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Abstract—Automated spine lumbar MRI analysis improves
clinical workflow and diagnostic accuracy for lumbar spinal
stenosis (LSS). In this paper, we introduce AutoSpineAI, a novel
fully automated CAD framework for lumbar spine MRI
analysis and structured medical report generation (sSMRG)
leveraging large language models (LLMs). The system processes
3D MRI DICOM volumes by extracting mid-sagittal slices for
vertebrae and intervertebral discs (IVDs) segmentation and
localizes corresponding axial slices using 3D cross-projection
algorithm. For sagittal and axial slices segmentation, a novel
lightweight efficient compact model (ECM) is proposed by
integrating multi-attention mechanisms within a compact Al
architecture to extract the quantitative spinal structural
measurements (SSM): disc degeneration, vertebral anomalies,
and other alignment irregularities. These structured
measurements and assessments are integrated and merged in
prompts for a novel hybrid agentic LLM-driven retrieval
system that combines semantic information and knowledge
graph-based reasoning to generate detailed level-wise diagnostic
report: vertebrae and IVDs. AutoSpineAl achieves Dice scores
of 97.58% and 94.01% for sagittal and axial segmentation,
respectively, and generates a structured full report by Gemma3
LLM within 30 seconds per patient, achieving 83.51% Bert F1-
score, 19.33% Meteor, and 15.31% Rougel. AutoSpineAI seems
to be a scalable and interpretable for clinical and practical
solutions for MRI LSS.

Keywords—Lumbar spinal stenosis (LSS); Computer-aided
Diagnosis (CAD); Hybrid Agentic RAG; Large Language
Model (LLM); Structured Medical Report Generation (sMRG).

I. INTRODUCTION

Chronic low back pain (CLBP) is recognized as a major
public health issue, consistently ranking among the leading
causes of disability worldwide [1]. One of the principal
contributors to CLBP is lumbar degenerative spine diseases,
which affect approximately 266 million individuals annually
[2]. Spinal alignment disorders like vertebral deformities
have shown significant prevalence, with an estimated 44
million cases reported in the USA alone in 2017 [3]. These
conditions often lead to progressive mobility impairments,
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underscoring the need for accurate and efficient diagnostic
techniques [4]. Magnetic resonance imaging (MRI) serves as
the gold standard for the non-invasive spinal pathologies
assessment offering detailed visualization of intervertebral
discs, vertebrae, and spinal alignment under standardized
imaging protocols [5]. To mitigate this, Al-powered CAD
systems have been introduced, demonstrating notable success
in enhancing diagnostic performance and reproducibility [6].
Generating accurate and comprehensive assistive radiology
reports continues to be significant challenges in clinical
workflows. In this study, we introduce AutoSpineAl, an
innovative CAD system that automates the process of
diagnosing lumbar spine diseases and generating full
structured vertebra and IVD level-wise medical reports. The
framework processes multimodal data including 3D sagittal
and axial MRI DICOMs and the corresponding clinical text
reports, leveraging state-of-the-art LLMs to produce accurate
and contextualized diagnostic reports. The major innovations
of this work are summarized as follows,

(1) A novel end-to-end CAD system is proposed to analyze
MRI sagittal and axial imaging data with the associated
clinical text reports towards automatic multimodal spinal
assessment and full medical report Generation (sMRG).

(2) Lightweight segmentation model is designed to extract
critical spine anatomical structures for LSS diagnosis.

(3) A 3D axial cross-projection mechanism is introduced to
automatically localize axial slices corresponding to the
mid of each IVDs in sagittal view.

(4) Disease-specific spinal measurements are derived from
sagittal and axial segmentation outcomes to support LSS
assessment and for accurate structured report generation.

(5) A novel hybrid agentic LLM-based RAG module is
proposed, combining semantic information and domain
knowledge structured disease relations to enhance
retrieval for clinically accurate reports generation.

II. RELATED WORK

Recent Al advancements have enhanced CAD systems for
medical imaging, enabling automated diagnostics and report
generation to streamlines clinical workflow [7]. Al-kafti et al.
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Fig. 1. End-to-end structure of the proposed CAD system including main three components: (1) Spinal Structures Segmentation
(SSS), (2) Spinal Structure Measurements (SSM), and (3) Structural Medical Report Generation (SMRG).

[8] focused on segmentation key axial spine structures using
SegNet, but lacked downstream diagnostic tasks. Later
Studies by Natalia et al. [9], Masood et al. [10], Zheng et al.
(2022) [11], and Al-Haidri et al. (2025) [12] integrated
quantitative spinal measurements following segmentation to
enable disorder detection and classification. While these
approaches improved diagnostic specificity, they often faced
challenges in generating detailed and clinically useful
medical reports. Yi et al. (2024) introduced TSGET, a two-
stage global enhancement layer that leverages the image-
level global features to generate detailed clinical reports. Yu
et al. (2025) [13] proposed a lightweight Al framework for
classification and text report generation using the MIMIC-
CXR chest X-ray and bladder pathology datasets. To our
knowledge, this is the first work to focus on detailed report
generation for MRI-based lumbar spine diseases. The
proposed CAD system combines a vision encoder (i.e.,
lightweight segmentation and extraction of spinal
measurements) with a text encoder to generate
comprehensive  structured medical reports (sMRG),
advancing automation in lumbar spine diagnosis and
evaluation.

III. METHODOLOGY

Fig. 1 depicts the proposed AutoSpineAl which integrates
vision and text encoders to generate high-quality multimodal
image and text embeddings. The proposed lightweight
segmentation model extracts key anatomical spine structures
from sagittal and axial views. It begins by segmenting the mid-
sagittal slice to identify lumbar IVDs, because it consistently
provides the clearest anatomical representation of the
vertebral bodies, intervertebral discs, and spinal canal. This
central slice is a reliable reference across patients; it captures
key structures required for accurate segmentation. Then, 3D
cross-projection to align the corresponding axial images.

Using the segmented regions from both sagittal and axial
slices, pathological spinal indices are computed and stored in
an encrypted JSON file and passed into the structured prompt
for LLM-based report generation. The proposed
AgenticRAG, retrieves the fop-k similar documents from
vectorDB, and disease relationships from the temporal graph
DB. The proposed hybrid semantic knowledge and structured
disease relations could enhance the relevance of medical
report generation. The primary objective here is to combine
the vision encoder’s outcomes to be explained within the
sMRG, ensuring the balance of clarity among clinical
accuracy, diagnostic clarity, and computational efficiency.

A. Dataset

We use a publicly available lumbar spine MRI dataset
[14]. It consists of paired T2 (sagittal) and T1(axial) MRI 3D
DICOM volumes from 515 patients with symptomatic low
back pain, and corresponding clinical findings reports. The
dataset contains a total of 48,345 MRI slices, with image
resolutions mostly at 320x320 pixels and 12-bit pixel
precision. Expert neurologists manually annotated the mid-
slice sagittal and some selected axial images. For the sagittal
view [15], the annotations were derived based on the mid-slice
to segment the vertebrae with their IVDs in between, sacrum,
posterior elements (PosteriorA/PosteriorB), and anterior
spinal structures. For the axial view [16], the annotations
delineate four regions: IVD, posterior element (PE), thecal sac
(TS), and the area between the anterior and posterior (AAP).
For the ablation study, we use 100 cases (real private dataset).

B. Proposed Al-based CAD Framework

1) Contour extraction module
Fig. 2 depicts the proposed segmentation lightweight
efficient compact model (ECM). Fig.2(a) shows the
backbone comprises an input convolutional layer followed by
four cascaded encoder blocks (E-blocks) in a (2,3,4,3)
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Fig. 2. The proposed segmentation lightweight model (i.e., efficient compact model (ECM)). (a) Overall encoder-decoder network, (b) E-
Block structure with channel squeezing, K/Q projections, and Squeeze-and-Excitation (SE) blocks, abd (c) D-Block structure with parallel
convolution paths and feature fusion, alongside Multi-Scale Module (MSM) with multiple attention mechanisms.

configuration. Each E-block, detailed in Fig. 2(b), employs a
dimensional reduction strategy, where input features are
compressed to one-fourth of their original dimension through
a convolution layer. These compressed representations
subsequently undergo parallel transformations via dilated
convolutions and max pooling to generate Query (Q) and Key
(K) projections. The Q-K fusion is enhanced through an
additional convolutional layer, with residual connections
preserving gradient flow. Attention mechanisms are
hierarchically integrated from the second encoder stage
onward. A non-linear approximation technique for Value (V)
projection is implemented through dual parametric ReLU
activations operating on positive and negative Q-K fusion
values. The resulting Q, K, and V projections feed into our
multi-attention framework comprising: (1) Channel Self-
Attention (CSA) that captures inter-channel dependencies;
(2) Patch Self-Attention (PSA) that models spatial context
across feature patches; (3) Squeeze-and-Excitation (SE) that
recalibrates channel-wise feature responses; and (4)
Bidirectional Mamba (Bi-Mamba) that efficiently captures
long-range dependencies along the channel dimension. The
decoder pathway consists of four stages, each containing a
decoder block (D-block), followed by a Feature Refinement
and context module (FRCM) and an output convolution layer.
Both D-blocks and FRCM utilize dilated convolutions at
varying rates to expand the effective receptive field. Max-
pooling operations after each encoder stage and
corresponding up-sampling in the decoder facilitate multi-
scale feature learning. Dropout regularization (p=0.2) is
incorporated to mitigate overfitting.
2) 3D Axial projection allocates the axial slices:
After segmenting the sagittal IVDs, the centroid of each IVD
contour is projected into 3D acquisition space using DICOM
metadata. This enables accurate localization of corresponding
axial slices that intersect the midline of each IVDs, ensuring
targeted axial MRI extraction.
3) Spinal Structure Measurements (SSM)

A set of predefined clinically relevant measurements is
quantified from extracted pathological structures' contours in
each sagittal and axial view, to support spinal disease
assessment and preoperative planning. The measurements
were derived by image processing algorithms (tools) from

both views. From a sagittal view, inspired by Masood et al.
(2022)[11], Iumbar structural measurements, including
vertebrae height, each IVD or disc height, two angles (i.e.,
lumbosacral angles (LLA) and lumbar lordotic angle (LSA),
and spinal height. Additionally, three different spinal
disorders are identified: lumbar lordosis (normal, hyper
lordosis, and hypo lordosis), spondylolisthesis (normal,
posterior displacement, or anterior displacement), and the
degree of vertebra deformation. Vertebral deformity is
assessed using the Genant grading system [17], providing
four vertebral gradings for wedge and biconcave deformities
(normal, mild, moderate, and severe). From the axial view,
the anterior-posterior (AP) distance in mm is measured
among the segmented contours of IVD and PE. The axial
measurements serve for identifying stenosis grading (i.e.,
normal, mild, moderate, or severe) for spinal canals, left
foraminal (LF), and right foraminal (RF) regions. The CAD
system determines the herniation level (i.e., minor or severe)
based on the calculated herniation ratio presented in [10].

C. Text Encoder for sMRG

The MRG module generates structured reports using the
derived spinal assessments from the vision encoder:
quantitative measurements, degenerative disease grading,
and spinal disorders detection. These are injected into
structured queries for clinical retrieval to enhance LLM
outputs by retrieving relevant medical knowledge from
vector database (VD) and knowledge graph (KG) databases
and feeding it into context, thereby improving factual
consistency and grounding. Unlike the traditional base RAG
module, the proposed AgenticRAG integrates agentic
reasoning loop instead of single-shot retrieval. The LLM
judges relevancy and iteratively refines retrieval. The agent
retrieves relevant information from two different knowledge
sources: the first is a vector database, enabling semantic
retrieval of document embeddings generated by the mxbai-
embed-large model. The second is a temporal knowledge
graph, which extracts triplets (node—relationship—node) from
unstructured clinical text using predefined entities (e.g.,
MedicalCondition, AnatomicalStructure) and relationships
(e.g., AFFECTS, LOCATED IN) to find disease
relationships among spinal pathologies, anatomical regions,



and diagnostic rules [18]. This dual retrieval strategy ensures
comprehensive contextual retrieval by combining both
semantic embeddings in addition to disease relational
knowledge. In cases where retrieved information is
irrelevant, the agentic reasoning continues iteratively to
improve the relevancy of retrieved results. However, after
multiple reasoning steps, if the retrieved information remains
irrelevant, it defaults to generating the report based solely on
measurements from vision encoders and the structured
prompt template. Following the dual retrieval method, post-
retrieval filtering refines the retrieved data by checking
medical synonyms, aligning writing styles, and removing
unhelpful cases based on doctor-defined grading rules. The
refined retrieved information is then merged with level-based
assessments to construct a comprehensive prompt that
incorporates findings, impressions, recommendations, and
structured level-based analysis. The final prompt is fed into
the LLM generating detailed and clinically coherent sMRG.
The novelty of the proposed hybrid AgenticRAG approach
lies in its ability to combine real-time reasoning, adaptive
retrieval, and structured prompt engineering, which generates
reports that are not only comprehensive and precise but also
aligned with clinical best practices and domain knowledge.

D. Implementation Execution Settingss

The ECM model was implemented in PyTorch 2.7.0 and
trained with the Adam optimizer, ReduceLROnPlateau
scheduler (decay factor 0.9, patience 4), batch size of 16,
initial learning rate of le-3, and trained for 150 epochs. Data
augmentation included random sharpness, rotation,
horizontal and vertical flips (with p=0.2). Hyperparameter
configurations were derived from our previously established
experimental setup [19]. Training was conducted on a
workstation running Ubuntu 18.04.6 LTS with an Intel Core
19-7920X CPU, Titan V GPU (12GB VRAM), and 64GB
RAM. For inference, the vision encoder and text encoder
were executed on an NVIDIA GeForce RTX 5070 Ti. We
employed Python 3.11.7, CUDA 11.8, and cuDNN 9, with
LangChain for orchestration of the embedding, retrieval, and
LLM-based generation. Additionally, ChromaDB was used
for vector-based semantic retrieval, and Neo4j served as the
backbone temporal knowledge graph database, together
ensuring stable, efficient, and modular system performance.

E. Evaluation Metrics

For image segmentation, we evaluated the performance of
the vision encoder using the Dice Similarity Coefficient
(DSC) [20]. For the sMRG evaluation, we use ROUGE [21],
METEOR [22], FRUGAL, BLUE [23], and Bert score [24].
These evaluation metrics are applied to the findings section
of the generated report and the physician's ground truth.
Additionally, each Al-generated report is independently
evaluated by three neurologists, who rate it on a scale from 1
(poor) to 10 (excellent).

IV. RESULTS

A. Segmentation

The proposed ECM is evaluated against state-of-the-art
segmentation architectures on axial and sagittal MRI views.
On sagittal T2-weighted scans (Table I), ECM achieved an
average dice score of 97.58%, closely comparable with the
best-performing model SegResNet (97.79%), while utilizing
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only 9% of its architectural parameters. It achieved the
highest performance of vertebrae segmentation with 96.64%
Dice score and remains within 0.1-0.4 percentage of the top
scores across other anatomical structures. On axial T 1-weight
scans (Table II), the model achieves top highest average dice
score of 94.01% outperforming all other models. This
consistent performance across different MRI views proof
ECM’s robustness and generalizability. Parameter efficiency
(0.58M) compared to over 11.5M for UNETR, ECM provides
an optimal balance between segmentation accuracy and
computational efficiency. It also maintained real-time
inference, processing at 24.28 frames per second with 3.62
GFLOPs, making it highly suitable for low-resource or time-
constrained clinical environments. To assess 3D axial cross-
projection accuracy, we assigned 100% to slices within the
IVD and 0% outside, achieving 98.6% accuracy. Only one
error (Patient#0259; L5-S1) occurred, with the slice near the
IVD but over the sacrum cap, though neurologists confirmed
no significant impact the Al report giving a score of 9/10.

B. Medical Report Generation

To evaluate the proposed AgenticRAG for sMRG
pipeline, we use five common LLMs: Gemma3 [25], Mistral
[26], LLaMa3.1 [27], Phi4 [28], and Qwen3 [29]. Gemma3
achieved the top performance in ROUGE-L, Bert F1-Score
and BLUE with 0.155, 0.856, and 0.176, respectively, while
Mistral slightly outperforms in Meteor and FURGAL scores
with 0.239, and 0.6175 as shown in Fig. 3. The proposed
hybrid AgenticRAG demonstrates superior evaluation results
for SMRG across all LLMs compared to the individual
retrieval of AgenticRAG KG and AgenticRAG VD. A
slight improvement observed in AgenticRAG VD over
AgenticRAG_KG, suggests that semantic information
provides greater benefits than relational reasoning alone.
Furthermore, Fig. 4 presents a structured generated report
example for a single patient, highlighting the abnormal
degeneration, spinal disorders, and misalignment conditions.
While the second section provides a detailed level-based
analysis for both vertebrae and IVDs, specifying normal and
abnormal diagnosis for each level. The SsMRG demonstrates
the clinical value of detailed level-by-level analysis for the
workflow efficiency. These highlighted sections indicate the



TABLE I. SEGMENTATION PERFORMANCE COMPARISON (DICE %) ON SAGITTAL MRI SCAN. ALL Al MODELS ARE TRAINED AND EVALUATED
ON THE SAME DATASET, TRAINING ENVIRONMENT AND SETTINGS

Al Segmentation Sagittal MRI Scan (T2-weighted) Params FLOPs Frame/Sec
Model PosterA PosterB Vertebrae IVD Sacrum BG Avg. (Million) (G)
DeepLabv3 99.07 99.02 96.43 94.84 94.29 99.67 97.35 58.7 125.5 43.19
AttentionUnet 98.83 98.78 96.41 94.77 93.79 99.55 97.33 5.5 728.3 13.08
UNETR 98.69 98.89 95.48 93.95 91.55 99.43 96.86 115.6 52.6 62.41
SwinUNETR 98.99 98.92 96.19 94.50 93.69 99.60 97.41 6.3 9.64 48.78
SwinTransformer 99.12 99.04 96.31 95.02 94.42 99.63 97.57 59.8 119.94 51.56
SegResNet 99.18 99.22 96.60 95.20 94.50 99.68 97.79 6.38 32.86 193.63
TransUNet 99.08 98.87 96.64 94.99 94.11 99.71 97.62 105.3 66.88 34.74
Proposed ECM 99.09 98.83 96.64 95.16 94.25 99.66 97.58 0.58 3.62 24.28

TABLE II. SEGMENTATION PERFORMANCE COMPARISON (DICE %) ON AXIAL T1 MRI SCAN. ALL Al MODELS ARE TRAINED AND EVALUATED
ON THE SAME DATASET, TRAINING ENVIRONMENT AND SETTINGS

Al Segmentation Axial MRI Scan (T1-weighted) Params FLOPs
Model VD PE TS AAP BG Avg (Million) G Frame/See
DeepLabv3 97.81 93.09 94.26 78.02 99.70 92.69 58.7 125.5 43.19
AttentionUnet 96.53 92.24 93.71 77.99 99.64 92.02 5.5 728.3 13.08
UNETR 96.24 89.12 90.42 76.36 99.58 90.55 115.6 52.6 62.41
SwinUNETR 97.39 92.92 93.98 79.83 99.70 92.90 6.3 9.64 48.78
SwinTransformer 97.83 93.72 94.09 78.92 99.72 92.92 59.8 119.94 51.56
SegResNet 98.02 93.94 94.89 80.67 99.73 93.52 6.38 32.86 193.63
TransUNet 97.94 93.58 94.32 80.63 99.74 93.43 105.3 66.88 34.74
Proposed ECM 97.62 93.93 94.92 83.48 99.76 94.01 0.58 3.62 24.28

neurologists’ validations of the Al-generated reports.

Clinical validation and expert oversight are essential to
prevent over-reliance on automated reports. The neurologists
assessed each report by correcting inaccurate statements,
diagnosis gradings, or measurements. As shown in Fig. 4,
each report was then rated on a scale from 1 (poor) to 10
(excellent). The overall average score across all 52 test cases

was 8 out of 10, indicating great factual alignment and
minimal LLM hallucination.

V. DISCUSSION

AutoSpineAl proposes to provide automatic lumbar
spine analysis in terms of level-wise vertebrae and IVDs
across the lumbar spine. It could balance the high efficiency
and performance in medical MRI sagittal and axial image
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analysis for both vertebrae and IVDs. The neurologist's validations are highlighted by red and green pop-up corrected findings.



P?ehx:'r‘:l:hcas r)ls End-to-end: Al Generated Report Experts Score (Neurologist): 7.5/10_

+ Technique:

| The analysis is based on the patient's complete DICOM volume of lumbar MRI, utilizing T2 -weighted images for sagittal views and T1-weighted images for axial views. The analysis consists of
two sections: Vertebrae analysis and IVDs analysis.

l| + Findings:

] | There is mild degeneration throughout the lumbar spine, resulting in disc herniations at L4 -L5 and m, which produce some associated thecal sac compression and nerve root encroachment.

Degenerative changes also contribute to foraminal narrowing, most prominently at L4 -L5 and L5-S1, impacting the exiting nerve ro ots. Mild vertebral wedging and biconcave deformity is

present throughout the lumbar spine, with notable vertebral displacement at L3 and L5. The lumbar spine exhibits an exaggerat ed lordotic posture. Features of muscle spasm are present.

* Level-Based Analysis

» Vertebrae Analysis:

The lumbar vertebral alignment reveals a series of deformities across multiple levels.

At L1, a wedge deformity of 4.27 is present, classified as normal, along with a biconcave deformity of 15.75, also classified as normal.

= L2 demonstrates a wedge deformity of 5.56 (normal classification) and a biconcave deformity of 23.56, classified as mild. Normal

L3 exhibits a wedge deformity of 12.71 (normal classification), coupled with a biconcave deformity of 25.96, classified as GEEISEES, and demonstrates posterior displacement suggestive of
spondyolisthesis.

L4 presents a wedge deformity of 9.36 ( w-m classification) and a biconcave deformity of 24.93, classified as unu!‘
biconcave deformity of 23.0 ( classification), and Faaaacs displacement indicating spondylolisthesis.
908 832619 i Itered vertebral alignment.

Sagittal Scan

sent, described as m with a ratio of 0.822. Central canal stenosis (CCS) is reported as Normal/Mild, left foraminal stenosis (LFS) is Sever, and r ight
5. Foraminal distances at L5-S1 are: Left Foraminal distance = 0.698mm and Right Foraminal distance = 1.396mm. The AP Distance is 16.761 mm.
aai and RFS is @ Foraminal distances at L4-L5 are: Left Foraminal distance =
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0.698mm and Right Foraminal distance = 0.698mm. The AP Distance is 13.422 mm. \a‘
At the L3-L4 level, no herniation is observed, with a condition reported as [ega and a ratio of 1.133/CCS is m LFS is Normal/Mild, and RFS is Normal/Mild. Foraminal distances at

L3-L4 are: Left Foraminal distance = 3.489mm and Right Foraminal distance= 4.187mm. The AP Distafce is 11.186 m
The lumbar lordosis is characterized by a measurement of Hyper -lordosis; 83. - ——
« Impression: Minor Moderate Normal/Mild |1 ]

The most significant abnormalities include spondylolisthesis at L3 and L5, with associated vertebral displacement, along with foraminal stenosis at L5-51 and L4-L5, resulting in potential nerve
root compromise. Degenerative changes are apparent across multiple vertebral levels, contributing to the observed deformities and foraminal stenosis. The hyper -lordosis suggests altered
spinal curvature.

* Recommendations:

Given the presence of spondylolisthesis and significant foraminal stenosis, further evaluation by a specialist is recommended to determine the need for targeted intervention or treatment to
alleviate potential nerve root compression and address spinal instability. Lifestyle recommendations may include maintaining a healthy weight, practicing good posture, and engaging in core
strengthening exercises.
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Fig.5. Al-generated lumbar spine report from our private real dataset as part of an ablation study, illustrating automated MRI vertebra
and IVD analysis. The neurologists’ validations are highlighted by red and green pop-up corrected findings.

TABLE III. ECM ATTENTION MECHANISMS IMPACT IN TERMS OF DICE AND
INTERSECTION-OVER UNION (IoU) FOR AXIAL SCANS (SEE FIG. 2)

TABLE V. COMPUTATIONAL COST ANALYSIS (SECOND) PER PATIENT OF
EACH COMPONENT IN THE PROPOSED FRAMEWORK AS AN AVERAGE OVER

TABLE IV. PERFORMANCE COMPARISON WITH OTHER MEDICAL REPORT
GENERATION METHODS

segmentation and measurements via the vision encoder with
only 0.58M parameters of ECM lightweight model where the
current state-of-the-art models depend on large parameters
(5.5M-115.6M). The ablation study shown in Table III
demonstrates that each attention mechanism contributes
positively to improving the segmentation performance:
+CSA+PSA enhances by +0.60% Dice score and by +0.96%
IoU. The final combination of CSA+PSA+SE achieves the
best performance with 93.97% Dice score (+0.75%) and
89.08% IoU (+1.17%), representing improvement over the
baseline. This validates our design choice of integrating many

ALL TESTING CASES
. Avg
Model Variant| CSA | PSA | SE | B" | Dice :.?/l; _ N . .
(%) ’ o2 cH 5T |cE|_TEE¥T|S2 8
Baseline X X X X | 9322 | 8791 $2 ¢ 28 EL|SE|g2E|2228|EE| ¢
E‘én. 5235 %"%m«‘:‘i«%bag“
159 153 — Al
+CSA v X X X | 9377 | 88.79 £ = 252 |78 23|22 &
+PSA X v X X | 9365 | 8859
+SE X X v x | 93.69 | 88.67
. . 207 | 282 340 | 024 |16.48]30.62
+Bi-Mamba X X X v | 93.64 | 88.58 AgenticRAG_Hybrid
+CSA+PSA v v X X | 93.82 | 8887 AgenticRAG_VD 200 |257] 3.05 - |16.38]29.61
+CSA+PSA+SE| v v v X 93.97 | 89.08 - 5.61
AgenticRAG_KG ) ) ) 024 115.75] 216

or multiple complementary attention mechanisms within the
ECM architecture. For the text Encoder side, the proposed

Method ROII{GE' MF‘I;FEO BLfU' BLEU' BL;?‘U' Data hybrid AgenticRAG approach with the Gemma3 LLM
MIMIC- provides the best performance for sMRG as shown in Fig. 3.

AHP13] 0285 | 0.154 | 0400 | 0.250 | 0.172 | "o The dual-retrieval framework reduces hallucinations by
CMN [30] 0535 | 0279 | 0548 | 0401 | 0332 Btlﬁdlder grounding generations into factual, retrieved information.
PT0T08Y Table IV compares the performance of automated medical

R2Gen [31] 0277 | 0.142 | 0353 | 0218 | 0.145 MCMXi{C report generation systems against other clinical modalities.
The performance drop in lumbar spine MRI report generation

G 34 Lumbar . inl he lack of 1 li h
AemI?aRAG 01733 | 0166 | 025 |oo017| - Spine is mainly due tp the ack of large pub ic datas.ets an(.i the
gentie MRI complexity of interpreting both axial and sagittal views,

highlighting the need for domain-specific modeling.
Moreover, as the dataset primarily consists of patients with
symptomatic low back pain from a single clinical source, it
may limit model generalizability across diverse populations,
highlighting the need for expanded data resources.
AutoSpineAl is intended to support clinicians rather, as
relying solely on automated reports without expert oversight
poses significant risks in critical medical diagnoses. Future
work will involve thorough usability testing with radiologists
to evaluate its integration into clinical workflows. For cost
commutation, Table V summarizes the computational cost
across each component of the proposed CAD system. The full



report generation method takes an average of 30.62 seconds
per patient, with only 5.61 seconds for segmentation and
spinal measurements. As an ablation study using a separate
private MRI real dataset with approved IRB, AutoSpineAl
demonstrates its ability to perform comprehensive MRI-
based LSS analysis and generate descriptive reports by
leveraging both image and text encoders. In the absence of
ground truth textual reports, neurologists evaluated the Al-
generated outputs and assigned an impressive average score
of 7.5 out of 10 across 100 patient cases. Fig. 5 presents a
complete example of sagittal and axial MRI analysis,
showcasing the automatic generation of detailed Al reports
without any user intervention.

VI. CONCLUSION

AutoSpineAl introduces a lightweight, multimodal
framework for assisting in lumbar spine MRI analysis and
automated report generation. Its Efficient Contextual Module
(ECM) achieves high segmentation accuracy while
maintaining low computational demand, making it suitable for
use in settings with limited resources. For report generation,
the hybrid AgenticRAG approach combines semantic
understanding with structured domain reasoning to deliver
precise, vertebral-level diagnostic outputs. Extensive
evaluations demonstrate the system’s robustness, adaptability,
and clinical relevance. AutoSpineAl effectively integrates
visual and textual features to generate structured reports
within 30 seconds, highlighting its potential as a reliable and
efficient tool for enhancing diagnostic workflows in spinal
radiology.
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