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Abstract

Burst image processing (BIP), which captures and integrates multiple frames into
a single high-quality image, is widely used in consumer cameras. As a typical
BIP task, Burst Image Super-Resolution (BISR) has achieved notable progress
through deep learning in recent years. Existing BISR methods typically involve
three key stages: alignment, upsampling, and fusion, often in varying orders and
implementations. Among these stages, alignment is particularly critical for ensuring
accurate feature matching and further reconstruction. However, existing methods
often rely on techniques such as deformable convolutions and optical flow to realize
alignment, which either focus only on local transformations or lack theoretical
grounding, thereby limiting performance. To alleviate these issues, we propose a
novel framework for BISR, featuring an equivariant convolution-based alignment,
ensuring consistent transformations between the image and feature domains. This
enables the alignment transformation to be learned via explicit supervision in the
image domain and easily applied in the feature domain in a theoretically sound way,
effectively improving alignment accuracy. Additionally, we design an effective
reconstruction module with advanced architectures for upsampling and fusion to
obtain the final BISR result. Extensive experiments on BISR benchmarks show our
superior performance in both quantitative metrics and visual quality.

1 Introduction

Image super-resolution is an important task in image processing. Conventionally, it’s mainly dealt
with in the context of Single Image Super Resolution (SISR) [1} 2] and significant progress has been
made in the last decades. By the advances in image acquisition technologies, a new kind of super-
resolution technique, Burst Image Super-Resolution (BISR) [3} 4] has emerged as an increasingly
valuable alternative. Unlike SISR, BISR reconstructs a high-resolution (HR) image by leveraging
a sequence of low-resolution (LR) images captured in rapid succession, making it inherently more
robust to noise and artifacts. Despite its advantages, BISR faces significant challenges, including
accurate alignment for handling motion variations and effective multi-frame fusion.

The general pipeline for BISR typically involves three key stages: alignment, upsampling, and
fusion, with their order and implementation varying across methods. Among them, alignment plays
a crucial role in addressing spatial misalignments between successive frames, enabling accurate
feature matching and high-quality reconstruction. Early methods [} 6] mainly relied on Deformable
Convolution Networks (DCNs) [7] for alignment, owing to their strong ability in modeling spatial
transformations. Recently, optical flow [8] was adopted in the BurstM [9] method, showing better
feature alignment performance than DCN, leveraging its explicit supervision in the image domain and
a stronger ability to capture global transformations. However, since the transformation is estimated in
the image domain, it may not be strictly applicable to the feature space without further constraints on
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Figure 1: Illustration of transformation consistency in vanilla (V-CNN) and equivariant (Eq-CNN)
convolutional networks. f; denotes a transformation (rotation in this example) and g is a CNN
that extracts features from images. Suppose I; is the image obtained by applying f; to Iy, i.e.,
I = f1(y), and Zy and Z; are features extracted from I, and I, respectively. We expect that Z;
can be close to f1(Zp), the affine transformation of Z, such that one can align Z; to Z in the feature
domain by applying the inverse transformation f; ! which can be learned by explicit supervision
in the image domain. The right box compares the error between f; 1(Z,) and Zp, and it can be
observed that Eq-CNN can more effectively achieve this goal than V-CNN.

the feature extractors, as intuitively illustrated in Figure[I] As a result, the feature alignment could be
less accurate, as shown in Section 3.1} which negatively affects the final performance.

To alleviate the limitations of alignment in existing methods, we propose to leverage equivariant
convolutional networks (Eq-CNNs) [10} [11} [12] with learnable transformation matrices as a solution.
Compared with vanilla convolutional neural networks (V-CNNs) [13} [14], Eq-CNNs can extract
features that are theoretically equivariant to input images under certain spatial transformations, e.g.,
rotation and translation. Then, if each source frame within burst images can be approximately modeled
by an affine transformation (or more specifically, rotation plus translation) of the reference frame due
to the acquisition mechanism [3]], such a property of Eq-CNNS enables us to learn the transformation
(or its inverse) with the image domain supervision and then apply the inverse transformation in the
feature domain to achieve an easy while theoretically sound alignment from the source frame to the
reference one, as illustrated in Figure m

With the aligned features as aforementioned, we further designed a reconstruction module for
upsampling and fusion to generate the final SRGB image using advanced techniques. Specifically,
considering its ability in capturing intricate inter-frame correlations, we adopt the Multi-Dconv
Head Transposed Attention (MDTA) block [15]] for feature interaction among frames; and due to its
flexibility in multi-scale upsampling, we use the implicit neural representation (INR) technique [16]
to upsample the features for final fusion, following [9].

To summarize, our contributions are as follows:

* We propose a new alignment framework for BISR based on Eq-CNN, which enables us
to learn the alignment transformation with image domain supervision and apply it in the
feature domain in a theoretically sound way. The corresponding theoretical analysis also
advances the theory of Eq-CNN to a certain extent.

* We incorporate the proposed alignment framework with advanced techniques for upsampling
and fusion, including Restomer and INR, and build a new deep model for BISR.

* We apply the proposed model to BISR benchmarks, demonstrate its superiority against
current state-of-the-art methods.

2 Related Work

2.1 Burst image super-resolution

BISR and its related task, Muti Frame Super-Resolution (MFSR), have been extensively studied
using both traditional approaches and deep learning techniques. The pioneering work by Tsai et
al. [17] tackled the problem in the frequency domain, while subsequent research [18| 19} 20] put
more focus on the spatial domain for resolution enhancement. With the rapid advances of deep
learning, significant progress has been made. Initial studies [21} 22] employed relatively simple
network architectures to address the MFSR task. Then, Bhat et al. [23] proposed a BISR pipeline
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Table 1: Comparison of relative alignment error 1
on x4 SyntheticBurst and BurstSR. Syn
Dataset Type Domain Flow Ours
. Real
. . image 0.18 0.20
SyntheticBurst synthetic feature 1.03 0.94 0

Input Flow Ours Flow Ours
BurstSR real image 0.26 0.17 Figure 2: Error maps of aligned images (left) and
feature 2.06 1.94 features (right) .

incorporating alignment, feature fusion, and upsampling modules, together with the first real-world
burst SR benchmark, inspiring numerous successive studies [24, 25} 5, 26l 16} 27, 28]

Within the BISR pipeline, alignment plays an important role, as highlighted by Kang et al. [9]. In
previous methods [5 6], DCN [7] is mainly adopted, but is insufficient for global transformation
[O]. In contrast, Kang et al. [9] introduced optical flow [8] to achieve alignment, improving the
performance. However, the image-domain estimated transformation may not be sufficient to achieve a
theoretically sound and accurate feature alignment, motivating our development of a more principled
alignment method via Eq-CNN.

In addition to alignment, fusion and upsampling have also benefited from recent architectural
advances. Transformers [29] were used in [6l 26] for long-range modeling; QMambaBSR [28§]]
introduced Mamba [30] for efficient sub-pixel integration; BSRD [27]] employed diffusion models
[31] for refined reconstruction; and BurstM [9] leveraged INRs [32,|16] for multi-scale upsampling.

2.2 Equivariant convolutions

One key factor behind the success of CNNs in computer vision is their inherent translation equivari-
ance, which ensures spatial consistency. This principle has motivated the development of rotation-
equivariant convolutions. GCNN [33] and HexaConv [34] enforce 5 and g rotational equivariance,
while Xie et al. [35]] extended this to near-continuous angles via Fourier-based filter parameterization,
showing strong practical performance [12]. Leveraging such equivariance, Eq-CNN enables learning
alignment transformations from image-domain supervision while preserving theoretical validity in

the feature domain, which is an essential property in our alignment framework (see Section [3.1)).

3 Proposed Method

We first discuss the motivation of our alignment framework for BISR. Then, we discuss the details
of the proposed method. We also provide a theoretical justification for the validity of the proposed
alignment framework.

3.1 Motivation

Alignment is a crucial component in the BISR pipeline. As discussed in the Introduction and Related
Work, early deep learning approaches [} 6] commonly employed DCN [[7] for alignment. However,
Kang et al. [9]] pointed out that DCN struggles to capture global transformations and demonstrated
that optical flow provides more effective feature alignment with supervision and global matching.
Despite these advantages, the optical flow-based alignment has a theoretical limitation that should be
noted. Specifically, the estimated transformations by optical flow are supervised in the image domain
while applied in the feature domain, but there is no rigorous guarantee that the transformations of the
two domains are consistent without further constraints on the feature extractor, as shown in Figure |I[
To further investigate this issue, we compute the relative alignment error of BurstM, which uses the
optical flow to align features, and compared with that of our method, as shown in Table[T]and Figure
2] It can be seen that both methods achieve comparable image alignment, but the feature alignment
of optical flow is much worse.

To alleviate this issue, we propose a theoretically sound alignment approach based on Eq-CNN. We
first briefly introduce the concept of equivariance in deep learning. Suppose g is a deep feature
extractor mapping from input to the feature space and F' is a transformation group, we say ¢ is
equivariant with respect to F' if for any f € F, it holds that f(g(I)) = g(f(I)), or equivalently,
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Figure 3: Overview of our proposed method. The top row shows the whole workflow. The bottom left
shows the detailed equivariant convolution layers of Eq-CNN. The bottom right shows the process of
feature alignment by predicted transformation, detailed in Section[3.2.2}

g(I) = f=*(g(f(I))) if f is invertible. Note that, we abuse the notation f a little to denote the same
transformation applied in different domains. It is well known that V-CNNSs are only equivariant under
translation, while previous studies on equivariance [[10}|35]] constructed CNNss that are also equivariant
with respect to rotation and reflection, which are often specifically referred to as Eq-CNNs.

This theoretical foundation of Eq-CNN allows us to design an alignment framework where a trans-
formation (e.g., rotation and translation) estimated and supervised in the image domain remains
valid in the feature domain. Considering that misalignments in burst images typically arise from
slight camera shifts and can often be approximated by simple geometric transformations [3], such
a rotation-translation modeling is reasonable. We leverage Eq-CNNss to extract features from input
frames, and then apply explicit transformation matrices for alignment directly in the feature domain.
The results in Table [T] and Figure 2] support this idea, that our method achieves a better feature
alignment, especially on the real dataset.

3.2 Our method
3.2.1 Problem setting and processing pipeline

Given B low-resolution (LR) RAW burst frames {17} 7! with each I € R"***1, we first process
it a 4-channel format following the RGGB Bayer pattern [9l l6]. Tflen one frame is selected as
the reference frame, which serves as the reference for high-resolution (HR) reconstruction, and the
rest frames are used to assist the reference one in super-resolving. The reconstructed HR image
I° € Rsh*swx3 is in sSRGB format, where s is the scale factor. As shown in Figure our processing
pipeline includes two main steps, i.e., alignment and reconstruction. The alignment step aims to
extract and align features from the LR burst images using the Eq-CNN, and the reconstruction step
tries to upsample and fuse the features to get the final reconstruction.

3.2.2 Alignment Module

Let Il denote the RAW LR reference frame and I L } 1 ! represent the remaining source frames in
the burst image. Following the discussions in Sectlon @ we approximately model the relationship
between each IjL (7 # 0) and I} as

IF = 1), (1)

where f; is a rotation-translation transformation. After feature extraction using an Eq-CNN g, we
can obtain features Zy = g(Iy) and Z; = g(I;), respectively. Assuming the equivariance property of
g strictly holds, we have that

Zy = g(1;) = 9(f;(Iy)) = f;(9(I5) = fi(Zo). ()

This indicates if we can accurately estimate f; or f j_l in the image domain, we can apply it to Z;:

2, = 1742,), 3)
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such that Zj is well algined to Z. Therefore, we learn f{l via the image domain supervision with
the following loss:

1 Bl 1L L2
Lalign = ﬁ Zj:l ||f7 (I] ) - IO ||2 @)

In practice, however, due to the discretization of the rotation angles in Eq-CNNs, we cannot strictly
guarantee that f 7-_1 (Z;) = Zy. Nevertheless, we can prove the following result:

Proposition 1. For an images Iy and I; of size H x W X ny, a rotation-translation Eq-CNN g(-) with
discretized angles, and a rotation-translation transformation f;(-), let Zy = g(ly) and Z; = g(I;)
be the feature maps, where Zy, Z; € RIXWXtC " and then the following result holds:

157 (Z5) = Zolloo < Cs || £57 (1) o[ ;+ C1h? + Copht ™", )
where t,p, h,Cy,Ca, C3 constants.

Proposition |1{suggests that we can minimize the distance between fj_1 (Z;) and Zy, the main goal of

the Alignment module, through minimizing the distance between f;* (I JL) and I, which is we are

trying to do by the loss defined in Eq. (@). The detailed version of Igropositionﬂ]and its proof is are
provided in Appendix [A.4]

The next question is then how to parameterize the transformation fj_l. Since we assume f; is a
rotation-translation transformation following [3]] as discussed in Section its inverse f j_l is also a
rotation-translation transformation, which can be parameterized using a matrix My, € R2%3;

cosf; —sinb; bl]
9
J

My, = [sin 0; cosl; b: ©)

where 0; is the rotation angle, and b; = (b%, b?)T is the translation vector. Then, a pixel at location
(w1, 22)T will be mapped to a new location (z/, x5)” after applying fj_l:

!
Bﬂ = ij ’

Then we further parameterize {6;,b;} using a network block ¢, referred to as transformation
prediction block in Figure[3} with Zy, Z; as its input:

{gja b]} =0 (concat[ZO, ZJD ) (8)

3312 21 8in6; + xycos; + b% 0

xl] B [xl cosf; — xosinb; + bl]

such that we can directly predict the alignment transformation fj_1 during inference.

3.2.3 Reconstruction Module

After alignment, the aligned features {Z g ;3:_()1 of all frames (we let Zo := Z, for convenience) are
then further processed for reconstructing the HR sRGB image.

Feature interaction. Before upsampling, feature interaction between reference and source frames is
necessary for enriching frame information. Instead of concatenation [J5} 6} 9] or pixel-wise attention
[36], we adopt the MDTA block from Restormer [15]], which performs channel-wise self-attention via
cross-covariance, capturing global context and enabling more effective integration of reference-source

features. The interaction process for the aligned features of all frames is as follows (j = 0, ..., B—1):
Q, = Wfo(concat[Zj, ZO}), K; = Wj(WpK (concat[Zj, ZO]), 9)
V; = WC}/WX(concat[Zj, Zo)), Zj=V;-Softmax(K; - Qj/a;) + Zj, (10)

where {Z; }33:—01 are the features after interaction, WZE‘) and Wé') refer to 1 x 1 pixel-wise and
3 x 3 depth-wise convolutions, respectively, and «; is a learnable scaling parameter. The term
Softmax(K; - Q,/c;) captures feature correlations and dynamically weights value vectors based on
similarity, enabling context-aware fusion.

Upsampling and fusion. For upsampling, we adopt the LTE framework [16], utilizing INR and
frequency domain processing to recover high-frequency details. LTE offers two key advantages for
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BISR: (1) It enables multi-scale upsampling [9]], allowing a single model to cover diverse scenarios;
(2) Its grid sampling mechanism effectively recovers sub-pixel information, crucial for burst images
with subtle camera shifts. After upsampling, we use a fusion block with channel attention to integrate
the upscaled features, along with a skip connection to preserve reference frame information. To be
specific, the upsampling and final fusion process can be formulated as

15 = PS (fOL  +Avgy, ({@upj(zj) f;ol)) , I 4= Convi, (Up[IZ],. (1)

where 19 € R$"*swx3 is the final output in SRGB format, PS(-) denotes the pixel shuffle operation,
Avgy, (+) refers to the weighted average operation with parameters learned via convolutions from Z 7S,
@y, (-) denotes the LTE-based upsampling, I} te REM2)x(sw/2)x12 "gp]] refers to the bilinear
upsampling operation, and Convyx1(-) isa 1 X 1 convolution layer.

3.2.4 Training loss
The whole network is trained in an end-to-end way using the following loss:

L = Lajign + Ledgetiy = Latign + |17 = 19T]| (12)
where Lyign is defined in Eq. @), and 1 GT the ground truth HR sRGB image.

3.3 Theoretical results

This section provides further discussions on the theoretical aspects of our method, and the readers
who are not interested in the theory of Eq-CNN can just skip it. As mentioned in Section [3.2.2]
Proposition|[I] theoretically guarantee the reasonability of our feature alignment strategy. However, its
proof is not trivial and relies on the following theorem:

Theorem 1. For an image Iy of size H X W X n, a rotation-translation Eq-CNN g(-) with discretized
angles, and a rotation-translation transformation f;(-), under certain conditions, the following result
holds:

”fjil (g(fj(IO)D - g(IO>||oo < Clh2 + Czpht—l, (13)

where t,p, h, Cy, Cy are constants.

Different from existing theories in Eq-CNN showing that input transformations can be predictably
reflected in the feature domain, by measuring the error between g(f;(Io)) and f;(g(lo)), Theorem
further analyzes the residual errors caused by inverse transformation applied to these two objects
in discrete settings of Eq-CNN, and suggests that such an error can also be upper-bounded. Such
an analysis provides a theoretical understanding of how input-level inverse transformations affect
feature relationships, which advances the theory of Eq-CNN to a certain extent. The detailed version
of Theorem [I]and its proof are in Appendix [A]3.

4 Experiments

In this section, we conduct experiments to validate the effectiveness of our proposed method. We first
evaluate the proposed method on standard benchmarks for BSIR in comparison with existing methods.
Then, we conduct ablation studies to demonstrate the reasonablity of our method, specifically
concerning the alighment mechanism.

4.1 Experiments on BISR benchmarks

4.1.1 Settings

Datasets. We follow previous studies [6} 9] and conduct experiments on two datasets: (1) Synthet-
icBurst Dataset [3]], which consists of 46,839 burst sequences for training and 300 for validation.
Each burst sequence contains 14 RAW LR frames generated from an HR sRGB image using the
standard pipeline [5} 9]. Specifically, unprocessing techniques [37]] are firstly applied to simulate
RAW sensor data, and random rotations and translations are implemented to simulate real camera
motion. Following [9]], we generate multi-scale LR images through random down-sampling (x2, x3,
x4). Finally, Bayer mosaicking and random noise are added to more closely reproduce real-world
imaging conditions. (2) BurstSR Dataset [23]], which comprises 200 full-size RAW burst sequences,
with 5,405 patches of size 80x80 extracted for training and 882 patches for validation. The LR images
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Table 2: Quantitative results on SyntheticBurst and BurstSR datasets. The best and second-best
results are highlighted in bold and underlined, respectively.

SyntheticBurst BurstSR BurstSR
Method x2 x3 x4 x4 Params.(M) FLOPs(G)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 38.30 0.948 33.94 0.886 33.02 0.862 42.55 0.962 - -
DBSR [23] 40.51 0.965 40.11 0.959 40.76 0.959 48.05 0.984 13.01 111.71
MFIR [24]) 41.25 0.971 41.81 0.972 41.56 0.964 48.33 0.985 12.13 121.01
BIPNet [J5] 37.58 0.928 40.83 0.955 41.93 0.960 48.49 0.985 6.7 326.47
Burstormer [6]  37.06 0.925 40.26 0.953 42.83 0.973 48.06 0.986 2.5 38.33
GMTNet [26] - - - - 4236 0961 48.95 0.986 - 300

BSRT-Small [25] 40.64 0.966 42.30 0.975 42.72 0.971 48.57 0.986 4.92 178.82
BSRT-Large [25] 40.33 0.965 42.87 0.979 43.62 0.975 48.57 0.986  20.71 362.63
BurstM [9] 46.01 0.985 44.79 0.982 42.87 0.973 49.12 0.987 140 436.21
Ours 46.10 0.985 44.95 0.983 43.18 0.974 49.22 0.987 170.21

mu‘lmmu‘m
!MJH rLk‘J,i'JJ ﬂ;‘Lﬂj qy}lhﬂyj JL3 qyjl'ﬁ

@l-

BIPNet Burstormer BSRT-L BurstM Ours
Figure 4: Visual comparison of x4 BISR on the SyntheticBurst dataset.
are captured using a smartphone, while the HR ground truth images are obtained from a DSLR under
the same scenes. Each LR burst sequence consists of 14 frames, and the scale factor between LR and
HR images in this dataset is fixed (x4).

Competing methods and evaluation metrics. We evaluate our method against 8 representative ones,
including traditional Bicubic interpolation and current state-of-the-art methods for the BISR task:
DBSR [23]], MFIR [24], BIPNet [3]], GMTNet [26]], Burstormer [6], BSRT [23], and BurstM [9].
We employ two widely used metrics, PSNR and SSIM, to quantitatively assess the reconstruction
quality of each method. Additionally, we report model complexity metrics, including the number of
parameters and GFLOPs, to show the computational efficiency of each method as a reference.

Implementation details. All experiments are implemented using PyTorch on an NVIDIA 4090 GPU.
For the SyntheticBurst dataset, the initial learning rate is set to 1 x 104 and gradually adjusted to
1 x 1075 over 300 epochs. The batch size is set to 1, and the patch size is 48 x 48. For the BurstSR
dataset, we fine-tune the model pre-trained on SyntheticBurst following [9]], using an initial learning
rate of 1 x 10~° and CosineAnnealingLR to adjust it to 1 x 10~6 over 30 epochs. The batch size
is 1, and the patch size is 80 x 80. For other compared deep learning-based methods, we test using
the author-released models, except GMTNet for which we directly quote the results reported in the
original paper since the model is not released.

4.1.2 Results

Results on SyntheticBurst Dataset [3]. We present the quantitative and qualitative evaluation results
in Table 2]and Fig.[4] respectively, with full-size and additional visual results available in Appendix
[B]because of space limitations.

As shown in Table 2] our method outperforms existing BISR approaches across nearly all evaluation
metrics. Specifically, for the widely-used x4 SR setting, our method achieves the results with a PSNR
of 43.18 and an SSIM of 0.974, surpassing competing methods with comparable model complexities.
This quantitatively demonstrates its effectiveness in reconstructing the original HR sRGB image.
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Figure 5: Visual comparison of x4 BISR on the BurstSR dataset.

Notably, our approach outperforms the current state-of-the-art multi-scale BISR method BurstM
[9] while requiring fewer parameters and less FLOPs, showing both its efficiency and effectiveness.
Furthermore, our method consistently performs well across different SR factor settings, suggesting its
promising generalization ability. Visual results in Fig. 4 show that our method achieves competitive
performance in several aspects. For example, our approach better preserves fine-grained textual
details while maintaining structural fidelity. In addition, the method shows its ability to suppress noise
without introducing unexpected artifacts or severe color distortions. These qualitative advantages
of our method are consistent with its quantitative performance. It should be mentioned that though
our model achieves slightly lower numeric results due to its fewer parameters (8.7M) compared to
BSRT-Large (20.71M), it delivers comparable visual quality. Additional visual results of other scales
are provided in the supplementary material for a more comprehensive comparison.

Results on BurstSR Dataset. The quantitative results on the BurstSR dataset are summarized in
Table 2] It can be seen that our method achieves the best performance in terms of both PSNR and
SSIM among all competing ones. Note that, in this real dataset, although the degradation process
of the LR burst images is unknown, and the relationship between the source and reference frames
might not be more complex than assumed, our method still performs promisingly. This indicates that,
though relatively simple, the rotation-translation assumption for the align transformation made in our
model is rational and effective in real scenarios.

The visual results in Fig. [5| further validate the effectiveness of our approach. Overall, our method
keeps more fine-grained details and produces fewer unexpected artifacts compared with existing
methods. For example, as shown in the first row, our result better keeps the morphology of characters
and digital numbers, and in the last row, our method can better suppress artifacts while producing
relatively sharper edges. More visual results on this dataset are provided in the Appendices.

4.2 Ablation Study

In this subsection, we conduct experiments on the SyntheticBurst dataset at x4 scale to validate
the rationality and effectiveness of the proposed alignment framework in our model. The overall
quantitative and visual results are summarized in Table [3]and shown in Fig.[6]- Fig.[7] respectively.

Effectiveness of the overall alignment module (a) & (b). We first replace the whole alignment
module in our method with implicit alignment strategies using Restormer (a) and deformable convolu-
tions (b). As shown in Table@ both methods exhibit significant performance degradation, which can
be more intuitively observed in the visual results illustrated in Fig.[6](a) and (b), that the fine-grained
textures are not well kept. This can be attributed to the misalignment of features, as can be observed
in Fig.[7] (a) and (b). These results clearly substantiate the effectiveness of our alignment module.

Effectiveness of equivariant feature extraction (c). We then conduct an ablation study by replacing
the ENet, which is an Eq-CNN, with a V-CNN without the rotation equivariance for feature extraction.
As shown in Table [3](c) and Fig. [6] (c), this variant exhibits a noticeable performance drop compared
to the proposed model in quantitative metrics and also produces blurry textures. The reason can
be attributed to the lack of consistency of the alignment transformations between the image and
feature domains, leading to mismatching among aligned features. Another interesting observation
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Figure 6: Visualization of the ablation for X 4 BISR on SynthencBurst. Settings (a)-(d) are in Table

Table 3: Ablation Study on x4 SyntheticBurst

Settings PSNR SSIM  Params.(M)

(a) Align with RT 4297 0972 9.0

(b) Align with DConv ~ 42.81  0.970 11.5

(c) w/o Eq-CNN 42,76 0.971 10.1

(d) w/o T-mat. 4280 0972 8.7

Ours 43.18 0974 8.7 )

@ @ @ ous
*RT: Restormer [[I3]]

*DConv: Deformable convolution network [[7|]
*w/o Eq-CNN: Replacing Eq-CNN with V-CNN
*w/o T-mat: Removing the transformation matrix

Figure 7: Error maps of aligned features for
ablation studies on x4 burst super-resolution
using the SyntheticBurst dataset. Detailed
settings of (a)-(d) can be referred to Table|§|
and Section 4.2}

is that, though it does not perform well in the quantitative metrics, the visual results of this variant
are comparable or even look better than that of other ablation variants as shown in Fig.[6] and the
alignment error in features is also significantly smaller than that of variants (a) and (b) as depicted in
Fig.[7] This can be due to the explicit alignment mechanism using the learnable transformation and
the translation-equivariance of V-CNNs, which indirectly suggests the effectiveness of our approach.

Effectiveness of the learnable transformation matrix (d). We then remove the transformation
matrix, denoted as “w/o T-mat.” in Table 3] and such a variant can be seen as implementing implicit
alignment with the Eq-CNN. It can be observed from Fig. [/| (d) that this leads to obvious feature
misalignment and correspondingly inferior performance both in quantitative metrics and visual effects,
highlighting the crucial role of explicit alignment.

5 Conclusion and Limitation

In this work, we have proposed a new method for BISR. The key consideration of our method is that
we have designed a new effective alignment framework for the BISR task with Eq-CNN. Within the
proposed alignment framework, by the equivariance property of Eq-CNN, the align transformation
can be learned with explicit image domain supervision and directly applied in the feature domain
in a theoretically sound way. In addition, we have introduced effective upsampling and fusion
blocks using advanced neural architectures, including MDTA from Restormer and INR. Extensive
experiments on two representative BISR benchmarks have been conducted, showing the effectiveness
of the proposed method, both quantitatively and visually, against current state-of-the-art methods.

Despite its promising performance for BISR, our method still has limitations that need further
investigation. For example, currently, the transformation considered in our model is restricted to
rotation and translation due to the ability of existing Eq-CNNs, which may not be precise enough to
characterize the relationship between the reference and source frame in complex real-world scenarios.
Tackling this issue requires developing new techniques and theories for equivariance networks, which
could not only enhance the availability of our method in real applications but also advance the study
of equivariance in deep learning.



3

1

312
313

314
315
316

317
318
319

320
321
322

323
324
325

327
328

329
330
331

332
333

334
335
336

337
338
339

340
341
342

343
344
345

346
347

348
349
350

351
352
353

354
355
356

357
358

359
360

References

(1]

(2]

3

—

[4

—

[5

—

[6

—_

[7

—

[8

—

(91

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A survey. /[EEE
transactions on pattern analysis and machine intelligence, 43(10):3365-3387, 2020.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):295-307,
2015.

Goutam Bhat, Martin Danelljan, and Radu Timofte. Ntire 2021 challenge on burst super-resolution:
Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 613-626, 2021.

Goutam Bhat, Martin Danelljan, Radu Timofte, Yizhen Cao, Yuntian Cao, Meiya Chen, Xihao Chen, Shen
Cheng, Akshay Dudhane, Haoqiang Fan, et al. Ntire 2022 burst super-resolution challenge. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 1041-1061, 2022.

Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Burst
image restoration and enhancement. In Proceedings of the ieee/cvf Conference on Computer Vision and
Pattern Recognition, pages 5759-5768, 2022.

Akshay Dudhane, Syed Waqas Zamir, Salman Khan, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Burstormer: Burst image restoration and enhancement transformer. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5703-5712. IEEE, 2023.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision, pages
764-773, 2017.

Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial intelligence, 17(1-3):185-203,
1981.

EungGu Kang, Byeonghun Lee, Sunghoon Im, and Kyong Hwan Jin. Burstm: Deep burst multi-scale
sr using fourier space with optical flow. In European Conference on Computer Vision, pages 459-477.
Springer, 2025.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation equivariant
cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 849-858,
2018.

Qi Xie, Qian Zhao, Zongben Xu, and Deyu Meng. Fourier series expansion based filter parametrization for
equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4537—
4551, 2022.

Jiahong Fu, Qi Xie, Deyu Meng, and Zongben Xu. Rotation equivariant proximal operator for deep
unfolding methods in image restoration. /[EEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 136-144, 2017.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan
Yang. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 5728-5739, 2022.

Jaewon Lee and Kyong Hwan Jin. Local texture estimator for implicit representation function. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1929-1938,
2022.

Roger Y Tsai and Thomas S Huang. Multiframe image restoration and registration. Multiframe image
restoration and registration, 1:317-339, 1984.

Michal Irani and Shmuel Peleg. Improving resolution by image registration. CVGIP: Graphical models
and image processing, 53(3):231-239, 1991.

10



365
366

367
368
369

371
372

373
374
375

376
377
378
379

380
381
382
383

384
385

386
387
388

389

390
391

392
393

394
395
396

397
398

399
400

401
402
403

404
405
406

407
408
409

(19]

[20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

Hanoch Ur and Daniel Gross. Improved resolution from subpixel shifted pictures. CVGIP: Graphical
models and image processing, 54(2):181-186, 1992.

M. Elad and A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and
undersampled measured images. IEEE Transactions on Image Processing, 6(12):1646-1658, 1997.

Evgeniya Ustinova and Victor Lempitsky. Deep multi-frame face super-resolution. arXiv preprint
arXiv:1709.03196, 2017.

Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Deepsum: Deep neural
network for super-resolution of unregistered multitemporal images. IEEE Transactions on Geoscience and
Remote Sensing, 58(5):3644-3656, 2019.

Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Deep burst super-resolution. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9209-9218,
2021.

Goutam Bhat, Martin Danelljan, Fisher Yu, Luc Van Gool, and Radu Timofte. Deep reparametrization of
multi-frame super-resolution and denoising. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 2460-2470, 2021.

Ziwei Luo, Youwei Li, Shen Cheng, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, Jian Sun, and Shuaicheng
Liu. Bsrt: Improving burst super-resolution with swin transformer and flow-guided deformable alignment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 998—1008,
2022.

Nancy Mehta, Akshay Dudhane, Subrahmanyam Murala, Syed Waqas Zamir, Salman Khan, and Fa-
had Shahbaz Khan. Gated multi-resolution transfer network for burst restoration and enhancement. In
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22201-22210.
IEEE, 2023.

Kyotaro Tokoro, Kazutoshi Akita, and Norimichi Ukita. Burst super-resolution with diffusion models for
improving perceptual quality. arXiv preprint arXiv:2403.19428, 2024.

Xin Di, Long Peng, Peizhe Xia, Wenbo Li, Renjing Pei, Yang Cao, Yang Wang, and Zheng-Jun Zha.
Qmambabsr: Burst image super-resolution with query state space model. arXiv preprint arXiv:2408.08665,
2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local implicit
image function. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 8628-8638, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on
machine learning, pages 2990-2999. PMLR, 2016.

Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max Welling. Hexaconv. arXiv preprint
arXiv:1803.02108, 2018.

Qi Xie, Qian Zhao, Zongben Xu, and Deyu Meng. Fourier series expansion based filter parametrization for
equivariant convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4537—
4551, 2022.

Pengxu Wei, Yujing Sun, Xingbei Guo, Chang Liu, Guanbin Li, Jie Chen, Xiangyang Ji, and Liang
Lin. Towards real-world burst image super-resolution: Benchmark and method. In Proceedings of the
IEEFE/CVF International Conference on Computer Vision, pages 13233-13242, 2023.

Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and Jonathan T Barron. Unpro-

cessing images for learned raw denoising. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11036-11045, 2019.

11



410 [38] Jiahong Fu, Qi Xie, Deyu Meng, and Zongben Xu. Rotation equivariant proximal operator for deep
411 unfolding methods in image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
412 2024.

413 [39] Prasanna Sahoo and Thomas Riedel. Mean value theorems and functional equations. World Scientific,
414 1998.

12



415

416
417
418

419
420
421
422
423
424
425
426

427

428

429
430

431
432

433
434
435

436

437
438
439

440

441

442

A Theorem and Proofs

In this section, we present a comprehensive version of Theorem 1 and Proposition 1, which are briefly
introduced in the main text, along with the related lemmas and proofs, aiming to provide a solid
theoretical foundation for our proposed method.

It should be noted that we follow the previous works, and consider the equivariance on the orthogonal
group O(2)[] Formally, O(2) = {A € R?**?|ATA = I,»}, which contains all rotation and
reflection matrices. Without ambiguity, we use A to parameterize O(2). We consider the Euclidean
group E(2) = R? x O(2) (x is a semidirect-product), whose element is represented as (z, A).
Restricting the domain of A and x, we can also use this representation to parameterize any subgroup
of E(2). The input image can be modeled as a function defined on R?, denoted as r(x). The
intermediate feature map can be modeled as a function defined on F(2), denoted as e(z, A). We
denote the function spaces of r and e as C*°(R?) and C*°(E(2)), respectively.

A.1 Remark 1 and the Proof

Notations. For an input » € C°°(IR?), transformations A € O(2) and b € R2, A acts on 7 by

FEr (@) = r(A7 (2 — b)), Vo € R*. (14)

For a feature map e € C™(E(2)), E(2) = R? x O(2), and a transformation A € O(2), A acton e
by

Elel(z, A,b) = (A (z —b), A7 A),¥(z, A) € E(2). (15)
Let ¥ denote the convolution on the input layer, which maps an input r € C°°(R?) to a feature map
defined on E(2):

U[r(z, A) = /R i (A718) r(x — 8)do(8), Y(z, A) € E(2), (16)

where o is a measure on R? and ¢ is the proposed parameterized filter. ® denotes the convolution on
the intermediate layer, which maps a feature map e € C°°(E(2)) to another feature map defined on
E(2):

Blel(wB)=

/ gpA(B_l(i)e(a:—(S,BA)da(é)dv(A), Y(z, B) € E(2), (17)
0(2)JR2

where v is a measure on O(2), A, B € O(2) denote orthogonal transformations in the considered

group, and ¢ ; indicates the filter with respect to the channel of the feature map indexed by A ie.,
e(x, A)| ,_ ;. YT denotes the convolution on the final layer, which maps a feature map e € C*°(E(2))
to a function defined on R?:

T[e}(x):/o(z) /Rapout(B_lé) e(x—0, B)do (0)dv(B), Vo € R (18)

Then we will prove Remark 1.

Remark 1. Forr € C™(R2), e € C°(E(2)) and A € O(2), the following results are satisfied:
i lel] = £ (@ el], (19)

where 1?5, f EE’ W, ® and Y are defined by , , (|Z6]) and @) respectively.

'The rotation group S represents a subgroup of O(2), and it is also regarded as the discretization of O(2) in
this paper.
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w3 Proof. (1)Forany z € R%, A € O(2), and b € R? we can obtain
_ /R in (A710) £ 1) (0 = )dor(6)

:/W%”( “18) r(A~Y(x — & — B))do (6).

ms Letd = A=16, since |det(A)| = 1, and we have

a5 This proves that ¥ [f,?i; [7‘]] = fE ]

a4 (2) Similar to the proof in (1), for any = € R?, B € O(2), we can obtain
:/ / o (B716) fE [e] (x — 6, BA, D)do(8)v(A)
r2 JO(2)

/R ] /O ¢a (B718) e(A™ (@ — 6 — b), A" BA)do(6)v(A)
/ / @A 1A6 e “Na—b)— 6, A" ' BA)do(5)v(A)
R2 JO(2

/ @A (;1 Yz —b) — 6, A" BA)do(5)v(A)
R2 0(2)

447 (3) For any = € R?, we can deduce that
T [£5; [e]] (x)
- / , Fout (B9 T, [ (2 = 6.3, Do (9)(5)
R?

/R/ Pout (B710) e(A™} (z — 6 — b), A=' B)do (8)v(B)

/R/ %ut< 1B 15) e(A~ (@ —b) — 6, A" B)do(§)v(B).

Y[e](A~ (= b))
—fAb[ [e]] (@),

448 This proves that T [ f EE [e]} =f EE [T [e]]-

14

(20)
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A.2 Remark 2 and the Proof

Notations. We assume that an image I € R™*" represents a two-dimensional grid function obtained

by discretizing a smooth function, i.e., foré,5 =1,2,--- | n,

I; = r(d:;), (24)
where 6;; = ((i — 2) h, (j — ) h)T. We represent Z as a three-dimensional grid function
sampled from a smooth function e : R? x § — R, ie., fori,j =1,2,--- ,n,

Z4% — (5,5, A,D), (25)

where 6;; = ((i — 241 h, (j — =) h)T and A € S, S is a subgroup of O(2), and b € R? is

translation. For¢,j =1,2,--- ,p,and A, B € S, we have
Vs = o (A1)
o4 =4 (B710y5), (26)

TS = Pout (A_l(szj) )

where d;; = ((i — (pT1)/2) h, (j — (p+1)/2) h)T, Wins Pout and @ 4 are parameterized filters. Let
T
1 1
e () -3
2 2
T

2 2

- <<l_n+§+)h <j_n+§+> h) ,

ForVA € Sandi,j =1,2,--- ,n, the convolution of ¥ and I is

(@*I)A' = ”Z: Din (Ailégi) r (Z‘U - 553) , (28)

ij
(1,5)EA

27)

where A is a set of indexes, denoted as A = {(4,5)|i,5 = 1,2,--- ,p}. Forany B € S and
i,7 =1,2,---  n, the convolution of ® and Z is

(CiD*Z):j = Z ©0A (B*l(i;j) e(xij — (5;3,314) , (29)

(3,j)EA,AES

where A = {(i,5)|i,j =1,2,--- ,p}. For4,j = 1,2,--- ,n, the convolution of T and Z is

where A = {(4,7)|i,5 =1,2,--- ,p}.

The transformations on [ and Z are defined by

(F50) = 0. (75(2) " = Fhle,. A.D).

)

Vi,j=1,2,---,n,VA,A€S.

3D

j

Then we will prove the Remark 2. We firstly introduce the following necessary lemma.
Lemma 1. For smooth functions r : R? — R and ¢ : R?> — R, if for § € R?, the follow conditions
are satisfied:
r(0)] < Fu, [0(8)] < Fa,
[Vr(d)|l < G1, [Ve(d)]| < Go,
IV2r(O)ll < Hy, [V2(8)]| < Ha,
V[|o]| = (p+1/2)h, p(6) = 0,

(32)
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481

482

where p,h > 0, V and V2 denote the operators of gradient and Hessian matrix, respectively, then,
VA € S,y € R the following results are satisfied:

/ o (A1) r (2= 0)do(d) = > o (A10y) v (0 = 0,5) 12| < ww‘, (33)
.

i,jEA

where A = {(i,7)|i,j = 1,2,--- ,p}, §;j = ((¢t — P+D)/2) h, (j — (P+D)/2) h)T and C = F\Hy +
FyHi +2G1Go.

The specific proof of lemma 1 can be referred to [[11]. Based on lemma 1, let us prove Remark 2.

Remark 2. Assume that an image I € R™*™ is discretized from the smooth function v : R> — R b
, a feature map Z € R™*"Xt js discretized from the smooth function e : R? x S — R by

|S| = t, and filters U, ® and Y are generated from @i, Qous and ¢ A, YA € S, by @) respectzvely
Iffor any A € S, x € R?, the following conditions are satisfied:

r(2)], le(z, A)| < By,

[Vr(@)l], [Ve(z, Al < Gy,

IV2r (@), [ V2e(w, A)|| < Hi,

[pin(2)]; lpa(@)]; [pou ()] < F, (34)
IV@in (@), [Vea (@)l [Veout ()] < Ga,

V2 0in (@)1, V204 (@)]], [V Pout (z)|| < Ha,
Y|zl > ®+D/2, 04 (x), 0 A(T), out(z) = 0,

where p is the filter size, h is the mesh size, and ¥V and V? denote the operators of gradient and
Hessian matrix, respectively, then for any A € S, the following results are satisfied:

H@*JFEI;() fAb(\If*I)H (p+1)h
Hé*ffé( ) — fAb (‘I)*Z)H (p+1) ’h*t, (35)
HT*JFEB(Z)— AZ (T*Z)Hooéf(p+1)2h2ta

where C = F1Hy+ Fy H1 +2G1Go, AE’ fé, U, ® and Y are defined by and , respectively.
The operators  involved in Eq. (33) are defined in (28), (29) and (30), respectively, and || - ||«

represents the infinity norm.

Proof. Forany x € R, A, B € S, let
\i/[r] (x,A) = Z Pin (A_I(S;j) T (33 — (5;3) , (36)
(1,5)€A

where A = {(i,7)|i,j = 1,2,--- ,p}. Then, for any A € S, we can obtain

U[r) (x5, A) = (mz)j (37)

1) By Remark 1, we know that ¥ [ o [r]} = f% [ [r]]. Thus for any A € S, we have

(\if*ffg (n- 7% (‘I’*I»i
= |9 [FE 1] (@i, A) = 15 |90 (235, )|

750 o1y A) = 5 (50T (o, )|

(38)

IN

|15 [00] 5.0 = 515 100 g )
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483 LetT = ffb

484 lemma 1,

[r], and then it is easy to deduce that 7 satisfies the conditions in lemma 1. Then, by

ﬁvﬁmwmm—;wwwm%Aﬂ

1
n?

1
=73

W [P0 (oig, A2 = W [FE D] (235, )|
(39)

>

Z in (A710i5) 7 (25 — 0ij) h* — / Qin (A718) P(zij — 8)do ()
(1,5)EA R2

2
Swh%

485 Besides, let A= A1 A and & = A Nayy — b), and by lemma 1, we can also achieve,

2 [90] i 4) — 5 75 100 g 4)

= | [9] (A (i -

[r]] (ig, B2 = J5 00 (35, )|
} b),jrlA)]

b), A" AR — [W[r]] (A (x5 —

| 3 i (475 v (A ey Db ) / A 8) (A (gD~ do(s)| 4O

(2,7)EA

1 i

l Z Pin (A 51]) (Zij — dij) h? — /2 Pin (A 15) 7(Zi; — 0)do(0)

(i.4)EA R’
bt 1)2C
- 4

ass Thus, combining (38), (39) and (@0), we can achieve

h2.

U [fE ] (235, A, b)— 5 [‘IJ[ ]}(x”,A b)’ g(p+ 1)2h2. 41)

487 In other word,
A

(9750 - 75 (¥1))
48 This proves the first inequality in (33).

%(p—k 1)%h?, (42)

489 2) Forany A,B € S,let B = A'B, ra(z) = e(x,A), and ¥4 be a operator defined in the
a90 formulation of (36), while correlated to 4. Then, forany ¢,j =1,2,--- ,n, B€ S,

B

’(‘i’*ffg(z)_ffg (‘i’*Z))“

)

S (B 65) (A (w05 9) A ) (B 463) (A sy~ B-0;5,4" BA)

(i,j)eA,AesS G.j)er Aes
< Z ZSDA(Biléﬁ)TBA@ (xi— g~. ) Z¢A<B A5~~> TBA<A (:EU ) 5%5>
AES(;J)EA (i.j)eA
=2 | 2 (BilaﬂfAbVBA (x” 2) > _ea (371‘4559 A (Ail(zij_i))_éﬁ)
A€S |G,j)en (i.J)eA
- Z "i’A [fgﬂ[réA]] (ij, B,b) — ff,; [@A[TBA}] (xij,B,i))‘ )
Aes
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492

493
494

495

496
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498

499

500
501
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503

504

505

506

507
508
509

Then by @T), we can achieve that Vi, j = 1,2,--- ,n, B€ S,
L s Bl (O
‘(é*f}fl; (2) - f& ((I)*Z))ij 3

This proves the second inequality in (33).

3)Forany A,B € S, let B = A"'B, ra(z) = e(x, A), and U, be a operator defined in the
formulation of (36), while correlated to ©oy:.

Then, we have thatVi,j =1,2,--- ,n

< —(p+1)2h*t. (43)

(1752 - 75 (T+2)),

_ Z%ut(B—laﬁ)e@—l@ij—(sﬁ—B),A—lj_@)—z %ut( 1Aé~~)§4 Haiy—b)— b5, A 1@

(i,J)EA,BES (i,j)EN,BES

< Z Z%ut(B_15;3) Té(/i_imij—(sgj —B))—Z@out(B_lz‘i(sgj)TB<A_l(xij—B)—(sﬁ)
BeS|ij)eA (i.7)EA

= Z Z @out( (5~~) —~[ (%J g ) Z Sﬁout( 711‘1553)7“]; (zzlfl(fij — 5)—5;5)
BeS|G,5)en (,7)EN

=> ‘\iJout (£l s]] (g, B,b) = £5; [‘ifout[ﬁ;]} (xij7B>5)‘-
BeS

Then by @T), we can achieve that Vi, j = 1,2, ,n

’(T*ffg(z)ffg (T*Z))..

)

c
< =
-2

(p+1)*h?t. (44)

This proves the third inequality in (33).

A.3 Theorem 1 and the Proof

Notations. In the following, we provide the corresponding formulations, just like [[11}38]. It should
be noted that for convenience in subsequent proofs, |A| < a indicates that all elements of A are less
than a, and |A| < | B| implies that the value of any element a;; at position (7, j) in A is less than the
value of the corresponding element b;; in B.

For an input 7 € C*°(R?), translation b € R? and a degree 0 € [0, 27], Ay € O(2) is the rotation
cosf, —sinf

matrix | .
[ sin 6, cos 6

]. Ap acts on 1 by

forlr)(z) = r(A; (z — b)), Vo € R2. (45)
For a feature map e € C*(E(2)), E(2) = R? x O(2), and a degree 6 € [0, 27]. Ay acts on e by
falel(z, A,b) = e(Ay (z — b), Ay P A), ¥(x, A, b) € E(2). (46)

Considering an multi-channel image I € R *W*C a5 input, which can be naturally represented by

a two-dimensional grid function. Suppose the filter is of size p x p, then, the mesh grids for filter and
image can be respectively represented as follows:

(S S D e (S W )

(47)
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Then, each channel of I can be obtained by discretizing a smooth function, i.e., for k =1,2,--- | W,
l=1,2,--- ,H,andc=1,2,--- ,C,

I =re(xm), (48)

th

where r. is latent function for the ¢*"* channel.

We denote the equivariant number as ¢ and the correlated rotation group of the equivariant convolution
as S, respectively. Then, |S| = ¢ and S :JA%H =2mk/y k =1,2,--- ,t}. We represent the feature
map of equivariant convolution as Z € RFXWxtxC 7 iq 4 four-dimensional grid function, whose

¢t channel is sampled from a smooth function e, : R? x S — R, i.e., for k = 1,2,--- , W and
l= 1727"' 7H9
Zi© = eclwp, A), (49)
where A € S.
Input layer. The filter of the input multi-channel convolution layer can be represented as
T = peq (A7) (50)
where .4 is the parameterized filter, A € S,c=1,2,--- ,n.,d=1,2,--- ,ng4, n. and ny are the

input and output channel numbers, respectively. Denoting multi-channel convolution of ¥ and [ in
the input layer as Z = W([), then it can be calculated by

T Ad _ T, A,c,d c
c

where * denotes the 2-D convolution operation. It can be also rewritten in the following more detailed
formulation:

(i, A) =Y ea (A710) re (z1 — 0), (52)
c,0€EN

where A is a set of indexes, denoted as A = {51%[']%7[: 1,2,---,p},Ae S, k=1,2,--- ,Wand
1=1,2,--- H.

Intermediate layer. The filter of the intermediate multi-channel convolution layer can be represented
as

& = @aca (B™10m) (53)
where ¢ 4.4 is the parameterized filter, A, B € S,¢=1,2,--+ ;n.,d=1,2,--- ng, n. and ng are
the input and output channel numbers, respectively. Denoting the multi-channel convolution of ® and
Z in the intermediate layer as Z = ®(Z), then it can be calculated by

T B,d __ 7 A,B,c,d A,c
c,A
It can also be rewritten in the following more detailed formulation:

éa(zp, B) = Z ¢aca (B7'6) ec (xy — 0, BA). (55)
c,A,0€N

Output layer. The filter of the output multi-channel convolution layer can be represented as
T = pea (B 01) (56)

where @.q4 is the parameterized filter, B € S,c=1,2,--- ,n.,,d =1,2,--- ,ng, n. and nq are the
input and output channel numbers, respectively. Denoting the multi-channel convolution of T and Z
in the output layer as Y = Y(Z), then it can be calculated by

T(Z)d _ Z TB’C’d % ZB’C. 57)
c,B

It can be also rewritten in the following more detailed formulation:

Ta(Tr) = Z ¢ca (B710) ec (zr — 6,B) . (58)
¢,B,6€A
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The transformations on each channel of the input image and the feature map are defined by

- c - A,c
(Fn), = filrd@). (78(2) " = filedwu, Ab), )
Vk=1,2,--- H,1=1,2,--- , W,e=1,2,--- ,C,VA€ S,0 €[0,2n].
For expression conciseness we further denote
- fRlx] if Vo e REXWxC
= 0 60
feb[ ] { f@Eb[a:] if vl‘eRHXWXtXC ( )

Following the [38], for a feature map Z € RH¥*Wx¥xC e say the channel number of the correlated

convolution layer is tC, due to the fact that Z is usually reshaped into the shape of H x W x tC' for
implementation convenience, and the flop of the correlated equivariant convolution layer is similar to
a tC-channel convolution layer.

Then we will prove the Theorem [I] Before this, we first present the following necessary lemmas and
the specific proof can be referred to [38].

Lemma 2. For an image I with size H x W x ng, and a N-layer rotation equivariant CNN network
g(+), whose channel number of the it" layer is n;, rotation equivariant subgroup is S < O(2),
|S| = t, and activation function is set as ReLU. If the latent continuous function of the ¢ channel of
I denoted as 7. : R2 — R, and the latent continuous function of any convolution filters in the it" layer
denoted as ' : R2 =R, wherei € {1,--- N}, c € {1,--- ,ng}, for any x € R?, the following
conditions are satisfied:

re(2)] < Fo, [ Vre(@)|| < Go, |Vre(2)|| < Ho,

' (2)| < F, |Ve' ()] < G, [ V2! (2)|] < Hi, (61)

Vel > ems, () =0,

where p is the filter size, h is the mesh size, and NV and V? denote the operators of gradient and
Hessian matrix, respectively. Denote

ei (I B) _ Zc}ée/\ @};d(B_l(s)rc('r - 5) lf 1= 17
av B ZC,A,SEA stélcd(B_l(S)e?:_l(x - 67 BA) lf { 7é 17 N

where A = {((k — inl) h, (l — p—;l) h)T |k, l=1,2,--- ,p}, gpid and gpiAcd are filters in the first
layer and other layers respectively. Then, for VB € S the following results are satisfied:

(62)

|el(z, B)| < FoF;, (63)
|Vealw, B)| < <Z G}”F“ + Go> i, (64)
m=1 m

i

A -1 i
V26 (2, B)| < (z Tnlh oy By Gulhyyy Cath +Ho> Fi (69
m =1 =1 ~-m m=1 - ™

m=1

where F; = [[ ni_1p*Fy, Vi =1,2,--- |N — 1.
k=1

Lemma 3. For an image I with size H X W X ng, and a N-layer rotation equivariant CNN network
g(+), whose channel number of the i'" layer is n;, rotation equivariant subgroup is S < O(2),
|S| = t, and activation function is set as ReLU. If the latent continuous function of the ¢ channel of
I denoted as . : R? =R, and the latent continuous function of any convolution filters in the i*" layer
denoted as @' : R? R, wherei € {1,--- ,N}, ¢ € {1,--+ ,ng}, for any x € R?, the following
conditions are satisfied:

[re(@)] < Fo, [ Vre(@)] < Go, [ V?re()]| < Ho,
" (@) < i, [V (2)]| < Gi, [V (2) || < Hi, (66)
iz = ®+OR/2, pi(z) = 0,
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where p is the filter size, h is the mesh size, V and V? denote the operators of gradient and
Hessian matrix, respectively For an arbitrary 0 € [0,27], Ay denotes the rotation matrix. If

F(0)= [feb} ()= [@N 1 (I)i-s-l [(fl Dy {\il [~0bH . H (I), then the following result is satisfied:

[F'(0)] < F (max{H,W}+ N (p+1)) hGo, (67)

N
where F = ] ng_1p*Fy.
k=1

Lemma 4. Under the same conditions with lemmal3]
IfF(9) = foo [g](I) = foo [T {@N_l s By {@i <Dy [\II] . H} (I), and then the following
result is satisfied:

|F'(0)| < Fmax{H, W}hGy, (68)

N
where F = ] ni_1p*Fg.
k=1

Then, let us give Theorem [T]and prove it based on the aforementioned Lemmas.

Theorem 1. For an image I with size H x W X ng, and a N-layer rotation-translation equivariant
CNN network g(-), whose channel number of the it" layer is n;, rotation equivariant subgroup is
S <0(2), = t, and activation function is set as ReLU. If the latent continuous function of the

th channel of I denoted as r. : R2— R, and the latent continuous function of any convolution filters
in the i'" layer denoted as ¢ : R? - R, wherei € {1,--- N}, c € {1,--+ ,ng}, for any z € R?,
the following conditions are satisfied.:

[re(2)| < Fo, [Vre(2)|| < Go, [IVre(x)|| < Ho,

o' (@) < Fy, Vo' (2)]| < Gi, V29 (2)]| < Hi, (69)
[zl = DRz, i(x) =

where p is the filter size, h is the mesh size, V and V? denote the operators of gradient and Hessian
matrix, respectively. For an arbitrary 0 < 0 < 2w, Ag € S denotes the rotation matrix, b € R?
denotes the translation, and the following result is satisfied:

|7t [fa] (D —1e1 (D] <Can?+Copnt™, (70)

where fgb is defined in Eq. 60) and

1
C1=2NF- Z(H %o 2£Z Cmlh | o GiCin +Ho> ,

=1 Fl m=1 Fm FZ (71)
N
Cy = 21GoF (2max{H,W}p~' +2N), F= H‘_l ni_1p°Fj.
Proof. Let I = fo,I, we can split the left part of Eq. as
‘fab g [f@b} ’
‘f@b g(l)—g [f@b } (I) 72)
<le [f'| (- [ fod| (D|+]e [Fa:b] (D—Forb le) (D] +|Fob le)(D — ot el (D),
(1) (2) (3)
where 6 = 0, + 0, where k = 1,2,--- ¢, 0 < 0 < 27/¢. Next, we need to estimate the error bounds

of the above three items, separately. It should be noted that the following proof is deduced without
the ReLLU activation function for concise. However, the conclusions are all still correct for networks
with the ReLU activation function, since ReLU does not disturb the equivariance or amplify the error
bound.
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Firstly, we prove the following inequality for the part (1) of Eq. (72).
’g |:f9_bl} (I)-g [fg‘,fb} ()| <

Let us denote Fy(6) = g [ feb} (I). Obviously the function Fy(6) is continuous with respect to 6, so
we have the following conclusion by the Lagrange Mean Value Theorem [39]]

& [Fn| (1) = & [Jowa (D)] = |F(6) = Fi (6]

|FY(&1)| 6 (74)
< TR,

< F(max{H,W}+ N (p+1)) hGo. Then

—F (max {H, W} + N (p+1)) hGo. (73)

IN

A\

where 0 < & < § and by lemma|[3|we have |F} (&)
we can prove Eq. (73).

Secondly, we prove the following inequality for the part (3) of Eq. (72| @

‘fakb ~Fwlel )‘ < —]—"max{H W hGo. (75)

Let us denote F5(0) = f [g] (I). Obviously the function F(6) is continuous with respect to 6, so
we have the following conclusion by the Lagrange Mean Value Theorem [39]]

‘fekb — favlg ‘ = |F5(0) — F2(0)|

< Fy(62)|0 (76)
2
TR &),

where 0 < & < § and by lemmad] we have |F}(&)| < F max {H, W} hG. Then we can easily
achieve Eq. (73).

Thirdly, we now prove the following inequality:

N ) i
& 7o) (Db [ (f)‘SWZ( o F°+2Z G”’FO H(yhz.
=1 m

m=1 =1 m=1 m=
(77)

IN

g(+), an N-layer rotation equivariant CNN network, usually includes 1 input layer, N — 2 intermediate
layers, and 1 output layer. We can formally define it as :

g() =T [<i>N_1~-~<i>i+1 [@,.@2 M H (). (78)

Then we have

I
= o

INA
+

+
=
A
=z
L
S
-
<
=
¥
[u
=18
K>
[\v]
Lo—
=B
—_
| S
| S —
‘ .
]
e 1
—y
= |
o=
o
=z
L
=
¥
[u
&
b
[\v]
L—
=B
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—_
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We denote 61, 0; (i = 2,3,--- , N—1), and dy as the filter indexes of the input layer, it" intermediate
layer and output layer, respectively. The input channel number of the i*" layer is set as ¢;_1 = n;_;.

1) For the input layer, with Egs. (52), and (58), let z denote the coordinate of position (k,1),
then we have

CN

L R L T I U e e L e LIS TN

)

=1 > Z Z@i{v_lcN(BlefﬁN)'"wiocl(A_lfsl)Tco (Ag,(x—0n—-+-—d2—614D))
B 165 AcS 5ieA
SnEA d2€A
- Z Pinren( BNLON)Peye,(ATHAG 1) 1e (Ap, (2 —bn —+ - =02 +b) = b1)

CN—1 C1
Byn— 1ESA€S 5161\
INEA PISHN

= Z Z (pi\fvflcN(B;llfl(sN)"'Lp1240102(327152)

CN-1 ACIS
Bn_1ES S
SnEA J2EA

ng(‘o(‘l 151 Agk(:p 5N* 51 er Z(pcgq 1A(9—k151)TCO(A9k(I—5N—. . .52+b)f§1)
516/\ 5161\

(pé\f\z,lcN (B&£15N>‘ e |<101246162 <B5162)|

e e
thc(}cl A@k(x 51\/7 7(51%’[)))72@(1:061 (A*lAe—kl(;l) TCO(Agk(Iﬁst. . .7§2+b)7§1)
51 51
< Y- Z ZFN Py | Y o (A7161) r(Ag(x = Oy -+ — 61+ D))
B;Nlles Acs oeh
SnEA d2EA
= > Ol (AT AGT0) e, (g (= O — -+ — 62+ b) — 61)| .
d1EA

(80)
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Let us denote & = x — 6y — dn—1 — - -+ — 02 + b. Utilizing Eq. (33)) from Remark 2 for the input

608
layer, we can deduce the following result:

609

Z ‘pcocl 1(51 (AGk(x_(SN"'—(Sl—&—b))

51 EA
=) e (ATTAG 1) 1oy (Ag (x — Oy — -+ = Gy + b) — 1)

d1EA

Z 906061 151 (Agk (‘% - 61))

51 EA

a Z S0(130(31 (AilAa_klél) Teo (Agk:E - 51)
d1EA

C
Sm)?l(p +1)%h2,
(81)

where we do not specifically indicate the numbers of input and output channels, i.e. ¢' (z) = ¢ ., (),

610
611 and we have C1 = H{1Fy + 1 Hy + 2G1Gy.
Therefore, according to Eqs. (80) and (81)), we have

612

(6 o o ] 0
; b, [ [9]] )] ()™

o
<nn_1p?*Fnny_op*Fn_1 -+ nip*Fang— 5 (p+1)%h

N
+1)°h?
(H nk1p2Fk> no% (H1Fo + Fi1Hy + 2G1Go)

k=2
H1 Gl 2
< — e .
2.7:(F1F0+H0+2F1G0)h
(82)

613 2) For the any *" intermediate layer, 1 < i < N. We have:

(¢ [ i o 2. [8] ]
=T B b [ [ B [0] - ]]] (j)):;v

_ N -1 i —1g.
= E E @cN,lcN(BN—ﬂSN)"'@Bi,lci,lci(Bz‘ d;)
CN—1 Ci—1
Bn_1€S B;_1€S8

INEA 5; EA
CL 1(A9k(x_6]\7_"'_6 +b) A9k i— 1)
B A,'6:)

- Z Z (pi\folCN(BRllfléN)“'9031'7161'7161'(

CN—1 Ci—1
By-_1€S Bi—1€5
SNEA dicA
eii_fll (AOk (3j — 5N - 6i+1 + b) - 6i,Bi_1)
(83)
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614

N -1 N—-1 -1 i1 1
= Z Z PCen 1enBN_1ON)PEy ven—sen_o(By_10n-1) " ‘PBtcicHl(BiH(SiH)
B es  Bies
ONEA dit1EA
Z LpiBF1Ci—lcz'(Bzﬂ‘Si)‘3;‘_}1(‘4%(3«"—5N—' c+—0;41—0; + b), Ag, Bi_1)
B e
5; €A
B Z (piBiflciflci(Bi_lAe_k,l(si)ezi_}l (Ap(r — 0N — -+ = diq1 +b) — 03, Bi_1)
B, €8
d;EA
< Z Z Z FNFn_1--- Fipa

CN-1 CN -2 c;
Bn_1€S BN_2€S B;eS
INEAN SNn_1EA 6i+1€A

Z @Zbiﬂci—lCi(Bi_lai)ei:}l(AGk(f—5N—' <+—0;41—0; +b), Ag, Bi_1)
B, S
§;EA

= Y e BT AR oo~ Oy — - — G +D) — 6., Bi)
B, €8
6;EA

615 Letusdenote & = 2 — oy — - -+ — 041 + b. Then, by Eq. (35) in Remark 2, we have:

Z (p%iflcifwl'(Biil(si)ezi::}l (Aek (‘i‘ - 51)7 AOkBifl)

Ci—1
B;_1€S
6, EN

i -1 i—1 .
- Z WBi,lci,lci(Bi Ag;l@)eci,l (Ag, & — 0;, Bi—1)
Ci—1
B;_1€S
d; €N

= Z Z SO,L‘Biflciflci (Bi_lai)eii_fi (Aek (j: - 6i)7A9kBi—1)
ci—1 |Bi_1€S
0;EA

- Z SOiBi—lci—lC‘i (BflA;kléi)ei:_ll (A()ki" - 52',Bi,1)
B;_1€8
0 EN
Ci
Sni-15 (p+ 1)2h2,
(84)
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616 where we do not specifically indicate the numbers of input and output channels, i.e.
617 ‘Pl( )= QOAM 1c( x), and we have

618 C; =sup (HV2 Y H ei! (x,B) ‘+ |50 }HVQ et! (z,B) H +2||V<,0 || HVePl ; z,B)H)
sto  Therefore, according to Egs. (83) and (84), we have

(¢ e o0 [a] - ]

T [ b [ [ [8] ] ()

ij

C;
<nn_1p?Fn - nip® Fipini—1— 2 “(p+1)°h°
C;
(H Nj— 1ka>nz 12(p+ 1)%h?.
k=i+1

(85)

620 Substituting Egs. , and l| into Eq. , denoting F;_1 = Hz;ll ng_1p> Fy, then we have

(TF)NA' ‘ ‘i%{fa;é [‘i’i—l' ‘ é’z[‘i’} o H} (j) - [‘i’N—l' : "EHV@};{@' : i’2[‘i’} : H} (f)) CN
< ( ﬁ nkpoFk> M

k=i+1
(v @]l [e
N
H,
<2 (;}1 nklszk> <E
f’

N
<2 (H ng-1p*Fy,
k=i

(z, B) ‘ + ’go )‘ HV%Z:}l (x,B)H +2 HV@ H HV@Q ; H)

C'Ll

i—1 2 i—1
el (@, B)| + || V2l (

Vel (x, B)H) h?

—1 i—1 -1
HFO Z Gy G G mGo GG Fy GiGo) 4
-|-2 — E E —I—Ho—I—E 2 +2 >h
( m=1 =1 Fl m=1 Fm FiFm F;
% -1
H,,F mA
S2]-'< F°+2§ QE GFO 2§ GGO+H>h2
m=1 m =1 l m=1 m
(86)

621 3) For the output layer, with Eqs. (52), (53) and (58) we have

(£l foweree i - Rl J DTl [T forar-- e 2afa] ] ) ]

= Z SOCN 1CN N 16N) (Aek (x - 6N + b) Aek‘BNfl)
By 1€S
INEA

Z spi\j\f—lcN(B]:’ 1 15N) ! (A, (z +b) — 6n,By_1)|.
Baoi€s
INEA
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622 Then, by Eq. (35) from Remark 2 for the output, we have:

o e e | L R O A LA S

<SS @M e (BLOnENT (DA, (¢ — by + 1), Ag, By—1)
cN—1|BN_1ES
SNEA

Z (pi\jv'f]CN(BX/' 1 15N) CN 1 (Aek( )_6N7BN—1)
By-1€S
OSNEA
SnN—lggxp4-U2h{
(87)

623 where we do not specifically indicate the numbers of input and output channels, i.e. ¢ (z) =

64 @, .. (x),and we have

625 Cpy = sup (HVQSON@)H

626

2o Bl ) [ V2o ) 2 Vo) Vet ) ).

CNl CN-—1

627 Substituting Egs. , and Ii into Eq. , denoting Fny_1 = Hffv:_ll ng_1p>Fy, then we
628 have

e e i | L I O B LA S

)

<M (9o

N B @) |92l B2l oM@ el

cN cN 1

+.B)

CNl

H
<2nn_1p*Fn (F]J\\;

§2nN71p2FN]:N 1

N-1 - -
Hy f{ mFo Gy (;WJ% (;0 Cﬁv(; Fy (;N(;O 2
= Fot —2) + Ho+ +2 h

=1 m=1

N N
§2J-‘< Hmty | 2% @ Gmbo | H0> h2.
m=1

eN- 1(xB‘+HV2N1xBH+2 HVleBH)hQ

CN—1 CNl

(88)

620 4) Substituting Eqs. (82), (86) and (88) into Eq. (79) we can get:
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& [7s] (D) = Forb le] (D)

H
<2F (FIFO + Ho + 2G100> h?
1

N-1
-FZ%ZH% Z ZGR2ZG%1@W
(89)

=2 m=1

N
+2]__<§:1H"1j0 226’126’750 22 Gm O+H0>h
<2fZ<Z GGO+H)h2

H,,Fy 22 ZGFO 22

e30 Therefore, we achieve Eq. (77).

631 Finally, we will provide the error analysis for the N-layer rotation equivariant CNN network. Substi-

tuting Eqs. (73), and into Eq. (72), we can get:
[Fan e [ ()= [2)(D)

2 2
<77T]-'(max {H,W}+ N (p+1)) hGo + —W]-'maX{H,W} hGo

6!

@
N

al H,.F G F, GG
HME(Z b §j Z L02§: o )m o0

m=1 77

2
g%]—" (2max {H, W} + N (p + 1)) hG,

+2}_Z<ZH FO Z ZG Fo i G;Go-i-Ho) 32
m=1 m

m=1

e33 Next, in order to get a more concise form, we further scale the entire error bound. By Eq. (90), we
634 have:

" [fn] (1)~ 1) ()]

2
:777]-' (2max{H,W}p_1 +N(p+ 1)p_1) phGo

N i1
~ [ H;F, e G Fy GGy 9 9
2 E N+1-— 2— 2—— 2F N H
+ ]:i:l( + i) ( F, + s 2 . + F, ) h* 4+ 2F oh
2
Tﬂ}" (2max {H,W}p~' + 2N) phGy 91)

HiFy _Gi = GnFy ,GiGo\ )
+2]—'N;< QEW; o +2 o h? + 2FNHoh

-1

HiFy _Gi 2 GnFy  .GiGo )

<2N E 22— E 2 Hy | h
]:L 1 ( i Fz m=1 Fm " Fl i ’

+27GoF (2max {H,W}p~' 4+ 2N) pht ™!

635 If we denote

H,F, G ZXa.F GG
O, =2NF- 1ot +2 + Hyl,
a3 (B a5 o o

i—1 Fz me1 Fm Fi
Cy = 21GoF (2max{H,W}p~' +2N).
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Then we can obtain the error bound of the N-layer rotation equivariant CNN network as Eq. (70)
O

Lemma 5. Based on the same conditions, for an arbitrary 0 < 0 < 2w, Ag € S denotes the rotation
matrix, b € R? denotes the translation, the following result is satisfied:

e [Fon] (1) = fou e (D) <crm+Copht, ©3)
where Cy and C5 are defined in (92).

The proof of Lemma|§] is similar to Theorem 1 of [38]]. Please refer to [38]] for more details.

A.4 Proposition 1 and the Proof

Based on Theorem T} we proceed to present the Proposition|[T]in the main text and its proof.

Proposition 1. For images Iy and I; with size H x W X ng, and a N-layer rotation-translation
equivariant CNN network g(-), whose channel number of the it layer is n;, rotation equivariant
subgroup is S < O(2), |S| = t, and activation function is set as ReLU. If the latent continuous
function of the ¢ channel of T ; and Io are denoted as . : R2 =R and 7, : R? =R, respectively,
and the latent continuous function of any convolution filters in the i'" layer is denoted as ¢* : R> - R,
wherei € {1,--- N}, c € {1,--- ,ng}, for any x € R?, the following conditions are satisfied:

[re(@)], [Fe(@)| < Fo, [[Vre(@)|, [VFe(2)]| < Go, [[V2re(@)|, [ V?7e(2)|| < Ho,
0" (2)] < F;, Vo' (2)]| < Gy, V2! ()] < Hi, ©4)
V||z|| > (p+DR/2, () = 0,
where p is the filter size, h is the mesh size, V and NV? denote the operators of gradient and Hessian
matrix, respectively. For an arbitrary 0 < 0 < 27 and a feature map of equivariant convolution

Z = g(I) with size Hx W x tC, Ag € S denotes the rotation matrix, b € R? denotes the translation,
the following result is satisfied:

|7tz - 20| < & ||t () = ko + Con®+Copht ™, 95)

where fgb is defined in Eq. @ and

N i—1
B HiFy _Gi~=GnFy GG
C1=2NF ;( N +2EZ:: Pt +Ho>,
Cy = 2nGoF (2max{H,W}p~' +2N), (96)

N
C3 = H ny—1p° F.
k=1

Proof. We can deduce that
|2 - 2|
(oo}

= |7t e @) — g [ ) + 8 [7a'] (1) — sho)|

o0 97)
< |t el () =8 [ 7] )|+ |le [Fa'] (1) — st _
(1) (2)
For the part (1), by exploiting Lemmal[5] we have
|7t 81 (1) — e [fa"] (1)]|_ <Can?+Copht ™, ©98)
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where C; and Cs are defined in (92)). For the part (2), consistent with the mathematical notation
defined in Section 1.3., xy; denotes the coordinates of the point (k, ). Let 7.(z) = r.(Agx +b), then

7.(x) is the latent function of fe_bl(l ;). Besides,
[Fe(@)] < Fo, [[Vie()]| < Go, [V2re(2)|| < Ho. (99)
Then we can deduce that

(s [F'] @) —st) |
= 3 Y S e (BN ok (A7)

B i€s  Aes s eA
INEA d2€A
(TAC(x/Cl_(SN_"'_él)—’l:c(l‘kl—5N—..._51))
N -1 _
= Z Z Z SDCN—lcN(BN—léN)‘""4,0(1:001 (A 151)|
CN-—1 Cc1 (o)
1 A€ES §1eA
Bévj\;ele\s 52%/\ €
|7:C(xkl_5N_"'—61)—770(])kl—5N—..._61)|
N
(frn) -
k=1 e’}
N
< (H nk—1p2Fk> Hfg_bl(fj) — IOHz .
k=1
(100)

Finally, by substituting Eqgs. (98) and (I00) into Eq. (97), we have
|tz -2

N ) (101)
<C1h*+Copht™" + (H nklngk> Hfg}l(fj) - IoH2~
k=1
If we denote
N
Cs = [ [ na—10Fr, (102)
k=1
then we can obtain Eq. (95), the proof is then completed. O

B Supplementary Results

In this section, we first provide full-size visualized results of comparison experiments and ablation
study in the main text. Fig. Q][] are the full-size version of comparison results on x4 Synthet-
icBurst [3]] dataset. Fig. are the full-size version of comparison results on x4 BurstSR [23]]
dataset. Fig.[I6}[I8]are the full-size visualized results of ablation study on x4 SyntheticBurst dataset.

In addition, we provide comprehensive multi-scale super-resolution (SR) comparisons on the Synthet-
icBurst and BurstSR datasets for both x2 and x3 scaling factors to further validate the robustness and
generalization of our method. Among the compared methods, only BurstM [9] supports multi-scale
SR, while other methods exhibit inferior performance compared to both BurstM and our approach.
Therefore, we focus our comparison on BurstM as the primary baseline.

The quantitative results are in Table 1 in the main text. The qualitative results on the x2 and x3
SyntheticBurst dataset [3]] are presented in Fig. [T9 and Fig. [20] The error maps clearly demonstrate
that our method achieves superior reconstruction quality, recovering finer details than BurstM. For
the x2 and x3 BurstSR dataset [23]], as shown in Fig. [21{and Fig. we provide enlarged patches for
visual comparison due to the absence of ground truth images. The results highlight that our method
preserves more structural information and produces visually sharper results compared to BurstM,
further validating its effectiveness in real-world burst SR scenarios. These consistent improvements
across datasets and scaling factors underscore the robustness and generalizability of our approach.
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Figure 8: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 9: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 10: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 11: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 12: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 13: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 14: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 15: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 16: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.

(d) Ours GT

Figure 17: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.
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Figure 18: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.

(d) Ours GT

40



19: Visual comparison x2 BISR on the SyntheticBurst dataset.
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Figure 20: Visual comparison x3 BISR on the SyntheticBurst dataset.
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Figure 21: Visual comparison x2 BISR on the BurstSR dataset.
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Figure 22: Visual comparison x3 BISR on the BurstSR dataset.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of the paper,
including both the methodological innovations and the practical improvements.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in Section 5 ( Conclusion and Limitation), where
the authors acknowledge the constraint that the model assumption is limited to the previous
development of Eq-CNN.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical results in the paper are accompanied by a complete set of clearly
stated assumptions and formal proofs. While the full detailed proofs are presented in the
Appendix for readability, the main paper includes a simple version to aid understanding.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. The paper provides sufficient details to ensure the reproducibility of its
main experimental results. The overall architecture and each individual module are clearly
described in Figure 3 and Section 3, offering a comprehensive overview of the proposed
method. Furthermore, Section 4.1.1 outlines the experimental settings in detail. These
descriptions are sufficient for the reproduction to verify the main claims of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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789 In the case of closed-source models, it may be that access to the model is limited in

790 some way (e.g., to registered users), but it should be possible for other researchers
791 to have some path to reproducing or verifying the results.

792 5. Open access to data and code

793 Question: Does the paper provide open access to the data and code, with sufficient instruc-
794 tions to faithfully reproduce the main experimental results, as described in supplemental
795 material?

796 Answer: [Yes]

797 Justification: We will provide a GitHub repository in the introduction in the de-anonymised
798 version.

799 Guidelines:

800 * The answer NA means that paper does not include experiments requiring code.

801 ¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
802 public/guides/CodeSubmissionPolicy) for more details.

803 * While we encourage the release of code and data, we understand that this might not be
804 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
805 including code, unless this is central to the contribution (e.g., for a new open-source
806 benchmark).

807 * The instructions should contain the exact command and environment needed to run to
808 reproduce the results. See the NeurIPS code and data submission guidelines (https:
809 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

810 * The authors should provide instructions on data access and preparation, including how
811 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
812  The authors should provide scripts to reproduce all experimental results for the new
813 proposed method and baselines. If only a subset of experiments are reproducible, they
814 should state which ones are omitted from the script and why.

815 * At submission time, to preserve anonymity, the authors should release anonymized
816 versions (if applicable).

817 * Providing as much information as possible in supplemental material (appended to the
818 paper) is recommended, but including URLSs to data and code is permitted.

819 6. Experimental setting/details

820 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
821 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
822 results?

823 Answer: [Yes]

824 Justification: All the training and test details are presented in Section 4.1.1 and 4.1.2.

825 Guidelines:

826 * The answer NA means that the paper does not include experiments.

827 * The experimental setting should be presented in the core of the paper to a level of detail
828 that is necessary to appreciate the results and make sense of them.

829 * The full details can be provided either with the code, in appendix, or as supplemental
830 material.

831 7. Experiment statistical significance

832 Question: Does the paper report error bars suitably and correctly defined or other appropriate
833 information about the statistical significance of the experiments?

834 Answer:

835 Justification: The experiment for this task is time-consuming. Referring to previous work,
836 there is no need for such experimental data.

837 Guidelines:

838 » The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational cost have been listed in the main text with the used computer
workers.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research fully adheres to its principles.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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11.

12.

Justification: This paper presents work whose goal is to advance the field of Deep Learn-
ing and Computer Vision. None of the potential societal consequences we feel must be
specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve pretrained models, generative tools, or scraped
datasets that carry a high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited all existing assets used in our work, including
publicly available datasets and code repositories.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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994 Guidelines:

995 * The answer NA means that the paper does not involve crowdsourcing nor research with
996 human subjects.

997 * Depending on the country in which research is conducted, IRB approval (or equivalent)
998 may be required for any human subjects research. If you obtained IRB approval, you
999 should clearly state this in the paper.

1000 * We recognize that the procedures for this may vary significantly between institutions
1001 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1002 guidelines for their institution.

1003 * For initial submissions, do not include any information that would break anonymity (if
1004 applicable), such as the institution conducting the review.

1005 16. Declaration of LLM usage

1006 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1007 non-standard component of the core methods in this research? Note that if the LLM is used
1008 only for writing, editing, or formatting purposes and does not impact the core methodology,
1009 scientific rigorousness, or originality of the research, declaration is not required.

1010 Answer: [NA]

1011 Justification: The core method development in this research does not involve LLMs as any
1012 important, original, or non-standard components.

1013 Guidelines:

1014 * The answer NA means that the core method development in this research does not
1015 involve LLMs as any important, original, or non-standard components.

1016 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1017 for what should or should not be described.
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