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Abstract

Burst image processing (BIP), which captures and integrates multiple frames into1

a single high-quality image, is widely used in consumer cameras. As a typical2

BIP task, Burst Image Super-Resolution (BISR) has achieved notable progress3

through deep learning in recent years. Existing BISR methods typically involve4

three key stages: alignment, upsampling, and fusion, often in varying orders and5

implementations. Among these stages, alignment is particularly critical for ensuring6

accurate feature matching and further reconstruction. However, existing methods7

often rely on techniques such as deformable convolutions and optical flow to realize8

alignment, which either focus only on local transformations or lack theoretical9

grounding, thereby limiting performance. To alleviate these issues, we propose a10

novel framework for BISR, featuring an equivariant convolution-based alignment,11

ensuring consistent transformations between the image and feature domains. This12

enables the alignment transformation to be learned via explicit supervision in the13

image domain and easily applied in the feature domain in a theoretically sound way,14

effectively improving alignment accuracy. Additionally, we design an effective15

reconstruction module with advanced architectures for upsampling and fusion to16

obtain the final BISR result. Extensive experiments on BISR benchmarks show our17

superior performance in both quantitative metrics and visual quality.18

1 Introduction19

Image super-resolution is an important task in image processing. Conventionally, it’s mainly dealt20

with in the context of Single Image Super Resolution (SISR) [1, 2] and significant progress has been21

made in the last decades. By the advances in image acquisition technologies, a new kind of super-22

resolution technique, Burst Image Super-Resolution (BISR) [3, 4] has emerged as an increasingly23

valuable alternative. Unlike SISR, BISR reconstructs a high-resolution (HR) image by leveraging24

a sequence of low-resolution (LR) images captured in rapid succession, making it inherently more25

robust to noise and artifacts. Despite its advantages, BISR faces significant challenges, including26

accurate alignment for handling motion variations and effective multi-frame fusion.27

The general pipeline for BISR typically involves three key stages: alignment, upsampling, and28

fusion, with their order and implementation varying across methods. Among them, alignment plays29

a crucial role in addressing spatial misalignments between successive frames, enabling accurate30

feature matching and high-quality reconstruction. Early methods [5, 6] mainly relied on Deformable31

Convolution Networks (DCNs) [7] for alignment, owing to their strong ability in modeling spatial32

transformations. Recently, optical flow [8] was adopted in the BurstM [9] method, showing better33

feature alignment performance than DCN, leveraging its explicit supervision in the image domain and34

a stronger ability to capture global transformations. However, since the transformation is estimated in35

the image domain, it may not be strictly applicable to the feature space without further constraints on36
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Figure 1: Illustration of transformation consistency in vanilla (V-CNN) and equivariant (Eq-CNN)
convolutional networks. f1 denotes a transformation (rotation in this example) and g is a CNN
that extracts features from images. Suppose I1 is the image obtained by applying f1 to I0, i.e.,
I1 = f1(I0), and Z0 and Z1 are features extracted from I0 and I1, respectively. We expect that Z1

can be close to f1(Z0), the affine transformation of Z0, such that one can align Z1 to Z0 in the feature
domain by applying the inverse transformation f−1

1 , which can be learned by explicit supervision
in the image domain. The right box compares the error between f−1

1 (Z1) and Z0, and it can be
observed that Eq-CNN can more effectively achieve this goal than V-CNN.

the feature extractors, as intuitively illustrated in Figure 1. As a result, the feature alignment could be37

less accurate, as shown in Section 3.1, which negatively affects the final performance.38

To alleviate the limitations of alignment in existing methods, we propose to leverage equivariant39

convolutional networks (Eq-CNNs) [10, 11, 12] with learnable transformation matrices as a solution.40

Compared with vanilla convolutional neural networks (V-CNNs) [13, 14], Eq-CNNs can extract41

features that are theoretically equivariant to input images under certain spatial transformations, e.g.,42

rotation and translation. Then, if each source frame within burst images can be approximately modeled43

by an affine transformation (or more specifically, rotation plus translation) of the reference frame due44

to the acquisition mechanism [3], such a property of Eq-CNNS enables us to learn the transformation45

(or its inverse) with the image domain supervision and then apply the inverse transformation in the46

feature domain to achieve an easy while theoretically sound alignment from the source frame to the47

reference one, as illustrated in Figure 1.48

With the aligned features as aforementioned, we further designed a reconstruction module for49

upsampling and fusion to generate the final sRGB image using advanced techniques. Specifically,50

considering its ability in capturing intricate inter-frame correlations, we adopt the Multi-Dconv51

Head Transposed Attention (MDTA) block [15] for feature interaction among frames; and due to its52

flexibility in multi-scale upsampling, we use the implicit neural representation (INR) technique [16]53

to upsample the features for final fusion, following [9].54

To summarize, our contributions are as follows:55

• We propose a new alignment framework for BISR based on Eq-CNN, which enables us56

to learn the alignment transformation with image domain supervision and apply it in the57

feature domain in a theoretically sound way. The corresponding theoretical analysis also58

advances the theory of Eq-CNN to a certain extent.59

• We incorporate the proposed alignment framework with advanced techniques for upsampling60

and fusion, including Restomer and INR, and build a new deep model for BISR.61

• We apply the proposed model to BISR benchmarks, demonstrate its superiority against62

current state-of-the-art methods.63

2 Related Work64

2.1 Burst image super-resolution65

BISR and its related task, Muti Frame Super-Resolution (MFSR), have been extensively studied66

using both traditional approaches and deep learning techniques. The pioneering work by Tsai et67

al. [17] tackled the problem in the frequency domain, while subsequent research [18, 19, 20] put68

more focus on the spatial domain for resolution enhancement. With the rapid advances of deep69

learning, significant progress has been made. Initial studies [21, 22] employed relatively simple70

network architectures to address the MFSR task. Then, Bhat et al. [23] proposed a BISR pipeline71
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Table 1: Comparison of relative alignment error
on ×4 SyntheticBurst and BurstSR.

Dataset Type Domain Flow Ours

SyntheticBurst synthetic image 0.18 0.20
feature 1.03 0.94

BurstSR real image 0.26 0.17
feature 2.06 1.94

OursFlow Ours Flow
0

1

Input

Syn

Real

Figure 2: Error maps of aligned images (left) and
features (right) .

incorporating alignment, feature fusion, and upsampling modules, together with the first real-world72

burst SR benchmark, inspiring numerous successive studies [24, 25, 5, 26, 6, 27, 28].73

Within the BISR pipeline, alignment plays an important role, as highlighted by Kang et al. [9]. In74

previous methods [5, 6], DCN [7] is mainly adopted, but is insufficient for global transformation75

[9]. In contrast, Kang et al. [9] introduced optical flow [8] to achieve alignment, improving the76

performance. However, the image-domain estimated transformation may not be sufficient to achieve a77

theoretically sound and accurate feature alignment, motivating our development of a more principled78

alignment method via Eq-CNN.79

In addition to alignment, fusion and upsampling have also benefited from recent architectural80

advances. Transformers [29] were used in [6, 26] for long-range modeling; QMambaBSR [28]81

introduced Mamba [30] for efficient sub-pixel integration; BSRD [27] employed diffusion models82

[31] for refined reconstruction; and BurstM [9] leveraged INRs [32, 16] for multi-scale upsampling.83

2.2 Equivariant convolutions84

One key factor behind the success of CNNs in computer vision is their inherent translation equivari-85

ance, which ensures spatial consistency. This principle has motivated the development of rotation-86

equivariant convolutions. GCNN [33] and HexaConv [34] enforce π
2 and π

3 rotational equivariance,87

while Xie et al. [35] extended this to near-continuous angles via Fourier-based filter parameterization,88

showing strong practical performance [12]. Leveraging such equivariance, Eq-CNN enables learning89

alignment transformations from image-domain supervision while preserving theoretical validity in90

the feature domain, which is an essential property in our alignment framework (see Section 3.1).91

3 Proposed Method92

We first discuss the motivation of our alignment framework for BISR. Then, we discuss the details93

of the proposed method. We also provide a theoretical justification for the validity of the proposed94

alignment framework.95

3.1 Motivation96

Alignment is a crucial component in the BISR pipeline. As discussed in the Introduction and Related97

Work, early deep learning approaches [5, 6] commonly employed DCN [7] for alignment. However,98

Kang et al. [9] pointed out that DCN struggles to capture global transformations and demonstrated99

that optical flow provides more effective feature alignment with supervision and global matching.100

Despite these advantages, the optical flow-based alignment has a theoretical limitation that should be101

noted. Specifically, the estimated transformations by optical flow are supervised in the image domain102

while applied in the feature domain, but there is no rigorous guarantee that the transformations of the103

two domains are consistent without further constraints on the feature extractor, as shown in Figure 1.104

To further investigate this issue, we compute the relative alignment error of BurstM, which uses the105

optical flow to align features, and compared with that of our method, as shown in Table 1 and Figure106

2. It can be seen that both methods achieve comparable image alignment, but the feature alignment107

of optical flow is much worse.108

To alleviate this issue, we propose a theoretically sound alignment approach based on Eq-CNN. We109

first briefly introduce the concept of equivariance in deep learning. Suppose g is a deep feature110

extractor mapping from input to the feature space and F is a transformation group, we say g is111

equivariant with respect to F if for any f ∈ F , it holds that f(g(I)) = g(f(I)), or equivalently,112
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Figure 3: Overview of our proposed method. The top row shows the whole workflow. The bottom left
shows the detailed equivariant convolution layers of Eq-CNN. The bottom right shows the process of
feature alignment by predicted transformation, detailed in Section 3.2.2.

g(I) = f−1
(
g(f(I))

)
if f is invertible. Note that, we abuse the notation f a little to denote the same113

transformation applied in different domains. It is well known that V-CNNs are only equivariant under114

translation, while previous studies on equivariance [10, 35] constructed CNNs that are also equivariant115

with respect to rotation and reflection, which are often specifically referred to as Eq-CNNs.116

This theoretical foundation of Eq-CNN allows us to design an alignment framework where a trans-117

formation (e.g., rotation and translation) estimated and supervised in the image domain remains118

valid in the feature domain. Considering that misalignments in burst images typically arise from119

slight camera shifts and can often be approximated by simple geometric transformations [3], such120

a rotation-translation modeling is reasonable. We leverage Eq-CNNs to extract features from input121

frames, and then apply explicit transformation matrices for alignment directly in the feature domain.122

The results in Table 1 and Figure 2 support this idea, that our method achieves a better feature123

alignment, especially on the real dataset.124

3.2 Our method125

3.2.1 Problem setting and processing pipeline126

Given B low-resolution (LR) RAW burst frames {ILj }
B−1
j=0 with each ILj ∈ Rh×w×1, we first process127

it a 4-channel format following the RGGB Bayer pattern [9, 6]. Then, one frame is selected as128

the reference frame, which serves as the reference for high-resolution (HR) reconstruction, and the129

rest frames are used to assist the reference one in super-resolving. The reconstructed HR image130

IS ∈ Rsh×sw×3 is in sRGB format, where s is the scale factor. As shown in Figure 3, our processing131

pipeline includes two main steps, i.e., alignment and reconstruction. The alignment step aims to132

extract and align features from the LR burst images using the Eq-CNN, and the reconstruction step133

tries to upsample and fuse the features to get the final reconstruction.134

3.2.2 Alignment Module135

Let IL0 denote the RAW LR reference frame and {ILj }
B−1
j=1 represent the remaining source frames in136

the burst image. Following the discussions in Section 3.1, we approximately model the relationship137

between each ILj (j ̸= 0) and IL0 as138

ILj = fj(I
L
0 ), (1)

where fj is a rotation-translation transformation. After feature extraction using an Eq-CNN g, we139

can obtain features Z0 = g(I0) and Zj = g(Ij), respectively. Assuming the equivariance property of140

g strictly holds, we have that141

Zj = g(Ij) = g(fj(I
L
0 )) = fj(g(I

L
0 )) = fj(Z0). (2)

This indicates if we can accurately estimate fj or f−1
j in the image domain, we can apply it to Zj :142

Z̃j = f−1
j (Zj), (3)
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such that Z̃j is well algined to Z0. Therefore, we learn f−1
j via the image domain supervision with143

the following loss:144

Lalign =
1

B − 1

∑B−1

j=1
∥f−1

j (ILj )− IL0 ∥22. (4)

In practice, however, due to the discretization of the rotation angles in Eq-CNNs, we cannot strictly145

guarantee that f−1
j (Zj) = Z0. Nevertheless, we can prove the following result:146

Proposition 1. For an images I0 and Ij of size H×W ×n0, a rotation-translation Eq-CNN g(·) with147

discretized angles, and a rotation-translation transformation fj(·), let Z0 = g(I0) and Zj = g(Ij)148

be the feature maps, where Z0, Zj ∈ RH×W×tC , and then the following result holds:149

∥f−1
j (Zj)−Z0∥∞≤C3

∥∥f−1
j (Ij)−I0

∥∥
2
+C1h

2+C2pht
−1, (5)

where t, p, h, C1, C2, C3 constants.150

Proposition 1 suggests that we can minimize the distance between f−1
j (Zj) and Z0, the main goal of151

the Alignment module, through minimizing the distance between f−1
j (ILj ) and IL0 , which is we are152

trying to do by the loss defined in Eq. (4). The detailed version of Proposition 1 and its proof is are153

provided in Appendix A.4.154

The next question is then how to parameterize the transformation f−1
j . Since we assume fj is a155

rotation-translation transformation following [3] as discussed in Section 3.1, its inverse f−1
j is also a156

rotation-translation transformation, which can be parameterized using a matrix Mfj ∈ R2×3:157

Mfj =

[
cos θj − sin θj b1j
sin θj cos θj b2j

]
, (6)

where θj is the rotation angle, and bj = (b1j , b
2
j )

T is the translation vector. Then, a pixel at location158

(x1, x2)
T will be mapped to a new location (x′

1, x
′
2)

T after applying f−1
j :159 [

x′
1

x′
2

]
= Mfj ·

[
x1

x2

1

]
=

[
x1 cos θj − x2 sin θj + b1j
x1 sin θj + x2 cos θj + b2j

]
. (7)

Then we further parameterize {θj , bj} using a network block ϕ, referred to as transformation160

prediction block in Figure 3, with Z0, Zj as its input:161

{θj , bj} = ϕ (concat[Z0, Zj ]) , (8)

such that we can directly predict the alignment transformation f−1
j during inference.162

3.2.3 Reconstruction Module163

After alignment, the aligned features {Z̃j}B−1
j=0 of all frames (we let Z̃0 := Z0 for convenience) are164

then further processed for reconstructing the HR sRGB image.165

Feature interaction. Before upsampling, feature interaction between reference and source frames is166

necessary for enriching frame information. Instead of concatenation [5, 6, 9] or pixel-wise attention167

[36], we adopt the MDTA block from Restormer [15], which performs channel-wise self-attention via168

cross-covariance, capturing global context and enabling more effective integration of reference-source169

features. The interaction process for the aligned features of all frames is as follows (j = 0, . . . , B−1):170

Qj = WQ
d WQ

p (concat[Z̃j , Z̃0]), Kj = WK
d WK

p (concat[Z̃j , Z̃0]), (9)

Vj = WV
d WV

p (concat[Z̃j , Z̃0]), Ẑj = Vj · Softmax(Kj ·Qj/αj) + Z̃j , (10)

where {Ẑj}B−1
j=0 are the features after interaction, W (·)

p and W
(·)
d refer to 1 × 1 pixel-wise and171

3 × 3 depth-wise convolutions, respectively, and αj is a learnable scaling parameter. The term172

Softmax(Kj ·Qj/αj) captures feature correlations and dynamically weights value vectors based on173

similarity, enabling context-aware fusion.174

Upsampling and fusion. For upsampling, we adopt the LTE framework [16], utilizing INR and175

frequency domain processing to recover high-frequency details. LTE offers two key advantages for176
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BISR: (1) It enables multi-scale upsampling [9], allowing a single model to cover diverse scenarios;177

(2) Its grid sampling mechanism effectively recovers sub-pixel information, crucial for burst images178

with subtle camera shifts. After upsampling, we use a fusion block with channel attention to integrate179

the upscaled features, along with a skip connection to preserve reference frame information. To be180

specific, the upsampling and final fusion process can be formulated as181

IS = PS
(
ĨL0 ↑ +AvgW

(
{Φupj (Ẑj)}B−1

j=0

))
, ĨL0 ↑= Conv1×1(Up[IL0 ], . (11)

where IS ∈ Rsh×sw×3 is the final output in sRGB format, PS(·) denotes the pixel shuffle operation,182

AvgW (·) refers to the weighted average operation with parameters learned via convolutions from Ẑjs,183

Φupj (·) denotes the LTE-based upsampling, ĨL0 ↑∈ R(sh/2)×(sw/2)×12, Up[·] refers to the bilinear184

upsampling operation, and Conv1×1(·) is a 1× 1 convolution layer.185

3.2.4 Training loss186

The whole network is trained in an end-to-end way using the following loss:187

L = Lalign + Lfidelity = Lalign +
∥∥IS − IGT

∥∥
1
, (12)

where Lalign is defined in Eq. (4), and IGT the ground truth HR sRGB image.188

3.3 Theoretical results189

This section provides further discussions on the theoretical aspects of our method, and the readers190

who are not interested in the theory of Eq-CNN can just skip it. As mentioned in Section 3.2.2,191

Proposition 1 theoretically guarantee the reasonability of our feature alignment strategy. However, its192

proof is not trivial and relies on the following theorem:193

Theorem 1. For an image I0 of size H×W×n0, a rotation-translation Eq-CNN g(·) with discretized194

angles, and a rotation-translation transformation fj(·), under certain conditions, the following result195

holds:196

∥f−1
j

(
g(fj(I0))

)
− g(I0)∥∞ ≤ C1h

2 + C2pht
−1, (13)

where t, p, h, C1, C2 are constants.197

Different from existing theories in Eq-CNN showing that input transformations can be predictably198

reflected in the feature domain, by measuring the error between g(fj(I0)) and fj(g(I0)), Theorem199

1 further analyzes the residual errors caused by inverse transformation applied to these two objects200

in discrete settings of Eq-CNN, and suggests that such an error can also be upper-bounded. Such201

an analysis provides a theoretical understanding of how input-level inverse transformations affect202

feature relationships, which advances the theory of Eq-CNN to a certain extent. The detailed version203

of Theorem 1 and its proof are in Appendix A.3.204

4 Experiments205

In this section, we conduct experiments to validate the effectiveness of our proposed method. We first206

evaluate the proposed method on standard benchmarks for BSIR in comparison with existing methods.207

Then, we conduct ablation studies to demonstrate the reasonablity of our method, specifically208

concerning the alignment mechanism.209

4.1 Experiments on BISR benchmarks210

4.1.1 Settings211

Datasets. We follow previous studies [6, 9] and conduct experiments on two datasets: (1) Synthet-212

icBurst Dataset [3], which consists of 46,839 burst sequences for training and 300 for validation.213

Each burst sequence contains 14 RAW LR frames generated from an HR sRGB image using the214

standard pipeline [5, 9]. Specifically, unprocessing techniques [37] are firstly applied to simulate215

RAW sensor data, and random rotations and translations are implemented to simulate real camera216

motion. Following [9], we generate multi-scale LR images through random down-sampling (×2, ×3,217

×4). Finally, Bayer mosaicking and random noise are added to more closely reproduce real-world218

imaging conditions. (2) BurstSR Dataset [23], which comprises 200 full-size RAW burst sequences,219

with 5,405 patches of size 80×80 extracted for training and 882 patches for validation. The LR images220
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Table 2: Quantitative results on SyntheticBurst and BurstSR datasets. The best and second-best
results are highlighted in bold and underlined, respectively.

SyntheticBurst BurstSR BurstSR

Method x2 x3 x4 x4 Params.(M) FLOPs(G)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 38.30 0.948 33.94 0.886 33.02 0.862 42.55 0.962 - -
DBSR [23] 40.51 0.965 40.11 0.959 40.76 0.959 48.05 0.984 13.01 111.71
MFIR [24] 41.25 0.971 41.81 0.972 41.56 0.964 48.33 0.985 12.13 121.01
BIPNet [5] 37.58 0.928 40.83 0.955 41.93 0.960 48.49 0.985 6.7 326.47
Burstormer [6] 37.06 0.925 40.26 0.953 42.83 0.973 48.06 0.986 2.5 38.33
GMTNet [26] - - - - 42.36 0.961 48.95 0.986 - 300
BSRT-Small [25] 40.64 0.966 42.30 0.975 42.72 0.971 48.57 0.986 4.92 178.82
BSRT-Large [25] 40.33 0.965 42.87 0.979 43.62 0.975 48.57 0.986 20.71 362.63
BurstM [9] 46.01 0.985 44.79 0.982 42.87 0.973 49.12 0.987 14.0 436.21
Ours 46.10 0.985 44.95 0.983 43.18 0.974 49.22 0.987 8.7 170.21

GTOursBurstMBIPNet BSRT-LBurstormer
Figure 4: Visual comparison of x4 BISR on the SyntheticBurst dataset.

are captured using a smartphone, while the HR ground truth images are obtained from a DSLR under221

the same scenes. Each LR burst sequence consists of 14 frames, and the scale factor between LR and222

HR images in this dataset is fixed (×4).223

Competing methods and evaluation metrics. We evaluate our method against 8 representative ones,224

including traditional Bicubic interpolation and current state-of-the-art methods for the BISR task:225

DBSR [23], MFIR [24], BIPNet [5], GMTNet [26], Burstormer [6], BSRT [25], and BurstM [9].226

We employ two widely used metrics, PSNR and SSIM, to quantitatively assess the reconstruction227

quality of each method. Additionally, we report model complexity metrics, including the number of228

parameters and GFLOPs, to show the computational efficiency of each method as a reference.229

Implementation details. All experiments are implemented using PyTorch on an NVIDIA 4090 GPU.230

For the SyntheticBurst dataset, the initial learning rate is set to 1× 10−4 and gradually adjusted to231

1× 10−6 over 300 epochs. The batch size is set to 1, and the patch size is 48× 48. For the BurstSR232

dataset, we fine-tune the model pre-trained on SyntheticBurst following [9], using an initial learning233

rate of 1× 10−5 and CosineAnnealingLR to adjust it to 1× 10−6 over 30 epochs. The batch size234

is 1, and the patch size is 80× 80. For other compared deep learning-based methods, we test using235

the author-released models, except GMTNet for which we directly quote the results reported in the236

original paper since the model is not released.237

4.1.2 Results238

Results on SyntheticBurst Dataset [3]. We present the quantitative and qualitative evaluation results239

in Table 2 and Fig. 4, respectively, with full-size and additional visual results available in Appendix240

B because of space limitations.241

As shown in Table 2, our method outperforms existing BISR approaches across nearly all evaluation242

metrics. Specifically, for the widely-used ×4 SR setting, our method achieves the results with a PSNR243

of 43.18 and an SSIM of 0.974, surpassing competing methods with comparable model complexities.244

This quantitatively demonstrates its effectiveness in reconstructing the original HR sRGB image.245
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Figure 5: Visual comparison of x4 BISR on the BurstSR dataset.

Notably, our approach outperforms the current state-of-the-art multi-scale BISR method BurstM246

[9] while requiring fewer parameters and less FLOPs, showing both its efficiency and effectiveness.247

Furthermore, our method consistently performs well across different SR factor settings, suggesting its248

promising generalization ability. Visual results in Fig. 4 show that our method achieves competitive249

performance in several aspects. For example, our approach better preserves fine-grained textual250

details while maintaining structural fidelity. In addition, the method shows its ability to suppress noise251

without introducing unexpected artifacts or severe color distortions. These qualitative advantages252

of our method are consistent with its quantitative performance. It should be mentioned that though253

our model achieves slightly lower numeric results due to its fewer parameters (8.7M) compared to254

BSRT-Large (20.71M), it delivers comparable visual quality. Additional visual results of other scales255

are provided in the supplementary material for a more comprehensive comparison.256

Results on BurstSR Dataset. The quantitative results on the BurstSR dataset are summarized in257

Table 2. It can be seen that our method achieves the best performance in terms of both PSNR and258

SSIM among all competing ones. Note that, in this real dataset, although the degradation process259

of the LR burst images is unknown, and the relationship between the source and reference frames260

might not be more complex than assumed, our method still performs promisingly. This indicates that,261

though relatively simple, the rotation-translation assumption for the align transformation made in our262

model is rational and effective in real scenarios.263

The visual results in Fig. 5 further validate the effectiveness of our approach. Overall, our method264

keeps more fine-grained details and produces fewer unexpected artifacts compared with existing265

methods. For example, as shown in the first row, our result better keeps the morphology of characters266

and digital numbers, and in the last row, our method can better suppress artifacts while producing267

relatively sharper edges. More visual results on this dataset are provided in the Appendices.268

4.2 Ablation Study269

In this subsection, we conduct experiments on the SyntheticBurst dataset at ×4 scale to validate270

the rationality and effectiveness of the proposed alignment framework in our model. The overall271

quantitative and visual results are summarized in Table 3 and shown in Fig. 6 - Fig. 7, respectively.272

Effectiveness of the overall alignment module (a) & (b). We first replace the whole alignment273

module in our method with implicit alignment strategies using Restormer (a) and deformable convolu-274

tions (b). As shown in Table 3, both methods exhibit significant performance degradation, which can275

be more intuitively observed in the visual results illustrated in Fig. 6 (a) and (b), that the fine-grained276

textures are not well kept. This can be attributed to the misalignment of features, as can be observed277

in Fig. 7 (a) and (b). These results clearly substantiate the effectiveness of our alignment module.278

Effectiveness of equivariant feature extraction (c). We then conduct an ablation study by replacing279

the ENet, which is an Eq-CNN, with a V-CNN without the rotation equivariance for feature extraction.280

As shown in Table 3 (c) and Fig. 6 (c), this variant exhibits a noticeable performance drop compared281

to the proposed model in quantitative metrics and also produces blurry textures. The reason can282

be attributed to the lack of consistency of the alignment transformations between the image and283

feature domains, leading to mismatching among aligned features. Another interesting observation284

8



GTOurs(d)(a) (b) (c)
Figure 6: Visualization of the ablation for ×4 BISR on SyntheticBurst. Settings (a)-(d) are in Table 3.

Table 3: Ablation Study on ×4 SyntheticBurst

Settings PSNR SSIM Params.(M)

(a) Align with RT 42.97 0.972 9.0
(b) Align with DConv 42.81 0.970 11.5
(c) w/o Eq-CNN 42.76 0.971 10.1
(d) w/o T-mat. 42.80 0.972 8.7
Ours 43.18 0.974 8.7

*RT: Restormer [15]
*DConv: Deformable convolution network [7]
*w/o Eq-CNN: Replacing Eq-CNN with V-CNN
*w/o T-mat: Removing the transformation matrix

Ours(d)(a) (b) (c)
0

1

Figure 7: Error maps of aligned features for
ablation studies on ×4 burst super-resolution
using the SyntheticBurst dataset. Detailed
settings of (a)-(d) can be referred to Table 3
and Section 4.2.

is that, though it does not perform well in the quantitative metrics, the visual results of this variant285

are comparable or even look better than that of other ablation variants as shown in Fig. 6, and the286

alignment error in features is also significantly smaller than that of variants (a) and (b) as depicted in287

Fig. 7. This can be due to the explicit alignment mechanism using the learnable transformation and288

the translation-equivariance of V-CNNs, which indirectly suggests the effectiveness of our approach.289

Effectiveness of the learnable transformation matrix (d). We then remove the transformation290

matrix, denoted as “w/o T-mat.” in Table 3, and such a variant can be seen as implementing implicit291

alignment with the Eq-CNN. It can be observed from Fig. 7 (d) that this leads to obvious feature292

misalignment and correspondingly inferior performance both in quantitative metrics and visual effects,293

highlighting the crucial role of explicit alignment.294

5 Conclusion and Limitation295

In this work, we have proposed a new method for BISR. The key consideration of our method is that296

we have designed a new effective alignment framework for the BISR task with Eq-CNN. Within the297

proposed alignment framework, by the equivariance property of Eq-CNN, the align transformation298

can be learned with explicit image domain supervision and directly applied in the feature domain299

in a theoretically sound way. In addition, we have introduced effective upsampling and fusion300

blocks using advanced neural architectures, including MDTA from Restormer and INR. Extensive301

experiments on two representative BISR benchmarks have been conducted, showing the effectiveness302

of the proposed method, both quantitatively and visually, against current state-of-the-art methods.303

Despite its promising performance for BISR, our method still has limitations that need further304

investigation. For example, currently, the transformation considered in our model is restricted to305

rotation and translation due to the ability of existing Eq-CNNs, which may not be precise enough to306

characterize the relationship between the reference and source frame in complex real-world scenarios.307

Tackling this issue requires developing new techniques and theories for equivariance networks, which308

could not only enhance the availability of our method in real applications but also advance the study309

of equivariance in deep learning.310
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A Theorem and Proofs415

In this section, we present a comprehensive version of Theorem 1 and Proposition 1, which are briefly416

introduced in the main text, along with the related lemmas and proofs, aiming to provide a solid417

theoretical foundation for our proposed method.418

It should be noted that we follow the previous works, and consider the equivariance on the orthogonal419

group O(2)1. Formally, O(2) = {A ∈ R2×2|ATA = I2×2}, which contains all rotation and420

reflection matrices. Without ambiguity, we use A to parameterize O(2). We consider the Euclidean421

group E(2) = R2 ⋊ O(2) (⋊ is a semidirect-product), whose element is represented as (x,A).422

Restricting the domain of A and x, we can also use this representation to parameterize any subgroup423

of E(2). The input image can be modeled as a function defined on R2, denoted as r(x). The424

intermediate feature map can be modeled as a function defined on E(2), denoted as e(x,A). We425

denote the function spaces of r and e as C∞(R2) and C∞(E(2)), respectively.426

A.1 Remark 1 and the Proof427

Notations. For an input r ∈ C∞(R2), transformations Ã ∈ O(2) and b̃ ∈ R2, Ã acts on r by428

fR
Ãb̃

[r](x) = r(Ã−1(x− b̃)),∀x ∈ R2. (14)

For a feature map e ∈ C∞(E(2)), E(2) = R2 ⋉O(2), and a transformation Ã ∈ O(2), Ã act on e429

by430

fE
Ãb̃

[e](x,A, b̃) = e(Ã−1(x− b̃), Ã−1A),∀(x,A) ∈ E(2). (15)

Let Ψ denote the convolution on the input layer, which maps an input r ∈ C∞(R2) to a feature map431

defined on E(2):432

Ψ[r](x,A) =

∫
R2

φin

(
A−1δ

)
r(x− δ)dσ(δ), ∀(x,A) ∈ E(2), (16)

where σ is a measure on R2 and φ is the proposed parameterized filter. Φ denotes the convolution on433

the intermediate layer, which maps a feature map e ∈ C∞(E(2)) to another feature map defined on434

E(2):435

Φ[e](x,B)=

∫
O(2)

∫
R2

φA
(
B−1δ

)
e(x−δ,BA)dσ(δ)dv(A), ∀(x,B) ∈ E(2), (17)

where v is a measure on O(2), A,B ∈ O(2) denote orthogonal transformations in the considered436

group, and φÃ indicates the filter with respect to the channel of the feature map indexed by Ã, i.e.,437

e(x,A)|A=Ã. Υ denotes the convolution on the final layer, which maps a feature map e ∈ C∞(E(2))438

to a function defined on R2:439

Υ[e](x)=

∫
O(2)

∫
R2

φout

(
B−1δ

)
e(x−δ,B)dσ(δ)dv(B), ∀x ∈ R2. (18)

Then we will prove Remark 1.440

Remark 1. For r ∈ C∞(R2), e ∈ C∞(E(2)) and Ã ∈ O(2), the following results are satisfied:441

Ψ
[
fR
Ãb̃

[r]
]
= fE

Ãb̃
[Ψ [r]] ,

Φ
[
fE
Ãb̃

[e]
]
= fE

Ãb̃
[Φ [e]] ,

Υ
[
fE
Ãb̃

[e]
]
= fR

Ãb̃
[Υ [e]] ,

(19)

where fR
Ãb̃

, fE
Ãb̃

, Ψ, Φ and Υ are defined by (14), (15), (16), (17) and (18), respectively.442

1The rotation group S represents a subgroup of O(2), and it is also regarded as the discretization of O(2) in
this paper.
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Proof. (1) For any x ∈ R2, A ∈ O(2), and b̃ ∈ R2 we can obtain443

Ψ
[
fR
Ãb̃

[r]
]
(x,A)

=

∫
R2

φin

(
A−1δ

)
fR
Ãb̃

[r] (x− δ)dσ(δ)

=

∫
R2

φin

(
A−1δ

)
r(Ã−1(x− δ − b̃))dσ(δ).

(20)

Let δ̂ = Ã−1δ, since |det(Ã)| = 1, and we have444 ∫
R2

φin

(
A−1δ

)
r(Ã−1(x− δ − b̃))dσ(δ)

=

∫
R2

φin

(
A−1Ãδ̂

)
r(Ã−1(x− b̃)− δ̂))dσ(δ̂)

=

∫
R2

φin

(
(Ã−1A)−1δ̂

)
r(Ã−1(x− b̃)− δ̂))dσ(δ̂)

=Ψ[r](Ã−1(x− b̃), Ã−1A)

=fE
Ãb̃

[Ψ[r]] (x,A, b̃).

(21)

This proves that Ψ
[
fR
Ãb̃

[r]
]
= fE

Ãb̃
[Ψ [r]].445

(2) Similar to the proof in (1), for any x ∈ R2, B ∈ O(2), we can obtain446

Φ
[
fE
Ãb̃

[e]
]
(x,B)

=

∫
R2

∫
O(2)

φA

(
B−1δ

)
fE
Ãb̃

[e] (x− δ,BA, b̃)dσ(δ)v(A)

=

∫
R2

∫
O(2)

φA

(
B−1δ

)
e(Ã−1(x− δ − b̃), Ã−1BA)dσ(δ)v(A)

=

∫
R2

∫
O(2)

φA

(
B−1Ãδ̂

)
e(Ã−1(x− b̃)− δ̂, Ã−1BA)dσ(δ̂)v(A)

=

∫
R2

∫
O(2)

φA

(
(Ã−1B)−1δ̂

)
e(Ã−1(x− b̃)− δ̂, Ã−1BA)dσ(δ̂)v(A)

=Φ [e] (Ã−1(x− b̃), Ã−1B)

=fE
Ãb̃

[Φ [e]] (x,B, b̃).

(22)

(3) For any x ∈ R2, we can deduce that447

Υ
[
fE
Ãb̃

[e]
]
(x)

=

∫
R2

∫
O(2)

φout

(
B−1δ

)
fE
Ãb̃

[e] (x− δ,B, b̃)dσ(δ)v(B)

=

∫
R2

∫
O(2)

φout

(
B−1δ

)
e(Ã−1(x− δ − b̃), Ã−1B)dσ(δ)v(B)

=

∫
R2

∫
O(2)

φout

((
Ã−1B

)−1

δ̂

)
e(Ã−1(x− b̃)− δ̂, Ã−1B)dσ(δ̂)v(B).

=Υ[e](Ã−1(x− b̃))

=fR
Ãb̃

[Υ[e]] (x).

(23)

This proves that Υ
[
fE
Ãb̃

[e]
]
= fR

Ãb̃
[Υ [e]].448
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A.2 Remark 2 and the Proof449

Notations. We assume that an image I ∈ Rn×n represents a two-dimensional grid function obtained450

by discretizing a smooth function, i.e., for i, j = 1, 2, · · · , n,451

Iij = r(δij), (24)

where δij =
((
i− n+1

2

)
h,
(
j − n+1

2

)
h
)T

. We represent Z as a three-dimensional grid function452

sampled from a smooth function e : R2 × S → R, i.e., for i, j = 1, 2, · · · , n,453

ZA,b̃
ij = e(δij , A, b̃), (25)

where δij =
((
i− n+1

2

)
h,
(
j − n+1

2

)
h
)T

and A ∈ S, S is a subgroup of O(2), and b̃ ∈ R2 is454

translation. For i, j = 1, 2, · · · , p, and A,B ∈ S, we have455

Ψ̃A
ij = φin

(
A−1δij

)
,

Φ̃B,A
ij = φA

(
B−1δij

)
,

Υ̃A
ij = φout

(
A−1δij

)
,

(26)

where δij = ((i− (p+1)/2)h, (j − (p+1)/2)h)
T , φin, φout and φA are parameterized filters. Let456

δij =

((
i− p+ 1

2

)
h,

(
j − p+ 1

2

)
h

)T

,

xij =

((
i− n+ p+ 2

2

)
h,

(
j − n+ p+ 2

2

)
h

)T

.

(27)

For ∀A ∈ S and i, j = 1, 2, · · · , n, the convolution of Ψ̃ and I is457 (
Ψ̃ ⋆ I

)A
ij
=

∑
(̃i,j̃)∈Λ

φin

(
A−1δĩj̃

)
r
(
xij − δĩj̃

)
, (28)

where Λ is a set of indexes, denoted as Λ = {(i, j)|i, j = 1, 2, · · · , p}. For any B ∈ S and458

i, j = 1, 2, · · · , n, the convolution of Φ̃ and Z is459 (
Φ̃ ⋆ Z

)B
ij
=

∑
(̃i,j̃)∈Λ,A∈S

φA

(
B−1δĩj̃

)
e
(
xij − δĩj̃ , BA

)
, (29)

where Λ = {(i, j)|i, j = 1, 2, · · · , p}. For i, j = 1, 2, · · · , n, the convolution of Υ̃ and Z is460 (
Υ̃ ⋆ Z

)
ij
=

∑
(̃i,j̃)∈Λ,B∈S

φout

(
B−1δĩj̃

)
e
(
xij − δĩj̃ , B

)
(30)

where Λ = {(i, j)|i, j = 1, 2, · · · , p}.461

The transformations on I and Z are defined by462 (
f̃R
Ãb̃

(I)
)
ij
= fR

Ãb̃
[r](xij),

(
f̃ Ẽ
Ãb̃

(Z)
)Ab̃

ij
= fE

Ãb̃
[e](xij , A, b̃),

∀i, j = 1, 2, · · · , n,∀A, Ã ∈ S.

(31)

Then we will prove the Remark 2. We firstly introduce the following necessary lemma.463

Lemma 1. For smooth functions r : R2 → R and φ : R2 → R, if for δ ∈ R2, the follow conditions464

are satisfied:465

|r(δ)| ≤ F1, |φ(δ)| ≤ F2,

∥∇r(δ)∥ ≤ G1, ∥∇φ(δ)∥ ≤ G2,

∥∇2r(δ)∥ ≤ H1, ∥∇2φ(δ)∥ ≤ H2,

∀∥δ∥ ≥ (p+1/2)h, φ(δ) = 0,

(32)
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where p, h > 0, ∇ and ∇2 denote the operators of gradient and Hessian matrix, respectively, then,466

∀Ã ∈ S, y ∈ R the following results are satisfied:467 ∣∣∣∣∫
R2

φ
(
Ã−1δ

)
r (x− δ) dσ(δ) −

∑
i,j∈Λ

φ
(
Ã−1δij

)
r (x− δij)h

2

∣∣∣∣∣∣ ≤ (p+ 1)2C

4
h4, (33)

where Λ = {(i, j)|i, j = 1, 2, · · · , p}, δij = ((i− (p+1)/2)h, (j − (p+1)/2)h)
T and C = F1H2 +468

F2H1 + 2G1G2.469

The specific proof of lemma 1 can be referred to [11]. Based on lemma 1, let us prove Remark 2.470

Remark 2. Assume that an image I ∈ Rn×n is discretized from the smooth function r : R2 → R by471

(24), a feature map Z ∈ Rn×n×t is discretized from the smooth function e : R2 × S → R by (25),472

|S| = t, and filters Ψ̃, Φ̃ and Υ̃ are generated from φin, φout and φA,∀A ∈ S, by (26), respectively.473

If for any A ∈ S, x ∈ R2, the following conditions are satisfied:474

|r(x)|, |e(x,A)| ≤ F1,

∥∇r(x)∥, ∥∇e(x,A)∥ ≤ G1,

∥∇2r(x)∥, ∥∇2e(x,A)∥ ≤ H1,

|φin(x)|, |φA(x)|, |φout(x)| ≤ F2,

∥∇φin(x)∥, ∥∇φA(x)∥, ∥∇φout(x)∥ ≤ G2,

∥∇2φin(x)∥, ∥∇2φA(x)∥, ∥∇2φout(x)∥ ≤ H2,

∀∥x∥ ≥ (p+1)h/2, φin(x), φA(x), φout(x) = 0,

(34)

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote the operators of gradient and475

Hessian matrix, respectively, then for any Ã ∈ S, the following results are satisfied:476 ∥∥∥Ψ̃ ⋆ f̃R
Ãb̃

(I)− f̃ Ẽ
Ãb̃

(
Ψ̃ ⋆ I

)∥∥∥
∞

≤ C

2
(p+ 1)2h2,∥∥∥Φ̃ ⋆ f̃ Ẽ

Ãb̃
(Z)− f̃ Ẽ

Ãb̃

(
Φ̃ ⋆ Z

)∥∥∥
∞

≤ C

2
(p+ 1)2h2t,∥∥∥Υ̃ ⋆ f̃ Ẽ

Ãb̃
(Z)− f̃R

Ãb̃

(
Υ̃ ⋆ Z

)∥∥∥
∞

≤ C

2
(p+ 1)2h2t,

(35)

where C = F1H2+F2H1+2G1G2, f̃R
Ãb̃

, f̃ Ẽ
Ãb̃

, Ψ̃, Φ̃ and Υ̃ are defined by (26) and (31), respectively.477

The operators ⋆ involved in Eq. (35) are defined in (28), (29) and (30), respectively, and ∥ · ∥∞478

represents the infinity norm.479

Proof. For any x ∈ R, A,B ∈ S, let480

Ψ̂[r](x,A) =
∑

(̃i,j̃)∈Λ

φin

(
A−1δĩj̃

)
r
(
x− δĩj̃

)
, (36)

where Λ = {(̃i, j̃)|̃i, j̃ = 1, 2, · · · , p}. Then, for any A ∈ S, we can obtain481

Ψ̂[r](xij , A) =
(
Ψ̃ ⋆ I

)A
ij
. (37)

1) By Remark 1, we know that Ψ
[
fR
Ãb̃

[r]
]
= fE

Ãb̃
[Ψ [r]]. Thus for any A ∈ S, we have482 ∣∣∣∣(Ψ̃ ⋆ f̃R

Ãb̃
(I)− f̃ Ẽ

Ãb̃

(
Ψ̃ ⋆ I

))A
ij

∣∣∣∣
=
∣∣∣Ψ̂ [fR

Ãb̃
[r]
]
(xij , A)− fE

Ãb̃

[
Ψ̂[r]

]
(xij , A)

∣∣∣
≤
∣∣∣∣Ψ̂ [fR

Ãb̃
[r]
]
(xij , A)−

1

h2
Ψ
[
fR
Ãb̃

[r]
]
(xij , A)

∣∣∣∣
+

∣∣∣∣fE
Ãb̃

[
Ψ̂[r]

]
(xij , A)−

1

h2
fE
Ãb̃

[Ψ[r]] (xij , A)

∣∣∣∣ .
(38)
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Let r̂ = fR
Ãb̃

[r], and then it is easy to deduce that r̂ satisfies the conditions in lemma 1. Then, by483

lemma 1,484 ∣∣∣∣Ψ̂ [fR
Ãb̃

[r]
]
(xij , A)−

1

h2
Ψ
[
fR
Ãb̃

[r]
]
(xij , A)

∣∣∣∣
=

1

h2

∣∣∣Ψ̂ [fR
Ãb̃

[r]
]
(xij , A)h

2 −Ψ
[
fR
Ãb̃

[r]
]
(xij , A)

∣∣∣
=

1

h2

∣∣∣∣∣∣
∑

(i,j)∈Λ

φin

(
A−1δij

)
r̂ (xij − δij)h

2 −
∫
R2

φin

(
A−1δ

)
r̂(xij − δ)dσ(δ)

∣∣∣∣∣∣
≤ (p+ 1)2C

4
h2.

(39)

Besides, let Â = Ã−1A and x̂ij = Ã−1(xij − b̃), and by lemma 1, we can also achieve,485 ∣∣∣∣fE
Ãb̃

[
Ψ̂[r]

]
(xij , A)−

1

h2
fE
Ãb̃

[Ψ[r]] (xij , A)

∣∣∣∣
=

1

h2

∣∣∣fE
Ãb̃

[
Ψ̂[r]

]
(xij , A)h

2 − fE
Ãb̃

[Ψ[r]] (xij , A)
∣∣∣

=
1

h2

∣∣∣[Ψ̂[r]
]
(Ã−1(xij − b̃), Ã−1A)h2 − [Ψ[r]] (Ã−1(xij − b̃), Ã−1A)

∣∣∣
=

1

h2

∣∣∣∣∣∣
∑

(i,j)∈Λ

φin

(
A−1Ãδij

)
r
(
Ã−1(xij−b̃)−δij

)
h2−
∫
R2

φin

(
A−1Ãδ

)
r(Ã−1(xij−b̃)−δ)dσ(δ)

∣∣∣∣∣∣
=

1

h2

∣∣∣∣∣∣
∑

(i,j)∈Λ

φin

(
Â−1δij

)
r (x̂ij − δij)h

2 −
∫
R2

φin

(
Â−1δ

)
r(x̂ij − δ)dσ(δ)

∣∣∣∣∣∣
≤ (p+ 1)2C

4
h2.

(40)

Thus, combining (38), (39) and (40), we can achieve486 ∣∣∣Ψ̂ [fR
Ãb̃

[r]
]
(xij , A, b̃)−fE

Ãb̃

[
Ψ̂[r]

]
(xij , A, b̃)

∣∣∣≤ C

2
(p+ 1)2h2. (41)

In other word,487 ∣∣∣∣(Ψ̃ ⋆ f̃R
Ãb̃

(I)− f̃ Ẽ
Ãb̃

(
Ψ̃ ⋆ I

))A
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2. (42)

This proves the first inequality in (35).488

2) For any A,B ∈ S, let B̂ = Ã−1B, rA(x) = e(x,A), and Ψ̂A be a operator defined in the489

formulation of (36), while correlated to φA. Then, for any i, j = 1, 2, · · · , n, B ∈ S,490 ∣∣∣∣(Φ̃ ⋆ f̃ Ẽ
Ãb̃

(Z)− f̃ Ẽ
Ãb̃

(
Φ̃ ⋆ Z

))B
ij

∣∣∣∣
=

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ,A∈S

φA

(
B−1δĩj̃

)
e
(
Ã−1

(
xij−δĩj̃ −̃b

)
,Ã−1BA

)
−
∑

(̃i,j̃)∈Λ,A∈S

φA

(
B−1Ãδĩj̃

)
e
(
Ã−1(xij−b̃)−δĩj̃ ,Ã

−1BA
)∣∣∣∣∣∣

≤
∑
A∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

φA

(
B−1δĩj̃

)
rB̂A

(
Ã−1(xij−δĩj̃ −̃b

)
−
∑

(̃i,j̃)∈Λ

φA

(
B−1Ãδĩj̃

)
rB̂A

(
Ã−1(xij−b̃)−δĩj̃

)∣∣∣∣∣∣
=
∑
A∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

φA

(
B−1δĩj̃

)
fR
Ãb̃

[rB̂A]
(
xij−δĩj̃

)
−
∑

(̃i,j̃)∈Λ

φA

(
B−1Ãδĩj̃

)
rB̂A

(
Ã−1(xij−b̃)−δĩj̃

)∣∣∣∣∣∣
=
∑
A∈S

∣∣∣Ψ̂A

[
fR
Ãb̃

[rB̂A]
]
(xij , B, b̃)− fE

Ãb̃

[
Ψ̂A[rB̂A]

]
(xij , B, b̃)

∣∣∣ .
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Then by (41), we can achieve that ∀i, j = 1, 2, · · · , n, B ∈ S,491 ∣∣∣∣(Φ̃ ⋆ f̃ Ẽ
Ãb̃

(Z)− f̃ Ẽ
Ãb̃

(
Φ̃ ⋆ Z

))B
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2t. (43)

This proves the second inequality in (35).492

3) For any A,B ∈ S, let B̂ = Ã−1B, rA(x) = e(x,A), and Ψ̂out be a operator defined in the493

formulation of (36), while correlated to φout.494

Then, we have that ∀i, j = 1, 2, · · · , n,495 ∣∣∣∣(Υ̃ ⋆ f̃ Ẽ
Ãb̃

(Z)− f̃ Ẽ
Ãb̃

(
Υ̃ ⋆ Z

))
ij

∣∣∣∣
=

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ,B∈S

φout

(
B−1δĩj̃

)
e
(
Ã−1

(
xij−δĩj̃−b̃

)
,Ã−1B

)
−
∑

(̃i,j̃)∈Λ,B∈S

φout

(
B−1Ãδĩj̃

)
e
(
Ã−1(xij−̃b)−δĩj̃ ,Ã

−1B
)∣∣∣∣∣∣

≤
∑
B∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

φout

(
B−1δĩj̃

)
rB̂

(
Ã−1
(
xij−δĩj̃ −̃b

))
−
∑

(̃i,j̃)∈Λ

φout

(
B−1Ãδĩj̃

)
rB̂

(
Ã−1(xij−b̃)−δĩj̃

)∣∣∣∣∣∣
=
∑
B∈S

∣∣∣∣∣∣
∑

(̃i,j̃)∈Λ

φout

(
B−1δĩj̃

)
fR
Ãb̃

[rB̂ ]
(
xij−δĩj̃

)
−
∑

(̃i,j̃)∈Λ

φout

(
B−1Ãδĩj̃

)
rB̂

(
Ã−1(xij − b̃)−δĩj̃

)∣∣∣∣∣∣
=
∑
B∈S

∣∣∣Ψ̂out

[
fR
Ãb̃

[rB̂ ]
]
(xij , B, b̃)− fE

Ãb̃

[
Ψ̂out[rB̂ ]

]
(xij , B, b̃)

∣∣∣ .
Then by (41), we can achieve that ∀i, j = 1, 2, · · · , n,496 ∣∣∣∣(Υ̃ ⋆ f̃ Ẽ

Ãb̃
(Z)− f̃ Ẽ

Ãb̃

(
Υ̃ ⋆ Z

))
ij

∣∣∣∣ ≤ C

2
(p+ 1)2h2t. (44)

This proves the third inequality in (35).497

498

A.3 Theorem 1 and the Proof499

Notations. In the following, we provide the corresponding formulations, just like [11, 38]. It should500

be noted that for convenience in subsequent proofs, |A| ≤ a indicates that all elements of A are less501

than a, and |A| ≤ |B| implies that the value of any element aij at position (i, j) in A is less than the502

value of the corresponding element bij in B.503

For an input r ∈ C∞(R2), translation b ∈ R2 and a degree θ ∈ [0, 2π], Aθ ∈ O(2) is the rotation504

matrix
[
cos θ,− sin θ
sin θ, cos θ

]
. Aθ acts on r by505

fR
θb[r](x) = r(A−1

θ (x− b)),∀x ∈ R2. (45)

For a feature map e ∈ C∞(E(2)), E(2) = R2 ⋉O(2), and a degree θ ∈ [0, 2π]. Aθ acts on e by506

fE
θb[e](x,A, b) = e(A−1

θ (x− b), A−1
θ A),∀(x,A, b) ∈ E(2). (46)

Considering an multi-channel image I ∈ RH×W×C as input, which can be naturally represented by507

a two-dimensional grid function. Suppose the filter is of size p× p, then, the mesh grids for filter and508

image can be respectively represented as follows:509

δkl =

((
k − p+ 1

2

)
h,

(
l − p+ 1

2

)
h

)T

, xkl =

((
k − H + 1

2

)
h,

(
l − W + 1

2

)
h

)T

.

(47)
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Then, each channel of I can be obtained by discretizing a smooth function, i.e., for k = 1, 2, · · · ,W ,510

l = 1, 2, · · · , H , and c = 1, 2, · · · , C,511

Ickl = rc(xkl), (48)

where rc is latent function for the cth channel.512

We denote the equivariant number as t and the correlated rotation group of the equivariant convolution513

as S, respectively. Then, |S| = t and S = {Aθ|θ = 2πk/t, k = 1, 2, · · · , t}. We represent the feature514

map of equivariant convolution as Z ∈ RH×W×t×C . Z is a four-dimensional grid function, whose515

cth channel is sampled from a smooth function ec : R2 × S → R, i.e., for k = 1, 2, · · · ,W and516

l = 1, 2, · · · , H ,517

ZA,c
kl = ec(xkl, A), (49)

where A ∈ S.518

Input layer. The filter of the input multi-channel convolution layer can be represented as519

Ψ̃A,c,d
kl = φcd

(
A−1δkl

)
, (50)

where φcd is the parameterized filter, A ∈ S, c = 1, 2, · · · , nc, d = 1, 2, · · · , nd, nc and nd are the520

input and output channel numbers, respectively. Denoting multi-channel convolution of Ψ̃ and I in521

the input layer as Z = Ψ̂(I), then it can be calculated by522

Ψ̂(I)A,d =
∑
c

Ψ̃A,c,d ∗ Ic, (51)

where ∗ denotes the 2-D convolution operation. It can be also rewritten in the following more detailed523

formulation:524

êd(xkl, A) =
∑
c,δ∈Λ

φcd

(
A−1δ

)
rc (xkl − δ) , (52)

where Λ is a set of indexes, denoted as Λ = {δk̂l̂|k̂, l̂ = 1, 2, · · · , p}, A ∈ S, k = 1, 2, · · · ,W and525

l = 1, 2, · · · , H .526

Intermediate layer. The filter of the intermediate multi-channel convolution layer can be represented527

as528

Φ̃A,B,c,d
kl = φAcd

(
B−1δkl

)
, (53)

where φAcd is the parameterized filter, A,B ∈ S, c = 1, 2, · · · , nc, d = 1, 2, · · · , nd, nc and nd are529

the input and output channel numbers, respectively. Denoting the multi-channel convolution of Φ̃ and530

Z in the intermediate layer as Ẑ = Φ̂(Z), then it can be calculated by531

Φ̂(Z)B,d =
∑
c,A

Φ̃A,B,c,d ∗ ZA,c. (54)

It can also be rewritten in the following more detailed formulation:532

êd(xkl, B) =
∑

c,A,δ∈Λ

φAcd

(
B−1δ

)
ec (xkl − δ,BA) . (55)

Output layer. The filter of the output multi-channel convolution layer can be represented as533

Υ̃B,c,d
kl = φcd

(
B−1δkl

)
, (56)

where φcd is the parameterized filter, B ∈ S, c = 1, 2, · · · , nc, d = 1, 2, · · · , nd, nc and nd are the534

input and output channel numbers, respectively. Denoting the multi-channel convolution of Υ̃ and Z535

in the output layer as Ŷ = Υ̂(Z), then it can be calculated by536

Υ̂(Z)d =
∑
c,B

Υ̃B,c,d ∗ ZB,c. (57)

It can be also rewritten in the following more detailed formulation:537

r̂d(xkl) =
∑

c,B,δ∈Λ

φcd

(
B−1δ

)
ec (xkl − δ,B) . (58)
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The transformations on each channel of the input image and the feature map are defined by538 (
f̃R
θb(I)

)c
kl

= fR
θb[rc](xkl),

(
f̃ Ẽ
θb(Z)

)A,c

kl
= fE

θb[ec](xkl, A, b),

∀k = 1, 2, · · · , H, l = 1, 2, · · · ,W, c = 1, 2, · · · , C,∀A ∈ S, θ ∈ [0, 2π] .
(59)

For expression conciseness we further denote539

f̃θb[x] =

{
f̃R
θb[x] if ∀x ∈ RH×W×C

f̃ Ẽ
θb[x] if ∀x ∈ RH×W×t×C

. (60)

Following the [38], for a feature map Z ∈ RH×W×t×C , we say the channel number of the correlated540

convolution layer is tC, due to the fact that Z is usually reshaped into the shape of H ×W × tC for541

implementation convenience, and the flop of the correlated equivariant convolution layer is similar to542

a tC-channel convolution layer.543

Then we will prove the Theorem 1. Before this, we first present the following necessary lemmas and544

the specific proof can be referred to [38].545

Lemma 2. For an image I with size H ×W × n0, and a N -layer rotation equivariant CNN network546

g(·), whose channel number of the ith layer is ni, rotation equivariant subgroup is S ⩽ O(2),547

|S| = t, and activation function is set as ReLU. If the latent continuous function of the cth channel of548

I denoted as rc : R2→R, and the latent continuous function of any convolution filters in the ith layer549

denoted as φi : R2 →R, where i ∈ {1, · · · , N}, c ∈ {1, · · · , n0}, for any x ∈ R2, the following550

conditions are satisfied:551

|rc(x)| ≤ F0, ∥∇rc(x)∥ ≤ G0, ∥∇2rc(x)∥ ≤ H0,

|φi(x)| ≤ Fi, ∥∇φi(x)∥ ≤ Gi, ∥∇2φi(x)∥ ≤ Hi,

∀∥x∥ ≥ (p+1)h/2, φi(x) = 0,

(61)

where p is the filter size, h is the mesh size, and ∇ and ∇2 denote the operators of gradient and552

Hessian matrix, respectively. Denote553

eid(x,B) =

{ ∑
c,δ∈Λ φ1

cd(B
−1δ)rc(x− δ) if i = 1,∑

c,A,δ∈Λ φi
Acd(B

−1δ)ei−1
c (x− δ,BA) if i ̸= 1, N

(62)

where Λ =
{((

k − p+1
2

)
h,
(
l − p+1

2

)
h
)T |k, l = 1, 2, · · · , p

}
, φ1

cd and φi
Acd are filters in the first554

layer and other layers respectively. Then, for ∀B ∈ S the following results are satisfied:555 ∣∣eid(x,B)
∣∣ ≤ F0Fi, (63)

556 ∣∣∇eid(x,B)
∣∣ ≤ ( i∑

m=1

GmF0

Fm
+G0

)
Fi, (64)

557 ∣∣∇2eid(x,B)
∣∣ ≤ ( i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
Fi, (65)

where Fi =
i∏

k=1

nk−1p
2Fk, ∀i = 1, 2, · · · , N − 1.558

Lemma 3. For an image I with size H ×W × n0, and a N -layer rotation equivariant CNN network559

g(·), whose channel number of the ith layer is ni, rotation equivariant subgroup is S ⩽ O(2),560

|S| = t, and activation function is set as ReLU. If the latent continuous function of the cth channel of561

I denoted as rc : R2→R, and the latent continuous function of any convolution filters in the ith layer562

denoted as φi : R2 →R, where i ∈ {1, · · · , N}, c ∈ {1, · · · , n0}, for any x ∈ R2, the following563

conditions are satisfied:564

|rc(x)| ≤ F0, ∥∇rc(x)∥ ≤ G0, ∥∇2rc(x)∥ ≤ H0,

|φi(x)| ≤ Fi, ∥∇φi(x)∥ ≤ Gi, ∥∇2φi(x)∥ ≤ Hi,

∀∥x∥ ≥ (p+1)h/2, φi(x) = 0,

(66)
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where p is the filter size, h is the mesh size, ∇ and ∇2 denote the operators of gradient and565

Hessian matrix, respectively. For an arbitrary θ ∈ [0, 2π], Aθ denotes the rotation matrix. If566

F (θ)=g
[
f̃θb

]
(I)=Υ̂

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
[
f̃θb

]]
· · ·
]]
(I), then the following result is satisfied:567

|F ′(θ)| ≤ F (max{H,W}+N (p+ 1))hG0, (67)

where F =
N∏

k=1

nk−1p
2Fk.568

Lemma 4. Under the same conditions with lemma 3,569

If F (θ) = f̃θb [g](I) = f̃θb

[
Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2

[
Ψ̂
]
· · ·
]]]

(I), and then the following570

result is satisfied:571

|F ′(θ)| ≤ F max{H,W}hG0, (68)

where F =
N∏

k=1

nk−1p
2Fk.572

Then, let us give Theorem 1 and prove it based on the aforementioned Lemmas.573

Theorem 1. For an image I with size H ×W × n0, and a N -layer rotation-translation equivariant574

CNN network g(·), whose channel number of the ith layer is ni, rotation equivariant subgroup is575

S ⩽ O(2), |S| = t, and activation function is set as ReLU. If the latent continuous function of the576

cth channel of I denoted as rc : R2→R, and the latent continuous function of any convolution filters577

in the ith layer denoted as φi : R2→R, where i ∈ {1, · · · , N}, c ∈ {1, · · · , n0}, for any x ∈ R2,578

the following conditions are satisfied:579

|rc(x)| ≤ F0, ∥∇rc(x)∥ ≤ G0, ∥∇2rc(x)∥ ≤ H0,

|φi(x)| ≤ Fi, ∥∇φi(x)∥ ≤ Gi, ∥∇2φi(x)∥ ≤ Hi,

∀∥x∥ ≥ (p+1)h/2, φi(x) = 0,

(69)

where p is the filter size, h is the mesh size, ∇ and ∇2 denote the operators of gradient and Hessian580

matrix, respectively. For an arbitrary 0 ≤ θ ≤ 2π, Aθ ∈ S denotes the rotation matrix, b ∈ R2581

denotes the translation, and the following result is satisfied:582 ∥∥∥f̃−1
θb g

[
f̃θb

]
(I)−[g] (I)

∥∥∥
∞
≤C1h

2+C2pht
−1, (70)

where f̃θb is defined in Eq. (60) and583

C1 = 2NF ·
N∑
i=1

(
HiF0

Fi
+2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+2

GiG0

Fi
+H0

)
,

C2 = 2πG0F
(
2max{H,W}p−1 + 2N

)
,F=

∏N

i=1
ni−1p

2Fi.

(71)

Proof. Let Î = f̃θbI , we can split the left part of Eq. (70) as584 ∣∣∣f̃−1
θb g

[
f̃θb

]
(I)−[g](I)

∣∣∣
=
∣∣∣f̃−1

θb g(Î)− g
[
f̃−1
θb

]
(Î)
∣∣∣

≤
∣∣∣g [f̃−1

θb

]
(Î)−g

[
f̃−1
θkb

]
(Î)
∣∣∣︸ ︷︷ ︸

⟨1⟩

+
∣∣∣g [f̃−1

θkb

]
(Î)−f̃−1

θkb
[g] (Î)

∣∣∣︸ ︷︷ ︸
⟨2⟩

+
∣∣∣f̃−1

θkb
[g](Î)−f̃−1

θb [g](Î)
∣∣∣︸ ︷︷ ︸

⟨3⟩

,

(72)

where θ = θk + δ, where k = 1, 2, · · · , t, 0 ≤ δ ≤ 2π/t. Next, we need to estimate the error bounds585

of the above three items, separately. It should be noted that the following proof is deduced without586

the ReLU activation function for concise. However, the conclusions are all still correct for networks587

with the ReLU activation function, since ReLU does not disturb the equivariance or amplify the error588

bound.589
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Firstly, we prove the following inequality for the part ⟨1⟩ of Eq. (72).590 ∣∣∣g [f̃−1
θb

]
(Î)− g

[
f̃−1
θkb

]
(Î)
∣∣∣ ≤ 2π

t
F (max {H,W}+N (p+ 1))hG0. (73)

Let us denote F1(θ) = g
[
f̃θb

]
(Î). Obviously the function F1(θ) is continuous with respect to θ, so591

we have the following conclusion by the Lagrange Mean Value Theorem [39]592 ∣∣∣g [f̃θb](Î)− g
[
f̃θkb

]
(Î)
∣∣∣ = |F1(θ)− F1(θk)|

≤ |F ′
1(ξ1)| δ

≤ 2π

t
|F ′

1(ξ1)| ,

(74)

where 0 < ξ1 < δ and by lemma 3 we have |F ′
1(ξ1)| ≤ F (max {H,W}+N (p+ 1))hG0. Then593

we can prove Eq. (73).594

Secondly, we prove the following inequality for the part ⟨3⟩ of Eq. (72).595 ∣∣∣f̃θkb [g] (Î)− f̃θb [g] (Î)
∣∣∣ ≤ 2π

t
F max {H,W}hG0. (75)

Let us denote F2(θ) = f̃θb [g] (Î). Obviously the function F2(θ) is continuous with respect to θ, so596

we have the following conclusion by the Lagrange Mean Value Theorem [39]597 ∣∣∣f̃θkb [g] (Î)− f̃θb [g] (Î)
∣∣∣ = |F2(θ)− F2(θk)|

≤ |F ′
2(ξ2)| δ

≤ 2π

t
|F ′

2(ξ2)| ,

(76)

where 0 < ξ2 < δ and by lemma 4 we have |F ′
2(ξ2)| ≤ F max {H,W}hG0. Then we can easily598

achieve Eq. (75).599

Thirdly, we now prove the following inequality:600 ∣∣∣g [f̃−1
θkb

]
(Î)−f̃−1

θkb
[g] (Î)

∣∣∣≤2F
N∑
i=1

(
i∑

m=1

HmF0

Fm
+2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+2

i∑
m=1

GmG0

Fm
+H0

)
h2.

(77)

g(·), an N-layer rotation equivariant CNN network, usually includes 1 input layer, N −2 intermediate601

layers, and 1 output layer. We can formally define it as :602

g(·) = Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2

[
Ψ̂
]
· · ·
]]

(·). (78)

Then we have603

∣∣∣g [f̃−1
θkb

]
(Î)− f̃−1

θkb
[g] (Î)

∣∣∣
=
∣∣∣Υ̂[Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
[
f̃−1
θkb

]]
· · ·
]]

(Î)−f̃−1
θkb

[
Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
∣∣∣

≤
∣∣∣Υ̂[Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
[
f̃−1
θkb

]]
· · ·
]]
(Î)−Υ̂

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
f̃−1
θkb

[
Ψ̂
]]
· · ·
]]
(Î)
∣∣∣

+
∣∣∣Υ̂[Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
f̃−1
θkb

[
Ψ̂
]]
· · ·
]]
(Î)−Υ̂

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·f̃−1

θkb

[
Φ̂2

[
Ψ̂
]]
· · ·
]]
(Î)
∣∣∣

· · ·

+
∣∣∣Υ̂[Φ̂N−1

[
f̃−1
θkb

· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]]
· · ·
]]
(Î)−Υ̂

[
f̃−1
θkb

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]]
· · ·
]]
(Î)
∣∣∣

+
∣∣∣Υ̂ [f̃−1

θkb

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]]
· · ·
]]
(Î)−f̃−1

θkb

[
Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]]
· · ·
]]
(Î)
∣∣∣ .

(79)
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We denote δ1, δi (i = 2, 3, · · · , N−1), and δN as the filter indexes of the input layer, ith intermediate604

layer and output layer, respectively. The input channel number of the ith layer is set as ci−1 = ni−1.605

1) For the input layer, with Eqs. (52), (55) and (58), let x denote the coordinate of position (k, l),606

then we have607

∣∣∣∣(Υ̂[Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
[
f̃−1
θkb

]]
· · ·
]]
(Î)−̂Υ

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
f̃−1
θkb

[
Ψ̂
]]
· · ·
]]
(Î)
)cN
ij

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∑
c0

δ1∈Λ

φN
cN−1cN(B

−1
N−1δN )· · ·φ1

c0c1

(
A−1δ1

)
rc0 (Aθk(x−δN−· · ·−δ2−δ1+b))

−
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∑
c0

δ1∈Λ

φN
cN−1cN(B

−1
N−1δN)· · ·φ

1
c0c1

(
A−1A−1

θk
δ1
)
rc0(Aθk(x−δN−· · ·−δ2+b)−δ1)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

φN
cN−1cN (B−1

N−1δN ) · · ·φ2
Ac1c2(B

−1
2 δ2)

∑
c0

δ1∈Λ

φ1
c0c1

(
A−1δ1

)
r(Aθk(x−δN−· · ·δ1+b))−

∑
c0

δ1∈Λ

φ1
c0c1

(
A−1A−1

θk
δ1
)
rc0(Aθk(x−δN−· · ·δ2+b)−δ1)


∣∣∣∣∣∣∣

≤
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∣∣∣φN
cN−1cN (B−1

N−1δN )
∣∣∣ · · · ∣∣φ2

Ac1c2(B
−1
2 δ2)

∣∣
∣∣∣∣∣∣∣
∑
c0

δ1∈Λ

φ1
c0c1

(
A−1δ1

)
r(Aθk(x−δN−· · ·−δ1+b))−

∑
c0

δ1∈Λ

φ1
c0c1

(
A−1A−1

θk
δ1
)
rc0(Aθk(x−δN−· · ·−δ2+b)−δ1)

∣∣∣∣∣∣∣
≤

∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∑
c0

FN · · ·F2

∣∣∣∣∣∑
δ1∈Λ

φ1
c0c1

(
A−1δ1

)
r (Aθk(x− δN · · · − δ1 + b))

−
∑
δ1∈Λ

φ1
c0c1

(
A−1A−1

θk
δ1
)
rc0 (Aθk(x− δN − · · · − δ2 + b)− δ1)

∣∣∣∣∣ .
(80)
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Let us denote x̂ = x− δN − δN−1 − · · · − δ2 + b. Utilizing Eq. (35) from Remark 2 for the input608

layer, we can deduce the following result:609 ∣∣∣∣∣∑
δ1∈Λ

φ1
c0c1

(
A−1δ1

)
r (Aθk(x− δN · · · − δ1 + b))

−
∑
δ1∈Λ

φ1
c0c1

(
A−1A−1

θk
δ1
)
rc0 (Aθk(x− δN − · · · − δ2 + b)− δ1)

∣∣∣∣∣
=

∣∣∣∣∣∑
δ1∈Λ

φ1
c0c1

(
A−1δ1

)
r (Aθk(x̂− δ1))

−
∑
δ1∈Λ

φ1
c0c1

(
A−1A−1

θk
δ1
)
rc0 (Aθk x̂− δ1)

∣∣∣∣∣
≤n0

C1

2
(p+ 1)2h2,

(81)

where we do not specifically indicate the numbers of input and output channels, i.e. φ1(x) = φ1
c0c1(x),610

and we have C1 = H1F0 + F1H0 + 2G1G0.611

Therefore, according to Eqs. (80) and (81), we have612 ∣∣∣(Υ̂ [Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2

[
Ψ̂
[
f̃−1
θkb

]]
· · ·
]]

(Î)

− Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
Φ̂i · · · Φ̂2

[
f̃−1
θkb

[
Ψ̂
]]

· · ·
]]

(Î)
)cN
ij

∣∣∣∣
≤nN−1p

2FNnN−2p
2FN−1 · · ·n1p

2F2n0
C1

2
(p+ 1)2h2

≤

(
N∏

k=2

nk−1p
2Fk

)
n0

(p+ 1)2h2

2
(H1F0 + F1H0 + 2G1G0)

≤2F
(
H1

F1
F0 +H0 + 2

G1

F1
G0

)
h2.

(82)

2) For the any ith intermediate layer, 1 < i < N . We have:613 ∣∣∣(Υ̂ [Φ̂N−1 · · · Φ̂i

[
f̃−1
θkb

[
Φ̂i−1 · · · Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)

− Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
f̃−1
θkb

[
Φ̂i · · · Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
ci−1

Bi−1∈S
δi∈Λ

φN
cN−1cN (B−1

N−1δN ) · · ·φi
Bi−1ci−1ci(B

−1
i δi)

ei−1
ci−1

(Aθk(x− δN − · · · − δi + b), AθkBi−1)

−
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
ci−1

Bi−1∈S
δi∈Λ

φN
cN−1cN (B−1

N−1δN ) · · ·φi
Bi−1ci−1ci(B

−1
i A−1

θk
δi)

ei−1
ci−1

(Aθk(x− δN − · · · − δi+1 + b)− δi, Bi−1)
∣∣∣

(83)
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614

≤

∣∣∣∣∣∣∣∣∣∣
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
ci

Bi∈S
δi+1∈Λ

φN
cN−1cN(B

−1
N−1δN )φN−1

BN−2cN−2cN−1
(B−1

N−1δN−1)· · ·φi+1
Bicici+1

(B−1
i+1δi+1)


∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i δi)e

i−1
ci−1

(Aθk(x−δN−· · ·−δi+1−δi + b), AθkBi−1)

−
∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i A−1

θk
δi)e

i−1
ci−1

(Aθk(x− δN − · · · − δi+1 + b)− δi, Bi−1)


∣∣∣∣∣∣∣∣∣∣

≤
∑
cN−1

BN−1∈S
δN∈Λ

∑
cN−2

BN−2∈S
δN−1∈Λ

· · ·
∑
ci

Bi∈S
δi+1∈Λ

FNFN−1 · · ·Fi+1

∣∣∣∣∣∣∣∣∣∣


∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i δi)e

i−1
ci−1

(Aθk(x−δN−· · ·−δi+1−δi + b), AθkBi−1)

−
∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i A−1

θk
δi)e

i−1
ci−1

(Aθk(x− δN − · · · − δi+1 + b)− δi, Bi−1)


∣∣∣∣∣∣∣∣∣∣
.

Let us denote x̂ = x− δN − · · · − δi+1 + b. Then, by Eq. (35) in Remark 2, we have:615 ∣∣∣∣∣∣∣∣∣∣
∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i δi)e

i−1
ci−1

(Aθk(x̂− δi), AθkBi−1)

−
∑
ci−1

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i Aθ−1

k
δi)e

i−1
ci−1

(Aθk x̂− δi, Bi−1)

∣∣∣∣∣∣∣∣∣∣
=
∑
ci−1

∣∣∣∣∣∣∣∣
∑

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i δi)e

i−1
ci−1

(Aθk(x̂− δi), AθkBi−1)

−
∑

Bi−1∈S
δi∈Λ

φi
Bi−1ci−1ci(B

−1
i A−1

θk
δi)e

i−1
ci−1

(Aθk x̂− δi, Bi−1)

∣∣∣∣∣∣∣∣
≤ni−1

Ci

2
(p+ 1)2h2,

(84)
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where we do not specifically indicate the numbers of input and output channels, i.e.616

φi(x) = φi
Aci−1ci

(x), and we have617

Ci = sup
(∥∥∇2φi(x)

∥∥ ∣∣∣ei−1
ci−1

(x,B)
∣∣∣+ ∣∣φi(x)

∣∣ ∥∥∥∇2ei−1
ci−1

(x,B)
∥∥∥+ 2

∥∥∇φi(x)
∥∥∥∥∥∇ei−1

ci−1
(x,B)

∥∥∥).618

Therefore, according to Eqs. (83) and (84), we have619 ∣∣∣(Υ̂ [Φ̂N−1 · · · Φ̂i

[
f̃−1
θkb

[
Φ̂i−1 · · · Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)

− Υ̂
[
Φ̂N−1 · · · Φ̂i+1

[
f̃−1
θkb

[
Φ̂i · · · Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
≤nN−1p

2FN · · ·nip
2Fi+1ni−1

Ci

2
(p+ 1)2h2

=

(
N∏

k=i+1

nk−1p
2Fk

)
ni−1

Ci

2
(p+ 1)2h2.

(85)

Substituting Eqs. (63), (64) and (65) into Eq. (85), denoting Fi−1=
∏i−1

k=1 nk−1p
2Fk, then we have620

∣∣∣∣(Υ̂[Φ̂N−1· · ·Φ̂i

[
f̃−1
θkb

[
Φ̂i−1· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)−Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
f̃−1
θkb

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
≤

(
N∏

k=i+1

nk−1p
2Fk

)
ni−1(p+ 1)2h2

2(∥∥∇2φi(x)
∥∥ ∣∣∣ei−1

ci−1
(x,B)

∣∣∣+ ∣∣φi(x)
∣∣ ∥∥∥∇2ei−1

ci−1
(x,B)

∥∥∥+ 2
∥∥∇φi(x)

∥∥∥∥∥∇ei−1
ci−1

(x,B)
∥∥∥)

≤2

(
N∏
k=i

nk−1p
2Fk

)(
Hi

Fi

∣∣∣ei−1
ci−1

(x,B)
∣∣∣+ ∥∥∥∇2ei−1

ci−1
(x,B)

∥∥∥+ 2
Gi

Fi

∥∥∥∇ei−1
ci−1

(x,B)
∥∥∥)h2

≤2

(
N∏
k=i

nk−1p
2Fk

)
Fi−1(

HiF0

Fi
+

i−1∑
m=1

HmF0

Fm
+2

i−1∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+2

i−1∑
m=1

GmG0

Fm
+H0+

i−1∑
m=1

2
GiGmF0

FiFm
+2

GiG0

Fi

)
h2

≤2F

(
i∑

m=1

HmF0

Fm
+2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+2

i∑
m=1

GmG0

Fm
+H0

)
h2.

(86)

3) For the output layer, with Eqs. (52), (55) and (58) we have621

∣∣∣∣(Υ̂[f̃−1
θkb

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)−f̃−1
θkb

[
Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∑
cN−1

BN−1∈S
δN∈Λ

φN
cN−1cN (B−1

N−1δN )eN−1
cN−1

(Aθk (x− δN + b) , AθkBN−1)

−
∑
cN−1

BN−1∈S
δN∈Λ

φN
cN−1cN (B−1

N−1A
−1
θk

δN )eN−1
cN−1

(Aθk(x+ b)− δN , BN−1)

∣∣∣∣∣∣∣∣∣∣
.
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Then, by Eq. (35) from Remark 2 for the output, we have:622

∣∣∣∣(Υ̂[f̃−1
θkb

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)−f̃−1
θkb

[
Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
≤
∑
cN−1

∣∣∣∣∣∣∣∣
∑

BN−1∈S
δN∈Λ

φN
cN−1cN (B−1

N−1δN )eN−1
cN−1

(DAθk (x− δN + b) , AθkBN−1)

−
∑

BN−1∈S
δN∈Λ

φN
cN−1cN (B−1

N−1A
−1
θk

δN )eN−1
cN−1

(Aθk(x+ b)− δN , BN−1)

∣∣∣∣∣∣∣∣
≤nN−1

CN

2
(p+ 1)2h2,

(87)

where we do not specifically indicate the numbers of input and output channels, i.e. φN (x) =623

φN
cN−1cN (x), and we have624

CN = sup
(∥∥∇2φN(x)

∥∥∣∣∣eN−1
cN−1

(x,B)
∣∣∣+∣∣φN(x)

∣∣∥∥∥∇2eN−1
cN−1

(x,B)
∥∥∥+2

∥∥∇φN(x)
∥∥∥∥∥∇eN−1

cN−1
(x,B)

∥∥∥).625

626

Substituting Eqs. (63), (64) and (65) into Eq. (87), denoting FN−1 =
∏N−1

k=1 nk−1p
2Fk, then we627

have628

∣∣∣∣(Υ̂[f̃−1
θkb

[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)−f̃−1
θkb

[
Υ̂
[
Φ̂N−1· · ·Φ̂i+1

[
Φ̂i· · ·Φ̂2

[
Ψ̂
]
· · ·
]]]

(Î)
)cN
ij

∣∣∣∣
≤nN−1(p+1)

2h2

2

(∥∥∇2φN(x)
∥∥∣∣∣eN−1

cN−1
(x,B)

∣∣∣+∣∣φN(x)
∣∣∥∥∥∇2eN−1

cN−1
(x,B)

∥∥∥+2∥∥∇φN(x)
∥∥∥∥∥∇eN−1

cN−1
(x,B)

∥∥∥)
≤2nN−1p

2FN

(
HN

FN

∣∣∣eN−1
cN−1

(x,B)
∣∣∣+ ∥∥∥∇2eN−1

cN−1
(x,B)

∥∥∥+ 2
GN

FN

∥∥∥∇eN−1
cN−1

(x,B)
∥∥∥)h2

≤2nN−1p
2FNFN−1(

HN

FN
F0+

N−1∑
m=1

HmF0

Fm
+2

N−1∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+2

N−1∑
m=1

GmG0

Fm
+H0+

N−1∑
m=1

2
GNGmF0

FNFm
+2

GNG0

FN

)
h2

≤2F

(
N∑

m=1

HmF0

Fm
+ 2

N∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

N∑
m=1

GmG0

Fm
+H0

)
h2.

(88)

4) Substituting Eqs. (82), (86) and (88) into Eq. (79) we can get:629
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∣∣∣g [f̃−1
θkb

]
(Î)− f̃−1

θkb
[g] (Î)

∣∣∣
≤2F

(
H1

F1
F0 +H0 + 2

G1

F1
G0

)
h2

+

N−1∑
i=2

2F

(
i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
h2

+ 2F

(
N∑

m=1

HmF0

Fm
+ 2

N∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

N∑
m=1

GmG0

Fm
+H0

)
h2

≤2F
N∑
i=1

(
i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
h2.

(89)

Therefore, we achieve Eq. (77).630

Finally, we will provide the error analysis for the N-layer rotation equivariant CNN network. Substi-631

tuting Eqs. (73), (75) and (77) into Eq. (72), we can get:632 ∣∣∣f̃−1
θb g

[
f̃θb

]
(I)−[g](I)

∣∣∣
≤2π

t
F (max {H,W}+N (p+ 1))hG0 +

2π

t
F max {H,W}hG0

+ 2F
N∑
i=1

(
i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
h2

≤2π

t
F (2max {H,W}+N (p+ 1))hG0

+ 2F
N∑
i=1

(
i∑

m=1

HmF0

Fm
+ 2

i∑
l=1

Gl

Fl

l−1∑
m=1

GmF0

Fm
+ 2

i∑
m=1

GmG0

Fm
+H0

)
h2

(90)

Next, in order to get a more concise form, we further scale the entire error bound. By Eq. (90), we633

have:634

∣∣∣f̃−1
θb g

[
f̃θb

]
(I)− [g] (I)

∣∣∣
=
2π

t
F
(
2max {H,W} p−1 +N (p+ 1) p−1

)
phG0

+ 2F
N∑
i=1

(N + 1− i)

(
HiF0

Fi
+ 2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+ 2

GiG0

Fi

)
h2 + 2FNH0h

2

≤2π

t
F
(
2max {H,W} p−1 + 2N

)
phG0

+ 2FN

N∑
i=1

(
HiF0

Fi
+ 2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+ 2

GiG0

Fi

)
h2 + 2FNH0h

2

≤2NF
N∑
i=1

(
HiF0

Fi
+ 2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+ 2

GiG0

Fi
+H0

)
h2

+ 2πG0F
(
2max {H,W} p−1 + 2N

)
pht−1

(91)

If we denote635

C1 = 2NF ·
N∑
i=1

(
HiF0

Fi
+ 2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+ 2

GiG0

Fi
+H0

)
,

C2 = 2πG0F
(
2max{H,W}p−1 + 2N

)
.

(92)
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Then we can obtain the error bound of the N-layer rotation equivariant CNN network as Eq. (70)636

637

Lemma 5. Based on the same conditions, for an arbitrary 0 ≤ θ ≤ 2π, Aθ ∈ S denotes the rotation638

matrix, b ∈ R2 denotes the translation, the following result is satisfied:639 ∥∥∥g [f̃θb] (I)− f̃θb [g] (I)
∥∥∥
∞
≤C1h

2+C2pht
−1, (93)

where C1 and C2 are defined in (92).640

The proof of Lemma 5 is similar to Theorem 1 of [38]. Please refer to [38] for more details.641

A.4 Proposition 1 and the Proof642

Based on Theorem 1, we proceed to present the Proposition 1 in the main text and its proof.643

Proposition 1. For images I0 and Ij with size H ×W × n0, and a N -layer rotation-translation644

equivariant CNN network g(·), whose channel number of the ith layer is ni, rotation equivariant645

subgroup is S ⩽ O(2), |S| = t, and activation function is set as ReLU. If the latent continuous646

function of the cth channel of Ij and I0 are denoted as rc : R2→R and r̃c : R2→R, respectively,647

and the latent continuous function of any convolution filters in the ith layer is denoted as φi : R2→R,648

where i ∈ {1, · · · , N}, c ∈ {1, · · · , n0}, for any x ∈ R2, the following conditions are satisfied:649

|rc(x)|, |r̃c(x)| ≤ F0, ∥∇rc(x)∥, ∥∇r̃c(x)∥ ≤ G0, ∥∇2rc(x)∥, ∥∇2r̃c(x)∥ ≤ H0,

|φi(x)| ≤ Fi, ∥∇φi(x)∥ ≤ Gi, ∥∇2φi(x)∥ ≤ Hi,

∀∥x∥ ≥ (p+1)h/2, φi(x) = 0,

(94)

where p is the filter size, h is the mesh size, ∇ and ∇2 denote the operators of gradient and Hessian650

matrix, respectively. For an arbitrary 0 ≤ θ ≤ 2π and a feature map of equivariant convolution651

Z = g(I) with size H×W × tC, Aθ ∈ S denotes the rotation matrix, b ∈ R2 denotes the translation,652

the following result is satisfied:653 ∥∥∥f̃−1
θb (Zj)− Z0

∥∥∥
∞

≤ C3

∥∥∥f̃−1
θb (Ij)− I0

∥∥∥
2
+ C1h

2+C2pht
−1, (95)

where f̃θb is defined in Eq. (60) and654

C1 = 2NF ·
N∑
i=1

(
HiF0

Fi
+2

Gi

Fi

i−1∑
m=1

GmF0

Fm
+2

GiG0

Fi
+H0

)
,

C2 = 2πG0F
(
2max{H,W}p−1 + 2N

)
,

C3 =

N∏
k=1

nk−1p
2Fk.

(96)

Proof. We can deduce that655 ∥∥∥f̃−1
θb (Zj)− Z0

∥∥∥
∞

=
∥∥∥f̃−1

θb [g] (Ij)− g
[
f̃−1
θb

]
(Ij) + g

[
f̃−1
θb

]
(Ij)− g(I0)

∥∥∥
∞

≤
∥∥∥f̃−1

θb [g] (Ij)− g
[
f̃−1
θb

]
(Ij)

∥∥∥
∞︸ ︷︷ ︸

⟨1⟩

+
∥∥∥g [f̃−1

θb

]
(Ij)− g(I0)

∥∥∥
∞︸ ︷︷ ︸

⟨2⟩

(97)

For the part ⟨1⟩, by exploiting Lemma 5, we have656 ∥∥∥f̃−1
θb [g] (Ij)− g

[
f̃−1
θb

]
(Ij)

∥∥∥
∞

≤C1h
2+C2pht

−1, (98)

29



where C1 and C2 are defined in (92). For the part ⟨2⟩, consistent with the mathematical notation657

defined in Section 1.3., xkl denotes the coordinates of the point (k, l). Let r̂c(x) = rc(Aθx+ b), then658

r̂c(x) is the latent function of f̃−1
θb (Ij). Besides,659

|r̂c(x)| ≤ F0, ∥∇r̂c(x)∥ ≤ G0, ∥∇2r̂c(x)∥ ≤ H0. (99)

Then we can deduce that660 ∣∣∣(g [f̃−1
θb

]
(Ij)− g(I0)

)
kl

∣∣∣
=

∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∑
c0

δ1∈Λ

φN
cN−1cN (B−1

N−1δN ) · · ·φ1
c0c1

(
A−1δ1

)

(r̂c (xkl − δN − · · · − δ1)− r̃c (xkl − δN − · · · − δ1))

=
∑
cN−1

BN−1∈S
δN∈Λ

· · ·
∑
c1

A∈S
δ2∈Λ

∑
c0

δ1∈Λ

∣∣∣φN
cN−1cN (B−1

N−1δN )
∣∣∣ · · · ∣∣φ1

c0c1

(
A−1δ1

)∣∣
|r̂c (xkl − δN − · · · − δ1)− r̃c (xkl − δN − · · · − δ1)|

≤

(
N∏

k=1

nk−1p
2Fk

)∥∥∥f̃−1
θb (Ij)− I0

∥∥∥
∞

≤

(
N∏

k=1

nk−1p
2Fk

)∥∥∥f̃−1
θb (Ij)− I0

∥∥∥
2
.

(100)
Finally, by substituting Eqs. (98) and (100) into Eq. (97), we have661 ∥∥∥f̃−1

θb (Zj)− Z0

∥∥∥
∞

≤C1h
2+C2pht

−1 +

(
N∏

k=1

nk−1p
2Fk

)∥∥∥f̃−1
θb (Ij)− I0

∥∥∥
2
.

(101)

If we denote662

C3 =

N∏
k=1

nk−1p
2Fk, (102)

then we can obtain Eq. (95), the proof is then completed.663

B Supplementary Results664

In this section, we first provide full-size visualized results of comparison experiments and ablation665

study in the main text. Fig. 8-11 are the full-size version of comparison results on x4 Synthet-666

icBurst [3] dataset. Fig. 12-15 are the full-size version of comparison results on x4 BurstSR [23]667

dataset. Fig. 16-18 are the full-size visualized results of ablation study on x4 SyntheticBurst dataset.668

In addition, we provide comprehensive multi-scale super-resolution (SR) comparisons on the Synthet-669

icBurst and BurstSR datasets for both ×2 and ×3 scaling factors to further validate the robustness and670

generalization of our method. Among the compared methods, only BurstM [9] supports multi-scale671

SR, while other methods exhibit inferior performance compared to both BurstM and our approach.672

Therefore, we focus our comparison on BurstM as the primary baseline.673

The quantitative results are in Table 1 in the main text. The qualitative results on the x2 and x3674

SyntheticBurst dataset [3] are presented in Fig. 19 and Fig. 20. The error maps clearly demonstrate675

that our method achieves superior reconstruction quality, recovering finer details than BurstM. For676

the x2 and x3 BurstSR dataset [23], as shown in Fig. 21 and Fig. 22, we provide enlarged patches for677

visual comparison due to the absence of ground truth images. The results highlight that our method678

preserves more structural information and produces visually sharper results compared to BurstM,679

further validating its effectiveness in real-world burst SR scenarios. These consistent improvements680

across datasets and scaling factors underscore the robustness and generalizability of our approach.681
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BIPNetMFIRDBSRBicubic

Figure 8: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 9: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 10: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 11: Visual comparison of x4 BISR on the SyntheticBurst dataset.
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Figure 12: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 13: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 14: Visual comparison of x4 BISR on the BurstSR dataset.
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Figure 15: Visual comparison of x4 BISR on the BurstSR dataset.
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(a)

(d)

(c)

GTOurs

（b）

Figure 16: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.

(a)

(d)

(c)

GTOurs

（b）

Figure 17: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.
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(a)

(d)

(c)

GTOurs

（b）

Figure 18: Visual comparison of ablation study for x4 BISR on the SyntheticBurst dataset.
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Figure 19: Visual comparison x2 BISR on the SyntheticBurst dataset.
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Figure 20: Visual comparison x3 BISR on the SyntheticBurst dataset.
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GTOursBurstM

Figure 21: Visual comparison x2 BISR on the BurstSR dataset.
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Ours GTBurstM

Figure 22: Visual comparison x3 BISR on the BurstSR dataset.
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NeurIPS Paper Checklist682

1. Claims683

Question: Do the main claims made in the abstract and introduction accurately reflect the684

paper’s contributions and scope?685

Answer: [Yes]686

Justification:The abstract and introduction clearly state the main contributions of the paper,687

including both the methodological innovations and the practical improvements.688

Guidelines:689

• The answer NA means that the abstract and introduction do not include the claims690

made in the paper.691

• The abstract and/or introduction should clearly state the claims made, including the692

contributions made in the paper and important assumptions and limitations. A No or693

NA answer to this question will not be perceived well by the reviewers.694

• The claims made should match theoretical and experimental results, and reflect how695

much the results can be expected to generalize to other settings.696

• It is fine to include aspirational goals as motivation as long as it is clear that these goals697

are not attained by the paper.698

2. Limitations699

Question: Does the paper discuss the limitations of the work performed by the authors?700

Answer: [Yes]701

Justification: The limitations are discussed in Section 5 ( Conclusion and Limitation), where702

the authors acknowledge the constraint that the model assumption is limited to the previous703

development of Eq-CNN.704

Guidelines:705

• The answer NA means that the paper has no limitation while the answer No means that706

the paper has limitations, but those are not discussed in the paper.707

• The authors are encouraged to create a separate "Limitations" section in their paper.708

• The paper should point out any strong assumptions and how robust the results are to709

violations of these assumptions (e.g., independence assumptions, noiseless settings,710

model well-specification, asymptotic approximations only holding locally). The authors711

should reflect on how these assumptions might be violated in practice and what the712

implications would be.713

• The authors should reflect on the scope of the claims made, e.g., if the approach was714

only tested on a few datasets or with a few runs. In general, empirical results often715

depend on implicit assumptions, which should be articulated.716

• The authors should reflect on the factors that influence the performance of the approach.717

For example, a facial recognition algorithm may perform poorly when image resolution718

is low or images are taken in low lighting. Or a speech-to-text system might not be719

used reliably to provide closed captions for online lectures because it fails to handle720

technical jargon.721

• The authors should discuss the computational efficiency of the proposed algorithms722

and how they scale with dataset size.723

• If applicable, the authors should discuss possible limitations of their approach to724

address problems of privacy and fairness.725

• While the authors might fear that complete honesty about limitations might be used by726

reviewers as grounds for rejection, a worse outcome might be that reviewers discover727

limitations that aren’t acknowledged in the paper. The authors should use their best728

judgment and recognize that individual actions in favor of transparency play an impor-729

tant role in developing norms that preserve the integrity of the community. Reviewers730

will be specifically instructed to not penalize honesty concerning limitations.731

3. Theory assumptions and proofs732

Question: For each theoretical result, does the paper provide the full set of assumptions and733

a complete (and correct) proof?734
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Answer: [Yes]735

Justification: All theoretical results in the paper are accompanied by a complete set of clearly736

stated assumptions and formal proofs. While the full detailed proofs are presented in the737

Appendix for readability, the main paper includes a simple version to aid understanding.738

Guidelines:739

• The answer NA means that the paper does not include theoretical results.740

• All the theorems, formulas, and proofs in the paper should be numbered and cross-741

referenced.742

• All assumptions should be clearly stated or referenced in the statement of any theorems.743

• The proofs can either appear in the main paper or the supplemental material, but if744

they appear in the supplemental material, the authors are encouraged to provide a short745

proof sketch to provide intuition.746

• Inversely, any informal proof provided in the core of the paper should be complemented747

by formal proofs provided in appendix or supplemental material.748

• Theorems and Lemmas that the proof relies upon should be properly referenced.749

4. Experimental result reproducibility750

Question: Does the paper fully disclose all the information needed to reproduce the main ex-751

perimental results of the paper to the extent that it affects the main claims and/or conclusions752

of the paper (regardless of whether the code and data are provided or not)?753

Answer: [Yes]754

Justification: Yes. The paper provides sufficient details to ensure the reproducibility of its755

main experimental results. The overall architecture and each individual module are clearly756

described in Figure 3 and Section 3, offering a comprehensive overview of the proposed757

method. Furthermore, Section 4.1.1 outlines the experimental settings in detail. These758

descriptions are sufficient for the reproduction to verify the main claims of the paper.759

Guidelines:760

• The answer NA means that the paper does not include experiments.761

• If the paper includes experiments, a No answer to this question will not be perceived762

well by the reviewers: Making the paper reproducible is important, regardless of763

whether the code and data are provided or not.764

• If the contribution is a dataset and/or model, the authors should describe the steps taken765

to make their results reproducible or verifiable.766

• Depending on the contribution, reproducibility can be accomplished in various ways.767

For example, if the contribution is a novel architecture, describing the architecture fully768

might suffice, or if the contribution is a specific model and empirical evaluation, it may769

be necessary to either make it possible for others to replicate the model with the same770

dataset, or provide access to the model. In general. releasing code and data is often771

one good way to accomplish this, but reproducibility can also be provided via detailed772

instructions for how to replicate the results, access to a hosted model (e.g., in the case773

of a large language model), releasing of a model checkpoint, or other means that are774

appropriate to the research performed.775

• While NeurIPS does not require releasing code, the conference does require all submis-776

sions to provide some reasonable avenue for reproducibility, which may depend on the777

nature of the contribution. For example778

(a) If the contribution is primarily a new algorithm, the paper should make it clear how779

to reproduce that algorithm.780

(b) If the contribution is primarily a new model architecture, the paper should describe781

the architecture clearly and fully.782

(c) If the contribution is a new model (e.g., a large language model), then there should783

either be a way to access this model for reproducing the results or a way to reproduce784

the model (e.g., with an open-source dataset or instructions for how to construct785

the dataset).786

(d) We recognize that reproducibility may be tricky in some cases, in which case787

authors are welcome to describe the particular way they provide for reproducibility.788
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In the case of closed-source models, it may be that access to the model is limited in789

some way (e.g., to registered users), but it should be possible for other researchers790

to have some path to reproducing or verifying the results.791

5. Open access to data and code792

Question: Does the paper provide open access to the data and code, with sufficient instruc-793

tions to faithfully reproduce the main experimental results, as described in supplemental794

material?795

Answer: [Yes]796

Justification: We will provide a GitHub repository in the introduction in the de-anonymised797

version.798

Guidelines:799

• The answer NA means that paper does not include experiments requiring code.800

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/801

public/guides/CodeSubmissionPolicy) for more details.802

• While we encourage the release of code and data, we understand that this might not be803

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not804

including code, unless this is central to the contribution (e.g., for a new open-source805

benchmark).806

• The instructions should contain the exact command and environment needed to run to807

reproduce the results. See the NeurIPS code and data submission guidelines (https:808

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.809

• The authors should provide instructions on data access and preparation, including how810

to access the raw data, preprocessed data, intermediate data, and generated data, etc.811

• The authors should provide scripts to reproduce all experimental results for the new812

proposed method and baselines. If only a subset of experiments are reproducible, they813

should state which ones are omitted from the script and why.814

• At submission time, to preserve anonymity, the authors should release anonymized815

versions (if applicable).816

• Providing as much information as possible in supplemental material (appended to the817

paper) is recommended, but including URLs to data and code is permitted.818

6. Experimental setting/details819

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-820

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the821

results?822

Answer: [Yes]823

Justification: All the training and test details are presented in Section 4.1.1 and 4.1.2.824
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• The answer NA means that the paper does not include experiments.826

• The experimental setting should be presented in the core of the paper to a level of detail827

that is necessary to appreciate the results and make sense of them.828

• The full details can be provided either with the code, in appendix, or as supplemental829

material.830

7. Experiment statistical significance831

Question: Does the paper report error bars suitably and correctly defined or other appropriate832

information about the statistical significance of the experiments?833

Answer: [No]834

Justification: The experiment for this task is time-consuming. Referring to previous work,835

there is no need for such experimental data.836
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• The answer NA means that the paper does not include experiments.838
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-839

dence intervals, or statistical significance tests, at least for the experiments that support840

the main claims of the paper.841

• The factors of variability that the error bars are capturing should be clearly stated (for842

example, train/test split, initialization, random drawing of some parameter, or overall843

run with given experimental conditions).844

• The method for calculating the error bars should be explained (closed form formula,845
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• The assumptions made should be given (e.g., Normally distributed errors).847

• It should be clear whether the error bar is the standard deviation or the standard error848

of the mean.849

• It is OK to report 1-sigma error bars, but one should state it. The authors should850

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis851

of Normality of errors is not verified.852

• For asymmetric distributions, the authors should be careful not to show in tables or853

figures symmetric error bars that would yield results that are out of range (e.g. negative854

error rates).855

• If error bars are reported in tables or plots, The authors should explain in the text how856

they were calculated and reference the corresponding figures or tables in the text.857

8. Experiments compute resources858

Question: For each experiment, does the paper provide sufficient information on the com-859

puter resources (type of compute workers, memory, time of execution) needed to reproduce860

the experiments?861

Answer: [Yes]862

Justification: The computational cost have been listed in the main text with the used computer863

workers.864

Guidelines:865

• The answer NA means that the paper does not include experiments.866

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,867

or cloud provider, including relevant memory and storage.868

• The paper should provide the amount of compute required for each of the individual869

experimental runs as well as estimate the total compute.870

• The paper should disclose whether the full research project required more compute871

than the experiments reported in the paper (e.g., preliminary or failed experiments that872

didn’t make it into the paper).873

9. Code of ethics874

Question: Does the research conducted in the paper conform, in every respect, with the875

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?876

Answer: [Yes]877

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our878

research fully adheres to its principles.879

Guidelines:880

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.881

• If the authors answer No, they should explain the special circumstances that require a882

deviation from the Code of Ethics.883

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-884

eration due to laws or regulations in their jurisdiction).885

10. Broader impacts886

Question: Does the paper discuss both potential positive societal impacts and negative887

societal impacts of the work performed?888

Answer: [No]889
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Justification: This paper presents work whose goal is to advance the field of Deep Learn-890

ing and Computer Vision. None of the potential societal consequences we feel must be891

specifically highlighted here.892

Guidelines:893

• The answer NA means that there is no societal impact of the work performed.894

• If the authors answer NA or No, they should explain why their work has no societal895

impact or why the paper does not address societal impact.896
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being used as intended and functioning correctly, harms that could arise when the909

technology is being used as intended but gives incorrect results, and harms following910

from (intentional or unintentional) misuse of the technology.911

• If there are negative societal impacts, the authors could also discuss possible mitigation912

strategies (e.g., gated release of models, providing defenses in addition to attacks,913

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from914

feedback over time, improving the efficiency and accessibility of ML).915

11. Safeguards916

Question: Does the paper describe safeguards that have been put in place for responsible917

release of data or models that have a high risk for misuse (e.g., pretrained language models,918

image generators, or scraped datasets)?919

Answer: [NA]920

Justification: Our work does not involve pretrained models, generative tools, or scraped921

datasets that carry a high risk of misuse.922
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• The answer NA means that the paper poses no such risks.924

• Released models that have a high risk for misuse or dual-use should be released with925

necessary safeguards to allow for controlled use of the model, for example by requiring926

that users adhere to usage guidelines or restrictions to access the model or implementing927

safety filters.928

• Datasets that have been scraped from the Internet could pose safety risks. The authors929

should describe how they avoided releasing unsafe images.930

• We recognize that providing effective safeguards is challenging, and many papers do931

not require this, but we encourage authors to take this into account and make a best932

faith effort.933

12. Licenses for existing assets934

Question: Are the creators or original owners of assets (e.g., code, data, models), used in935

the paper, properly credited and are the license and terms of use explicitly mentioned and936

properly respected?937

Answer: [Yes]938

Justification: We have properly credited all existing assets used in our work, including939

publicly available datasets and code repositories.940
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• The answer NA means that the paper does not use existing assets.942
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• The authors should cite the original paper that produced the code package or dataset.943

• The authors should state which version of the asset is used and, if possible, include a944

URL.945

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.946

• For scraped data from a particular source (e.g., website), the copyright and terms of947

service of that source should be provided.948

• If assets are released, the license, copyright information, and terms of use in the949

package should be provided. For popular datasets, paperswithcode.com/datasets950

has curated licenses for some datasets. Their licensing guide can help determine the951

license of a dataset.952

• For existing datasets that are re-packaged, both the original license and the license of953

the derived asset (if it has changed) should be provided.954

• If this information is not available online, the authors are encouraged to reach out to955

the asset’s creators.956

13. New assets957

Question: Are new assets introduced in the paper well documented and is the documentation958

provided alongside the assets?959

Answer: [NA]960

Justification: Our paper does not release new assets.961

Guidelines:962

• The answer NA means that the paper does not release new assets.963

• Researchers should communicate the details of the dataset/code/model as part of their964

submissions via structured templates. This includes details about training, license,965

limitations, etc.966

• The paper should discuss whether and how consent was obtained from people whose967

asset is used.968

• At submission time, remember to anonymize your assets (if applicable). You can either969

create an anonymized URL or include an anonymized zip file.970

14. Crowdsourcing and research with human subjects971

Question: For crowdsourcing experiments and research with human subjects, does the paper972

include the full text of instructions given to participants and screenshots, if applicable, as973

well as details about compensation (if any)?974

Answer: [NA]975

Justification: Our paper does not involve crowdsourcing nor research with human subjects.976

Guidelines:977

• The answer NA means that the paper does not involve crowdsourcing nor research with978

human subjects.979

• Including this information in the supplemental material is fine, but if the main contribu-980

tion of the paper involves human subjects, then as much detail as possible should be981

included in the main paper.982

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,983

or other labor should be paid at least the minimum wage in the country of the data984

collector.985

15. Institutional review board (IRB) approvals or equivalent for research with human986

subjects987

Question: Does the paper describe potential risks incurred by study participants, whether988

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)989

approvals (or an equivalent approval/review based on the requirements of your country or990

institution) were obtained?991

Answer: [NA]992

Justification: Our paper does not involve crowdsourcing nor research with human subjects.993
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Guidelines:994

• The answer NA means that the paper does not involve crowdsourcing nor research with995

human subjects.996

• Depending on the country in which research is conducted, IRB approval (or equivalent)997

may be required for any human subjects research. If you obtained IRB approval, you998

should clearly state this in the paper.999

• We recognize that the procedures for this may vary significantly between institutions1000

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1001

guidelines for their institution.1002

• For initial submissions, do not include any information that would break anonymity (if1003

applicable), such as the institution conducting the review.1004

16. Declaration of LLM usage1005

Question: Does the paper describe the usage of LLMs if it is an important, original, or1006

non-standard component of the core methods in this research? Note that if the LLM is used1007

only for writing, editing, or formatting purposes and does not impact the core methodology,1008

scientific rigorousness, or originality of the research, declaration is not required.1009

Answer: [NA]1010

Justification: The core method development in this research does not involve LLMs as any1011

important, original, or non-standard components.1012

Guidelines:1013

• The answer NA means that the core method development in this research does not1014

involve LLMs as any important, original, or non-standard components.1015

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1016

for what should or should not be described.1017
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