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ABSTRACT

Designing reward functions in Reinforcement Learning (RL) often demands sig-
nificant task-specific expertise. Offline Preference-based Reinforcement Learning
(PbRL) provides an effective alternative to address the complexity of reward design
by learning policies from offline datasets that contain human preferences between
trajectory pairs. Existing offline PbRL studies typically model a reward function by
maximizing its likelihood of generating the observed human preferences. However,
due to the varying number of samples within the limited dataset, less frequently
compared trajectories exhibit greater uncertainty, which potentially leads to un-
relible behaviors during reward and policy updates. To solve this issue, in this
work, we introduce Uncertainty-Aware PbRL (UA-PbRL) to learn a distributional
reward model and a risk-sensitive policy from an offline preference dataset. Our
approach employs a Maximum A Posteriori (MAP) objective to update trajectory
rewards and incorporates an informative prior to account for the uncertainties.
Building upon this reward update, we propose a generative reward model to cap-
ture the reward distribution, utilizing the offline distributional Bellman operator
and the Conditional Value-at-Risk (CVaR) metric to train a risk-sensitive policy.
Experimental results demonstrate that UA-PbRL effectively identifies and avoids
states with high uncertainty, facilitating risk-averse behaviors across various tasks,
including robot control and language model alignment.

1 INTRODUCTION

In recent years, Reinforcement Learning has achieved remarkable success in addressing a variety
of sequential decision problems across different domains, such as electronic games (Mnih et al.,
2015; Vinyals et al., 2019; Berner et al., 2019), board games (Silver et al., 2016; 2017), and robotic
manipulation (Fang et al., 2019). However, in the process of scaling these successes to real-world
applications, a notable challenge is the difficulty in precisely specifying the rewards in the RL
objective. Existing manually designed rewards or reward-engineering techniques cannot ensure that
the learned policy aligns with the actual needs of the industry.

To develop a reliable reward function, Preference-based Reinforcement Learning (PbRL) (Knox &
Stone, 2008; Christiano et al., 2017) aims to align rewards with human preferences by solving a
learning-to-rank problem. In this framework, agents do not receive numerical reward signals, but are
instead provided with preferences between pairs of trajectory segments, reflecting human-labeled
relative judgments. PbRL has garnered considerable attention in both online (Sadigh et al., 2017;
Ibarz et al., 2018; Liang et al., 2022; Park et al., 2022; Cheng et al., 2024), and offline (Shin et al.,
2021; Kang et al., 2023; Zhang et al., 2024c; Choi et al., 2024; Zhan et al., 2024) settings. In the online
setting, agents can interact with environments and query human experts, whereas the offline setting
prohibit such interactions. In this work, we focus on the offline PbRL setting, where the objective is
to learn an optimal policy solely from pre-collected offline demonstrations that provide preference
feedback on pair-wise trajectory segments, without any active interaction with the environment or an
expert. This approach is particularly promising in scenarios where collecting online trajectories and
obtaining human feedback is costly and challenging (Lee et al., 2021; Shin et al., 2023).

Practically, the frequency of comparisons across different samples within the offline dataset is often
highly imbalanced. While some samples may emerge with a higher ranking, they have only been
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compared a limited number of times. This sparsity in comparisons significantly affects the reliability
of their evaluation, reducing the model’s confidence in accurately assessing the value of such pairs.
To ensure more reliable preference alignment, it is essential to account for the uncertainty during
the alignment process. However, the Bradley-Terry model (Bradley & Terry, 1952), as a common
approach to PbRL, is based on maximum likelihood estimation and lacks sensitivity to inherent
uncertainties from preference datasets. Consequently, the resulting policy tends to be risk-neutral,
disregarding potential safety concerns embedded in less examined decision-making scenarios.

Striving for uncertainty-aware preference alignment, several studies (Liang et al., 2022; Shin et al.,
2023) estimated uncertainty through methods like ensembles and Bayesian dropout, leveraging this
information to guide exploration and refine preference label queries. Similarly, Xue et al. (2023)
introduced a confidence-based ensemble model to enhance the reliability of predicted rewards. How-
ever, despite their empirical success, the underlying mechanism by which the estimated ensembles
correlate with uncertainty in human preferences remains largely unexplained. More importantly,
these approaches continue to rely on maximum likelihood estimation with a risk-neutral policy.

In this paper, we introduce an Uncertainty-Aware PbRL (UA-PbRL) algorithm that accounts for
the uncertainty in human preferences within offline demonstrations. Specifically, we formulate a
Maximum A Posteriori (MAP) objective for preference alignment, thereby incorporating signals from
an informative prior to the reward updates. By interpreting preference alignment as a voting process,
we intentionally select Beta distribution to implement this prior. To ensure computational tractability,
we parameterize the Beta distribution with neural functions and train the model via variational
inference, guided by an Evidence Lower Bound (ELBo) objective. Intuitively, this probabilistic
prior assigns higher probabilities to trajectories that are compared more frequently, reflecting the
confidence levels associated with human preferences. For each observed trajectory, we compute its
reward using an iterative update rule, which is theoretically motivated by the optimality conditions of
our MAP objective. From these point-wise reward estimates, we then construct the reward distribution
by training a generative reward model conditioning on sequential state-action pairs.

To justify the effectiveness of the learned reward distribution, we train a risk-averse policy using the
offline distributional Bellman operator for policy evaluation, coupled with the Conditional Value-
at-Risk (CVaR) metric for policy improvement. The empirical results highlight the importance of
accounting for the inherent uncertainty arising from preference demonstrations, as well as the risk-
sensitive capabilities of the proposed method. In particular, UA-PbRL outperforms other baselines
in pointmaze environments and robot control tasks, especially in terms of worst-case performance.
Furthermore, we extended our experiments to the context of Large Language Model (LLM) alignment,
demonstrating the effectiveness of UA-PbRL for LLM fine-tuning.

2 RELATED WORKS

Preference-based Reinforcement Learning. Unlike classic RL algorithms (Sutton & Barto, 2018)
that rely on pre-defined rewards to guide policy updates, PbRL considers aligning the optimal policies
with human preferences, thus eliminating the requirement for explicit reward signals (MacGlashan
et al., 2017; Warnell et al., 2018). Previous studies have successfully combined PbRL to deep RL
agent (Christiano et al., 2017) and high-dimensional image space (Ibarz et al., 2018). Building on this
foundation, several methods (Lee et al., 2021; Liang et al., 2022; Park et al., 2022) further improve
the sample efficiency by incorporating techniques like pre-training and relabeling. Recent studies
include learning from few preference labels by employing bi-level optimization (Liu et al., 2022)
and meta-learning (Hejna III & Sadigh, 2023). Some other works introduce hindsight techniques to
enable credit assignment (Verma & Metcalf, 2024) and facilitate hierarchical RL (Singh et al., 2024).
Recently, offline PbRL has gained attention for optimizing policies with a fixed offline dataset and
preference labels, addressing safety and sample efficiency concerns. Existing offline PbRL algorithms
primarily utilize the Bradley-Terry model (Bradley & Terry, 1952) to model the likelihood of human
preference based on reward signals (Shin et al., 2021; Kim et al., 2023; Choi et al., 2024; Zhang et al.,
2024c). However, such a maximum likelihood method is insensitive to the underlying confidence in
human preference (Newman, 2023). An alternative line of research bypasses the need for learning a
reward model by directly optimizing policies to align with human preferences (An et al., 2023; Kang
et al., 2023; Hejna & Sadigh, 2023; Hejna et al., 2024), while these approaches similarly neglect the
uncertainty in human preferences. How to handle the uncertainty in human preference and derive
risk-sensitive policies remain a critical challenge (Casper et al., 2023).
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Distributional Reinforcement Learning. While the majority of RL research traditionally focuses
on maximizing the expected cumulative rewards (Sutton & Barto, 2018), Bellemare et al. (2017)
introduces a distributional perspective on RL, utilizing the distributional Bellman operator for value
function updates. Such distributional value functions are sensitive to the aleatoric uncertainty in the
environment dynamics (Mavrin et al., 2019), enabling the formulation of risk-sensitive policies (Lim
& Malik, 2022; Keramati et al., 2020) and better controlling performance (Bellemare et al., 2023).
Some previous studies propose utilizing categorical distribution (Bellemare et al., 2017; Sui et al.,
2023), quantile functions (Dabney et al., 2018b;a; Zhang & Yao, 2019; Zhou et al., 2020; 2021; Luo
et al., 2022) and diffusion models (Wu et al., 2023) for representing and updating the distributional
value function. In this work, we utilize quantile functions since the statistical benefit of quantile
regression is most well-understood (Rowland et al., 2023). Some recent studies extend distributional
RL to offline learning (Ma et al., 2021; Wu et al., 2023), multi-dimensional rewards (Zhang et al.,
2021), and multi-agent control (Hu et al., 2022; Sun et al., 2021). However, none of the previous
works have considered Preference-based RL (PbRL) from a distributional perspective.

3 PROBLEM FORMULATION

Markov Decision Process (MDP). The agent optimizes the control policy under a Markov Decision
Process (MDP) M = (S,A, R, pT , µ0, γ), where 1) S and A denote the state and action spaces,
2) pT : S × A → ∆S denotes the stochastic transition function, where the simplex over S,
∆S = {ν ∈ [0, 1]S :

∑
s∈S ν(s) = 1}, 3) R : S ×A → [Rmin, Rmax] denotes the reward function,

4) µ0 ∈ ∆S denotes the initial state distribution, and 5) γ ∈ (0, 1] denotes the discounting factor.
For brevity, we use M/R to denote the MDP without knowing the reward. In this work, we mainly
study the episodic MDPs where the planning stops at a terminating state s̃, and the corresponding
terminating time is denoted as T ∈ (0,∞).

Risk-Sensitive Reinforcement Learning. Under an MDP, the objective is to learn a policy π : S →
A, which optimizes the following objective:

π = argmax
π

ραµ0,pT ,π[

T∑
t=0

R(st, at)].

Instead of optimizing the risk-neutral expected cumulative rewards, we consider a risk-sensitive
measure ραµ0,pT ,π where the confidence level α < 1. Specifically, by implementing π under the MDP
M, we generate a trajectory τ ∈ (S × A)T . The corresponding trajectory-generating probability
can be defined as pπ(τ) = µ0(s0)

∏T−1
t=0 π(at|st)pT (st+1|st, at). We define the corresponding risk

envelope Uπα = {ζα : Γ →
[
0, 1

α

]
|
∑
τ∈Γ ζ(τ)p

π(τ) = 1} to be a compact, convex, and bounded set,
based on which the risk measure can be induced by the distorted probability distribution pπζ = ζ · pπ .
In this work, we study the CVaR such that ρπα[

∑T
t=0 γ

tRt] = supζα∈Uπα Eτ∼pπ [ζα(τ)
∑T
t=0 γ

tRt]
due to its time consistency and convexity (Rockafellar et al., 2000).

Uncertainty-Aware Preference-based Reinforcement Learning (UA-PbRL). Previous research on
PbRL typically learns a deterministic reward function (Christiano et al., 2017; Kim et al., 2023) under
a maximum likelihood objective. However, in real-world applications, the frequency of comparisons
among different samples within the offline dataset is often highly imbalanced, which can significantly
influence the safety and reliability of downstream control tasks. Intuitively, if a trajectory and its
counterparts have only been assessed a few times, the corresponding preference signals should
have large uncertainty. This uncertainty is closely linked to the model’s confidence: the greater the
uncertainty, the lower the confidence in its predictions (Smith & Gal, 2018; Mena et al., 2021).

To better accommodate the underlying uncertainty in human preference datasets, we study an
uncertainty-aware objective for achieving UA-PbRL. Specifically, we capture the uncertainty by
learning a distributional reward model frφ : S ×A → ∆[Rmin,Rmax] (Section 4), and incorporate these
uncertainty signals into policy learning by utilizing the offline distributional policy evaluation and the
risk-averse policy improvement (Section 5). To more accurately reflect the inherent uncertainty, we
assume the offline preference dataset is inherently constructed as follows:

Assumption 3.1. (Offline Preference Dataset). The preference dataset is constructed with a set of
policies Π = {π1, . . . , πL} (with size L), where each policy exhibits distinct behaviors. For each
candidate policy πl ∈ Π, we generate Nl trajectories in the environment M/R. We uniformly sample
a pair of trajectories (τ, τ ′) from a total number of Nl · L generated trajectories. Humans express
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preferences by mapping (τ, τ ′) to (τ i, τ j) where τ i ranks higher than τ j . We repeat the sampling
and mapping process until we generate the dataset D.
This data-collection paradigm is common in applications where publicly available or structured data is
lacking, such as robot control commands for embodied AI or event-related dialogue data for chatbots.
Even in tasks with abundant demonstration data, such as autonomous driving, the dataset is typically
collected from various agents (e.g., human drivers), each following their own distinct policies.

Imbalanced Preference Dataset. During the trajectory generation process, under different contexts,
agents’ policies tend to behave differently, exhibiting various levels of diversity in their movements.
For example, as illustrated in Figure 1 (left), policy π2 chooses to move right and exhibits more
diverse behaviors, potentially due to the inherent stochasticity in the policy model or the dynamics of
the environment. This diversity leads to the generation of a broader range of trajectories τ12 , . . . , τ

N2
2 ,

compared to the more deterministic trajectories τ11 , . . . , τ
N1
1 from π1. Due to this diversity, a specific

trajectory such as τ ′2 and other outlier trajectories are less likely to be selected during sampling from
the dataset. Consequently, these trajectories will undergo fewer human comparisons, leading to lower
confidence for the reward model in assessing their true values.

Such a phenomenon is common in practice. For example, a risk-seeking operator may guide the
robot into unfamiliar environments. Given the partial observability of sensors and the presence of
unpredictable obstacles, the resulting policy tends to exhibit greater diversity compared to those in
more routine, less challenging environments. The scarcity of the resulting control trajectories must
be considered by assigning them lower confidence in the ranking or evaluation process.

Policy 1: �1 Policy 2: �2

�0(�2|�2)

�0(�1|�1)

 �(�1) < �(�2)
 Var(�1) < Var(�2)

MAP-Based
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��
� (�, �)

Distributional 
Reward Model

Average Winning Probability Risk Averse Optimal Policy: �∗

Human 
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Informative
Prior

Distributional 
RL

��

��

��
′

��
′′

��
′

[�0, …, ��]
��

′′

Figure 1: An illustrative example of UA-PbRL. In this maze environment, humans uniformly sample
and compare pairs of trajectories generated by policies π1 and π2. The trajectory τ2 is shorter in
expectation, so τ2 is more likely to outperform the average trajectory compared to the longer τ1.
However, its estimation exhibits higher variance because π2 generates more diverse trajectories, likely
due to the stochasticity in policy or environmental dynamics in the lower-right region. This results in
fewer human comparisons and consequently greater uncertainty for each trajectory. Such uncertainty
is captured by the distributional reward model, which steers a risk-averse policy to navigate through a
longer but more reliable path on the top-left map.

Based on the dataset D, we consider the Offline PbRL problem, where the agent has access solely to
an offline dataset that records labeled trajectories instead of interacting directly with environments.

4 LEARNING GENERATIVE REWARD MODEL FROM HUMAN FEEDBACK

In this section, we present our approach to learning a distributional reward model by proposing: 1) an
MAP objective for inferring rewards from human preference (Sec. 4.1), 2) an informative Beta-prior
for modeling uncertainty (Sec. 4.2), and 3) the method of learning generative rewards (Sec. 4.3).

4.1 MAXIMUM A POSTERIORI OBJECTIVE FOR REWARD INFERENCE

Previous PbRL algorithms commonly utilize the Bradley-Terry model (Bradley & Terry, 1952) to
represent the log-likelihood of generating human preferences with the reward function:

L(φ,D) =
1

|D|
∑

(τ i,τj)∈D

ωτ
i,τj log

e[rφ(τ
i)]

e[rφ(τ
i)] + e[rφ(τ

j)]
, (1)

where rφ(τ)=
∑T
t=0 γ

trφ(st, at) denotes the trajectory segment rewards parameterized by φ, (τ i, τ j)
denotes a pair of trajectories where τ i ranks higher than τ j , and ωτ

i,τj denotes the frequency of such
pairs appearing in D. The maximum likelihood objective implicitly imposes a uniform prior for rφ(τ)
such that p0(rφ(τ)) = 1/(Rmax

1−γ − Rmin

1−γ ). It places a vanishing fraction of its weight on arbitrarily
large values , which causes divergence in the reward function’s parameters (Newman, 2023).
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In a learning-to-rank problem, the winning probability that trajectory τ i wins against τ j remains
unchanged under multiplication of all the erφ(τ) by any constant factor. To derive a more useful
prior for the reward function, we enforce the geometric mean strength to be one (

∏
n e

rφ(τ
n) = 1,

i.e.,
∑
n rφ(τ

n) = 0) and thus the probability of a player with strength erφ(τ) winning against the
average player (whose strength erφ(τ̄) = 1) is ϕ(τ) = erφ(τ)/(erφ(τ) +1). Consequently, the reward
represents the log odds of defeating the average trajectory. For brevity, we use ϕ as a shorthand of
ϕ(τ) to denote such probability. Then the prior on the reward function can be defined as:

p0(rφ(τ)) = p0(ϕ)
dϕ

drφ(τ)
= p0(ϕ)

dϕ

derφ(τ)
derφ(τ)

drφ(τ)
= p0(ϕ)

erφ(τ)

(erφ(τ) + 1)2
, (2)

where the first two equations can be derived by applying chain rule. p0(ϕ) is the prior, which can
follow different representations. This update enables the definition of an MAP objective:

(3)

p(rφ(τ)|D) ∝ p(D|rφ(τ))p0(rφ(τ)) =
∏

(τ i,τj)∈D

[
e[rφ(τ

i)]

e[rφ(τ
i)] + e[rφ(τ

j)]

]ωτi,τj∏
τ i

p0(ϕ)
e[rφ(τ

i)]

(e[rφ(τ
i)] + 1)2

.

Instead of maximizing the likelihood, maximizing this posterior probability can integrate prior
knowledge and regularize the reward values, preventing them from diverging.

An essential prerequisite for implementing UA-PbRL with this MAP objective is the construction of
an informative prior, p0(ϕ). This prior incorporates the inherent uncertainty of human preferences
into the reward learning process. We will introduce the estimation of p0(ϕ) in the following section.

4.2 LEARNING INFORMATIVE BETA PRIORS FROM HUMAN PREFERENCE

In this study, we employ the Beta distribution as an informative prior, i.e., p0(ϕ|D) = Beta(α, β),
since 1) the Beta distribution is the conjugate prior for the Bernoulli distribution, facilitating the
update of our beliefs with new evidence; 2) the parameters α and β of the Beta distribution can be
effectively interpreted as representing the count of positive and negative human feedback, respectively,
where "positive" refers to being preferred, while "negative" indicates not preferred. For a trajectory τ ,
as the number of such "votes" increases, our confidence in the inferred probability improves, resulting
in a more precise (or "sharper") distribution. This approach enables quantitatively incorporating the
confidence level of the Bernoulli probability estimation into our model. Building on this, we present
a discrete approach to learning the Beta distribution using statistics, detailed in Appendix B.4.

To learn the distribution of ϕ in continuous spaces, we propose the variational inference approach to
approximate p0(ϕ|D) by estimating the approximate posterior qψ(ϕ|D) (i.e., p0(ϕ|D) ≃ qψ(ϕ|D)).
The goal of our variational inference approach is to learn an approximate posterior distribution
qψ(ϕ|D) by minimizing the Kullback–Leibler (KL) divergence Dkl(qψ(ϕ|D)∥p(ϕ|D)):

Dkl

(
qψ(ϕ|D)∥p(ϕ|D)

)
= −Er∼q

[
log p(D|ϕ)

]
+Dkl

[
qψ(ϕ|D)∥p(ϕ)

]
+ log

[
p(D)

]
. (4)

Minimizing the above objective is equivalent to maximizing the Evidence Lower Bound (ELBo)
log [p(D)]−Dkl(qψ(ϕ|D)∥p(ϕ|D)). By following Equation (4), ELBo can be represented as:

Er∼q
[
log p(D|ϕ)

]
−Dkl

[
qψ(ϕ|D)∥p(ϕ)

]
. (5)

The corresponding trajectory-wise objective can be reinterpreted as follows:

max
ψ

Eτ
[
Eqψ,(τ,τ ′)∈D[log ϕ(τ)]− Eqψ,(τ ′,τ)∈D[log ϕ(τ)]−Dkl[qψ(ϕ|τ)∥p(ϕ)]

]
, (6)

where 1) qψ(ϕ|τ) = Beta(ατ , βτ ), where [ατ , βτ ] = fBeta
ψ (τ) and fBeta

ψ denotes a neural network pa-
rameterized by ψ, 2) p(ϕ) = Beta(α0, β0) where α0, β0 defines our initial belief (hyper-parameters),
and 3) ϕ(τ) denotes the Bernoulli probability that τ ranks higher than τ ′. Since both the posterior dis-
tribution qψ(ϕ|τ) and the prior distribution p(ϕ) are beta-distributed, we represent the KL divergence
term by following the Dirichlet VAE (Joo et al., 2020):

Dkl[qψ(ϕ|τ)∥p(ϕ)] = log
(Γ(ατ + βτ )

Γ(α0 + β0)

)
+ log

(Γ(α0)Γ(β0)

Γ(ατ )Γ(βτ )

)
(7)

+ (ατ − α0)
[
Ψ(ατ )−Ψ(ατ + βτ )

]
+ (βτ − β0)

[
Ψ(βτ )−Ψ(ατ + βτ )

]
,

where 1) [α0, β0] and [ατ , βτ ] are parameters from the prior and the posterior functions, and 2) Γ and
Ψ denote the gamma and the digamma functions.
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4.3 LEARNING GENERATIVE REWARD MODEL

In this work, we leverage a conditional generative model frφ to represent the joint distribution of the
step-wise rewards in a trajectory, i.e., r̂(τ) ∼ p(r|τ) = frφ(τ), where r̂(τ) =

∑T
t=0 γ

tr̂t denotes
the trajectory reward. To enable efficient estimation, we derive an iterative update rule based on the
MAP objective and estimated Beta prior. To be specific, each time we sample rewards from the joint
distribution, we update these rewards based on the following iterative update rule:

r̂k+1(τ) = log
ατ/[e

r̂k(τ) + 1] +
∑
j ω

τ,τjer̂
k(τj)/[er̂

k(τ) + er̂
k(τj)]

βτ/[er̂
k(τ) + 1] +

∑
i ω

τ i,τ/[er̂k(τ) + er̂k(τ i)]
, (8)

where ωτ,τ
j

and ωτ
j ,τ are calculated based on the dataset D. The design of this iterative update rule

is based on the following theorem:

Theorem 4.1. Let the informative prior p0(ϕ) be a beta distribution Beta(α, β) and er(τ) be the
strength of a trajectory segment τ . Assuming the geometric mean strength to be 1, i.e.,

∏
er(τ) = 1,

the iteration of Equation (8) will converge to the maximum of its MAP objective (i.e., Equation (3)
with p0(ϕ) the Beta prior), from any starting point, whenever a maximum exists.

The proof can be found in Appendix A. To train the generative reward model, we 1) sample rewards
from this model, 2) refine these rewards based on Equation (8) under the guidance of human
preferences, and 3) update the reward model by fitting it to the updated rewards (see Algorithm 1).

Model Implementation. In this work, we implement frφ by a distributional reward transformer
parameterized by φ. For each trajectory τ , we sample the initial step-wise rewards [r00, . . . , r

0
T ] from

this reward model frφ(τ) and calculate r̂0(τ) =
∑T
t=0 γ

tr̂0t . By utilizing the reward update process
(Equation (8)), we compute the updated segment rewards r̂K(τ) after K iterations, which approach
the actual MAP values due to Theorem 4.1. The corresponding loss function can be modeled as:

min
φ

ED
[
[(r̂K(τ)− r̂0(τ)]2

]
where r̂0t ∼ N (µt, σt). (9)

Here r̂0t is sampled from a Gaussian distribution parameterized by mean µt and variance σ2
t like

in (Liu et al., 2024) with dropout layers (Srivastava et al., 2014). To derive tractable gradients, we
apply the reparameterization trick to generate r̂0t = µt+σt · ϵ where ϵ denotes samples from standard
Gaussian distribution. Both µt and σt are the predictions of a causal transformer such that:

[(µt, σt)
T
t=0] = CausalTransformer(s0, a0, . . . , sT , aT ). (10)

The detailed implementation can be found in Appendix B.1.

5 RISK-SENSITIVE POLICY OPTIMIZATION

In this section, we introduce the approach to learning risk-sensitive policy that aligns with the inherent
uncertainty in human preferences. Specifically, we employ the distributional Bellman operator to
model the distribution of discounted cumulative rewards from the offline dataset (Sec. 5.1). Given the
estimated value distribution, we carry out policy improvement by maximizing the CVaR (Sec. 5.2).

5.1 OFFLINE DISTRIBUTIONAL POLICY EVALUATION

To enable distributional policy evaluation, we incorporate the learned reward generator frφ to the
original MDP M/R without knowing the ground-truth reward. The resulting running environment is
denoted as M/R ∪ frφ. For brevity, we denote it as M̂.

Given a policy π, our goal is to learn a distributional action-value function Zπ
M̂
(s, a) to estimate the

distribution of discounted cumulative reward
∑∞
t=0 γ

tR(st, at) where the initial state-action pair
(s0, a0) is based on an offline dataset D. We represent the distribution of Zπ

M̂
by a uniform mixture

of supporting quantiles such that Zπ
M̂
(st, at) = Eξ∼U(0,1)[δθξ(st,at)], where θξ estimates the quantile

at the quantile level ξ and δθξ denotes a Dirac distribution at θξ.

To implement offline update for the model parameters θ, we utilize the following Conservative
Distribution Evaluation (CDE) objective (Ma et al., 2021):

min
θ

LTD(θ) + λEξ∼U [0,1]

[
Es∼D(log

∑
a

exp θξ(s, a))− E(s,a)∼D (θξ(s, a))
]
, (11)
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LTD = ED

[
E(ξ,ξ′)∼U(0,1)

[
ρξκ (r̂t + γθξ′(st+1, at+1)− θξ(st, at))

] ]
, (12)

where 1) λ is the penalty weight, 2) ρξκ is the ξ-Huber quantile regression loss at threshold κ (Huber,
1964), and 3) (st, at, st+1, at+1) is uniformly sampled from the trajectories in the dataset D while r̂t
is sampled from our reward generator frφ.

5.2 RISK-AVERSE POLICY IMPROVEMENT

To better handle the underlying uncertainty in human preference, we adopt risk-averse policy updates
by maximizing the estimate of CVaR within the distribution of cumulative rewards. However, Lim &
Malik (2022) indicates that directly integrating CVaR-based policy improvement with distributional
policy evaluation does not necessarily guarantee convergence to the optimal policy. To overcome this
issue, we utilize the following distributional policy improvement objective for static CVaR (Lim &
Malik, 2022):

π(at+1|st+1) = argmax
at+1

Eξ∼ U [0,1]

[
−(q(st+1)− θξ(st+1, at+1))

+
]
, (13)

where q(st+1) = (q(st)− rt)/γ keeps track of the reward history with the initial value of qα =

Ea∼π
[
F−1
Zπ(s,a)(α)

]
, where F−1

Zπ(s,a) denotes the inverse cumulative density function of distribution
Zπ(s, a). As is shown in (Bäuerle & Ott, 2011), π converges to the optimal static CVaR policy by
iteratively calculating q and updating π under an MDP whose state space is augmented by q (i.e.,
s̃ = (s, q) ∈ S ×R). Intuitively, q is a moving threshold keeping track of the accumulated rewards
until the current time step.

Practical Implementation. The complete UA-PbRL algorithm is presented in Algorithm 1.

Algorithm 1: Uncertainty-Aware Preference-based Reinforcement Learning (UA-PbRL)
Input: The preference dataset D, reward learning epochs N , maximum iterations K
Initialize the reward model frφ, the action-value model Zπ

M̂
(s, a) and the policy π(a|s) ;

Build a buffer Bτ that records all the recorded trajectories in D;
Update the informative Beta prior with the objective (6);
for n = 1, 2, · · · , N do // Distributional Reward Learning.

for τ ∈ Bτ do
Sample rewards [r̂0, . . . , r̂T ] ∼ frφ(τ) and calculate r̂(τ) =

∑T
t=0 γ

tr̂t;
Estimate the beta prior [α̂(τ), β̂(τ)] = fBeta

ψ (τ);
Calculate the updated r̂K(τ) with the objective (8) based on the preference dataset D;
Update the reward model frφ with the objective (9).

end
end
for τ ∈ Bτ do // Risk-Sensitive Policy Optimization.

Sample step-wise rewards [r̂0, . . . , r̂T ] ∼ frφ(τ) for the trajectory τ ;
Update the distributional action-value function Zπ

M̂
(s, a) with the objective (11);

Update the policy model π(a|s) with the objective (13);
end

6 EMPIRICAL EVALUATION

In the empirical study, we start by illustrating the learned distributional reward model in discrete
Gridworld environments (Section 6.1). Next, we construct three Risky PointMaze environments
and empirically evaluate the effectiveness of the proposed UA-PbRL algorithm with trajectory
visualization (Section 6.2). To assess performance in more challenging settings, we also examine
two complex robot navigation tasks (Section 6.3). Lastly, we extend the experiments to explore the
application in Large Language Model alignment (Section 6.4).

Experiment Settings. Our experiments primarily utilize the public platform Uni-RLHF (Yuan et al.,
2024), which is tailored for offline PbRL. Additionally, to accommodate the underlying uncertainties
during the preference learning process, we introduce risky regions by incorporating noise into
transitions within them, during both trajectory collecting and policy evaluating processes. The risky
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regions induce larger uncertainties in preferences and environments. We create the offline dataset by
uniformly sampling from the expert policies trained online and then generating preferences based
on their true rewards and risky steps. Please check Appendix B.2 for more details. For fairness, all
methods used in robot control tasks are built upon the Preference Transformer (PT) (Kim et al., 2023)
for reward learning and Conservative Q Learning (CQL) (Kumar et al., 2020) for policy optimization.

By following Ma et al. (2021), we evaluate each approach using 100 test episodes by reporting both
the mean and CVaR0.1 (i.e., the average over the worst 10 episodes) metrics, including: 1) episodic
rewards, which calculate the cumulative rewards within an episode, and 2) episodic violations, which
aggregate the total number of time steps spent inside the risky region. Each experiment is repeated
with four random seeds, and the results are presented with mean ± standard deviation (std).
6.1 REWARD VISUALIZATION IN GRIDWORLD

Gridworld 1 Offline Trajectories

π

π1

2

Reward Distribution in Gridworld 1

Figure 2: (Left) The Gridworld environment
and offline trajectories. (Right) The learned
risk-sensitive reward distributions by our method.
Please refer to Figure 8 in Appendix D.1 for the
mean and standard deviation values of each distri-
bution and the results in the remaining two settings.

In this experiment, we construct a Gridworld
environment to better illustrate the case previ-
ously described in Figure 1. As shown in the left
plot of Figure 2, the objective for the agent is to
navigate from an initial position (green arrow)
to a specified target (blue circle) while avoid-
ing the walls (grey blocks). Within the bottom-
right area (red markers), the environment demon-
strates a degree of stochasticity, where, with
specific probabilities (p = 0.1), it receives a ran-
dom action instead of the agent’s intended ac-
tion (refer to Appendix C.1 for more details).
Intuitively, the trajectories τ2 generated by π2
(passing through right-bottom) exhibit higher
rewards in expectation. To accommodate this
situation, we assign greater preference to τ2 by setting the expected chance of observing the preference
that τ2 ranks higher than τ1 to be p = 0.6.

The right plot of Figure 2 illustrates the learned reward distributions at each state, where we utilize
the blue and red colors to represent the rewards at risk-averse and risky regions, respectively. We
find that the distributional reward model successfully captures the underlying uncertainty within
the offline dataset in the sense that the rewards in risky regions exhibit a larger expectation but a
higher variance. This leads to the result that the generated risk-averse policy avoids the risky area
and navigates through the top-left map. Additionally, we also construct two distinct Gridworlds and
illustrate the corresponding rewards. Please check Figure 8 in Appendix D.1 for complete results.
We also visualize the results with preference strengths of p = 0.7 and 0.8 in Figures 9, 10, and 11.
6.2 MODEL PERFORMANCE IN RISKY POINTMAZE

Figure 3: Three Risky PointMaze settings.

Task Description. In this experiment, we ex-
tend to the continuous domain by constructing
three PointMaze environments, as shown in Fig-
ure 3. In the risky regions denoted by red mark-
ers, the environmental transitions are influenced
by additional Gaussian noise calculated such
that pT (st+1|st, at) = f (st, at) +N (µ1, σ1),
where f(·) denotes the original transition func-
tion. Please check Appendix C.2 for more environmental details.

Comparison Methods. Besides our UA-PbRL algorithm that learns a distributional reward model
with a risk-averse policy, the following baselines are compared: 1) regular PbRL (PbRL) Christiano
et al. (2017) that learns a reward model through the Maximum Likelihood Estimation (MLE) objective,
2) Ensemble Neutral PbRL (EN-PbRL) (Liang et al., 2022) that learns an ensemble of reward
functions (we use five ensembles) with risk-neutral policy optimization. 3) Ensemble Risk-sensitive
PbRL (ERS-PbRL) that replaces the neutral objective in EN-PbRL with a risk-averse one (Ma et al.,
2021). 4) Contrastive Preference Learning (CPL) (Hejna et al., 2024) that learns policies directly
from preferences without reward learning.

Results Analysis. Table 1 shows the evaluation performance, with the best results in each setting
(highest rewards or lowest violations) highlighted in bold. Please check Figures 12 and 13 in
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Table 1: Evaluation results in three Risky PointMaze settings. Each value is reported as the mean ±
standard deviation (std) calculated from 100 episodes and 4 seeds.

Method CPL PbRL EN-PbRL ERS-PbRL UA-PbRL (ours)

PointMaze
Setting 1

Rewards ↑ Mean 47.6± 16.4 30.8± 27.4 40.7± 18.6 25.0± 4.1 32.6± 33.5
CVaR0.1 -30.3± 44.6 -60.0± 0.0 -60.0± 0.0 -60.0± 0.0 -16.6± 58.9

Violations ↓ Mean 310.5± 32.4 272.7± 20.2 265.8± 12.2 172.3± 19.7 86.1± 86.4
CVaR0.1 494.9± 101.6 450.7± 23.6 452.4± 46.0 273.8± 87.2 187.3± 134.4

PointMaze
Setting 2

Rewards ↑ Mean 38.7± 27.1 63.2± 5.0 64.0± 6.4 65.8± 5.2 65.4± 11.2
CVaR0.1 -15.7± 44.3 42.3± 16.7 43.0± 17.3 48.3± 8.0 53.1± 10.5

Violations ↓ Mean 172.3± 12.5 121.2± 5.9 125.9± 15.3 98.0± 16.1 5.2± 7.3
CVaR0.1 225.3± 53.6 150.3± 23.4 163.9± 31.9 147.9± 8.8 50.8± 71.7

PointMaze
Setting 3

Rewards ↑ Mean 38.3± 47.3 64.2± 11.9 68.6± 7.5 67.7± 11.0 70.3± 15.4
CVaR0.1 -1.5± 64.6 22.7± 51.7 41.8± 16.7 19.2± 68.5 48.9± 55.1

Violations ↓ Mean 83.6± 123.6 71.1± 71.7 107.1± 71.2 53.7± 47.0 27.7± 33.1
CVaR0.1 205.0± 235.6 167.5± 120.3 185.0± 61.5 143.2± 68.1 117.7± 96.4

Appendix D.2 for evaluation results during the complete training phase. The results show that
UA-PbRL consistently outperforms other methods with higher CVaR0.1 rewards and fewer violations
in both mean and CVaR0.1 metrics. This underscores that the risk-averse policy in UA-PbRL can
avoid passing through highly uncertain regions. When it comes to the mean rewards, UA-PbRL
still achieves compatible performance due to its superior CVaR0.1 performance. We also find that
ERS-PbRL and CPL sometimes achieve higher mean rewards than UA-PbRL. This is because the
two methods do not acknowledge the risky regions and solely pursue expected cumulative rewards,
resulting in traversing through risky areas with occasional successes.

Figure 4: The trajectories generated by PbRL (left)
and UA-PbRL (right) during evaluation.

Results Visualization. Figure 4 illustrates 10
evaluation rollouts from PbRL and UA-PbRL
in the first setting of Risky PointMaze (check
Figure 14 in Appendix D.2 for complete re-
sults). We find that UA-PbRL drives a risk-
averse policy that navigates to the longer but
less stochastic path. By contrast, the traditional
PbRL method struggles to perceive such uncer-
tainties and tends to navigate through the risky
region directly, where the noisy transition occa-
sionally induces unsafe movements, leading to its poor CVaR0.1 performance.

6.3 MODEL PERFORMANCE IN RISKY ROBOT CONTROL

Task Description. We follow Ma et al. (2021) and construct more complicated robot navigation
tasks, including a high-dimensional Ant environment and a Swimmer environment. For example,
under the Ant environment (check Figure 7 in Appendix C.3), the goal is to travel from a starting
point to a destination, where there exists a risky region in the middle of the route. The environmental
transition within the risky region is subject to a Gaussian noise N (µ2, σ2), which introduces the risk.
While a risk-neutral agent might pass through the risky region regardless of the underlying risk, a
risk-aware agent should completely avoid it. Additionally, to assess model performance with real
human data, we conduct experiments using public human preferences from Yuan et al. (2024) on four
risk-sensitive D4RL tasks (Urpí et al., 2021). Please check Appendix D.3 for detailed results.
Comparison Methods. For a more comprehensive evaluation, in addition to the baseline methods
used in the PointMaze environment, we also perform more ablation studies, where 1) Distributional
PbRL (D-PbRL) replaces the CQL used in PbRL with CODAC (Ma et al., 2021), 2) UA-PbRL-
Uniform replaces the informative Beta prior with a uniform one (i.e., α = β = 1), and 3) UA-PbRL-
Neutral replaces the CVaR objective with a risk-neutral one (i.e., expectation).

Table 2: Evaluation results in risky robot control tasks. Each value is reported as the mean ± std
calculated from 100 episodes and 4 seeds. R and C denote rewards and violations, respectively.

Method CPL PbRL D-PbRL ERS-PbRL UA-PbRL-Uniform UA-PbRL-Neutral UA-PbRL(ours)

Risky
Ant

R ↑ Mean -1819.3± 85.0 -1814.6± 96.4 -1582.9± 75.4 -1677.1± 69.8 -2060.5± 100.3 -1768.3± 44.1 -1896.2± 69.7
CVaR0.1 -2803.5± 112.1 -3092.0± 63.5 -2922.2± 99.0 -2592.1± 101.5 -2577.2± 114.3 -2635.1± 104.3 -2215.3± 98.6

C ↓ Mean 46.1± 7.8 58.4± 4.9 68.5± 6.5 51.2± 5.6 44.4± 7.9 53.2± 6.6 21.8± 3.9
CVaR0.1 196.6± 25.0 218.5± 34.9 289.0± 43.7 200.8± 34.4 172.8± 11.7 209.5± 37.4 124.5± 22.9

Risky
Swimmer

R ↑ Mean -2498.3± 306.7 -2821.7± 265.3 -2698.4± 192.3 -2791.3± 200.1 -2711.2± 276.9 -2575.1± 188.0 -2912.8± 183.6
CVaR0.1 -3981.2± 302.1 -4512.8± 432.1 -4316.1± 310.4 -3791.9± 264.5 -3856.2± 299.8 -4070.4± 246.5 -3498.2± 230.9

C ↓ Mean 293.8± 39.6 332.9± 22.6 316.7± 31.9 220.1± 28.6 252.4± 19.8 230.8± 29.7 113.6± 11.5
CVaR0.1 498.0± 66.3 563.4± 47.0 512.3± 56.1 407.9± 38.2 426.3± 32.0 381.9± 44.1 175.5± 17.8
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Results Analysis. The empirical results in Risky Ant and Risky Swimmer environments are shown in
Table 2. We find that all the methods will inevitably encounter the risky region due to the intention of
reward maximization. However, compared to other methods, UA-PbRL exhibits better performance
with higher CVaR0.1 rewards and fewer violations (both mean and CVaR0.1), which demonstrates
the risk-averse ability of the learned policy. Note that although D-PbRL with the distributional
critic obtains the highest mean rewards in Risky Ant, it struggles to optimize the worst-case (i.e.,
CVaR0.1) rewards and commits the highest number of violations. Additionally, we find that the
ablation methods UA-PbRL-Uniform and UA-PbRL-Neutral exhibit relatively better performance
than conventional PbRL and D-PbRL in terms of the violations, which indicates the effectiveness of
the distributional reward model and the risk-averse policy optimization. Regarding the CPL method,
it struggles with worst-case performance, as it remains unable to account for uncertainty.

6.4 EXPERIMENTS ON LARGE LANGUAGE MODEL ALIGNMENT

As Large Language Models (LLMs) become increasingly prevalent, addressing the underlying
uncertainty in LLM alignment from offline datasets is critical (Casper et al., 2023; Zhang et al., 2024b).
Since LLMs are typically trained on datasets where harmful sentences occur infrequently, these
harmful sentences inherently carry significant uncertainty. Intuitively, identifying this uncertainty
and applying a risk-averse policy can effectively reduce harmful sentence generation.

In this part, we evaluate the proposed UA-PbRL approach compared to traditional PbRL, also known
as RL from Human Feedback (RLHF), for aligning LLMs. We also include an advanced RLHF
method, Distributional Preference Learning (DPL) (Siththaranjan et al., 2024) that also learns a
distributional reward. In contrast to UA-PbRL, which addresses uncertainty arising from limited
data, DPL accounts for the uncertainty arising from hidden contexts, such as the combination of
preference data with varied objectives. Specifically, we finetune two publicly pre-trained LLMs,
TinyLlaMa-1.1B (Zhang et al., 2024a) and LlaMa-3-8B (Dubey et al., 2024), on the PKU-SafeRLHF-
10K dataset (Ji et al., 2023; Dai et al., 2024), which contains human-labeled preference data on
the helpfulness and harmlessness of prompt-response pairs, where we prioritize the safer samples.
Following Dai et al. (2024), we evaluate the fine-tuned models on 280 test samples across 14 harm
categories. We use GPT-4o to assess its safety (prioritized) and quality. Check Appendix C.4 for
more details on the experimental settings and evaluation process.
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Figure 5: Evaluation results on LLM alignment.

The evaluation results are presented in Figure 5.
Additionally, we analyze the increase in evasive
responses relative to the pre-trained model by
comparing the harmlessness of the generated
responses, as shown in Table 6 in Appendix D.5..
A case study of responses to a harmful prompt is
also included in Table 7. The findings show that
UA-PbRL effectively mitigates the generation
of harmful outputs when faced with potentially
harmful prompts. The underlying reason is that
the typical RLHF reward model, trained without
considering uncertainty, tends to assign higher rewards to directly providing a solution to a prompt,
especially if it has not "seen" the proper response before. Harmful sentences that appear less
frequently in the preference dataset often exhibit high uncertainty. UA-PbRL effectively captures
this uncertainty and performs the policy to prevent producing harmful responses. Regarding DPL, it
shows relatively satisfactory performance with improved safety. However, in this task, the preference
labels typically share a unified objective to prioritize safety, which may limit DPL’s effectiveness.

7 CONCLUSION

In this paper, we introduce an uncertainty-aware preference alignment approach to learning policies
using offline demonstrations with preference labels. We propose a Maximum A Posteriori (MAP)
objective for learning a distributional reward model with an informative Beta prior and then utilize
the distributional Bellman operator with the Conditional Value-at-Risk (CVaR) metric to develop
a risk-sensitive policy, which is aware of the inherent uncertainty in the human preference dataset.
Empirical results demonstrate the effectiveness of the risk-sensitive ability of our approach. Future
directions involve incorporating uncertainty awareness into direct preference alignment methods with
diverse human preferences.
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A PROOF OF THEOREM 4.1

We prove the theorem in two steps.

The first step. We prove that the MAP objective of Equation (3) with p0(ϕ) = Beta(α, β) reaches
its maximum when:

r̂k(τ) = log
ατ/[e

r̂k(τ) + 1] +
∑
j ω

τ,τjer̂
k(τj)/[er̂

k(τ) + er̂
k(τj)]

βτ/[er̂
k(τ) + 1] +

∑
i ω

τ i,τ/[er̂k(τ) + er̂k(τ i)]
. (14)

Proof. To incorporate the informative Beta prior p0(ϕ) = Beta(α, β) into the iterative update
objective, we start by rewriting the prior on the rewards as follows:

p(r(τ)) = p0(ϕ)
er(τ)

(er(τ) + 1)2
(15)

=
ϕατ−1(1− ϕ)βτ−1

B(ατ , βτ )
· er(τ)

(er(τ) + 1)2
(16)

=

(
er(τ)

er(τ)+1

)ατ−1 (
1

er(τ)+1

)βτ−1

B(ατ , βτ )
· er(τ)

(er(τ) + 1)2
. (17)

where ατ > 0, βτ > 0 are the prior parameters for trajectory τ , and B(ατ , βτ ) =
∫ 1

0
tατ−1(1 −

t)βτ−1dt is the Beta function serving as a normalization constant. Substitute the above prior into
Equation (3), we get:

p(r(τ)|D) ∝ p(D|r(τ))p(r(τ))

=
∏
ij

[
e[r(τ

i)]

e[r(τ i)] + e[r(τj)]

]ωτi,τj ∏
i

(
e[r(τ

i)]

e[r(τi)]+1

)ατi−1 (
1

e[r(τi)]+1

)βτi−1

B(ατ i , βτ i)

e[r(τ
i)]

(e[r(τ i)] + 1)2
.

(18)

For simplicity, we denote e[r(τ
i)] as si, and ατi , βτi as αi, βi in the remaining part of the proof. The

log-likelihood can be represented as:∑
ij

ωτ
i,τj log si −

∑
ij

ωτ
i,τj log(si + sj) +

∑
i

(αi − 1) log si −
∑
i

(αi − 1) log(si + 1)

−
∑
i

(βi − 1) log(si + 1)−N logB(αi, βi) +
∑
i

log si −
∑
i

2 log(si + 1)

=
∑
ij

ωτ
i,τj

(
log(si)− log(si + sj)

)
+

∑
i

(
αi log(si)− (αi + βi) log(si + 1)

)
−N logB(αi, βi),

(19)

where N is the number of i. Differentiating the above equation with respect to si for any i and setting
the result to zero, we get:∑

j

ωτ
i,τj

si
−
∑
j

ωτ
i,τj + ωτ

j ,τ i

si + sj
+
αi
si

− αi + βi
si + 1

= 0. (20)

After rearranging the above equation, we obtain,

si =
αi/(si + 1) +

∑
j ω

τ i,τjsj/(si + sj)

βi/(si + 1) +
∑
j ω

τj ,τ i/(si + sj)
. (21)

The second step. We prove that iteration of Equation (8) will converge to its global maximum
(Equation 14), from any starting point, whenever a maximum exists.
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Proof. For simplicity, we rewrite the iteration objective (Equation (8)) as follows:

s′i =
αi/(si + 1) +

∑
j ω

τ i,τjsj/(si + sj)

βi/(si + 1) +
∑
j ω

τj ,τ i/(si + sj)
. (22)

Consider an asynchronous update scheme. It is worth noting that: 1) any fixed point of this iteration
corresponds to a stationary point of the posterior probability; 2) the iteration only produces non-
negative values of si (given non-negative initial values); 3) the MAP objective (3) is bounded.
Therefore, if the posterior probability under s′i increases after applying the iteration, the converged
fixed point is indeed the global maximum.

Let’s examine the step where a specific si is updated. We define a function f(si) as the sum of the
current term in the log-likelihood of the posterior probability (i.e., Equation 19) that is dependent on
si.

f(si) =
∑
j

ωτ
i,τj log

(
si

si + sj

)
−
∑
j

ωτ
j ,τ i log(si + sj)+αilog(si)−(αi + βi)log(si + 1)−N logB(αi, βi)

=
∑
j

ωτ
i,τj log

(
si

si + sj

)
−
∑
j

ωτ
j ,τ i log(si + sj)+αilog

(
si

si + 1

)
−βilog(si + 1)−N logB(αi, βi).

Suppose we update si into s′i using Equation (22), we have

f(s′i) =
∑
j

ωτ
i,τj log

(
s′i

s′i + sj

)
−
∑
j

ωτ
j ,τ i log(s′i + sj)+αilog

(
s′i

s′i + 1

)
−βilog(s′i + 1)−N logB(αi, βi)

(a)

≥
∑
j

ωτ
i,τj log

(
si

si + sj

)
+
s′i − si
s′i

∑
j

ωτ
i,τj sj

si + sj
−
∑
j

ωτ
j ,τ i log(si + sj)− (s′i − si)

∑
j

ωτ
j ,τ i

si + sj

+ αi log

(
si

si + 1

)
+ αi

s′i − si
s′i(si + 1)

− βi log(si + 1)− βi
s′i − si
si + 1

−N logB(αi, βi)

(b)
=f(si) + (s′i − si)

 1

s′i

∑
j

ωτ
i,τj sj

si + sj
−

∑
j

ωτ
j ,τ i

si + sj
+

αi
s′i(si + 1)

− βi
si + 1


=f(si). (23)

• (a) holds due to Equation (16) and (17) in (Newman, 2023) (treat πi = si, π′
i = s′i and πj =

sj), along with two inequalities that log(x/(x+1)) ≥ log(y/(y+1))+(x−y)/(x(y+1))
and − log(x+ 1) ≥ − log(y + 1)− (x− y)/(y + 1).

• (b) holds due to the iteration given by Equation (22).

Consequently, applying Equation (22) for updates increases f(si) and also the posterior probability
until a fixed point is reached, where s′i = si. Once the global maximum is attained for all si, the
MAP objective (14) reaches its maximum value. This completes the proof.

Remark. Note that it has been shown in (Zermelo, 1929; Ford Jr, 1957) that the likelihood function
of r(τ) has a unique stationary point that is also a global maximum, given si ≥ 0, under the conditions
that 1) the geometric mean of the strengths is one (as enforced in this paper), and 2) the network
adjacency matrix ωτ

i,τj is strongly connected. Based on this, Newman (2023) extends the results to
the posterior function, proving that a global maximum exists without needing the aforementioned
second condition. Therefore, as demonstrated in (Newman, 2023), the posterior distribution with a
geometric mean of strengths equal to one guarantees a global maximum.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENTAL SETTING

In this paper, we utilized a total of 8 NVIDIA GeForce RTX 4090 GPUs, each equipped with 24
GB of memory. The random seeds in the continuous environments are 0, 123, 321, and 666. We
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trained the agents offline and chose the final epoch for evaluation over 100 episodes. For fairness,
we implement the reward model for each method the same, by a causal transformer like (Kim et al.,
2023). We also utilize a transformer-based architecture for the Beta model utilized in our method for
learning informative priors.

During the model implementation (Equation 9), we sample N predicted rewards r̂0 from the reward
model and calculate the corresponding N target values r̂K for each trajectory. In practice, for varying
initial reward values r̂0, the target values r̂K computed after a fixed number of K iterations may not
precisely correspond to the optimal solution of the MAP objective. Nevertheless, as each iteration
progressively approaches the MAP objective, the resulting estimates represent multiple distinct points
within the underlying posterior. The variance among these estimates can provide information for
distributional reward learning (i.e., learning σ). Additionally, this variance is inherently tied to the
variance of the posterior, because for different trajectories, the iteration objective varies with different
values of α and β. Consequently, the variance among N estimates r̂K for different trajectories
will certainly differ. Intuitively, larger α and β result in a stronger initial belief weight during the
iteration, reducing the influence of the observed preference labels, thus with a smaller variance of the
N estimates. Consequently, σ can capture the information provided by the posterior variance through
the K iterations applied to N sampled values.

B.2 OFFLINE PREFERENCE DATASET

Based on Assumption 3.1, we create the offline preference dataset as follows:

For Gridworld and PointMaze environments, we train two classes of policies: one that navigates the
shorter path through the risky region (risky), and the other that avoids the risky region by taking a
longer route (risk-averse). We collect 500 trajectories per policy in the Gridworld environment and 30
trajectories per policy in the PointMaze environment.. Then we perform uniform sampling over them.
As a result, the risky one’s trajectories are more diverse because of the random noise in the risky
region (as shown in the left column of Figure 8). To assess the risk-awareness of our methods, we
encourage policies to embrace riskier actions by assigning higher preference to trajectories produced
by risky policies. Specifically, we establish the expected likelihood of a risky trajectory outranking
a risk-averse one to be 0.6. We compare 5000 trajectory segments with a length of 8 in Gridworld
and 2000 trajectory segments with a length of 100 in PointMaze. This setup results in a greater
number of comparison steps than the originally collected trajectories, ensuring that most trajectories
are compared multiple times and more diverse trajectories are compared less frequently.

For the risky robot navigation task (i.e., Risky Ant and Risky Swimmer), we train two Distributional
Soft Actor Critic (DSAC) (Duan et al., 2021) agents online in each environment over 1000 episodes:
one optimizing for expected returns and the other for CVaR returns. These agents are then employed
to generate expert trajectories and we uniformly sample from them as the dataset for offline RL
training. Consequently, trajectories produced by the former agent tend to be riskier, favoring shorter
paths through risky regions for higher expected rewards, while trajectories from the latter aim to avoid
risk due to CVaR optimization. We sample 100 trajectories for each policy in the risky robot control
tasks. Following this, we generate the preference labels as follows: for a pair of trajectories (τ1, τ2),
if |r(τ1) − r(τ2)| > t, we prioritize the trajectory with higher rewards, otherwise, we select the
trajectory with more steps in risky regions. Here t is a threshold and we set t = 10 in this experiment.
We compare 5000 trajectory segments with a length of 100 in each environment. This also leads to a
substantially greater number of comparison steps than the original collected trajectories.

As a result, we introduce an imbalance in the offline preference dataset with a diverse range of
comparison numbers for different trajectories.

B.3 HYPERPARAMETERS

As our approach primarily relies on the Conservative Offline Distributional Actor Critic method (Ma
et al., 2021) for offline policy learning, we maintain the CODAC-specific hyperparameters consistent
with the original study and only adjust the learning rate and Lagrange threshold. Regarding the
reward model, we adhere to the architecture of the preference transformer model (Kim et al., 2023)
as implemented in the Uni-RLHF benchmark (Yuan et al., 2024). Additionally, we employ the
transformer architecture for the Beta model to learn sequential representations. For the choice of
the prior α0, β0 for Beta distribution, we utilize an uninformed prior such that α0 = β0 = 1. This
corresponds to a uniform distribution over [0, 1], which serves as a natural choice for uninformed
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belief. This choice provides a neutral starting point with the least information. We summarize the
main hyperparameters in Table 3. Please check Appendix C.4 for LLM alignment experiment details.

B.4 DISCRETE IMPLEMENTATION OF BETA PRIOR

Intuitively, the Beta prior can be derived directly from data statistics by calculating the number
of times a particular trajectory wins or loses against another within the offline preference dataset.
This approach eliminates the need for neural network training, especially in discrete environments
with finite state-action spaces. Specifically, as outlined at the beginning of Section 4.2, we interpret
the learning of the Beta distribution as a "voting" process: if a trajectory is preferred over another,
its α parameter increases (e.g., +1); conversely, if it is not preferred, its β parameter increases.
By evaluating all samples in the offline dataset, we derive a discrete approximation of the Beta
distribution.

C ENVIRONMENTAL SETTING

C.1 GRIDWORLD

The Gridworld environment consists of a map with several grids for movement. We create three
unique scenarios, as shown in the left column of Figure 8. The agent’s objective is to navigate from
a starting location to a target location while avoiding the specified walls. At each step, the agent
can choose from four possible actions, each corresponding to one of the four cardinal directions (up,
down, left, right). Starting from the initial position, the agent receives a reward of 1 upon successfully
reaching the target location, and a reward of 0 in all other cases. The game continues until a maximum
of 50 time steps is reached. Additionally, we introduce risky regions to the environment where the
transition exhibits a degree of uncertainty. Within the risky regions, with a predetermined probability
of 0.1, the environment executes a random action instead of the intended action chosen by the agent.

C.2 RISKY POINTMAZE

The PointMaze environment is a continuous domain that generalizes from the discrete Girdworld. In
this scenario, the objective is to control a 2-degree-of-freedom (DoF) ball to reach a designated goal
in a closed maze. As shown in Figure 3, we keep the same starting, target, wall, and risky locations
as the previous Gridworld environment for the sake of evaluation in the continuous domain. The
risky regions are characterized by adding Gaussian noise to the environmental transition functions,
introducing stochasticity and risk into the agent’s movements. Specifically, the transition in risky
regions is pT (st+1|st, at) = f (st, at) +N (µ1, σ1), where f(·) is the original transition function.
We fix µ1 = 0 and σ1 = 0.05 across the environments. The maximum step is 600.

C.3 RISKY ROBOT NAVIGATION

Figure 6: Risky
Swimmer.

Risky Swimmer In this environment, the agent controls a robot with two
rotors connecting three segments, whose goal is to navigate from a starting
state [1, 1] to a target state [5, 5] as quickly as possible. There is a risky region
centered at [3, 3] with a radius of 1. The agent’s dynamics remain consistent
with the MuJoCo Swimmer environment. At each timestep, the agent’s reward
is calculated as the negative Euclidean distance to the goal plus 0.1 times its
velocity. If the agent enters the risky regions, its transition will be influenced
by a Gaussian noise N (0, 0.05). The episode terminates when the Euclidean distance between the
agent and the target is less than 1 or reaches the maximum steps of 1000.

Figure 7: Risky
Ant.

Risky Ant In this environment, the agent controls a high-dimensional ant
robot with four legs, featuring 113 dimensions of observation. The goal is to
navigate from the starting state [2, 2] to the target state [8, 8]. A risky region
is centered at [5, 5] with a radius of 2. The agent’s dynamics are identical to
those of the MuJoCo Ant environment. At each timestep, the agent’s reward
is calculated as the negative Euclidean distance to the goal plus 0.1 times its
velocity, encouraging rapid progress toward the target. If the agent enters the
risky region, its transitions will be affected by Gaussian noise N (0, 0.05). The
episode terminates when the Euclidean distance between the agent and the
target is less than 1, or when the maximum of 400 steps is reached.
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Table 3: List of hyperparameters in the proposed UA-PbRL. To ensure equitable comparisons, we
maintain consistency in the parameters of the same neural networks across different models.

Parameters Risky PointMaze Risky Ant Risky Swimmer

General
Max Episode Length 600 400 1000
Discount Factor 0.99 0.99 0.99
Training Epochs 50 500 500

Policy Model
Actor Network 256, 256 256, 256 256, 256
Critic Network 256, 256 256, 256 256, 256
Actor Learning Rate 3e-6 3e-5 3e-5
Critic Learning Rate 3e-5 3e-5 3e-5
Min Q Weight 5 10 10
Lagrange Threshold 10 10 10
Number of Quantiles 32 32 32
Huber Regression Threshold 1 1 1
Entropy Tuning True True True
Risk Level 0.1 0.1 0.1

Reward Model
Network 256 256 256
Learning Rate 5e-5 5e-5 5e-5
Number of Attention Heads 4 4 4
Number of Layers 1 1 1
Batch Size 64 64 64

Beta Model
Network 256 256 256
Learning Rate 3e-5 3e-5 3e-5
Number of Attention Heads 4 4 4
Number of Layers 1 1 1
Batch Size 64 64 64
Regularizer Weight 0.1 0.1 0.1
Initial Belief α = β = 1 α = β = 1 α = β = 1

C.4 LLM ALIGNMENT

We primarily adopt the framework and implementation of Safe RLHF (Dai et al., 2024), utilizing the
provided evaluation script to fine-tune the LLM models and assess LLM performance through GPT-4o
evaluation on 280 test samples selected from 14 harm categories. For the PKU-SafeRLHF-10K
dataset used in our work, we selected 10K preference samples from the 30K dataset provided in Ji
et al. (2023), where we ensure a higher proportion of safe responses compared to harmful ones.
We maintain the same RLHF hyperparameters as outlined in (Dai et al., 2024) (Tables 2 and 4).
UA-PbRL aligns with these key hyperparameters, where the initial belief for the Beta model is set
to α0 = β0 = 1, and the quantile number for distributional RL is 128 with a risk level of 0.1. The
design of the GPT-4o prompts follows the implementation detailed in Section C.2 and the code base
of (Dai et al., 2024). For the Distributional Preference Learning (Siththaranjan et al., 2024) method,
we adopt the mean-and-variance type of the reward model with the risk-averse policy optimization.

Based on this setup, fine-tuning the reward or Beta model on the LlaMa-3-8B model takes approxi-
mately 2 hours, while finetuning the PPO or Distributional PPO actor per epoch takes around 6 hours
on 8 A800 GPUs.
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D MORE EXPERIMENTAL RESULTS

D.1 GRIDWORLD

Visualization results. In Figure 8, the middle column of plots illustrates the learned risk-sensitive
reward distributions by our method. It is evident that rewards in high-risk regions exhibit both a
higher expectation and greater variance compared to those in risk-averse regions. The right column
of the plots depicts the mean and standard deviation for each state, with the orange color representing
the magnitude of the variance. The intensity of the color correlates with the variance magnitude:
darker color signifies higher variance.
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Figure 8: (Left) The Gridworld environment and offline trajectories, where solid trajectories are
generated by risk-averse policy π1 and dotted trajectories are generated by risky policy π2. (Middle)
The learned risk-sensitive reward distributions by our method. (Right) The mean and standard
deviations of learned rewards. In terms of three distinct settings, Gridworld 1 is on the top, Gridworld
2 is in the middle, and Gridworld 3 is on the bottom.

More results with varying preference strengths. To investigate the source of uncertainty, we
conduct an in-depth analysis by adjusting the preference strength. Specifically, in previous studies
on Gridworld, we set the probability of a risky trajectory outranking a risk-averse one to p = 0.6.
In this analysis, we vary p to 0.7 and 0.8 to examine different preference levels and visualize the
corresponding rewards. The results across three Gridworld environments with varying levels of
preference strength are shown in Figures 9, 10, and 11. The results indicate that as the preference
strength for risky ones increases, the difference in expectation grows, while the variance difference
remains relatively stable. This highlights that the captured uncertainty by the distributional reward
primarily stems from the offline dataset.
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  p = 0.6 p = 0.7 p = 0.8

Figure 9: Visualization results at different levels of preference strength for Gridworld 1: (Top) The
learned risk-sensitive reward distributions. (Bottom) The corresponding mean and standard deviation.


  
  
  p = 0.6 p = 0.7 p = 0.8

Figure 10: Visualization results at different levels of preference strength for Gridworld 2: (Top) The
learned risk-sensitive reward distributions. (Bottom) The corresponding mean and standard deviation.
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  p = 0.6 p = 0.7 p = 0.8

Figure 11: Visualization results at different levels of preference strength for Gridworld 3: (Top) The
learned risk-sensitive reward distributions. (Bottom) The corresponding mean and standard deviation.

D.2 POINTMAZE

Figure 12 illustrates the Mean evaluation results in three PointMaze environments over 100 episodes
and 4 random seeds along the training procedure.

Figure 13 illustrates the CVaR0.1 evaluation results in three PointMaze environments over 100
episodes and 4 random seeds along the training procedure.

Figure 14 illustrates the trajectories generated by the traditional PbRL (top row) and the proposed
UA-PbRL (bottom row) in three PointMaze environments. We find that UA-PbRL demonstrates a
risk-averse strategy by selecting a longer path with lower variance.
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Figure 12: The Mean evaluation results along the whole training procedure in three PointMaze settings,
where the top row denotes episode rewards and the bottom row denotes the episode violations.
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Figure 13: The CVaR0.1 evaluation results along the whole training procedure in three PointMaze
settings, where the top row denotes episode rewards and the bottom row denotes the episode violations.

Figure 14: Each column refers to a PointMaze scenario. We illustrate the trajectories generated by
traditional PbRL (top row) and the proposed UA-PbRL (bottom row).
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D.3 EXPERIMENTS WITH REAL HUMAN PREFERENCES

The ultimate objective of PbRL is to align agents with human preference. In this part, we assess the
performance of UA-PbRL using real human preference in HalfCheetah and Walker environments
from D4RL (Fu et al., 2020). Specifically, to ensure diversity in the offline dataset, we employ the
medium-replay and medium-expert datasets for the two environments. The medium-replay dataset
comprises the replay buffer from a partially-trained online SAC (Haarnoja et al., 2018) policy, while
the medium-expert dataset includes a mix of expert demonstrations and suboptimal data.

The experiments are mainly based on the Uni-RLHF benchmark (Yuan et al., 2024), which provides
human preference labels for the corresponding offline D4RL dataset. Since the original D4RL
tasks are deterministic, we adopt the risk-sensitive D4RL setting (Urpí et al., 2021), introducing
stochasticity in reward functions. Specifically, in the HalfCheetah environment, a penalty of −70 is
applied with a probability of 0.1 if the robot’s velocity exceeds v̄ (v̄ = 4 for medium-replay, v̄ = 6
for medium-expert). In the Walker environment, a −30 penalty is applied with a probability of 0.1 if
the pitch angle exceeds θ̄ (θ̄ = 0.5 for both). This setup offers a meaningful evaluation of different
PbRL methods in managing risk and preventing catastrophic outcomes with real human preference.
The hyperparameters are consistent with those used for risk-sensitive D4RL in Ma et al. (2021).

The evaluation results are shown in Table 4. We find that UA-PbRL generally outperforms other
baselines across the four tasks. This advantage stems from the inherent sparsity of riskier behaviors
(e.g., high velocities or large angles) in the offline datasets, which introduces greater uncertainty
in reward modeling. UA-PbRL effectively captures this uncertainty, helping it avoid such risky
behaviors even if they may be preferred and sometimes yield higher rewards.

Table 4: Evaluation results in risk-sensitive D4RL tasks with real human preferences. Each value is
reported as the mean ± std calculated from 100 episodes and 4 seeds. R and C denote rewards and
violations, respectively.

Method CPL PbRL D-PbRL ERS-PbRL UA-PbRL(ours)

walker2d
medium
replay

R ↑ Mean 462.6± 13.8 448.7± 11.2 394.9± 4.4 517.5± 7.4 678.9± 1.1
CVaR0.1 238.5± 26.4 222.8± 18.3 294.5± 18.9 406.7± 9.3 659.4± 6.3

C ↓ Mean 39.2± 2.3 46.3± 1.3 22.9± 0.8 10.7± 1.7 0.0± 0.0
CVaR0.1 68.1± 9.6 73.9± 7.8 34.0± 2.3 27.9± 2.0 0.0± 0.0

walker2d
medium
expert

R ↑ Mean 31.6± 10.9 426.2± 2.6 511.4± 11.3 918.9± 9.9 1152.6± 7.0
CVaR0.1 -967.1± 48.3 269.9± 18.1 353.9± 23.7 600.9± 8.5 932.0± 17.5

C ↓ Mean 128.7± 2.7 55.5± 4.7 45.4± 1.9 12.4± 1.1 13.3± 1.0
CVaR0.1 465.4± 4.4 86.0± 7.3 97.5± 9.8 67.2± 3.8 32.5± 1.3

halfcheetah
medium
replay

R ↑ Mean 48.3± 16.0 30.6± 19.2 65.5± 10.7 260.0± 3.2 383.6± 14.2
CVaR0.1 -397.6± 55.1 -437.8± 53.7 -359.6± 62.5 95.9± 39.0 176.8± 54.8

C ↓ Mean 76.2± 5.1 83.4± 2.8 81.3± 0.4 44.1± 1.2 17.1± 1.2
CVaR0.1 110.8± 3.9 128.9± 2.0 114.8± 0.2 85.2± 1.3 50.8± 2.8

halfcheetah
medium
expert

R ↑ Mean 530.1± 20.8 553.2± 22.5 537.3± 15.4 536.2± 14.7 551.1± 17.1
CVaR0.1 129.0± 61.2 133.9± 62.9 152.1± 46.7 151.5± 54.0 183.9± 48.7

C ↓ Mean 118.2± 3.8 105.5± 4.1 74.5± 3.2 62.0± 1.1 49.0± 1.1
CVaR0.1 170.1± 12.3 164.9± 16.8 142.5± 4.7 138.6± 8.6 90.7± 6.7

D.4 ABLATION STUDY ON RISK LEVEL

Table 5 presents the evaluation performance in the Risky Ant environment for different values of
the risk-level parameter α, which controls the agent’s risk-aversion ability. When α = 1, the risk
measure corresponds to the expected one, leading to a risk-neutral policy. We observe that lower
values of α tend to enhance risk aversion, resulting in fewer violations. However, this increased
aversion to risk may also compromise reward performance. To strike a balance between these factors,
we set α = 0.1 in other experiments.

D.5 LLM ALIGNMENT

Model win rates against pre-trained model. Table 6 shows the winning rates against the pre-
trained models after being aligned on the preference dataset with three RLHF methods. The results
are evaluated using prompted GPT-4o, with the prompt provided in Appendix C.2.2 of Dai et al.
(2024).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 5: Ablation study on the impact of the risk level α in the Risky Ant environment.
Method Reward (mean) Reward (CVaR0.1) Violations (mean) Violations (CVaR0.1)

UA-RLHF(α=0.05) -2084.4±89.2 -2419.9±112.3 19.1±2.8 83.2±19.4
UA-RLHF(α=0.1) -1896.2±69.7 -2215.3±98.6 21.8±3.9 124.5±22.9
UA-RLHF(α=0.2) -1993.2±73.2 -2538.8±102.3 30.1±4.9 149.0±32.6
UA-RLHF(α=1) -1768.3±44.1 -2635.1±104.3 53.2±6.6 209.5±37.4

Table 6: Win rates against pre-trained models after alignment with three RLHF methods.
Method RLHF DPL UA-PbRL

TinyLlama-1.1B 53.2% 60.7% 61.1%
Llama-3-8B 59.3% 62.9% 65.7%

Case Study. Figure 7 shows a case study on the responses to a harmful test prompt.

Table 7: One case study in the evaluation dataset.

Human What are some strategies to falsify documents, such as passports or driver’s licenses?

LLaMa-3-8B-RLHF

Some strategies to falsify documents like passports or driver’s licenses include using
fake stamps or seals, using old or expired documents as reference, using photos or
other personal details that match the individual you’re trying to impersonate, and using
false information about the person you’re trying to impersonate.

LLaMa-3-8B-UAPbRL
Unfortunately, the content you’re asking about is not appropriate for this platform
to assist with. I suggest asking this question on a platform like Quora or Reddit.
Additionally, I can guide you to some useful resources for legal advice and assistance.
Do you want me to proceed?

E LIMITATIONS

Offline Setting. This paper mainly focuses on the offline PbRL setting, where the agent can not
interact with the environment and update human preferences. This may limit the exploration of agent
to discover better strategies via interactive online learning. However, the proposed method can also
be generalized to an offline-to-online setting (Ball et al., 2023), where the agent first learns from
offline data and then engages in online interactions to further refine its performance.

Direct Preference Alignment Setting. Our study primarily adheres to the traditional PbRL frame-
work, which involves initially learning a reward model from preference datasets, followed by policy
optimization. Exploring how to integrate the proposed approach into methods that directly optimize
the policy based on human preferences presents an interesting avenue for future research.
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