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Abstract

Large-scale stochastic mechanistic models are more and more used in recent years to model
global epidemic outbreaks and are useful tool for policy and decision makers to project, fore-
cast, and asses the impact of epidemics. However, these models are incredibly demanding
from a computational standpoint and time-consuming to run. Here, we present GLEAM-AI,
a spatio-temporal probabilistic neural surrogate model to replicate the insights and results
of large-scale mechanistic epidemic models and to accelerate stochastic simulations. We
show how a surrogate model can efficiently be trained with less than 5.3 thousand simu-
lations from the mechanistic model by utilizing a Bayesian active learning approach. We
demonstrate its performance in efficiently replicating the mechanistic dynamics, providing
approximately a 200 times speed-up with respect to the original model.

D3S3: Data-driven and Differentiable Simulations, Surrogates, and Solvers @ NeurIPS 2024.



1 Introduction

Large-scale, stochastic, age-structured, meta-population epidemic models are computationally expen-
sive to run, especially when a lot of uncertainty exists on the characteristics of the outbreak under
investigation and a large portion of the model’s parameter space has to be explored to provide accurate
forecasts or scenario analysis projections. In this context, utilizing a deep surrogate model in lieu of a
mechanistic model can help accelerate stochastic simulations and reduce the computational cost and
time needed to model complex disease dynamics, calibrate large-scale models, or simply provide
timely insights on the evolution of an epidemic [1–4]. In this work, we extend a stochastic neural
surrogate modeling approach based on spatio-temporal neural processes (STNP) [1] to reproduce the
dynamics of the Global Epidemic and Mobility model (GLEAM) [5–8], a data-driven, stochastic,
spatial, age-structured, multi-strain, meta-population epidemic model that incorporates high reso-
lution population density data, mobility data, and disease dynamics into a unified framework. In
particular, we focus our experiments on replicating the dynamics of a model tailored to reproduce
the evolution of seasonal flu outbreaks in the United States. Our preliminary results show that
GLEAM-AI can be efficiently trained to reproduce GLEAM model’s dynamics using only about 5.3
thousands simulations.

2 Method

Disease dynamics are modeled using a traditional compartmental modeling framework. In particular,
in GLEAM, seasonal flu disease dynamics are simulated using a compartmental model that divides
the population into: susceptible, latent, infectious, hospitalized, and recovered, where the infectious
population is further subdivided into asymptomatic, infectious traveling (e.g. mild cases of the
disease), and symptomatic non-traveling (e.g. severe cases). Lastly, all individuals can be either
vaccinated or unvaccinated. The details of the compartmental model used are reported in Fig.3,
Appendix B. The surrogate model, GLEAM-AI, aims at reproducing the dynamics of two of these
compartments, latent and hospitalized. I.e., number of infected individuals and number of hospitalized
individuals over time, respectively. Details about the compartmental model and GLEAM are presented
in Appendix A.
The proposed surrogate model is based on spatio-temporal neural process (STNP) [1], a generalization
of neural process [9–12]. GLEAM-AI comprises of an encoder-decoder architecture, as illustrated
in Fig.1. The input to both the encoder and decoder is a mobility graph of the United States where
each node represents a state and weighted edges describe long-range traveling patterns across the
country. State level node features comprise: basic reproduction number, initial disease prevalence,
residual immunity, population, the starting date of the outbreak, expressed as the number of days from
January 1st of the corresponding year, and a seasonality forcing factor. The basic reproduction number
R0 measures how many new cases one infected person is expected to cause in a fully susceptible
population. Initial prevalence indicates the initial size of the population in that compartment that
has those attributes; for instance, latent prevalence are the number of individuals that are in latent
compartment at the start of the simulation. Residual immunity represents the remaining protection
against the disease after previous exposure or vaccination. The encoder processes the input graph
using a Diffusion Convolutional Recurrent Neural Network (DCRNN) [13]. The resulting graph
embeddings are concatenated with the latent prevalence time series and its lagged version, following
the approach in neural processes [9], and then fed into a GRU to generate the time-dependent latent
variable. The latent prevalence time series in the encoder is normalized using z-score normalization.
The decoder uses the temporal graph embedding from DCRNN and latent variable from encoder to
generate the samples. The DCRNN, used in both the encoder and decoder, has an input channel of 51
and an output dimension of 256. The latent variable has a dimension of 100. The compartmental
decoders are separate structures, each consisting of GRU layers followed by fully connected layers,
designed to learn the parameters for each compartment. Fig. 1c shows the compartmental decoder
parameterized by a negative binomial distribution. In our experiment, we used a single-layer GRU
for each compartmental decoder. The decoder’s output has as many heads as there are compartments
being generated. For flu, for example, we generate latent incidence, latent prevalence, hospitalized
incidence, and hospitalized prevalence, meaning the decoder has four heads. GLEAM-AI extends
STNP [1] original framework along several dimensions. First, we redesigned the encoder to improve
efficiency by using only the latent prevalence time series, i.e. the number of currently infected
individuals at a given time t, to learn the latent embedding space, as that is sufficient, conditional
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on knowing the initial condition of the model, to learn the disease dynamics encoded in GLEAM.
Second, the decoder has been redesigned to map the output to generate all the compartments of
interest, such as latent prevalence, latent incidence (i.e. new daily infections), hospitalized prevalence,
and hospitalized incidence (i.e. new daily hospital admissions). Third, we designed the decoder
to learn the initial states h0 of the gated recurrent units (GRUs). In GLEAM, only initial values
for prevalence are known at the onset of the simulation, i.e. number of people currently members
of each specific compartment, while initial values for incidence compartments are not known a
priori. By learning initial states of GRU we give the model enough flexibility to capture dynamic
of compartments not used by the encoder. Fourth, we explicitly provide as a time-varying node
parameters, a temporal embedding describing the physics of the seasonal forcing dynamics that
modulate disease transmission during the year by rescaling the effective reproductive number, R(t)
[14]. Here, we adopted the same functional form for the seasonality forcing factor as used in GLEAM
(see Eq. 1). Lastly, we experimented with different parametric distributions to parameterize the
decoder, including the Gaussian distribution and the negative binomial distribution. Since the time
series of each output compartment consists of count data, the negative binomial distribution is a
natural choice as it can capture both the mean and dispersion simultaneously. So instead of point
estimates, the decoder outputs distribution p(Φt|Φ(t−1):1, z(t−1):1), where Φt is any parameter of the
distribution conditioned on their past values and the latent variables.

(a) (b) (c)
Figure 1: GLEAM-AI architecture. (a) encoder, (b) decoder, (c) compartmental decoder. The input to both the
encoder and decoder is a mobility graph of the United States where each node represents a state and weighted
edges describe long-range traveling patterns across the country. State-level node features comprise: basic
reproduction number, initial disease prevalence, residual immunity, population, the starting date of the outbreak,
and a seasonality forcing factor.
We employ Bayesian active learning [15–17, 1] to train GLEAM-AI in a sample-efficient way. Define
S(i) as train dataset at iteration i. First, we generate 120 random simulations based on random inputs
to serve as the initial training dataset S(1), followed by alternating between acquiring new samples
and training the model for 120 epochs. At every training phase, we use early stopping based on train
loss to terminate the training. To select the input parameters for generating additional simulations,
we predict x̂1:T on a predefined range of input parameters and using the acquisition function r(.) to
compute the expected score Ep(x1:T |z1:T ,θ)[r(x̂1:T |z1:T , θ)] for each input. Based on these scores, we
query the simulator F (θ(i+1); ξ), where ξ represents the internal states of the simulator, to generate
new samples. For the acquisition function, we used the maximum mean standard deviation [16] and
query 60 samples from simulator at each acquisition phase. The loss function used in the model,
derived from variational inference principles [1], is composed of the reconstruction loss and KL
divergence, with the negative binomial likelihood used as the reconstruction loss. The algorithm is
shown in Appending C.

3 Experiments
Here, we present some preliminary results validating the model by comparing the distributions
generated by GLEAM and GLEAM-AI. In Fig. 2, we compare the ensembles of more than 13,000
stochastic realizations for different ranges of parameters for a sample of representative states.
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Figure 2: GLEAM vs GLEAM-AI: ensembles of the number of new daily flu hospital admissions (y-axis) over
time for Alaska (AK), Florida (FA), Georgia (GA), Massachusetts (MA), North Carolina (NC), South Carolina
(SC), Virginia (VA), Wyoming (WY) and United States (US). The solid lines are median, dark shades are 50%
and light shades are 95% CI, respectively. The value of R0 for the first column is [1.75, 2.0], second column
is [2.25, 2.5], third column [2.75, 3.0]. The ranges for the other parameters are kept fixed across experiments
and they are: seasonality forcing in [0.8, 0.85], initial disease prevalence is 140/1000000, starting dates of the
outbreak in [2022-09-28, 2022-10-02], and residual immunity between 25%–30%. KS-test color-coded p-values
comparing GLEAM and GLEAM-AI added at the bottom of each subfigure.

Despite some discrepancies in distribution for some parameter ranges, the speed gains in generating
samples outweighs the drawbacks. Generating a synthetic epidemic outbreak from GLEAM-AI is
approximately 200 times faster than generating the same simulation in GLEAM. As a reference,
running 100 replicates of the compartmental model used here takes approximately 3 hours using
GLEAM and less than a minute using GLEAM-AI. This increased efficiency in generating data
samples constitutes an advantage during real-world applications that typically involve running a large
number (e.g. hundreds of thousands) of computationally expensive simulations to then select those
that best match observational data. Indeed, thanks to the speed of execution of GLEAM-AI, we
can use Approximate Bayesian Computation coupled with Sequential Monte Carlo (ABC-SMC) to
efficiently calibrate the surrogate model to observed surveillance data, rather than a simpler ABC
approach, and therefore estimate the posterior distribution of the inputs parameters.

4 Conclusion
In this work, we introduced GLEAM-AI, a spatio-temporal neural surrogate model designed to
accelerate simulation of large-scale epidemic models. Our approach utilizes a probabilistic framework
that integrates spatio-temporal neural process and Bayesian active learning to reduce the computation
cost and number of queries from a mechanistic model. Our results demonstrate that GLEAM-AI is a
viable model for real-time forecasting and pandemic response.
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A Global Epidemic and Mobility model

The Global Epidemic and Mobility (GLEAM) [5–8] is a stochastic, age-structured, meta-population
epidemic model that divides the world into more than 3200 sub-populations across nearly 190
countries. Each subpopulation is centered around a major transportation hub, such as airports. Sub-
populations are connected by the daily movement of individuals, capturing both short-range and
long-range traveling. Long-range traveling captures international and domestic air traveling collected
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from the Official Aviation Guide database. Short-range traveling, in the form of ground mobility
and commuting flows, are modeled from data collected from statistics offices of 30 countries on 5
continents. Lastly, the effects of seasonality are explicitly modeled by introducing a time-varying
rescaling of the effective reproduction number defined as:

si(t) =
1

2

[(
1− αmin

αmax

)
sin

(
2π

365
(t− tmax,i) +

π

2

)
+ 1 +

αmin

αmax

]
, (1)

where i refers to the hemisphere considered, and tmax,i is the time corresponding to the maximum of
the sinusoidal function. For the northern hemisphere it is fixed to January 15th.
Within each sub-population, the disease dynamics are simulated using a compartmental model.

B Compartmental Model

Figure 3: Compartmental model. Disease dynamics unfold as follows, people who are at risk of getting the
disease start in the susceptible compartment (S). Infected individuals move into the latent compartment (L). On
average, after a specified latent period of ε−1 days, individuals in the latent state become infectious. After an
average infectious period of µ−1 days the fraction of population that is in infectious compartments transition to
either the hospitalized compartment or to removed compartment. The other parameters are defined as follows: β
denotes the transmissibility parameter; pa denotes the probability of having a symptomatic infectious individual;
conditional on an individual being symptomatic, pt denotes the probability of the individual being marked
as traveling in the simulations, instead with probability 1 − pt individuals will be marked as non-traveling
due to the severity of their illness; µ−1

h denotes the average number of days spent in a hospital; r and ra a
transmissibility reduction factors applied to asymptomatic and vaccinated individuals, respectively.
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C Bayesian Active Learning

Algorithm 1 Bayesian Active Learning

Input: Initial simulation dataset S1

Train the model NP1(S1)
for doi=1,2,···

Learn (z1, z2, , zT ) ∼ q(i)(z1:T |x1:T , θ, Si);
Predict (x̂1, x̂2, , x̂T ) ∼ p(i)(x1:T |z1:T , θ, Si)
Select a batch θ(i+1) ← argmaxθ Ep(x1:T |z1:T ,θ)[r(x̂1:T |z1:T , θ)]
Simulate x

(i+1)
1:t ← Query the simulator F (θ(i+1); ξ)

Augment training set Si+1 ← Si ⋃{θ(i+1), x
(i+1)
1:T }

Update the model NP(i+1)(Si+1)
end for
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