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ABSTRACT

Reinforcement learning has been recently adopted to revolutionize and optimize
traditional traffic signal control systems. Existing methods are either based on a
single scenario or multiple independent scenarios, where each scenario has a sep-
arate simulation environment with predefined road network topology and traffic
signal settings. These models implement training and testing in the same sce-
nario, thus being strictly tied up with the specific setting and sacrificing model
generalization heavily. While a few recent models could be trained by multiple
scenarios, they require a huge amount of manual labor to label the intersection
structure, hindering the model’s generalization. In this work, we aim at a general
framework that could eliminate heavy labeling and model a variety of scenarios
simultaneously. To this end, we propose a GEneral Scenario-Agnostic (GESA)
reinforcement learning framework for traffic signal control with: (1) A general
plug-in module to map all different intersections into a unified structure, freeing
us from the heavy manual labor to specify the structure of intersections; (2) A uni-
fied state and action space to keep the model input and output consistently struc-
tured; (3) A large-scale co-training with multiple scenarios, leading to a generic
traffic signal control algorithm. In experiments, we demonstrate our algorithm as
the first one that can be co-trained with seven different scenarios without manual
annotation, and get 13.27% higher rewards than benchmarks. When dealing with
a new scenario, our model can still achieve 9.39% higher rewards. The code and
scenarios are available here under an anonymous Github page.

1 INTRODUCTION

Although urbanization has been evolving for decades, traffic congestion remains severe in major
cities, which lays up potential risks, such as traffic accidents or unnecessary time and resource
wastage. An efficient traffic signal control (TSC) system is undoubtedly a cost-effective mean of
alleviating congestion. Thus, how to optimize traffic signals has always been the spotlight for urban
efficiency and sustainability (Wei et al., 2019c).

Traditional TSC systems, such as SCOOT (Hunt et al., 1982) and SCATS (Lowrie, 1990), are widely
deployed in hundreds of cities worldwide, whose traffic signal plans are manually designed accord-
ing to rules from expert knowledge and transportation engineering. For example, Webster’s Equa-
tion (Koonce & Rodegerdts, 2008), one of the most widely-used methods, directly uses the traffic
volumes to calculate the optimal cycle length and phase split for a single intersection to minimize
the total travel time at this intersection. However, those methods may be powerless when handling
dynamic traffic networks without well-observed traffic flow patterns. To this end, reinforcement
learning (RL) (Steingrover et al., 2005; Van der Pol & Oliehoek, 2016; Wei et al., 2018; 2019a)
has been preferably adopted into the TSC domain since it is a learning-based method with higher
automation. Such a trial-and-error paradigm based on the traffic simulator has demonstrated better
performance than transport engineering-based methods (Yau et al., 2017).

The recent RL-based TSC models can be roughly divided into two categories based on the scenarios
where the training and testing are conducted. A scenario is usually a simulation environment that
contains a set of intersections: (1) Single-scenario RL, whose training and testing need to be on
the same scenario separately (El-Tantawy et al., 2013; Van der Pol & Oliehoek, 2016; Zheng et al.,
2019). However, the model will be unusable or perform badly in a new scenario. For example in
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Figure 1: Three intersections with different structures in terms of approach, movement, and lane

Fig. 1, these methods might be trained and tested in the same scenario with 4 × 4 three-approach
intersections of Fig. 1(a), but these methods will ill-perform in another new scenario with mixed
intersections of Fig. 1(a) and 1(b). (2) Multi-scenario RL, where training is conducted in multiple
scenarios and testing could be in different scenarios. For example, Meta RL (Zang et al., 2020)
is proposed to train a TSC system with multi-scenarios. The model can easily transfer to other
scenarios. However, the existing multi-scenario RL models need heavy manual labor to annotate the
structure of intersections during the training.

However, the above methods are trained with several pre-defined and fixed scenarios whereas cannot
gain the generalization capability without labeling, which limits the application of RL-based meth-
ods in the real world. Current RL-based TSC methods can exploit the various traffic flows generated
by the simulator to make the model effective in training scenarios, but finding a low-cost universal
method with promising transferability meanwhile is still a research gap.

As a result, the existing methods still face tremendous challenge to jump out from the simulation
and implement in the real cities. This is known as sim2real challenge. The challenge mainly come
from the wide gap between the real complex cities and the simplified simulation systems. In the real
world, the intersection structure could be rather versatile in terms of different setting of approaches
(i.e., north, south, east, west), movements (i.e., left, right, through), and lanes (e.g., two through
lanes, one right-through lane). As shown in Fig. 1(a) to 1(c), an intersection could have a different
amount of approaches; Within an approach, there could be different combinations of movements; A
lane could also combine different movements. However, most of the existing methods only consider
a standard intersection with four approaches and three lanes (right, through, and left) within each
approach, shown in Fig. 2(a). This largely limits the model generalization.

To conclude, a qualified TSC approach needs high generalization and effectiveness: it should handle
various intersections and be able to transfer to other unseen targets easily and with low cost.

To narrow the sim2real gap significantly and get more ready to be implemented in real cities, in
this paper, we provide our novel solution, i.e., a GEneral Scenario-Agnostic (GESA) reinforcement
learning framework, for the TSC task, which is, to our best knowledge, the first work that pursuits
high generability and co-trains multiple scenarios without labels. Specifically, to co-train in multiple
scenarios with various intersections, the vectors with approach spatial information are employed to
map shape-odd and complex intersections into the standard intersection. Then, the mapped inter-
sections are used to generate the characteristic information of each traffic movement and the phase
of the traffic lights in a specific order. Finally, we extend the original FRAP (short for Flipping and
Rotation and considering All Phase configurations) (Zheng et al., 2019) to a policy gradient-based
framework, which can facilitate the model coverage and is compatible with different intersections.

The contributions are summarized in three-fold: (1) we present a general plug-in module to map
the intersections into a unified structure, freeing us from the heavy manual labor work to specify
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the intersection structure and making it possible for large-scale co-training under multiple different
scenarios. (2) Accordingly, we design a unified state and action space to keep the model input and
output structure consistent for more general capabilities. Moreover, the GESA can adapt to various
unseen scenarios and achieve promising performance without re-training. (3) We build two realistic
scenarios, together with five public scenarios, where we co-train and validate the GESA with prudent
experiments. All these lead us closer to the ultimate goal: to implement RL-based TSC in the reality.

The rest of the paper is organized as follows. In Section 2, we review related work for TSC. Section
3 provides the preliminaries and Section 4 introduces the model thoroughly. Experiments are given
in Section 5. The conclusion are presented in Section 6.

2 RELATED WORK

We will review the existing methods for TSC from the two methodology stakes: transportation
engineering-based methods and reinforcement learning-based methods.

Traditional traffic signal control. Until now, traditional methods are still widely used in the real
world. Most of them depend on strong assumptions and manually-specified rules. The fixed-time
(Roess et al., 2004) method decided the traffic signal plan as a fixed cycle length, which is not
flexible enough and cannot automatically adapt its logic to the actual situation. Actuated control
model (Fellendorf, 1994; Mirchandani & Head, 2001) instead used pre-defined sets of rules to de-
cide whether to adjust the current phase. SCOOT (Hunt et al., 1982) and SCATS (Lowrie, 1990)
pre-defined several signal plans and selected the best of them according to the internal measure-
ments. Recently, MaxPressure (Varaiya, 2013; Kouvelas et al., 2014) was designed to dynamically
optimize vehicle travel time and achieves expressive performance. It balances the queue length be-
tween incoming lanes and outgoing lanes to reduce the risk of over-saturation. In this way, its logic
can be dynamically changed according to the actual situation. All these methods are simple and in-
terpretable, which can be applied to the vast majority of traffic signal systems in the real world, but
their assumption dependencies are relatively simple and rigid. Actual situations may be not satisfied
with them, so the traditional methods usually cannot guarantee optimal results.

Reinforcement learning-based traffic signal control. Recently, reinforcement learning methods
have been deeply researched for the TSC task. In (Prashanth & Bhatnagar, 2011; Casas, 2017), all
intersections in a scenario are controlled by a global agent, where the state and action space are joint.
The methods in references (Xu et al., 2013; El-Tantawy et al., 2013; Van der Pol & Oliehoek, 2016)
handle the states separately, but they are still modeled as a joint action. These methods cannot be
trained only once and then directly transferred to a new scenario. Thus, if one needs to adapt the
well-trained model to an unseen intersection, model re-training in this new scenario is necessary.
Such approaches have extended time and money costs, and their performance cannot be guaranteed.
In recent years, independent RL becomes popular because of its low computational cost, feasibility,
and scaled up easily. It is more suitable for application in the real world. In (Gao et al., 2017; Wei
et al., 2018), the states are treated as an image for each intersection and the actions are handled
independently. (Nishi et al., 2018; Wei et al., 2019b; Zhang et al., 2020) introduce communication
to coordinate the actions between intersections. (Zheng et al., 2019) present a flexible network
FRAP that can be used with different intersections based on phase competition. Based on FRAP,
Chen et al. (Chen et al., 2020) add the pressure observation into the states and rewards to extend
FRAP to thousand lights control scenarios. Then, Zhu et al. (Zhu et al., 2022) introduce a multi-
task pipeline, i.e., MTLight, to predict next step states, which can express more general underlying
characteristics. But all these methods need to be trained and evaluated under the same scenarios to
get better performance, which limits the development of the algorithm from simulation to reality.
The most related work is MetaLight (Zang et al., 2020), which combines Meta RL (Finn et al.,
2017; Yu et al., 2020) into FRAP framework, such that it could also be trained under multi-scenarios
simultaneously and thus can be transferred to another scenario without re-training. However, it
still needs heavy manual work to label the intersection structure. Moreover, during experiment, we
found the multi-scenatios that MetaLight used for training are still quite homogeneous, and the Meta
Learner is only trained with two scenario each time, which heavily limits the model’s generalization.

In this paper, to overcome these limitations, we design a flexible plug-in module to automatically
process the various structures of intersections and extend the FRAP model to work in a unified state
and action space, making it possible to co-train with multi-scenarios without labeling needed.
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3 PRELIMINARIES

In this paper, the TSC is conducted at a single intersection. As mentioned before, several intersec-
tions constitute a scenario. In the following, the problem of this work is formulated formally, and
then, for a particular intersection, the adopted terms are declared.

Problem Statement: The TSC is a sequential decision task characterized by the Markov decision
process (MDP), which can be formulated as a single-agent RL problem < S,A,R, γ, π >. Given
the state observation set S, which includes all related information such as traffic volume and current
phase, action set A, the reward function R, and discount factor γ, the goal for each intersection agent
i at each timestep t is to find a policy π that maximizes the expected return Gt :=

∑∞
l=0 γ

lrt+l.

Definition 1. Intersection: The types of intersections are versatile in the real world. A standard
intersection is shown in Fig. 2.(a), and the others can be treated as a variant of it. Each intersection
has several approaches, where approaches can be categorized as the entering approach and the
exiting approach. There are four entering approaches in Fig. 2(a) with lanes labeled, located in
east, west, north, and south directions, respectively. There are also four exiting approaches in Fig.
2(a), which are left blank. In the real world, most intersections consist of three or four approaches.

Definition 2. Entering approach: In each entering approach, there should be at least one entering
lane. In Fig. 2(a), each approach has three entering lanes: right, through, and left.

Definition 3. Traffic movement: A traffic movement is defined as a vehicle moving from an entering
approach to an exiting approach. Fig. 2(a) shows eight movements (left and through) to be signal-
controled and four right movements that are free (since right lanes do not conflict with other lanes).
The conflict matrix of the eight movements is shown in Fig. 2(b). A movement can have more than
one entering lane and an entering approach can also contain several movements.

Definition 4. Phase: A traffic phase is a combination of movement signals. As illustrated in Fig.
2(c), there are eight phases in the standard intersection, and each phase combines two traffic move-
ments without conflicts. Noted that not all the phases are available for the actual intersections.
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Figure 2: A standard intersection structure, conflict matrix, and available traffic signal phases

4 METHOD

In this section, the detail of the proposed GESA model will be given. Section 4.1 and Section 4.2
will introduce (1) the well-elaborated plug-in module that unifies all intersections and (2) the unified
state and action design, respectively, in a general way. Section 4.3 will give setting details for RL.
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4.1 TOWARD TO A UNIFIED STRUCTURE

To unify different intersections, the plug-in module is designed, which maps the intersections with
arbitrary structures into the standard one, makeing each entering lane only have one main movement.

In contrast to the standard intersection in Fig. 2(a), the structures of the real-world intersections
are arbitrary even shape-odd. Fig. 1(a) shows a three-approach intersection. Compared with the
standard intersection, its south approach and the through lane in the north approach are absent. In
Fig. 1(b), each entering lane has multiple traffic movements, which can be frequently observed in
urban streets. The approach directions are irregular in Fig. 1(c), which is also common.

4.1.1 TO UNIFY THE APPROACHES

Algorithm 1 To unify the approach directions
Input: The number of approaches of target intersec-

tion |a|; The position vectors of the approaches
V = {v1,v2, . . . ,v|a|};

1: Initialization: Indicator of success in unification
Flag=False;

2: for a∗ in {a}s do
3: Initialization: Approach-direction set

M = {mN : set(a∗),mS : set(),mW :
set(),mE : set()};

4: for a in {a}s and a ̸= a∗ do
5: θa,a∗ = arccos(

va·va∗
∥va∥·∥va∗∥ )

6: if va × va∗ < 0 then
7: θa,a∗ = 360◦ − θa,a∗

8: end if
9: if 45◦ ≤ θa,a∗ < 135° then

10: mE . add(a)
11: else if 135◦ ≤ θa,a∗ < 225° then
12: mS . add(a)
13: else if 225◦ ≤ θa,a∗ < 315° then
14: mW . add(a)
15: else
16: mN . add(a)
17: end if
18: end for
19: if length(mN )<2 and length(mS)<2 and

length(mW )<2 and length(mE)<2 then
20: Flag=True;
21: Break;
22: end if
23: end for
Output: Flag, M.

Actually, the unification of approaches is to align
their directions in the target intersection and the
standard intersection, respectively. We provide
the approach-unifying process, shown in Algo-
rithm 1. For particular intersection i, we first re-
trieve the position vectors (e.g., geo-locations) for
the approaches and count their numbers. Then,
the position vectors are employed to calculate
the angles between the approaches: The angle
θa,a′ between approaches a and a′ is calculated
by θa,a′ = arccos( va·va′

∥va∥·∥va′∥ ), where va and va′

represent the spatial locations of approaches a
and a′, respectively. Finally, the intersection is
matched to the standard one according to the an-
gles, as shown in Fig. 1(c): (1) An approach is
selected to associate with the north approach aN
in the standard intersection. (2) The other ap-
proaches {a}s, denoted as a, are matched approx-
imately to the standard intersection’s approaches
according to the related angles. Specifically, if
the angle between the aN and a is between 45° to
135°, a will be matched to the east approach aE .
South and west approaches are matched similarly.
If each direction matches no more than one ap-
proach, the matching process will be successful.
It will be treated as fail if all the approaches are
traversed iteratively without success, since such
an intersection is usually odd.

4.1.2 TO UNIFY THE MOVEMENTS

The objective of movement unification is to achieve one-to-one matching between lanes and move-
ments and handle unavailable phases. For the case that one lane is associated with multiple move-
ments (e.g., Fig. 1(b)), we can delineate their priority according to the traffic rules: (1) Through
movement is with the highest priority. (2) Turning left has priority over turning right. (3) Turning
right commonly is free and needs no signal control. Thus, we can take all entering lanes as through
lanes in Fig. 1 (b). Finally, eight traffic signal phases can be generated as shown in Fig. 2 (c). Red
signals are adopted to fill the unavailable phases.

All the above rules are integrated into a plug-in module, which can be placed in the simulation sce-
narios’ initialization stage while eschewing extensive manual labor to label the distinct intersections.

4.2 TOWARD TO A GENERAL MODEL

To ensure that the RL model gains better transferability, it should be compatible with different kinds
of intersections. Essentially, the in-out dimensions of the model need to be constant regardless of
the intersections. Thus, it is crucial to unify the agent’s state space and action space.
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4.2.1 A GENERAL STATE SPACE

For the agent state space, with no need to control the right-turn behaviors, we first gather the obser-
vations with eight groups according to the movements they belong in the standard intersection (as
Fig. 2(a)). There are multiple demands for each group, such as queue length, flow, and occupancy.
Second, the movements of multiple entry lanes may be the same. In this case, we aggregate the
average observations in the lanes to represent the demand for the movement. Third, considering
that some traffic movements may be absent compared with the standard intersection, we use zero
padding in the missing group demands and add a binary indicator in the corresponding states.

4.2.2 A GENERAL ACTION SPACE

The agent action is to choose the phase for the next time interval. For the action space, we reserve
all eight phases and the order of these phases is fixed (same as Fig. 2(c)), letting the agent have the
same logic to select phases. However, not all eight phases are always available, e.g., phases E and F
in Fig. 2.(c) do not appear in the intersection in Fig. 1.(a). To solve this, we use mapped intersection
structures to identify unavailable phases, and add a mask to let the agent ignore them.

4.2.3 LEARNING
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Figure 4: A traffic movement embedding

Our unified design can enable most RL models to han-
dle arbitrary intersections. For instance, if adopting our
unified design, a generic Proximal Policy Optimization
(PPO) (Schulman et al., 2017) can be co-trained with
multiple scenarios by Asynchronous Advantage Actor-
Critic (A3C) (Mnih et al., 2016).

We modify the FRAP to a policy gradient-based de-
sign. Our framework is shown in Fig. 3. We denote
in the i-th intersection from the k-th scenario, the j-
th movement’s n-th feature as fm

i,j,k,n, where i ∈ RIk ,
k ∈ [1, . . . ,K], and j ∈ [1, . . . , 8] as eight movements.

Firstly, via the General Plug-In (GPI) module, arbitrary intersections from various scenarios are
mapped into the standard one. Thus, the feature will be scenario-agnostic and intersection-agnostic.

f̃m
i,j,n = GPI(fm

i,j,k,n) (1)

Then, the embedding for the j-th traffic movement’s all features is obtained by Multi-Layer Percep-
tron (MLP) and concatenation (denoted as operator ∥ ), as shown in Fig. 4. Besides, the last feature
“indicator” (binary) denotes whether this movement exists in this intersection.

f̄mi,j = ∥N+1
n=1 MLP(f̃m

i,j,n) (2)

Secondly, the calculated movement embedding f̄mi,j is fed into the FRAP module. (1) Add: FRAP
adds the embedding of movements as a phase representation. For the l-th phase which consists of
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movements j, j′, l ∈ [A,B, . . . ,H]: fpi,l = f̄mi,j+ f̄mi,j′ , where the two movements j, j′ ∈ [1, 2, . . . , 8].
(2) Phase-pair representation: Once obtaining the phase embedding, a phase-pair representation is
constructed to capture the pairwise relations for competition: fppi = fpi,l∥fpi,l′ . (3) Phase competition:
To avoid phase conflict, pairwise competition scores (Zheng et al., 2019) are learned as a competition
mask, denoted as Ω. Thus, the phase-pair representations fppi will go through 1× 1 convolution and
multiply with the phase competition mask to yield the masked phase-pair embedding: fppmasked i =
Conv1×1(f

pp
i )⊗Ω, and ⊗ is Kronecker product. We denote the whole FRAP module as FRAP(·):

fppmasked i = FRAP(̄fmi,j) (3)

Thirdly, the final policy π(·) and value V (·) estimation networks are implemented as the actor and
critic, which are conducted by MLP, respectively. In contrast to the original FRAP which uses Deep
Q Leaning (DQN) (Osband et al., 2016) as the action generator, the introduced actor-critic model
can handle the action-continuous scenarios and is more friendly for the parallel training by A3C.
To get the final action, the phase can be selected by the highest probability or sampled by prob-
ability distribution of the i-th intersection for exploration from π(ai|fi), where ai ∈ R8 for 8 phases.

Actor: π(ai|fi) = Softmax
(

MLP
(∑

(fppactor i)
))

,where fppactor i = Conv1×1(f
pp
masked i) (4)

Critic: V (fi) = MLP
(∑

(fppcritic i)
)
,where fppcritic i = Conv1×1(f

pp
masked i) (5)

Overall, compared with the original FRAP, our main differences are three-fold: (1) A general plug-
in module as well as the unified state and action are designed. Such a unified state space and action
space enables the model to be co-trained with multi-scenarios and to handle several structure-distinct
intersections simultaneously. (2) All eight movements are utilized as the state input at the same time,
and each movement state is featured by traffic indexes and indicator embedding. In this way, the
proposed framework gains better generalizability and various independent RL-based models can be
transferred easily. (3) Actor and critic networks are adopted, which can be trained by A3C, thus
each progress takes one scenario to interact with the model and returns the updated gradient.

4.3 DETAILED RL SETTINGS

State: To respect an actual situation, we measure each entering lane demand within 50m to the
intersection (Chu et al., 2019). We choose five features from the observations as states: queue
length, current phase, occupancy, flow, and the number of cars that are stopping (Wei et al., 2019c).
Action: The duration of each phase is fixed in our setting, so the action is to decide which phase to
choose for the next based on the current states.
Reward: The reward is a weighted average of four reward components: queue length (Li), wait time
(Tw

i ), delay time (T d
i ), and pressure (Pi), with detailed definitions and calculations in Appendix A.

The reward Rt for the step t: Rt =
∑

c∈C wcci, where wc re-scales the value of each component
c, C is the set of components C = 4, and ci is the reward component c in intersection i at step t.
The smaller the four reward components are, the better the traffic condition is. To maximize the
total reward, the weights are set negative: wdelay time = −1e−5, wwait time = −1e−3, wqueue length =
−1e−3, wpressure = −5e−3.

5 EXPERIMENT

5.1 DATASETS

We choose the simulation of urban mobility (SUMO) (Behrisch et al., 2011) as the simulator. Seven
different scenarios are employed for evaluation, and each one includes multiple intersections within
a region. Four of them are publicly available (Ault & Sharon, 2021): Grid 4×4, Arterial 4×4,
Ingolstadt 21, and Cologne 8. As another contribution for RL-based TSC, we build three scenarios,
i.e, Grid 5×5, Fenglin, and Nanshan. We built Fenglin via the SUMO netedit module based on a
real-world scenario and its traffic flow data is simulated based on the actual flow, more detail are
written in Appendix C.2 . We also built Nanshan with 28 traffic lights via OpenStreetMap based
on a real district in Shenzhen, China. During training, our model does not need manual labels. The
details about the seven scenarios are introduced in Appendix C.
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Table 1: Large scale co-training performance
Model Rewards Grid 4×4 Arterial Ingolstadt 21 Cologne 8 Fenglin

FTC
(single-scenario)

Total -0.6376 -8.1955 -1.9223 -1.9565 -4.2271
Delay time 662.6 6632.4 3066.5 2094.3 4250.4
Wait time 280.6 1183.3 1129.8 1193.3 1852.9

Queue length 205.8 2274.7 523.9 517.0 1512.5
Pressure 329.0 1860.5 647.5 606.5 2901.0

MaxPressure
(single-scenario)

Total -0.4024 -7.9282 -1.1089 -0.6583 -1.7214
Delay time 545.7 6032.1 2958.8 1353.8 2849.2
Wait time 173.7 1150.8 742.0 397.8 808.6

Queue length 116.4 1857.2 221.3 171.3 548.2
Pressure 248.0 2264.0 302.5 199.5 1095.5

MPLight
(single-scenario)

Total -0.4385 -4.0535 -1.1628 -0.7669 -1.8667
Delay time 561.0 4088.9 2808.4 1481.9 3057.7
Wait time 187.9 704.4 770.5 455.6 791.6

Queue length 129.8 1195.0 254.5 211.2 668.3
Pressure 268.0 2082.0 329.5 224.5 1206.5

MetaLight
(multi-scenario)

Total -0.3745 -3.7568 -0.8130 -0.5517 -1.7336
Delay time 537.5 3725.1 2937.4 1298.2 2775.2
Wait time 163.1 544.7 568.7 330.0 818.6

Queue length 104.8 1027.0 128.8 141.2 549.2
Pressure 235.5 1549.5 225.0 172.0 1108.5

GESA-single
(single-scenario)

Total -0.2643 -6.5587 -0.7576 -0.5503 -2.8688
Delay time 479.0 4158.8 2221.4 1292.6 3181.8
Wait time 111.8 326.1 542.0 329.9 641.9

Queue length 69.4 1285.1 118.3 140.2 954.6
Pressure 168.5 2135.0 213.5 167.0 2225.0

GESA
(multi-scenario co-train)

Total -0.2761 -3.8856 -0.7401 -0.4834 -1.5623
Delay time 487.9 3552.6 2200.6 1239.1 2672.2
Wait time 117.1 517.1 532.6 290.3 742.9

Queue length 73.5 975.0 115.3 120.0 486.8
Pressure 174.0 1608.0 199.0 152.5 1033.5

Improvement Total 35.64% -3.43% 9.85% 14.13% 10.18%

5.2 BENCHMARK METHODS

Several representative peers are selected, including both traditional methods and RL-based methods.

• Fixed-timed control (FTC) (Roess et al., 2004): A fixed cycle time and phase order are set
manually for each traffic light according to expert knowledge.

• MaxPressure (Varaiya, 2013; Kouvelas et al., 2014): As a popular choice in traditional TSC, it
sets the phase with the max pressure between phases as green according to the queue length.

• MPLight (Chen et al., 2020): It is an extension work based on FRAP. It improves FRAP by
utilizing pressure as both the state and reward for a DQN agent.

• MetaLight (Zang et al., 2020): It combines Meta RL with FRAP. However, it needs heavy la-
belling work, and the training scenarios are quite similar.

• GESA-single: We also test our GESA’s performance in a single scenario training setting.
• GESA (The proposed model): It is the only method that can be co-trained in multiple scenarios.

5.3 EVALUATION ON LARGE-SCALE SCENARIOS CO-TRAINING

The GESA is co-trained with all seven scenarios. The learning curves in each scenario are illustrated
in Fig. 5(a). We observe that training on Grid 4×4 is the most stable with the highest reward due
to its simple topology. The training variance on Nanshan and Fenglin scenarios are the largest since
their settings are realistic and complex. Compared with GESA trained in the single scenario in Fig.
5.(b), co-training can also converge faster and more stable.

The numerical results of all methods in five scenarios are summarized in Table 1, with the best results
in boldface and the second-best underlined. Compared to the benchmarks, our GESA achieves the
highest total reward over the four scenarios and the second-highest in the Arterial 4×4. On average,
we achieve +13.27% improvement compared to the best benchmarks and +14.38% than MetaLight.
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Table 2: Generalization Power of GESA: GESA Transfer v.s. Baseline’s Single-scenario Training

Model Rewards Unseen Scenario for GESA
Grid 4×4 Arterial 4×4 Ingolstadt 21 Cologne 8 Fenglin

Best of the baselines Total -0.3745 -3.7568 -0.8130 -0.5517 -1.7214

GESA

Total -0.3085 -3.6940 -0.7706 -0.4720 -1.6964
Delay time 510.4 3888.4 2252.5 1238.6 2634.0
Wait time 132.4 595.5 564.2 281.0 808.9

Queue length 84.40 1108.2 114.4 118.3 535.6
Pressure 189.0 1825.5 194.5 152.5 1145.0

Improvement Total 21.39% 1.70% 5.50% 16.89% 1.47%
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Figure 5: Learning curves in all scenarios

In the Arterial 4×4 , we achieve the best sub-rewards
in queue length and delay time. This may be because
for some scenarios, there are conflicts between the
sub-rewards, making it difficult for GESA to promote
them in all the scenarios simultaneously. Thus, Meta-
Light took the advantage of only training two scenar-
ios each time. However, this comes with a curse that
MetaLight’s training is quite unstable duo to the het-
erogeneity of our scenarios, as shown in Appx. D.2,
thus it cannot beat GESA in all other scenarios.

In the Grid 4×4, the GESA-single model obtains
higher rewards than the full GESA since this scenario
is straightforward with low traffic volume. However,
in more complex scenarios, GESA-single performs
worse since it tends to get stuck in a local optimum.
The full GESA instead has seen more diverse scenar-
ios. A detailed explanation is given in Appx. E.3.2.

5.4 DEALING WITH A NEW SCENARIO

To study the transferability of the model, we per-
form the leave-one-out operation: namely, training
the model on six scenarios and testing in the seventh
scenario that is unseen.We rotate the unseen scenario
among the five scenarios in turn, as shown in Table
2, where each column shows the evaluated results on the taken-out (unseen) scenario. The perfor-
mance from the second-best benchmark is also listed. Our framework still achieves a 9.39% average
improvement over the five scenarios, which demonstrates our model’s higher generalizability.

5.5 MORE EXPERIMENTS: ABLATION STUDIES

We also conducted ablation studies: (1) Appx. E.1 shows the necesseity of training simultaneously;
(2) Ablation on rewards (Appx. E.2) shows four rewards being trained together is necessary to
achieve better performance than single-reward versions; (3) Ablation on training different number
of scenarios (Appx. E.3) shows the steadily increase of performance with more co-trained scenarios.

6 CONCLUSIONS

In this paper, to narrow the sim2real gap, we propose GESA, a general RL-based framework for
the traffic signal control task, which can obtain a general model through large-scale training with
multiple scenarios. We first present a general plug-in module to eschew manual annotation in the
structure-varying intersections. To keep the model input and output consistent under different sce-
narios, we elaborately design the unified state space and action space. Based on these unification
operations, we modify the original FRAP to a policy gradient-based framework, which facilitates the
model coverage and is compatible with different intersections. Experiments show that our frame-
work outperforms the benchmarks, even if the evaluated scenario is unseen in the training stage.
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APPENDIX

The appendix will give experimental details and further results. Appendix A will define the rewards
in detail; Appendix B will give the parameter setting; Appendix C will introduce the seven scenarios
with more details. Specifically, we will further introduce the two scenarios constructed by ourselves,
i.e., Fenglin and Nanshan, and we will also further introduce how the traffic flow is simulated based
on the actual flow. Appendix D.2 will show the training process of MetaLight. Appendix E will
show the ablation studies, with ablations on the model components in Appendix E.1, on reward in
Appendix E.2, and on the number of co-trained scenarios in Appendix E.3. The Appendix F will
give some visualization on the signal controlling. The appendix G will discuss about dealing the
intersections with more than four entering approaches and future work.

A REWARD SPECIFICATIONS

As shown in Section 4.3, the weighted combination of four components is adopted as the reward
function. Their definitions are listed as follows.

Delay Time T d
i : The delay time for the intersection i is the average of all the lanes’ delay time. The

delay time for a lane is the sum of all vehicles’ delay time on the lane. A vehicle delay time dv is
calculated by:

dv = ∆t

(
1− vv(t)

vmax

)
, (6)

where ∆t is interval time, vv(t) is the average speed over the interval time, and vmax is the max
speed of vehicle v. Its unit is second (s).

Wait Time Tw
i : The wait time for the intersection i is the average of all the lanes it contains, whereas

the wait time for a particular lane is the sum of all-vehicles stop time on it. The unit is second (s).

Queue Length Li: The queue length is defined as the average of all-lanes vehicle queue length in
an intersection, which is in meter (m).

Pressure Pi: As it is first introduced in (Chen et al., 2020) and as shown in Fig. 6, the pressure
of the intersection i is the difference between the queuing vehicles numbers on entering and exiting
approaches. Intuitively, a higher pressure indicates a greater imbalance between the entering and
exiting lanes.
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Pressure = |#queueing cars on entering lanes - #queueing cars on exiting lanes|
= | 4 + 2 + 6 + 0 – 2 – 0 – 2 – 0 |
= 8

Figure 6: The illustration of pressure.

B PARAMETERS SETTING

B.1 REWARD WEIGHTS SETTING

As described in section 4.3, the re-scale weights w∗ are introduced to balance each component in the
reward. In our experimental, we decided the weights according to parameter tuning so that the four
reward components are in the similar scale. Without balancing the four components, the training will
be led to one direction that only maximizes the most dominant reward component. As mentioned
before, we set wqueue length = −1e−3, wwait time = −1e−3, wdelay time = −1e−5, wpressure = −5e−3.

B.2 TRAINING PARAMETERS SETTING

The total simulation steps of each scenario are 3600s, and the agent interacts with the simulation
environment every 15 seconds. During the testing stage, we repeatedly evaluate the method five
times under different random seeds, and the average is regarded as the final result. For GESA, the
learning rate is set as 10−4, the batch size is 128, and the rollout length is set to 128. Generalized
advantage estimation (Schulman et al., 2015) is adopted as the value estimation method. After each
rollout and return of the gradient, the shared model updates parameters according to the newest
parameter in each process of A3C (Mnih et al., 2016).

C THE DETAILS OF SCENARIOS FOR TRAINING

In this section, the seven scenarios will be introduced in detail. Some key specifications of these
scenarios are summarized in the Table 3.

Table 3: Scenarios for Training

Scenario Total # of signaled intersections (Int.) # of 2-way Int. # of 3-way Int. # of 4-way Int.

Grid 4×4 16 0 0 16
Arterial 4×4 16 0 0 16
Ingolstadt 21 21 0 17 4

Cologne 8 8 1 3 4
Grid 5×5 25 0 0 25
Fenglin 7 0 2 5

Nanshan 28 1 6 21

C.1 OPEN-SOURCE SCENARIOS

The details for Grid 4×4 (Chen et al., 2020), Grid 5×5, and Arterial 4×4 (Ma & Wu, 2020) are
given in Figure 7. The Grid 5×5 is designed by ourselves, following the same setting of Grid 4×4.
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(a) Grid 4×4 (c) Arterial 4×4(b) Grid 5×5
0 100m 0 100m 0 100m

Figure 7: The scenarios of (a) Grid 4×4, (b) Grid 5×5, with all the intersections signaled and
each entering approach having three lanes with movements of left, through, and right, respectively;
(c) Arterial 4×4, with all the intersections signaled, E & W entering approaches having two lanes
with movements of left and right-through, as N & W entering approaches having one lane with the
movement of left-through-right. (The blue strips indicate the locations of 50-meter detectors.)

The scenarios Ingolstadt 21 (Lobo et al., 2020) 1 and Cologne 8 (Varschen & Wagner, 2006) 2

describe the one-day traffic within the city of Ingolstadt and Cologne in Germany, respectively, as
shown in Figure. 8.

(a) Ingolstadt 21 (b) Cologne 8

0 100m 0 100m

Figure 8: The scenarios of (a) Ingolstadt 21, (b) Cologne 8, with the signaled intersections high-
lighted and three intersections zoomed for demonstration.

C.2 TWO REAL-WORLD SCENARIOS

To build more realistic scenarios, we manually construct the Nanshan scenario based on Nanshan
district in Shenzhen, China and Fenglin scenario based on Fenglin corridor in Shaoxin, China.

For the Nanshan scenario, we generate the road network based on OpenStreetMap, and we set the
flow pattern and the initial phase setting as the SUMO default.

For Fenglin scenario, it is even more elaborately designed such that it is as real as possible. As
illustrated in Fig. 10.(a), it is a corridor network in Shaoxing, China, and there are seven intersections
that are with signal controlling. There are mainly four steps when constructing this scenario:

• Constructing the road network: We built the road network via the SUMO netedit3 module
based on the Fenglin West Road in Shaoxin;

• Setting the movements for each entering approach: For example the north entering ap-
proach has two through lanes, two left lanes, and one through-right lane;

• Setting the traffic signal initial phase: we use the default setting;

1https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html
2https://github.com/silaslobo/InTAS
3https://sumo.dlr.de/docs/Netedit/index.html
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(a) Nanshan District in Shenzhen

0

(b) Nanshan scenario in SUMO

1000m

Figure 9: (a) Nanshan district map, (b) Nanshan scenario in SUMO, with the signaled intersections
highlighted and three intersections zoomed for demonstration.

• Setting the traffic flow: For each intersection, live cameras are deployed to count the pass-
ing vehicles and calculate the average traffic flow, as shown in Fig. 10.(c). (1) We select
the peak hour in the red box, and inject the flow from the boundary intersection, e.g.,
intersection 1, into the network; (2) The flow split ratio also needs to be defined. We
calculate it based on the real data for each entering approach. For example, the ratio of
through:right:left for intersection 5 is 5:3:2; (3) Lastly, we place 50-meter Lane-Area (E2)
detectors 4 in each entering lane to get the observations such as queue length and occu-
pancy, and we place Multi-Entry-Exit Detectors (E3) 5 between the entry and exit to get the
delay time and wait time.

After the aforementioned designs, the Fenglin scenario reflects the reality very well.

0 100m

(b) Fenglin scenario in SUMO

(a) Fenglin corridor in Shaoxin city

(c) Flow pattern in the Intersection-2

1 2
3 4

5 6 7

3

5

7

selected

Figure 10: (a) Fenglin corridor map; (b) Fenglin scenario in SUMO, with the signaled intersec-
tions highlighted and three intersections zoomed for demonstration; and (c) Flow pattern at the
intersection-2 during the morning peak hour around 9 AM.

D ADDITIONAL RESULTS FOR GESA AND METALIGHT

D.1 THE REUSLTS OF GESA COMPARED WITH OTHER BENCHMARKS

The Table 1 can also be presented in a plot format for better comparison. In the Fig.11, each reward
is normalized by dividing the maximal value.

4https://sumo.dlr.de/docs/Simulation/Output/Lanearea_Detectors_%28E2%
29.html

5https://sumo.dlr.de/docs/Simulation/Output/Multi-Entry-Exit_Detectors_
%28E3%29.html
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Grid 4×4 Arterial 4×4 Ingolstadt 21

Cologne 8 Fenglin

Figure 11: Performance comparison of Four Reward components in the five different scenarios.

D.2 RESULTS FOR METALIGHT

As shown in Fig.12.(a), we display the total reward of MetaLight in each checkpoint during
evaluating. Since the Meta-Learner in MetaLight is trained with only two scenarios observed each
time, and our scenarios are quite heterogenous to each other, so the evaluating results are quite
unstable, with the total rewards fluctuating largely. Our GESA instead is improving total reward
more steadily, as shown in Fig.5.(a) and Fig.12.(c).

(a) Evaluation of MetaLight (b) Evaluation of GESA-sequential-train (c) Evaluation of GESA

Figure 12: (a) Evaluation of MetaLight; (b) Evaluation of GESA with the Actor-Critic feeding the
scenarios in a sequential manner; (c) Evaluation of GESA.

E ABLATION STUDIES

In this section, detailed ablation studies will be conducted to further demonstrate the necessity of our
model design. Section E.1 will compare the effect of training A3C in a sequential manner. Section
E.2 studies the effects of each reward. Section E.3 studies how introducing different amount of
scenarios for co-training will affect the performance.

E.1 ABLATION STUDY ON THE MODEL COMPONENTS

The proposed plug-in module is an automated labeling module, which does not affect the perfor-
mance of the model, so its ablation is not available.

Alternatively, to validate the importance of the A3C module, we train the GESA model in a se-
quential manner (i.e., feeding the scenarios one by one to train the model) rather than the original
parallel manner (i.e., training model with all the scenarios simultaneously). This variant is termed
as GESA-sequential-training, and its training curves are shown in Fig.12.(b). The rewards of all
the models are small and without upward trend, which means that they do not converge towards
favorable outcomes and the sequential manner is not applicable to the training. Compared to it, the
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Table 4: single-component vs 4-component reward

Component Rewards Grid 4x4 Arterial 4×4 Ingolstadt 21 Cologne 8 Fenglin
Total -0.3266 -4.8884 -0.8715 -0.5847 -1.5905

Delay time 511.7 3906.4 2267.1 1266.1 2855.5
Wait time 139.4 420.8 594.2 346.3 563.6

Queue length 89.9 1137.7 154.7 154.3 550.2
GESAdelay time

Pressure 210.0 1960.5 276.5 188.0 1395.0
Total -10.1055 -4.8713 -7.1326 -11.1791 -16.4658

Delay time 5642.4 2607.8 5513.5 7698.9 11995.5
Wait time 655.2 189.3 516.1 674.6 977.4

Queue length 2907.6 985.4 1870.6 3201.8 3332.4
GESAwait time

Pressure 5121.0 2178.0 3337.5 3369.5 14766.0
Total -0.3005 -5.4331 -0.9334 -0.5207 -1.6324

Delay time 516.0 4071.8 2258.4 1291.0 2636.7
Wait time 127.4 515.6 624.4 315.8 749.2

Queue length 82.60 1175.6 182.5 126.3 518.7
GESAqueue length

Pressure 186.5 1850.5 281.0 167.0 1149.0
Total -0.3261 -6.3235 -1.2017 -0.5417 -1.5831

Delay time 512.4 4306.6 2637.2 1334.8 2598.8
Wait time 138.4 607.1 792.2 326.6 721.5

Queue length 91.0 1386.4 228.1 132.7 517.2
GESApressure

Pressure 204.5 1900.0 354.5 172.5 1107.5
Total -0.2761 -3.8856 -0.7401 -0.4834 -1.5623

Delay time 487.9 3552.6 2200.6 1239.1 2672.2
Wait time 117.1 517.1 532.6 290.3 742.9

Queue length 73.5 975.0 115.3 120.0 486.8
GESA

Pressure 174.0 1608.0 199.0 152.5 1033.5

parallel manner (implemented by A3C) can significantly improve the rewards (Fig.12.(c)), which
contributes to the training.

E.2 ABLATION STUDY ON REWARDS

Since the designed reward functions contains four components (that is, queue length, wait time,
delay time, and pressure), we perform the component ablation experiments to provide insights into
their impact on the model performance specifically.

We conduct a single-component v.s. all-component reward ablation experiment in the co-training
setting, the results are shown in Table 4. Grey values represent that the corresponding components
are excluded in the reward function during training but measured in the evaluation. The best per-
formance is in boldface and the near-best one is underlined. It can be seen that even though the
GESA trained with single component may outperforms under the particular metric, its performance
on the remaining metrics is unremarkable. For example, in the scenario Ingolstadt 21, GESAwait time
achieves the best on the wait time metric, but degrades about 150.5%, 1522.4%, 1577.1% on the
delay time, queue length, and pressure compared to the canonical GESA, respectively. The higher
delay time and lower wait time indicate that the vehicles move slower even though stop infrequently,
and there is a higher potential for jams accordingly.

Overall, given the intrinsic correlations in the four components, it is easy to fall into sub-optimum
when only optimizing one specific component. The canonical GESA with four-component reward
achieves promising results in most cases. The highest total reward is more straightforward to demon-
strate its superiority.

E.3 ABLATION STUDY ON THE NUMBER OF CO-TRAINED SCENARIOS

This subsection will exam the effect of co-training different amount of scenarios on the model per-
formance in E.3.1, as well as explain in detail why multi-scenario co-training is better than single-
scenario training in E.3.2.
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Table 5: Results of joint training with different numbers of scenarios based on Arterial 4×4 scenario

The number of scenarios Chosen scenarios Reward of Arterial 4×4 Improvement

1 Arterial 4×4 -6.5587 -

3 Arterial 4×4
+ Cologne 8, Nanshan -6.3182 3.67%

5
Arterial 4×4

+ Cologne 8, Nanshan
+ Grid 4×4, Ingolstadt 21

-4.3198 34.14%

7

Arterial 4×4
+ Cologne 8, Nanshan

+ Grid 4×4, Ingolstadt 21
+ Grid5x5, Fenglin

-3.8856 40.76%

(a) GESA-single visualization of Fenglin

(b) GESA visualization of Fenglin

More 
cars on 
the 
turning-
left lane

Cars on 
different 
lanes are 
balanced

Figure 13: Compare single training and co-training visualization result in Fenglin scenario

E.3.1 PERFORMANCE INCREASES WITH MORE SCENARIOS

We use Arterial 4×4 as the anchor to verify the impact of the number of co-trained scenarios,
because there is a big gap of its results in single-scenario v.s. multi-scenario. We increase the
co-trained scenarios with two stride lengths, i.e., single, three, five, and seven, and then perform
the test, respectively. The result is shown in Table 5. It can be observed that the reward increases
monotonically as the number of co-training scenarios rising. This means that adding more scenarios
can facilitate the model performance, and the proposed general scenario-agnostic method works
very well. This may be because the different scenarios may share similar latent spatiotemporal
correlation, and co-training achieve the effect of “1 + 1 > 2” by leveraging this spatiotemporal
correlation.

E.3.2 WHY MULTIPLE SCENARIOS OUTPERFORMS SINGLE SCENARIO

As demostrated in Table 1 and Table 5, the multi-scenario co-training are much better than the
single-scenario in most cases. Through visualization, we find that single-scenario training is prone
to falling into local optima than large scale co-training.
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A toy example is Fenglin. In Figure 13, we plot the traffic status in a particular simulation step
in this scenario. One can find that the traffic controlled by the co-training model is less congested
than the single-training model (the model only trained by Fenglin scenario) at the same time step.
A obvious issue of the single-training one is that its left-turn traffic movement has a low priority of
release, resulting more queue length and pressure in the left lanes.

This phenomenon is interpretable: the Fenglin road network is a corridor, which has an East-West
main road and multiple North-South branch roads. Vehicles spend much more time on main road
than on branch roads, therefore, it is easier for the agent to learn that the priority of letting go
straight is higher than turning left. Once the agent is over-optimized in taking “go straight” action,
it is difficult to break out, because it will get smaller rewards for exploration in a long time. This
situation will not be encountered in the multi-scenario co-training model, since it handles diverse
scenarios with various road network and traffic flows, and an agent with better generalization can be
learned.

This reason can also explain why the improvement of multi-scenario performance is trivial
compared to the one in Grid 4×4, the single scenario. The road network of Grid 4×4 scenario is
symmetrical, and the distribution of traffic flow is smooth and relatively uniform. While in Arterial
4×4, even if its road network is very symmetrical, its traffic flow distribution is very uneven, the top
and tail row intersections have heavy traffic flow and two middle row intersections have no traffic
flow in East-West lanes.

F DEMO VISUALIZATIONS

In this section, we will demonstrate the effectiveness of our model for real-time traffic signal control
across three comparing models on three selected scenarios. The real-time visualization is available
in the anonymous link https://github.com/AnonymousIDforSubmission/GESA, and
we also offer some snapshots for comparison on each scenario at the same timestamp.

The traffic status during simulating for Arterial 4×4 and Fenglin are illustrated in Figures 14 and 15,
respectively. The congestion queue is highlighted in red. However, we would like to emphasize that
in the demo, the human eyes could only tell the difference of queue length visually. Yet the whole
traffic situation is evaluated by four rewards from different perspectives. And the metrics such as
delay time and wait time are not easy to be perceived visually.

Fig. 14 shows the 318-th simulation step in the Arterial 4×4 scenario. Due to the high traffic
volume, longer queues are formed in several intersections when the traffic are controlled by the
FTC method (Fig. 14.(a)). The GESA-Single model (Fig. 14.(b)) can alleviate the condition to
some extent, while our GESA model (Fig. 14.(c)) shortens the queue length significantly, which
demonstrates its superiority intuitively.

(a) FTC (c) GESA(b) GESA-Single

Arterial 4 × 4, 𝑡 = 318

Figure 14: Comparison in Arterial 4×4 with the methods (a) FTC, (b) GESA-Single, and (c) GESA.

Similarly, we also list the snapshots in Fig. 15 in Fenglin scenario where the traffic flow is generated
based on the real-world peak hour. The long queues in the central intersection are also formed
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(a) MaxPressure

(b) MPLight

(c) GESA

Fenglin, 𝑡 = 999

Figure 15: Comparison in Fenglin with the methods (a) MaxPressure, (b) MPLight, and (c) GESA.

when conducting MaxPressure (Fig. 15.(a)) and MPLight (Fig. 15.(b)), while our GESA model still
remains a shorter queue.

G DISCUSSION, FUTURE WORK, AND APPRECIATION

In this section, we will provide additional discussions, future work, and our appreciation.

G.1 DISCUSSION ABOUT INTERSECTIONS WITH MORE THAN FOUR APPROACHES

By the proposed GPI module (as shown in Algorithm 1), the intersections with no more than four
approaches can be handled. It should be noted that it is a demonstration and the threshold “four” is
not fixed, that is, intersections with five, six, or even more approaches can also be treated following
the similar pipeline. When the threshold is enlarged, one need to (1) modify the angles interval in
Algorithm 1, (2) update the conflict matrix of movements (in Fig. 2.(b)) and available phases, and
(3) enlarge the model output (i.e., action space).

The reasons why we choose “four” are: (1) For the intersections in real-world road networks, two-
approach, three-approach, and four-approach ones occupy dominant proportions6. (2) According to
our practical statistics in Nanshan and Fenglin districts, there are no intersections with more than
four entering approaches, so setting “four” in the proposed GPI module is quite enough to handle
the realistic scenarios. Overall, the > 4-approach intersections are relatively rare, and the design for
such intersections in GPI module is not worth the cost. If needed, we will consider to extend the
GPI module to handle such situations specifically in our future work.

6https://en.wikipedia.org/wiki/Intersection_(road)
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Moreover, one may be confused with the terms legs and approaches for an intersection. For example,
a six-legged intersection can still have only four entering approaches, as shown in Fig. 16. The rest
two legs are exiting approaches without need for signal control.

(a) 6-legged Intersection Example 1 in Nanshan (b) 6-legged Intersection Example 2 in Nanshan

N
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Figure 16: Examples of 6-legged intersections with only four entering approaches.

G.2 FUTURE WORK

Our model further narrows the gap between simulation and real-world implementation. In the future,
we plan to implement the GESA model in the real cities. We will also consider the intersections with
more than four entering approaches.

G.3 APPRECIATION

The authors would like to thank the anonymous reviewers for their invaluable insights.
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