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Abstract
Recent advances with large language models
(LLM) illustrate their diverse capabilities. We
propose a novel algorithm, staged speculative
decoding, to accelerate LLM inference in small-
batch, on-device scenarios. We address the low
arithmetic intensity of small-batch inference by
improving upon previous work in speculative de-
coding. First, we restructure the speculative batch
as a tree, which reduces generation costs and in-
creases the expected tokens per batch. Second,
we add a second stage of speculative decoding.
Taken together, we reduce single-batch decoding
latency by 3.16x with a 762M parameter GPT-2-L
model while perfectly preserving output quality.

1. Introduction
Large Language Models (LLMs) have witnessed tremen-
dous growth over the last few years, demonstrating ca-
pabilities that range from high-quality text generation to
complex reasoning, decision-making, and problem-solving
tasks (Brown et al., 2020; OpenAI, 2023; Chowdhery et al.,
2022). These strides, enabled by advances in deep learning
architectures (Vaswani et al., 2017), training methodologies
(Kingma & Ba, 2014), and vast amounts of data (Halevy
et al., 2009; Gao et al., 2020; Kocetkov et al., 2022), have
paved the way for applications in fields as varied as natural
language processing (Brown et al., 2020), machine transla-
tion (Raffel et al., 2020), code synthesis (Chen et al., 2021),
and beyond (OpenAI, 2023).

However, this exciting progress comes with its own set
of system-level challenges. As LLMs have become more
powerful, their computational demands have increased in
tandem, often requiring substantial cloud resources for in-
ference (Sheng et al., 2023). This requirement is prohibitive
for many potential applications, especially those requiring
low-latency responses (Wang et al., 2023) or those where
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data privacy is paramount (Carlini et al., 2021).

Our paper addresses these challenges by accelerating local
(small-batch) inference for LLMs, which suffers from poor
compute utilization due to its low arithmetic intensity. We
view this problem as crucial for three reasons: latency, per-
sonalization, and privacy. First, optimizing local inference
latency improves real-time interactivity and responsiveness.
Accelerating local inference also opens the door for more
personalized LLM experiences as it allows models to be
locally tailored to individual users. Finally, local inference
enhances data privacy, as it removes the need for data to
leave the user’s device.

More philosophically, we believe that methods to efficiently
run LLMs locally promote AI democratization by empower-
ing individuals with limited computational resources.

In this work, we build on the speculative decoding tech-
niques introduced by (Leviathan et al., 2022; Chen et al.,
2023), which use a fast but inaccurate draft model to an-
ticipate the oracle model and batch queries to it, which
improves sequential decoding performance while perfectly
retaining the model distribution. These techniques scale
well at first but their performance gains quickly saturate,
because the probability of a draft model correctly guessing
many sequential tokens is exponentially small. We improve
speculative methods in two key ways:

1. We restructure the speculative batch as a tree of pos-
sible token sequences, so as to more quickly create
larger and higher quality speculative batches.

2. We speculatively decode the draft model, too, to further
improve performance.

We find these techniques significantly improve the perfor-
mance of speculative decoding in both deterministic and
sampling-based decoding.

2. Background
In this section, we provide a brief overview of autoregres-
sive LLM inference, key principles of GPU performance
optimization, and prior work in optimizing LLM inference.
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2.1. Autoregressive LLM Inference

Autoregressive generation from decoder-only LLMs is gen-
erally split into two phases. First, the prompt is run through
the model to generate the KV cache and the first output log-
its. This is usually fast, as the entire prompt can be handled
in parallel.

The second phase is decoding. A token is selected from
the outputted logits and fed back into the model, which
produces logits for the following token. This is repeated
until the desired number of tokens is produced. Because
decoding must be done sequentially, with the entire model’s
weights streamed through the compute units each time in
order to generate a single token, the arithmetic intensity
(that is, FLOP of compute / byte of memory bandwidth)
of this second phase is extremely low when run in small
batches. As such, decoding is usually the most expensive
part of autoregressive generation. (Leviathan et al., 2022)

2.2. GPU optimization

Modern LLM inference is most often conducted on GPUs
due to the highly parallel nature of the workload, which
consists principally of large matrix multiplications.

GPUs consist of thousands of extremely small efficient cores
supported by a multi-level memory hierarchy. The key chal-
lenge of optimizing small-batch LLM inference for GPUs is
to deal with the extremely low arithmetic intensity. Operat-
ing in 16-bit precision with a batch size of 1, decoding has
an arithmetic intensity of 1. For example, for a reference Py-
Torch (Paszke et al., 2019) implementation of GPT-2 Large
(762M parameters), inference requires approximately 1.4
GFLOP, and yet a quiesced NVIDIA RTX 4090 achieves
only 150 tokens/second, for a compute utilization of a mere
0.13% (NVIDIA, 2022). This abysmal performance is sub-
stantially due to the GPU roofline (Ofenbeck et al., 2014),
which is governed by memory bandwidth at low arithmetic
intensities (visualized in Figure 1).

2.3. Speculative Decoding

There are many techniques under investigation today to
accelerate inference, such as quantization (Dettmers et al.,
2022; Frantar et al., 2022), flash attention (Dao et al., 2022),
and speculative decoding (Leviathan et al., 2022; Chen et al.,
2023). In this section, we’ll briefly examine speculative
decoding as described in (Leviathan et al., 2022; Chen et al.,
2023), as it is the primary subject of this work.

The basic idea of speculative decoding is to use a smaller,
faster draft model to decode several tokens in advance, and
then feeds them into the oracle model as a single batch. If
the draft model was right about its predictions – the larger
model agrees – one can decode several tokens with a single

Figure 1: A roofline plot for single-query GPT-2-L inference on an
RTX 4090. At small batch sizes, inference is completely memory
bandwidth bound. Thus this plot shows that the only way to
significantly increase performance is to increase the arithmetic
intensity of inference.

batch, which saves considerable memory bandwidth, and
thus time, per token. However, if the larger model rejects
the tokens predicted by the draft model, then the rest of the
batch is discarded and the algorithm naturally reverts to stan-
dard token-by-token decoding. Speculative decoding may
also be accompanied by a rejection sampling scheme to sam-
ple from the original distribution. Note this is only useful
in small-batch settings where bandwidth is the bottleneck.
Speculative decoding trades compute for bandwidth.

There are two key reasons why speculative decoding is an
attractive performance engineering target. First, it does not
degrade model quality at all. Second, the gains it provides
are generally orthogonal to other methods, because its per-
formance comes from converting sequential execution to
parallel execution. (Leviathan et al., 2022)

3. Methods
We make two improvements to speculative decoding: tree-
structured batches, and additional stages. We term the com-
bination of these methods “staged speculative decoding”.

3.1. Tree-structured batches

Current speculative methods predict a single sequence for
the batch. However, this doesn’t scale well to large batch
sizes or low draft model alignments. Intuitively, the proba-
bility that two models agree for long consecutive sequences
of tokens is exponentially low, which means that speculative
decoding has rapidly diminishing returns as one scales its
arithmetic intensity.
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Sampling Baseline Speculative Staged spec.
method rel. bandwidth rel. bandwidth rel. bandwidth

Deterministic 1.00 0.31 0.23
Topk 1.00 0.48 0.35

Table 1: Memory bandwidth consumption (relative to baseline) of
speculative and staged speculative decoding methods.

Our approach is to dynamically build a tree of the possible
sequences, which provides three benefits: more expected
true tokens per batch, an increased number of leaf nodes,
and better parallelism for the small draft model.

First, by reallocating computation from the end of very long
sequences to the beginning, and considering the second or
third most likely tokens to be produced by the model, one
increases the expected number of tokens per batch compared
to the naive approach.

Second, the cost of running the draft model to produce the
batch is non-negligible in standard speculative decoding.
However, in a tree of predictions which constitute the batch
to the oracle model, the draft model is only run at internal
nodes of the tree. So, a wider tree increases the number of
leaf nodes, which means that one gets more of the batch for
free.

A third benefit of the wider tree is that one can parallelize
execution for the small model across the tree, which also
decreases its cost. In the limit, one only needs to run the
draft on a number of batches equal to the depth of the tree.
This is important because draft models are usually smaller
transformer-based models and are thus memory-bound in
small-batch inference, too.

Implementing a tree-structured batch requires some care.
The simplest approach is to partition self-attention while
decoding into cross-attention with the KV cache and self-
attention within the batch. The tree-structured batch can
then be constructed by controlling both the positional em-
beddings and causally masking the batch self-attention ma-
trix according to the tree. Finally, the new KV cache for the
whole batch must be stored separately, and then the appro-
priate slices appended to the main KV cache after tokens
are sampled.

3.2. Staged Speculation

Current speculative methods use a single smaller model as
the draft, usually a smaller LLM (Chen et al., 2023). In this
setting, the size of the draft model is an important hyperpa-
rameter: a larger draft model will have better alignment with
the oracle, but will cost more, whereas a smaller model will
produce lower quality speculative batches, but at a lower
cost. In practice, draft models that are about 15-20x smaller
than the oracle seem optimal.

Sampling Baseline Speculative Staged spec.
method tokens/sec tokens/sec tokens/sec

Deterministic 150 350 475
Topk 150 219 298

Table 2: Relative performance (in tokens/second decoded) with
baseline (non-speculative), standard speculative, and staged specu-
lative decoding methods.

However, under naive speculative decoding, assembling
large batches inverts the cost structure, with more time spent
on the draft model than the oracle. So, one should accel-
erate the draft model in generating sequences of tokens,
and speculative decoding is a natural solution for this, too.
We correspondingly add speculative decoding to the draft
model in our approach. Thus the overall method of “staged
speculative decoding”, consists of oracle, draft, and draft2

models with tree-structured batches.

4. Results
For our experiments, we use three models: a GPT-2-Large
(762M) parameter oracle model (Radford et al., 2019) fine-
tuned on the Python subsection of the Stack (Kocetkov et al.,
2022), a small (40M) parameter GPT-2 draft model trained
on the same, and a Katz backoff trigram model (Katz, 1987)
as the draft2 model. The Katz backoff model was generated
by running the draft model for two hours at a sampling
temperature of 1.5 to generate 120M tokens. All evaluations
were conducted on a quiesced RTX 4090 GPU (NVIDIA,
2022), which is top-end consumer hardware.

We evaluate against two alternative inference methods. First,
our standard baseline is simple token-by-token decoding
with the oracle. Second, we also evaluate against speculative
decoding as proposed by (Leviathan et al., 2022), so as to
isolate the effects of our improvements.

To evaluate, we ran the 164 prompts from HumanEval (Chen
et al., 2021), using non-speculative, speculative, and our
staged speculative methods, and with both deterministic and
topk sampling (Radford et al., 2019). Details of batch sizes
and internal heuristics can be found in our code.

We first measured the memory bandwidth requirements of
each method, to validate that our approach saves appre-
ciable bandwidth. We detail the results in table 1, which
illustrate that staged speculative decoding uses substantially
less memory bandwidth than either alternative method.

Second, we measure sequential decoding throughput for
each approach. The results are summarized in table 2 and
detailed in Figure 2.

With deterministic sampling, our implementation provides
an average performance boost of 3.16x over our reference

3
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Figure 2: Relative performance distribution over different prob-
lems in the HumanEval dataset. (A) shows greedy decoding,
whereas (B) shows Topk decoding. Problem indices are sorted by
staged speculative performance for clarity.

implementation, and 1.36x over standard speculative sam-
pling. Furthermore, we evaluate on relatively small mod-
els, whereas prior work uses much larger models on which
one would expect greater benefits. Profiling data shows
our implementation has 35% overhead from the Python in-
frastructure, which could be reduced by a more efficient
implementation or amortized over larger models.

With topk (k = 50, T = 1) sampling, although both specu-
lative methods are significantly degraded due to stochastic
rejection of tokens provided in the batch, staged speculation
nonetheless retains its lead, providing an average perfor-
mance boost of 1.98x over baseline and 1.36x again over
standard speculative sampling.

In Figure 3, we show the origin of different tokens in the
completed model. (The performance gain on the shown
prompt is approximately 2.5x over baseline.) The model is
usually able to decode the easiest, most obvious tokens, like
whitespace, in batch through both transformer models, as
they originate with the N-gram models. Somewhat more
difficult tokens are generated by the small model, while

Figure 3: A visualization of the origin of tokens in an example
T=1 HumanEval completion. Green background originates with
the N-gram draft2 model, blue the draft model, and red the oracle
model. (Of course, all tokens are eventually checked by the oracle
model.) Obvious tokens – like whitespace – are preferentially
accelerated relative to difficult ones.

the most critical tokens (like the token following the “if”
token) come from the oracle model. Note that due to the
finite batch size, the above is only a trend and should not be
expected to apply universally to every token. Some tokens
which could have been accurately predicted by a smaller
model will still end up originating from larger models.

We also wish to acknowledge the extreme range of the
performance benefits as a downside of the work. While
performance benefits run as high as 10x on realistic prompts,
they can also be limited to only 2x. To a large degree, this
depends on the denseness or sparseness of difficult content.
For example, highly indented Python code will make better
use of the N-gram models than unindented code, and thus
reap greater performance benefits.

We speculate that these models represent an approximately
fixed cost per entropy of the data. Extremely low entropy
generation, like pure whitespace, will be generated very
quickly by staged speculative decoding, with performance
approaching that of large-batch inference, whereas dense
generations with high entropy will need to rely on small-
batch decoding at all stages. So, a corollary implication
of this work is that most of the text generated by LLMs
has entropy lower than the capabilities of their authoring
models, and that the increased accuracy of big models is
isolated to a relatively small number of key tokens.

We see several paths for future work:

1. We suspect it may be possible to speculatively sample
with T > 0 even faster by generating the multinomial
CDFs first, and then using this sequence to help choose
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the tokens to assemble into the full batch. For example,
if the multinomial CDF sampled is 0.99, it may be
best to only include in the batch the draft model’s fifth
through tenth most likely tokens.

2. Running with larger models would likely yield even
greater performance boosts while still fitting on-device.
With 8-bit quantization, it should be possible to fit 20B
models on consumer GPUs in small-batch, allowing
for an entire additional stage of speculation.
(20B → 1B → 50M → N-gram).

3. Investigating better lowest-level draft models could
also improve performance – models which perform
better than N-gram models but still run in < 10µs.

5. Conclusions
In this work, we described and implemented several im-
provements over previous work in speculative decoding.
First, we restructured the batch provided to the oracle model
as a tree, in order to decrease the cost of generation and in-
crease the expected number of tokens per batch. Second, we
added a second stage of speculation to accelerate the decod-
ing of the draft model. Altogether, we achieved an average
speedup of 3.16x over standard single-batch inference.
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