 5773 8690 56.07 86.53 84.00 97.28
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Figure 3: Visualization of performance under different SNR conditions (left: RML2016.10A, center:
RML2016.10B, right: TechRec).

tion (AMC) and Wireless Technology Classification (WTC) results are presented in Table m where
the model followed by the “probe” or “k-shot” is represented as the results of linear probe and few-
shot learning described in Section Moreover, we plot the performance across various SNRs of
the AMC and WTC tasks in Figure 3| The analysis and results of the Anomaly Detection (AD) task
on dataset [CARUS [Roy et al.| (2023) are presented in Appendix [D.I}

4.2.1 AUTOMATIC MODULATION CLASSIFICATION

Task Description. The AMC task is to automatically identify the modulation type used by the
received signal under unknown prior parameters.

Dataset. We choose three most typical AMC benchmark datasets including RML2016.10A,
RML2016.10B |O’shea & West|(2016), and RML2018|0O’Shea et al.|(2018) for this task. All datasets
contain several modulation types under various Signal-to-Noise Ratio (SNR) conditions. The statis-
tics of the datasets can be found in Appendix [B] and we use 80% of the data for training, 20% of the
data for evaluation.
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Overall Performance. The general AMC accuracy results are listed in the first three columns of
Table 1, where we list the average and the best performance of different SNR conditions. From
the results, we can find that compared with the deep learning baselines, the TS-DDAE outperforms
the best baseline by 1.35% on average, indicating the effectiveness of our theory and model archi-
tecture. Compared with IQFormer, the SOTA method in AMC, the TS-DDAE also achieves SOTA
performance in both “Average” and “Best” on RML2016.10B and RML2018 datasets. Though,
the “Average” performance of TS-DDAE on RML2016.10A is slightly lower than that of 1Q-
Former, the “Best” performance is better. From this result, we believe that for simple datasets like
RML2016.10A, TS-DDAE has not yet learned thoroughly, while for larger datasets like RML2018,
TS-DDAE outperforms IQFormer by 23.07%, which means TS-DDAE has the potential to be trained
on large-scale datasets and adapted to various AMC scenarios.

Performance under various SNR conditions. To better evaluate the robustness of TS-DDAE, we
plot the performance of the models across various SNR conditions in Figure 3] We plot the results
of dataset RML2016.10A, RML2016.10B, and choose the baseline models Transformer, AMC_Net,
SpectrumFM, IQFormer for a clear view. At very low SNR (-20dB), the signal data is filled with
noise, making it almost impossible to learn an appropriate signal representation. As the SNR in-
creases, the model can more easily capture signal features, allowing the learned representation to be
better applied to downstream classification tasks. Furthermore, our model performs well not only at
high SNRs (greater than 0dB), but also at low SNRs (-10dB to 0dB). To have a more comprehensive
view, we also provide the visualization of confusion matrix and t-SNE Maaten & Hinton|(2008) of
the model classification effect in the Appendix [D.2]

4.2.2 WIRELESS TECHNOLOGY CLASSIFICATION

Task Description. The WTC task is used to determine to which communication system or protocol
family the received wireless signal belongs without prior knowledge.

Dataset. We use the TechRec dataset for the WTC task. The TechRec contains Wi-Fi, LTE, and
DVB-T three types of wireless technology. To reduce memory consumption, we slice each signal
from the raw dataset into 1024-length segments and label each slice based on the label of the signal
to which it belongs. Furthermore, to simulate real-world noise, we manually add Gaussian noise to
generate different SNR signals ranging from -15dB to 20dB.

Overall Performance. The WTC accuracy results are listed in the fourth columns of Table[I] which
demonstrate the superior performance the TS-DDAE compared to the other baseline models. For
the “Best” performance among all the SNRs, the TS-DDAE can achieve a nearly 1.0 identification
result. For the “Average” result, the TS-DDAE also achieves the SOTA performance, with about
11.88% improvement compared to the IQFormer, and 0.91% compared with the SOTA baseline.

Performance under various SNR conditions. The performance across all SNRs of TechRec is
shown on the right of the Figure [3] Similar to the performance of the AMC task, the performance
improves as the SNR increases. In particular, starting at -10dB, our model consistently outperforms
the SOTA AMC _Net model and significantly outperforms other baselines.

4.3 EVALUATION OF PRE-TRAINED MODEL CAPABILITIES (Q2)

To further evaluate the capabilities of our pre-trained model, we conduct the linear probe and few-
shot experiments on the datasets RML2016.10A, RML2016.10B, RML2018, and TechRec.

Linear Probe. We freeze the pre-trained model parameters and only train the classifier with the
training dataset. The results are listed in the row “TS-DDAE (probe)” of Table[I] Our linear probe
results are comparable to the performance of some deep learning models. In particular, for the
TechRec dataset, our results outperform all deep learning baseline models, which exhibits good
linear separability of the pre-trained features.

Few-shot Learning. As the IQ signals contain NV classes under M SNRs, we refer to the N-way K-
shot sampling methods from CV, and define our N-way K-shot M/-SNR sampling method, which is
to select N samples from each classification category and each SNR to form a dataset of K x N x M
1Q samples. In our work, we evaluate the 25-shot and 100-shot situation, whose results are presented
in the rows “TS-DDAE (25-shot)” and “TS-DDAE (100-shot)” of Table (I} respectively. Even with
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fewer than 1% training data, the TS-DDAE still achieves an accuracy comparable to certain deep
learning baselines. This result highlights the few-shot capabilities of our TS-DDAE model.

4.4  ABLATION STUDY (Q3)

Table 2: The ablation results (percentage) of TS-DDAE architecture.
RML2016.10A RML2016.10B TechRec
Model Overall Best Overall Best Overall Best

TS-DDAE 64.05 9382 6550 9472 89.62 99.47
w/o temporal  48.81 7595 5094 7568 87.28 99.05
w/o spectral 6297 93.09 64.79 9373 3748 47.58

63.41 65.6 65.54 90.5 90.41
63.23

Accuracy (%)
2
[oe]

0.2 0.4 0.6 0.8 1.0 ’ 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
RML2016.10A RML2016.10B TechRec

Figure 4: The accuracy of different A value ranging from 0.2 to 1.0 (left: RML2016.10A, center:
RML2016.10B, right: TechRec).

In this part, we present the ablation study of TS-DDAE to evaluate the contribution of each compo-
nent and the hyperparameter \ analysis. The model parameter analysis is in Appendix [D.3]

We first remove the temporal encoder and the spectral encoder of the TS-Net, respectively, where
we keep the number of encoder layers consistent. The results are presented in Table[2] After each
component is removed, the performance of the model decreases to varying degrees. For the datasets
RML2016.10A and RML2016.10B of the AMC task, the temporal encoder plays a key role, with a
decrease of about 15% in accuracy without the temporal encoder, while for the TechRec of the WTC
task, the spectral encoder is more important, and the model without spectral encoder even fails to
learn a proper model. This result demonstrates the contributions of each component in TS-Net.

Then, we analyze the impact of hyperparameter A in Section which is shown in Figure[d As A
gets closer to about 0.5, the model can achieve the best performance, which means that the two types
of noise that we add will affect the model feature extraction to a certain extent. Keeping a balanced
noise addition will improve the quality of the model.

5 CONCLUSION

In this work, we introduce TS-DDAE, a diffusion-style framework that pre-trains models by jointly
noising and denoising the temporal and spectral perspectives of IQ data. The accompanying TS-Net
uses self-attention for the temporal encoder and channel attention for the spectral encoder, letting
each reinforce the other. Across several WSR benchmarks, TS-DDAE achieves SOTA performance,
and ablation studies confirm that all component matters. We therefore expect TS-DDAE to serve as
a solid starting point for future WSR foundation models.
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A THE DERIVATION OF THE BACKWARD PROCESS

We provide a detailed derivation of the Bayes’s theorem, given Equation [dand Equation 5}

p($t|9€t—1) 'p(wt—1|l“0)

p(xtfl\l‘t,xo) =

p(xt|x0)
1 (BE+8)(BE1+721), o o a1
x exp(—= — Ti 1 — 2 Ty + = ——x9)zi—1 + C)],
( 2[( 1_@% ) t—1 (BE+7)52 t ﬁ?_l‘i"'ytz_l ) t )]
(13)

where C is a constant number that can be omitted.
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B DETAILS OF THE DATASETS

We present the detailed statistics of the datasets that we used in Table 3] where SNR denotes the
signal-to-noise ratio used for the datasets RML2016.10A, RML2016.10B, RML2018, and TechRec,
and SIR denotes the signal-to-interference ratio used for the dataset ICARUS. For all datasets, we
evenly sample 80% of the data for each category and SNR (SIR) for training and 20% for testing.

Table 3: The statistics of the datasets used in this work.

Dataset RML2016.10A RML2016.10B RML2018 TechRec ICARUS
number of samples 220,000 1,200,000 2,555,904 202,762 673,200
length of each sample 128 128 1,024 1,024 1,024
number of classes 11 10 24 3 2
min SNR (SIR) 20 -20 -20 -20 0
max SNR (SIR) 18 18 30 20 10
SNR (SIR) interval 2 2 2 5 5

C HYPERPARAMETER USAGE IN EXPERIMENTS

We present all hyperparameters used in our experiments in Table[d] where we list the description and
the value of hyperparameters. Furthermore, we use the same hyperparameters for all of our datasets.

Table 4: The hyperparameters used in our experiments.

Parameter name Description Value
num_layers The number of TS-Net layers 4
max_step The maximal diffusion steps 3000
timestep The step used in fine-tuning 4
ratio The ratio between the temporal noise and the spectral noise  0.414
min_noise The minimal noise added to signals 5.45e-06
max_noise The maximal noise added to signals 0.0072
1o 7 1.0 o 7 1.0 B E—
0.8 0.8 0.8
i) 0.6 0.6 0.6
z
S 0.4 ,/I 0.4 // 0.4
2
0.2 ,/" 0.2 ,/" 0.2
== TS-DDAE ROC Curve // === TS-DDAE ROC Curve // === TS-DDAE ROC Curve
== SpectrumFM ROC Curve ," === SpectrumFM ROC Curve ," -== SpectrumFM ROC Curve
0.0 . === Random Classifier 0.0 . === Random Classifier 0.0 . === Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR) False Positive Rate (FPR) False Positive Rate (FPR)
ROC Curve (SIR=0dB) ROC Curve (SIR=5dB) ROC Curve (SIR=10dB)

Figure 5: AUC_ROC curve of the anomaly detection under different SIR (left: 0dB, center 5dB
right: 10dB).
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D ADDITIONAL EXPERIMENTS

D.1 ANOMALY DETECTION

In this section, we supplement the results of the anomaly detection (AD) task.

Task Description. The AD task aims to detect whether other unknown signals are mixed in the
received signal.

Dataset. We use a part of the ICARUS dataset for the AD task. The AD task of the ICARUS dataset
is to detect whether the normal LTE signal is mixed with the anomalous DSSS signal. Similarly to
the WTC settings, we also slice each signal into 1024-length segments. The signal-to-interference
ratio (SIR) varies from 0dB to 10dB, which is extracted from the dataset metadata.

Overall Performance. The results are presented in Figure [S| When SIR is 0dB or 5dB, the TS-
DDAE can get an AUC nearly to 1.0, which demonstrates excellent anomaly signal detection capa-
bilities. As the SIR increases to 10dB, the power of the DSSS signals also increases, the detection
performance drops, while still maintaining a high performance (over 0.9). Compared with Spec-
trumFM, the TS-DDAE can still achieve a higher performance, which further indicates the effec-
tiveness of the designed model.
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Figure 6: Normalized confusion matrix on RML2016.10A dataset (left: -4dB, right: 2dB).

D.2 VISUALIZATION OF THE TS-DDAE OUTPUT

In this section, we visualize the output of the TS-DDAE model in the AMC task. The results of the
figures are consistent with the conclusions of the SpectrumFM and the IQFormer, and can further
verify the the correctness and effectiveness of the TS-DDAE.

First, we give the normalized confusion matrix of TS-DDAE results on the RML2016.10A and
the RML2016.10B dataset with -4dB and 2dB SNR, which is shown in Figure [f] and Figure [7}
From the results, we can find that under low SNR conditions, noise will seriously affect the TS-
DDAE’s distinction between the three modulation types: 8PSK, QPSK and WBFM. When the SNR
reaches 2dB, the model can already distinguish most modulation types well, even distinguishing
some modulation types with 100% accuracy. However, the model can hardly distinguish the WBFM
modulation type from the AM-DSB, which is consistent with the conclusions of the SpectrumFM
and the IQFormer.

Then, we present the t-SNE visualizations of the RML2016.10A and the RML2016.10B dataset
under -20dB, -6dB, and 12dB for TS-DDAE. The results are shown in Figure |§| and Figure El Ata
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Figure 8: Visualization of feature output with t-SNE on RML2016.10A dataset (left: -20dB, center:
-6dB, right: 12dB).

Figure 9: Visualization of feature output with t-SNE on RML2016.10B dataset (left: -20dB, center:
-6dB, right: 12dB).

-20dB SNR, the data is filled with noise, leading the model to classify data randomly. Consequently,
the various modulation categories appear mixed together in the t-SNE figure. At a low SNR (-
6dB), our TS-DDAE already demonstrates a certain degree of discrimination, with many modulation
categories clearly distinguished. At a high SNR (12dB), the model’s discrimination is even better.
Furthermore, at 12dB, the model fails to distinguish WSFM and AM-DSB modulation categories
particularly well, which is consistent with the conclusions in Figure [f]and Figure[7]
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Figure 10: The accuracy of different number of layers ranging from 2 to 5 (left: RML2016.10A,

center: RML2016.10B, right: TechRec).

D.3 THE EFFECT OF THE MODEL SIZE

In this section, we provide experiments of different numbers of encoder layers in TS-Net. Each
additional layer means adding one temporal encoder and one spectral encoder simultaneously. The
results are shown in Figure[T0] As the number of layers drops, the performance of RML2016.10A
and RML2016.10B also drops. The proper number of layers is 4, which is used in our main exper-
iments. For dataset TechRec, the performance reaches the highest when the number of layers is 5,
which we think that the scale of the data is relatively large, and a large model can get better signal

representations.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use the LLM Kimi K2 to aid or polish writing of this paper.
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