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ABSTRACT

Symbolic regression discovers accurate and interpretable formulas to describe
given data, thereby providing scientific insights for domain experts and promot-
ing scientific discovery. However, existing symbolic regression methods often
use complexity metrics as a proxy for interoperability, which only considers
the size of the formula but ignores its internal mathematical structure. There-
fore, while they can discover formulas with compact forms, the discovered for-
mulas often have structures that are difficult to analyze or interpret mathemati-
cally. In this work, inspired by the observation that physical formulas are typi-
cally numerically stable under limited calculation precision, we propose the Ef-
fective Information Criterion (EIC). It treats formulas as information processing
systems with specific internal structures and identifies the unreasonable struc-
ture in them by the loss of significant digits or the amplification of rounding
noise as data flows through the system. We find that this criterion reveals the
gap between the structural rationality of models discovered by existing sym-
bolic regression algorithms and real-world physical formulas. Combining EIC
with various search-based symbolic regression algorithms improves their perfor-
mance on the Pareto frontier and reduces the irrational structure in the results.
Combining EIC with generative-based algorithms reduces the number of sam-
ples required for pre-training, improving sample efficiency by 2 ∼ 4 times. Fi-
nally, for different formulas with similar accuracy and complexity, EIC shows a
70.2% agreement with 108 human experts’ preferences for formula interpretabil-
ity, demonstrating that EIC, by measuring the unreasonable structures in formu-
las, actually reflects the formula’s interpretability. We provide code and data in
https://anonymous.4open.science/r/EIC-91B2.

1 INTRODUCTION
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Figure 1: Formulas with the same complexity but different interpretability. Formulas with
similar complexity and accuracy can have very different structures and interoperability.

Symbolic regression (SR) is a machine learning technique that discovers interpretable mathematical
formulas describing relationships in data (Camps-Valls et al., 2023). Unlike black-box models, it re-
veals how inputs map to outputs in a form that can be analyzed mathematically or logically, offering
insights and new scientific knowledge (Makke & Chawla, 2024). In a typical workflow, researchers
apply SR algorithms to data to generate candidate formulas that balance accuracy and complex-
ity (i.e., the Pareto front). They can then assess the credibility of these candidates and select the
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most interpretable formula for insights into the underlying patterns (Liu et al., 2024). Traditionally,
SR relies on heuristic search, especially genetic programming, which edits formulas through muta-
tion and crossover to maximize a search objective that balances complexity and accuracy (Cranmer,
2023; Burlacu et al., 2020). Recently, pretraining-based methods have gained attention, in which
transformer models are pre-trained on synthetic formula-data pairs to predict formula symbols from
data. After training, these models can generalize to real systems, generating formulas directly (Big-
gio et al., 2021; Kamienny et al., 2022; Meidani et al., 2023) or guiding symbolic search (Kamienny
et al., 2023; Shojaee et al., 2023; Yu et al., 2025b).

Most SR methods use formula length, measured by the number of symbols in a formula (La Cava
et al., 2021; Aldeia et al., 2025), as a proxy for interpretability. However, the assumption that shorter
formulas are more interpretable is not always valid. The length metric only captures overall size but
ignores the internal structure of a formula, which strongly affects interpretability. For example,
although the two formulas in Figure 1 have the same length and similar accuracy, the left one is
difficult to interprete with its nested structure sin(sin(cot(x))), whereas the right one, as a linear
combination of simpler functions, is more likely to provide scientific insights. Thus, while search-
based algorithms can discover short formulas, they cannot ensure interpretable structures, limiting
the process of extracting knowledge and hindering SR in scientific discovery. On the other hand,
generative methods face a similar issue: pre-trained on random formulas with inevitably unreason-
able structures, they typically show poor sample efficiency and require tens or hundreds of millions
of samples to achieve effective generalization (Kamienny et al., 2022; Yu et al., 2025b).

To address this problem, we propose the Effective Information Criterion (EIC), grounded in informa-
tion theory and numerical analysis, to identify unreasonable structures in formulas. The key idea is
to view a formula as an information-processing system and evaluate its structural plausibility based
on the loss of effective information it outputs under finite processing precision, relative to the maxi-
mum information a system could output under the same precision. This approach is motivated by the
observation that human-derived physical equations can typically be computed with limited precision
(e.g., manual calculations or floating-point arithmetic) without substantial loss of significant digits.
In contrast, formulas learned by SR often exhibit unreasonable structures such as catastrophic can-
cellation, leading to a large loss of significant digits under limited precision. As shown in Figure 2,
while real physical formulas typically lose less than one significant digit, SR results, despite being
compact and accurate, can lose three or more, revealing prevalent structural issues. Building on this,
we integrate EIC into multiple stages of the SR workflow. For heuristic algorithms, it serves as an
auxiliary search objective to guide the search toward more structurally reasonable results. For gen-
erative methods, EIC can filter out formulas with unlikely structures during pre-training, reducing
the number of samples needed for effective generalization and thus improving sample efficiency.
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Figure 2: EIC distributions of real physical formulas and existing SR results. The figure com-
pares the EIC distribution of 133 ground-truth physical formulas with that of formulas discovered by
existing SR algorithms. While real physical formulas typically have a low EIC of 0 ∼ 1, formulas
discovered by SR often exceed 3, highlighting the prevalence of unreasonable structures. The inner
box shows the quartiles, and the black dots indicate outliers beyond 1.5×IQR.

We conduct extensive experiments to demonstrate EIC’s effectiveness in enhancing both the perfor-
mance and interpretability of formulas learned by SR. First, unlike traditional complexity measures,
EIC evaluates the plausibility of a formula’s internal structure, providing a more accurate assess-
ment of interpretability and potential for scientific insight. Second, integrating EIC into heuristic
search algorithms enhances search performance, yielding formulas that occupy superior positions
on the Pareto front with fewer unreasonable structures. Third, filtering high-EIC samples during
pre-training for generative methods significantly reduces the number of training samples required,
improving sample efficiency by 2 to 4 times. Models trained on low-EIC samples also generalize
better to real-world physical formulas, achieving an R2 improvement of 22.4% compared to those
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trained on random formulas. Finally, in an evaluation of 172 formula pairs with similar R2 and
complexity but different EIC values, assessed by 108 human experts, we find that EIC aligns with
human preferences 70.2% of the time. This demonstrates that EIC can not only identify unreason-
able structures but also evaluate interpretability effectively. By incorporating EIC into the search,
training, and evaluation stages of SR, we can enhance both algorithm performance and the potential
to extract scientific knowledge from learned formulas.

2 RELATED WORK

Symbolic regression (SR) is a machine learning task that discovers symbolic formulas from data by
combining variables, constants, and mathematical operators. Existing SR algorithms can be broadly
divided into heuristic search-based and generative methods.

Heuristic search-based symbolic regression methods. Traditionally, SR is implemented using
heuristic search methods such as genetic programming (Augusto & Barbosa, 2000; Schmidt & Lip-
son, 2010; de Franca & Aldeia, 2021; Arnaldo et al., 2014; Burlacu et al., 2020; Virgolin et al.,
2019; Kartelj & Djukanović, 2023; Smits & Kotanchek, 2005; La Cava et al., 2016; Cranmer, 2023;
Zhong et al., 2018; Burlacu et al., 2020; Searson et al., 2010; Virgolin et al., 2021; Zhang et al.,
2022), Monte Carlo tree search (Sun et al., 2022), and deep reinforcement learning (Petersen et al.,
2021; Tenachi et al., 2023). These methods search for functions that balance simplicity and accu-
racy, producing candidate formulas for experts’ analysis. Some methods leverage neural networks
to identify symmetries (Udrescu & Tegmark, 2020), fit Q-functions (Xu et al., 2024), or predict
minimum description length (Yu et al., 2025b) to guide the search. While these methods often limit
the maximal formula length to avoid overly complex formulas, they cannot prevent formulas with
unreasonable structures, such as deeply nested nonlinear functions or catastrophic cancellation (i.e.,
subtracting nearly equal subformulas). Although there are methods using unit constraints to en-
sure physically reasonable structures (Tenachi et al., 2023), they are largely limited to physics. In
broader domains like ecology, sociology, and earth science, where variable units may be unclear and
models can include many constants with unknown units, such constraints are difficult to apply. This
motivates incorporating EIC into the search objective to exclude unreasonably structured formulas,
improving the interpretability of discovered results.

Generative symbolic regression methods. In recent years, generative methods have emerged,
which pre-train transformers on large-scale randomly generated formula-data pairs to predict sym-
bols in underlying formulas given data. Pre-trained models can generate formulas (Biggio et al.,
2021; Kamienny et al., 2022), guide symbolic search (Shojaee et al., 2023; Kamienny et al., 2023;
Yu et al., 2025b; Ying et al., 2025; Yu et al., 2025a), or serve as foundation models for downstream
tasks (Meidani et al., 2023). Despite their promise, these methods face significant challenges in
sample efficiency. Randomly generated formulas often contain unreasonable structures that differ
from real-world physical formulas, requiring extremely large training datasets (tens or hundreds of
millions) for effective generalization. This motivates using EIC to filter out formulas with unrea-
sonable structures during pre-training, thereby improving consistency with real-world formulas and
enhancing sample efficiency.

3 METHODOLOGY

In this section, we introduce the proposed Effective Information Criterion (EIC), illustrated in Fig-
ure 3. Section 3.1, corresponding to the upper part of the figure, introduces its definition and physical
meanings from perspectives of numerical analysis and information-processing systems. Section 3.2,
corresponding to the lower part, introduces three ways EIC can enhance symbolic regression work-
flows and facilitate scientific discovery.

3.1 EFFECTIVE INFORMATION CRITERION (EIC)

Definition. We view a symbolic formula not merely as a static mathematical object, but as an
information-processing system. A formula maps inputs to outputs through a sequence of mathe-
matical operations and thus forms an information flow. Under limited processing precision, round-
ing errors inevitably occur at operator nodes and propagate through the computation graph. In
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Figure 3: Demonstration of the physical meanings of EIC and the way it can enhance symbolic
regression workflows.
well-structured formulas, these errors remain controlled, so the effective information at the output
approaches the system’s maximum. In unreasonably structured formulas, however, small interme-
diate perturbations can accumulate and severely degrade the output’s effective information. This
motivates evaluating a formula’s structure by how stably it processes information and how much
effective information is lost under finite precision.

To quantify this, we introduce the Effective Information Criterion (EIC), which measures informa-
tion loss in terms of significant digits. If a formula computed with N significant digits produces an
output with only M significant digits, its EIC is defined as

EIC ≜ N −M. (1)

Therefore, a large EIC indicates a formula that amplifies rounding errors and leads to severe in-
formation loss, while a small EIC indicates that the formula structure preserves most of the output
information. For example, f(x) = (x + 10100) − 10100 suffers catastrophic cancellation when
computed with fewer than 100 significant digits, leaving no reliable information output. In contrast,
physical formulas from science typically preserve output information with finite precision, resulting
in small EIC values.

Calculation. Limited processing precision can be modeled as noise injected into intermediate com-
putations. Specifically, truncating a variable x to N significant digits can be expressed as x̃ = x+e,
where the error term e behaves like uniform noise following U(−5 × 10M−N , 5 × 10M−N ), with
M = log10 |x| representing the order of magnitude of x. Expressed as relative noise e/x, it intensity
is independent of x (and M ):

σ2
r ≜ Var

[ e
x

]
=

1

12
102(1−N), (2)

or equivalently,

N = 1− 1

2
log10(12σ

2
r). (3)

This shows that retaining a certain number of significant digits can be converted into injecting noise
of a specific intensity. This equivalence provides us a practical method for calculating EIC: we
first compute the formula outputs ỹ with noise of relative strength σ2

r added. Then, we estimate
the relative noise strength at the output through δ2r ≜ Var

[
ỹ−y
y

]
, where y is the noiseless output.

Finally, the output noise can be converted back to significant digits as M = 1− 1
2 log10(12δ

2
r), using

the relationship above.

Physical meanings. The correspondence between significant digits and relative noise intensity pro-
vides both a method for calculating EIC and a richer physical interpretation. Specifically, from
equation 3, we have (see Appendix B.1 for details)

EIC = N −M = log10(δ
2
r/σ

2
r). (4)

This highlights EIC’s dual meaning: from a numerical analysis perspective, it measures the number
of significant digits lost (i.e., N −M ), while from an information-processing perspective, it quan-
tifies the relative noise gain along the formula’s computational graph (i.e., log10(δ

2
r/σ

2
r)). In other
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words, EIC captures the sensitivity of a formula’s output to small intermediate perturbations, thus
identifying formulas that may be compact but mathematically fragile. Both perspectives emphasize
EIC’s value as a physically meaningful criterion for detecting unreasonable mathematical structures.

Implementaion details. EIC can be calculated recursively. As shown in Appendix Algorithm 1,
computing a formula’s EIC requires computing the noisy and noise-free outputs of each subformula
first, which further depend on their subformulas, down to the input variables and constants. This
allows EIC to be computed for both the final output and each subformula. We found that in some
cases, subformulas have higher EICs than the full formula. For example, f(x) = 0× (x+ 10100 −
10100)+x contains catastrophic cancellation inside the parentheses, but the zero coefficient nullifies
its effect, resulting in a small EIC at the output. To account for such cases, we use the maximum
EIC among all subformulas as the formula’s overall EIC.

3.2 ENHANCE SYMBOLIC REGRESSION WITH EIC

Improve heuristic search-based methods. EIC evaluates unreasonable structures in formulas and
can be integrated as an auxiliary objective in classical heuristic search algorithms to guide the
search and improve performance. We focus on two representative approaches: genetic program-
ming (GP) and Monte Carlo tree search (MCTS), which underpin many state-of-the-art methods
such as PySR(Cranmer, 2023), TPSR(Shojaee et al., 2023), SR4MDL(Yu et al., 2025b), etc. GP
and MCTS iteratively edit formulas to maximize a search objective, balancing accuracy and com-
plexity. A commonly used fitness function is defined as

f(C,NMSE; η) = ηC/(1 + NMSE), (5)
where C denotes the formula complexity (length), NMSE = MSE/Var(y), and η < 1 penalizes
formula complexity (Sun et al., 2022) (see Appendix B.2 for details). It is worth noting that,
when calculating the MSE, we first decompose formulas into additive terms and then fit their co-
efficients using linear regression, avoiding more costly nonlinear optimization algorithms such as
BFGS(Fletcher, 2000) and accelerating the search. EIC can be incorporated by modifying the search
objectives:

f(C,NMSE,EIC; η, α) = ηComplexity/(1 + NMSE)− α · EIC, (6)
where α > 0 penalizes formulas with higher EIC, steering the search away from structurally unrea-
sonable solutions.

Improve sample efficiency of generative methods. Generative approaches, such as Neu-
ralSR(Biggio et al., 2021), E2ESR (Kamienny et al., 2022), and SNIP (Meidani et al., 2023), are
typically pretrained on synthetic formula-data pairs, aiming to predict tokens (i.e., symbols) in for-
mulas from input data. These methods often rely on the random formula generation algorithm
developed by Lample & Charton (2020), which produces diverse symbolic expressions for pretrain-
ing. While this enables generating unlimited training data for pre-training, many synthetic formulas
contain mathematically unreasonable structures rarely seen in real-world physical equations. There-
fore, these models often require tens to hundreds of millions of samples and weeks of computation
for effective generalization(Kamienny et al., 2022; Meidani et al., 2023). To address this, we pro-
pose filtering the pretraining corpus via rejection sampling based on EIC. By discarding formulas
with high EIC values, we remove structurally implausible samples while preserving overall diver-
sity. Specifically, during pretraining, we evaluate the EIC value of each generated sample. Samples
exceeding a specified threshold are regenerated until the EIC is below the threshold.

4 EXPERIMENTS

In this section, we demonstrate practical applications of the Effective Information Criterion (EIC)
in symbolic regression, including: 1) identifying prevalent unreasonable structures in existing SR
results, 2) enhancing the performance of various heuristic search-based methods, 3) improving the
sample efficiency of various generative methods, and 4) evaluating formula interpretability in align-
ment with domain expert intuition.

4.1 EIC EVALUATES EXISTING SYMBOLIC REGRESSION METHODS

Experimental setups. To assess the prevalence of unreasonable structures in existing SR outputs,
we compare the EIC values of 17 symbolic regression methods on 133 SRbench white-box problems

5
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against the ground-truth formulas. The SRbench set includes 119 Feynman physics formulas and 14
Strogatz ODE formulas, with corresponding synthetic data. Samples are randomly split into 75%
training data for search and 25% test data for evaluation. Each method is run 10 times per problem,
and results with R2 > 0.8 are retrained, excluding poorly fitting formulas. This filtering removes
approximately 39% of the data points.
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Finding 1. Gap with real-world formulas in terms of EIC.
Figure 4 shows the average EIC values and complexities (formula
lengths) of the evaluated algorithms alongside the 133 ground-truth
formulas. Although most methods can discover compact formu-
las comparable in complexity to the ground truth, their EIC values
are consistently higher, revealing widespread unreasonable structures
and highlighting the need to incorporate EIC into evaluation.

Finding 2. Unit constraints and hand-designed rules improve
structural plausibility. Among all methods, DSR achieves the clos-
est EIC to the ground-truth, likely due to its use of dimensional con-
straints, which prevent nonlinear unary operators such as exp and
sin from being applied to dimensional subformulas, thereby prun-
ing the search space and avoiding overly complex structures. PySR
and GPlearn follow it with suboptimal EIC values, possibly because
they restrict deep nesting of nonlinear unary functions through hand-
designed rules, thus reducing structurally complex results.

Finding 3. Divide-and-conquer improves structural pausibility. AIFeynman2 and SR4MDL
achieve performance similar to PySR and GPlearn, likely because they use a divide-and-conquer
strategy that breaks the target formula into simpler subformulas, reducing abnormal structures. No-
tably, although AIFeynman2 produces formulas of high average complexity, their EIC values remain
relatively low. This is likely due to its design, which uses a series of pre-defined symmetry rules
to recursively rewrite formulas into smaller components. Since each divide-and-conquer step stems
from simple symmetry rules, it avoids the unreasonable structures with high EIC values.

Finding 4. Generative methods tend to produce structurally unreasonable formulas. Com-
pared to search-based methods, recent generative methods such as NeurSR, E2ESR, and SNIP yield
formulas with much higher EIC values. This likely stems from training on randomly generated
formulas that ignore structural plausibility, making them reproduce these abnormal substructures.

These findings highlight the effective practices in existing symbolic regression methods, while also
revealing a gap between the structural plausibility of generated formulas and that of truly inter-
pretable symbolic models, motivating our exploration of EIC to improve existing SR algorithms in
the following experiments.

4.2 INCORPORATING EIC INTO HEURISTIC SEARCH METHODS

Experimental setups We evaluated GP and MCTS with and without EIC integrated on SRBench,
which is a standard benchmark for SR, including 133 white-box problems with known ground-truth
formulas and 122 black-box problems without explicit underlying dynamics. For each problem, we
ran 10 independent trials with a four-hour time limit and compared results against the 17 baseline
methods in Section 4.1. Data were split into 75% training and 25% test sets. For white-box prob-
lems, we tested both noise-free data and noisy data with three levels η = 0.001, 0.01, 0.1, where
Gaussian noise with standard deviation σ = η × Std[y] was added to the outputs, allowing us to
assess robustness under varying noise. Performances of algorithms are evaluated from two com-
plementary perspectives, including 1) the trade-off between accuracy (R2) and complexity (formula
length) that reflects the ability of the algorithm to learn compact yet accurate models, and 2) the
average EIC values of discovered formulas that reflect their structural plausibility.

White-box experimental results. Figure 5 summarizes the white-box results. As shown in the left
panel, integrating EIC into MCTS and GP improved both accuracy and compactness, moving them
from the second to the first tier of the Pareto front. This is because EIC, as a regularizer, can prevent
overfitting and enhance generalization accuracy to test set data. It also reduces formula length by
penalizing unnecessary complexity. In contrast, while methods such as DSR and RSRM produce
compact formulas with relatively low EIC values (Figure 4), their predictive accuracy is much lower.
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This suggests that although unit constraints can avoid unreasonable structures, they also shrink the
search space and limit expressiveness

The right panel shows the EIC distribution under different noise levels. With EIC, both MCTS and
GP consistently achieve lower values than their vanilla versions, approaching those of real physical
formulas. This demonstrates that EIC not only improves performance but also prevents the gener-
ation of structurally unreasonable, hard-to-interpret formulas, making it a better constraint solution
than unit constraints or manually designed nested rules.
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Figure 5: Pareto fronts and EIC distributions on the white-box dataset. † and ‡ indicate
generative and regression methods, respectively, while others are heuristic methods. In the left
panel, the lines show the Pareto front tiers, from bottom-left (best) to top-right (worst). In the right
panel, markers indicate the mean EIC and its 95% confidence interval at different noise levels.

Black-box experimental results. Figure 6 shows the results on 122 black-box problems. In the
left panel, incorporating EIC improved the Pareto front positions of GP and MCTS, moving them
from Tier 2 and Tier 4 to Tier 1 and Tier 3, respectively, demonstrating that excluding structurally
unreasonable formulas with EIC can enhance symbolic regression performance even on real-world
problems without known ground truth. However, while EIC improved both accuracy and simplicity
for MCTS, it improved simplicity but reduced accuracy for GP. This likely reflects the presence
of datasets with relationships too complex to be captured by interpretable formulas of reasonable
structure. As a regularizer, EIC guides search away from unreasonable forms, but also prevents
generating overly complex formulas to overfit the intricate patterns in the data.

The right panel shows EIC distributions, where incorporating EIC substantially reduces unreason-
able structures in both MCTS and GP. Compared to the white-box results in Figure 5, this effect is
even stronger in the black-box setting, suggesting that when underlying relationships are unclear,
symbolic regression tends to rely on overly complex functional forms, leaving more room for im-
provement in formula plausibility.
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Figure 6: Pareto fronts and EIC distributions on the black-box dataset. ∗ indicates decision-
tree methods, other symbols are the same as in Fig 5.

4.3 INCORPORATE EIC INTO GENERATIVE SYMBOLIC REGRESSION METHODS
Experimental setups. In this experiment, we considered E2ESR (Kamienny et al., 2022),
SNIP (Meidani et al., 2023), and SR4MDL (Yu et al., 2025b), covering the progression of this
methodology from earlier efforts to more recent advances over the past two years. Each method
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was trained on randomly generated formulas and evaluated on the 133 SRBench white-box prob-
lems. For E2ESR and SNIP, we used the R2 of generated formulas as the performance metric; for
SR4MDL, which predicts minimum description length rather than formula tokens1, we used the
RMSE and MAE of its prediction as metrics. Training stopped when test performance plateaued
over five million samples. We then retrain the models under the same hyperparameters using filtered
formulas with EIC < θ until performance matches that obtained with unfiltered data. Based on
Figure 2, we set θ = 2 to align the EIC of filtered formulas with that of real physical formulas (see
Appendix B.3 for details).

We also evaluate a recent data construction baseline, PhyE2E (Ying et al., 2025), which uses LLMs
fine-tuned on physical equations to generate “look-physical” formulas with unit constraints for pre-
training. We trained the E2ESR model on 180k PhyE2E formulas. To avoid unfair comparisons due
to its limited sample size, we used a mixed sampling strategy that samples from PhyE2E formulas
with a probability of 0.1 and generates random formulas with a probability of 0.9.

EIC reduces the distribution gap between training samples and real physical formulas. We
evaluated whether EIC filtering produces a training distribution closer to real-world formulas. We
generated 1024 formulas from the unfiltered random generator and 1024 from the filtered generator,
and compared them with three benchmark sets, including Feynman (119 physics formulas), Strogatz
(14 ODE formulas), and Wiki Named Equations (984 equations, see Appendix C.2 for details).
Similarity was measured via variable counts, constant counts, operator counts, and formula length,
using Jensen-Shannon (JS) and Kullback-Leibler (KL) divergences.

Table 1 shows that EIC filtering yields distributions substantially closer to real formulas, with
20 ∼ 50% reduction in JS divergence and 30 ∼ 70% reduction in KL divergence compared to
the unfiltered random formulas. This demonstrates that EIC effectively reduces the gap between
synthetic and real-world formulas and improves train-test alignment.
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Random Formulas
Filtered Formulas
PhyE2E Formulas

Figure 7: Test set perfor-
mance of E2ESR trained on
different samples. The grey
line shows the convergence
trained on random formulas.

EIC improves sample efficiency and generalization perfor-
mance. The results are summarized in Table 2, where models
trained on randomly generated formulas eventually generalized to
the Feynman test set, but typically required tens of millions of sam-
ples. In contrast, training on EIC-filtered formulas achieved equal
or better performance with fewer training samples, improving sam-
ple efficiency by 357%, 233%, and 287% on E2ESR, SNIP, and
SR4MDL, respectively. This demonstrates that EIC filtering re-
moves structurally unreasonable formulas, producing training data
that is more physically meaningful and transferable to real-world
tasks, thereby enhancing pretraining-based symbolic regression.

Figure 7 shows that training on EIC-filtered samples further im-
proved final performance compared to random formulas. For
E2ESR, training for the same number of steps increased R2 from
0.5559 to 0.6808, representing a 22.4% relative gain. Similar im-
provements were observed for SNIP and SR4MDL, with relative gains of 13.5% and 5.14%, re-
spectively (see Appendix C.2). Incorporating PhyE2E formulas into pretraining did not improve
performance and slightly reduced generalization, likely due to a trade-off between unit consistency
and formula diversity: although PhyE2E formulas satisfy unit constraints, their limited diversity re-
duces pretraining effectiveness. In contrast, EIC filtering preserves both structural plausibility and
distributional diversity, thus yielding superior generalization.

4.4 EIC REFLECTS INTERPRETABILITY IN ALIGNMENT WITH HUMAN EXPERTS

Experimental setups. To test whether EIC aligns with human judgments of formula interpretabil-
ity, we compared formulas discovered by EIC-MCTS and PySR, which were selected for their top
performance in EIC and complexity, respectively (Section 4.2). We focused on Pareto fronts they
discovered from 19 one- and two-dimensional PMLB black-box problems, where data can be visu-
alized and understood by human experts. From each problem, we selected pairs of formulas with

1Strictly speaking, this is not a generative method. However, since it uses the same model architecture and
data generation scheme as E2ESR and SNIP, we include it for comparison.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Distribution differences between real physical formulas and generated formulas. We
generated 1024 random formulas and 1024 EIC-filtered formulas (EIC < 2.0) and compared them
with three real physical formula sets.

#Variables #Coefficients #Operators Formula Length

JS↓ KL↓ JS↓ KL↓ JS↓ KL↓ JS↓ KL↓

Feynman Random 0.1196 1.4390 0.5163 16.78 0.3233 9.539 0.3973 13.615
(n=119) Filtered 0.0768 0.3523 0.3769 5.582 0.1862 0.7741 0.2573 3.4397

−∆(%) 36% 76% 27% 67% 42% 92% 35% 75%

Strogatz Random 0.4014 18.784 0.6016 23.37 0.5726 22.24 0.6002 22.27
(n=14) Filtered 0.2650 12.920 0.5048 20.78 0.4646 18.74 0.5225 20.05

−∆(%) 34% 31% 16% 11% 19% 16% 13% 10%

Wiki Random 0.1459 0.6654 0.5566 14.888 0.3873 4.269 0.4219 7.060
(n=940) Filtered 0.0747 0.2899 0.4660 3.5307 0.2485 1.124 0.3114 1.541

−∆(%) 49% 56% 16% 76% 36% 74% 26% 78%

Table 2: Sample efficiency of different methods trained with random and filtered formulas.
Pre-training Formulas E2ESR SNIP SR4MDL

#Sample↓ R2↑ #Sample↓ R2↑ #Sample↓ MAE↓ RMSE↓

Random 35M 0.5190 40M 0.5300 50M 6.972 8.731
Filtered 9.79M 0.5399 25.15M 0.5415 17.4M 6.812 8.701

Efficiency +∆(%) 357.5% 198.8% 287.4%

similar R2 and complexity but differing EIC, yielding 172 pairs across all problems. We invite 108
volunteer participants with at least a bachelor’s degree in science or engineering, to whom we assign
10 pairs of formulas and ask to choose the more interpretable ones from each pair. We collected 840
valid evaluations, with each pair assessed on average 4.9 times (see Appendix C.3).

EIC evaluates formula interpretability in alignment with human experts. The results are sum-
marized in Figure 14, where the left two panels show the distribution of complexity and R2 for the
selected formula pairs, indicating comparable performance between the two methods. The right two
panels show that EIC-MCTS produces formulas with substantially lower EIC values than PySR, and
human experts preferred EIC-MCTS in 70.12% of evaluations, which is 2.3 times more than PySR.
This suggests EIC captures interpretability in a manner aligned with expert intuition. Moreover,
when asking LLMs to act as domain experts, they similarly preferred EIC-MCTS 72.19% of the
time, supporting the reliability of the rating results (see Appendix C.3).
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Figure 8: Distributions of complexity, accuracy, EIC, and expert preference of formula pairs.

5 CONCLUSION AND DISCUSSION

We propose the Effective Information Criterion (EIC), a measure of structural plausibility for sym-
bolic regression formulas with interpretations from numerical analysis and information-processing
perspectives. Unlike complexity-based metrics, EIC detects unreasonable structures that affect in-
terpretability. It improves heuristic search-based SR by steering away from unreasonable formulas,
enhances generative methods by filtering implausible samples, and aligns well with expert judg-
ments for interpretability. Despite its effectiveness, several avenues remain for future work. First,
integrating EIC guidance with pre-trained model guidance may further boost performance. Second,
analyzing EIC at each subformula, rather than only the maximum, could more precisely identify re-
dundant or unreasonable structures, enabling finer-grained evaluation. Finally, in complex systems
where simple microscopic rules produce emergent macroscopic behaviors, such as phase transitions,
it remains to be studied whether the resulting dynamics formulas retain low EIC scores.
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ETHICS STATEMENT

This research included an expert rating experiment with 100 participants, who were asked to evaluate
the interpretability of 10 pairs of discovered symbolic formulas. Participation was entirely voluntary,
and informed consent was obtained from all participants before the study. No personally identifiable
or sensitive data were collected, and all responses were anonymized. The study was conducted in
accordance with ethical research practices and posed no foreseeable risks to participants.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a complete implementation in an anonymous repository, in-
cluding 1) scripts for computing the EIC score of any given formulas, 2) full implementations of
the genetic programming and Monte Carlo Tree Search algorithms combined with EIC, and 3) full
implementations of filtering samples with EIC to pre-train generative models. The repository also
contains all datasets used in our experiments, including 1) the formula collections and EIC scores of
the Feynman, Strogatz ODE, and Wiki Named Equation sets, 2) the EIC scores of formulas discov-
ered by different symbolic regression methods, and 3) the detailed results of the human evaluation
experiments.
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A DISCLOSURE OF LLM USAGE

We used a large language model (LLM) as a general-purpose assistive tool. Specifically, we use
GPT4-mini for writing assistance, including polishing text, correcting grammar, and improving
phrasing. We also use Copilot for code documentation, that is, adding explanatory comments to
source code for readability. All content generated by LLM is manually reviewed and edited to ensure
correctness. The LLM did not contribute to research ideation, experiment design, implementation
of experimental code, analysis of results, or drawing of conclusions. All scientific contributions and
research insights presented in this paper are solely due to the authors.

B METHODOLOGY DETAILS

B.1 EFFECTIVE INFORMATION CRITERION

Using equation 2 and equation 3, we can derive that:

EIC = N −M

= 1− 1

2
log10(12σ

2
r)− 1 +

1

2
log10(12δ

2
r)

= log10(δ
2
r/σ

2
r),

(7)

demonstrating the physical meaning of EIC from the perspective of the information-processing sys-
tems. Based on this equation, we give the calculation algorithm of EIC as in Algorithm 1.

In this research, we kept the hyperparameter σr as 10−6. We also find that, when the σr is small
enough, the value of EIC is independent of the specific value of σ2

r or N . This actually makes our
EIC a parameter-free metric, reflecting the intrinsic plausibility of a formula independent of external
tuning.

B.2 ENHANCE SEARCH-BASED METHODS WITH EIC

To demonstrate that EIC, as a criterion for evaluating unreasonable structures in formulas, can serve
as an effective guidance signal for improving symbolic regression, we integrated it into various
classical heuristic search algorithms as an auxiliary search objective. Specifically, we focused on
two representative approaches: genetic programming (GP) and Monte Carlo tree search (MCTS).

• Genetic programming maintains a population of candidate formulas, where each individual
represents a candidate formula. New individuals are generated by crossover or mutation of
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Algorithm 1: CalculateEIC
Input: Formula f , input data X , hyperparameter σ2

r (σ2
r → 0)

Output: Noisy output ỹ, clean output y, EIC value
1 if f is an unary operator then
2 operator← f.operator ; // operator ∈ {sin, cos, tan, exp, log, · · · }
3 operand← f.operand;
4 (x̃, x,EIC)← CalculateEIC(operand, X);
5 y ← operator(x);
6 ỹ ← operator(x̃);
7 ỹ ← ỹ + ϵỹ, ϵ ∼ N (0, σ2

r);

8 δ2r ← Var
[
ỹ−y
y

]
;

9 EIC← max
{

EIC, log10(δ
2
r/σ

2
r)
}

;
10 return (ỹ, y,EIC);
11 else if f is a binary operator then
12 operator← f.operator ; // operator ∈ {+,−,×,÷, · · · }
13 operand1 ← f.operand[1];
14 operand2 ← f.operand[2];
15 (x̃1, x1,EIC1)← CalculateEIC(operand1, X);
16 (x̃2, x2,EIC2)← CalculateEIC(operand2, X);
17 y ← f(x1, x2);
18 ỹ ← f(x̃1, x̃2);
19 ỹ ← ỹ + ϵỹ, ϵ ∼ N (0, σ2

r);

20 δ2r ← Var
[
ỹ−y
y

]
;

21 EIC← max
{

EIC1,EIC2, log10(δ
2
r/σ

2
r)
}

;
22 return (ỹ, y,EIC);
23 else
24 return (f(X), f(X), 0) ; // f is a variable or a constant
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high-fitness candidates, while low-fitness candidates are eliminated to increase the overall
quality of the population. A common fitness function is defined in equation 5, where Com-
plexity measures the structural size of the formula, NMSE denotes the normalized mean
squared error (MSE/Var(y)), and η < 1 is a regularization constant. This formulation
penalizes formulas with large errors or excessive complexity, thereby guiding the search
toward accurate and compact formulas. It is worth noting that, when calculating the MSE,
we first decompose formulas into additive terms and then apply linear regression to fit the
coefficients for these terms. This approach integrates the idea of SINDy and effectively
improves the performance of algorithms.

• MCTS constructs a search tree where each node represents a candidate formula. Child
nodes are those formulas that can be obtained by mutating parent formulas, and their re-
ward values are computed according to Equation equation 5. In each search iteration, the
algorithm starts from the root node and selects a promising leaf node based on its upper
confidence bound (UCB) score, which balances average reward and visitation counts. The
chosen leaf is then expanded through mutation, and the resulting reward is backpropagated
to update the average reward and visitation counts of its ancestors. This process iteratively
guides the search toward structurally and numerically promising formulas.

The proposed EIC can be easily incorporated into both algorithms by augmenting their fitness or
reward functions. Specifically, we adopt

Fitnessα = ηComplexity/(1 + NMSE)− α · EIC

as the modified fitness and reward functions, where α > 0 penalizes formulas with higher EIC,
thereby steering the search away from structurally unreasonable solutions. In this work, we use
η = 0.999 in equation 5 as suggested by Yu et al. (2025b) and Sun et al. (2022). For the choice of α,
we note that the first term of equation 5 has a value range of 0 to 1, while, as shown in Figure 2, EIC
ranges from 0 to 10. Since EIC serves as an auxiliary search objective, its weight should generally
be an order of magnitude smaller than that of the primary objective. Accordingly, we set α = 0.01
for MCTS. For the genetic algorithm, we observed that it is more sensitive to the auxiliary objective.
Therefore, we chose a smaller value of α = 0.002 to optimally balance the algorithm’s ability to
discover formulas with low EIC while still ensuring high R2 accuracy.

B.3 ENHANCE GENERATIVE METHODS WITH EIC

To demonstrate that EIC can enhance the sample efficiency and performance of pretraining-based
symbolic regression methods, we focus on three representative approaches: E2ESR(Kamienny et al.,
2022), SNIP(Meidani et al., 2023), and SR4MDL(Yu et al., 2025b), spanning the progression of this
research line from earlier efforts to more recent advances in the last year. E2ESR is trained to
predict formula tokens directly from (X, y) data pairs; SNIP extends E2ESR with a CLIP-inspired
contrastive loss; and SR4MDL further modifies SNIP by changing the prediction target to the min-
imum description length of formulas to guide the search. All three approaches rely on the formula
generation algorithm proposed by Lample & Charton (2019), which generates formulas with random
and diverse forms to pretrain generative models.

For each method, we pretrained the model on randomly generated formulas until it achieved the
performance reported in the corresponding original papers, and then repeated the pretraining pro-
cess using a filtered dataset where formulas with EIC > 2.0 are discarded, ensuring that only for-
mulas with reasonable structures were included in pre-training. For E2ESR and SNIP, since they
directly predict formula tokens from data, we evaluated their performance by the R2 scores of the
formulas they generated on the Feynman dataset. For SR4MDL, which instead predicts the min-
imum description length of formulas, we evaluated its performance using the mean absolute error
(MAE) and root mean squared error (RMSE) of predicted formula lengths on the Feynman dataset.
This setup allowed us to compare the number of training samples required to reach the same target
performance under both settings. All experiments used their official implementations, with hy-
perparameters selected via a grid search over batch sizes ∈ {32, 64, 128, 256} and learning rates
∈ {10−5, 10−4, 10−3}. The hyperparameters were selected under the unfiltered training condition
and then kept fixed when training with the filtered dataset.

We also considered a recently proposed data construction strategy baseline, PhyE2E(Ying et al.,
2025), which leverages LLMs fine-tuned on physical equations to generate “look-physical” formu-
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las with unit constraints for pretraining generative models. We used 180k formulas provided by
PhyE2E to train the model. To avoid unfair comparisons due to limited sample size, we used a
mixed sampling strategy, which is to generate random formulas with a probability of 0.9 and sample
from PhyE2E formulas with a probability of 0.1. We used the 180k formulas provided by PhyE2E to
pretrain the model and compared the results against those obtained with the EIC-filtered dataset. To
ensure a fair comparison with our approach and to mitigate the limited size of the PhyE2E corpus,
we adopted a hybrid sampling scheme in which, at each training step, a formula was drawn from the
PhyE2E dataset with probability 0.1 and from the model’s own random generator with probability
0.9.

C DETAILED EXPERIMENTAL RESULTS

C.1 ENHANCE SEARCH-BASED METHODS WITH EIC

Corresponding to Figures 5 and 6 in the main text, we provide the raw experimental results for 17
baseline methods and our four methods under four noise levels on white-box data and on black-
box data, as shown in Tables 3, 4, 5, 6, and 7, respectively. The tables report formula accuracy,
complexity, running duration, and the average EIC of the resulting formulas.

Table 3: Whitebox results at noise-free condition
Type algorithm R2 > 0.99 complexity duration EIC

Regression FEAT 0.621(±0.031) 195.3(±8.5) 2269(±1.9e+02) 3.504(±0.22)

Generative
E2ESR 0.2773(±0.03) 89.63(±2.1) 4.024(±0.14) 3.509(±0.066)

NeurSR 0.07681(±0.014) 31.42(±0.26) 23.19(±0.39) 3.307(±0.049)

SNIP 0.1541(±0.019) 25.2(±0.39) 1.845(±0.07) 2.652(±0.1)

Search

AFP 0.551(±0.03) 37.01(±1.2) 3282(±2.4e+02) 2.622(±0.15)

AFP-FE 0.7154(±0.025) 40.63(±1.3) 17090(±750) 2.684(±0.14)

AIFeynman2 0.8487(±0.02) 113.2(±21) 844.2(±1.9e+02) 1.2(±0.2)

BSR 0.249(±0.026) 26.95(±0.62) 29310(±790) 3.663(±0.11)

DSR 0.3365(±0.029) 14.94(±0.49) 1746(±1.8e+02) 1.343(±0.1)

EPLEX 0.7375(±0.027) 52.64(±1.1) 11450(±690) 3.355(±0.15)

GP-GOMEA 0.8808(±0.02) 34.77(±0.97) 4786(±4.4e+02) 2.537(±0.14)

GPlearn 0.468(±0.03) 67.71(±16) 3606(±3.6e+02) 2.126(±0.15)

Operon 0.9392(±0.013) 68.73(±1.4) 1947(±64) 3.162(±0.11)

PySR 0.6762(±0.064) 9.219(±0.46) 791.6(±44) 2.114(±0.2)

RSRM 0.2455(±0.025) 13.4(±0.37) 116.9(±3) 1.435(±0.092)

SBP-GP 0.9365(±0.015) 513.4(±12) 2.768e+04(±2.4e+02) 7.872(±0.34)

SR4MDL 0.6271(±0.026) 21.7(±0.79) 470(±34) 1.58(±0.086)

GP 0.7215(±0.029) 34.61(±1.7) 1728(±67) 2.367(±0.12)

EIC-GP 0.7288(±0.038) 32.47(±2.2) 1718(±90) 2.136(±0.15)

∆(%) 1% -7% -0.50% -9.80%

MCTS 0.6917(±0.046) 17.68(±1.2) 10580(±1000) 1.185(±0.14)

EIC-MCTS 0.7107(±0.045) 17.64(±1.2) 12080(±1.1e+03) 0.9983(±0.12)

∆(%) 2.70% -0.20% 14% -16%

C.2 ENHANCE GENERATIVE METHODS WITH EIC

We demonstrate that EIC improves the alignment between pre-training formulas and real-world
physical formulas by measuring the similarity between randomly generated formulas and EIC-
filtered formulas with three datasets of real physical formulas. These datasets include the Feynman
dataset, the Strogatz ODE dataset, and the Wiki Named Equation dataset. The first two are derived
from the white-box models in SRBench, while the third was collected by Guimerà et al. (2020) from
Wikipedia, containing over a thousand named formulas. We cleaned and deduplicated the formulas,
removing those with special operators (e.g., matrix operations) and inherently redundant formulas
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Table 4: Whitebox Results at 0.001 noise
Type algorithm R2 > 0.99 complexity duration EIC

Regression FEAT 0.6236 (±0.03) 186.4 (±7.2) 1598 (±89) 3.556 (±0.18)

Generative
E2ESR 0.2595 (±0.03) 89.56 (±2.1) 3.846 (±0.13) 3.641 (±0.07)

NeurSR 0.0767 (±0.01) 31.34 (±0.26) 23.52 (±0.39) 3.309 (±0.05)

SNIP 0.1579 (±0.02) 25.2 (±0.39) 1.865 (±0.07) 2.759 (±0.11)

Search

AFP 0.5646 (±0.03) 39.27 (±1) 3327 (±104) 2.954 (±0.14)

AFP-FE 0.7308 (±0.02) 46.71 (±1.1) 24216 (±511) 3.252 (±0.17)

AIFeynman2 0.8305 (±0.02) 118.7 (±20) 575.1 (±27) 1.974 (±0.25)

BSR 0.2515 (±0.02) 27.12 (±0.56) 29613 (±1691) 3.709 (±0.1)

DSR 0.3815 (±0.03) 16.32 (±0.47) 794.6 (±27) 1.273 (±0.09)

EPLEX 0.77 (±0.02) 55.3 (±0.8) 11057 (±318) 3.66 (±0.14)

GP-GOMEA 0.9038 (±0.02) 44.79 (±0.77) 2678 (±197) 3.811 (±0.13)

GPlearn 0.4809 (±0.03) 57.12 (±8.4) 3054 (±234) 2.093 (±0.13)

Operon 0.9538 (±0.01) 69.39 (±1.4) 1967 (±70) 3.276 (±0.10)

PySR 0.7914 (±0.07) 9.381 (±0.5) 658.6 (±34) 2.029 (±0.23)

RSRM 0.263 (±0.03) 13.22 (±0.47) 128.3 (±2.5) 1.367 (±0.12)

SBP-GP 0.9362 (±0.01) 600.9 (±9.4) 27934 (±172) 8.697 (±0.32)

SR4MDL 0.6099 (±0.03) 26.8 (±0.65) 540.5 (±28) 1.855 (±0.08)

GP 0.691 (±0.05) 35.65 (±2.3) 1813 (±103) 2.811 (±0.16)

EIC-GP 0.7103 (±0.04) 31.7 (±2.2) 1703 (±103) 2.394 (±0.16)

∆(%) +3% -11% -6.08% -14.82%

MCTS 0.6404 (±0.03) 19.3 (±0.6) 3641 (±469) 1.246 (±0.09)

EIC-MCTS 0.6692 (±0.08) 20.46 (±1.8) 15228 (±2045) 0.9275 (±0.18)

∆(%) +4.49% +6.03% +318% -26%

Table 5: Whitebox Results at 0.01 noise
Type algorithm R2 > 0.99 complexity duration EIC

Regression FEAT 0.6198 (±0.03) 159.3 (±6.2) 1357 (±73) 3.464 (±0.2)

Generative
E2ESR 0.2388 (±0.03) 97.61 (±2.3) 4.175 (±0.1) 4.015 (±0.08)

NeurSR 0.0759 (±0.01) 31.44 (±0.25) 23.66 (±0.38) 3.292 (±0.04)

SNIP 0.1414 (±0.02) 27.05 (±0.37) 2.109 (±0.08) 3.407 (±0.11)

Search

AFP 0.5808 (±0.03) 40.62 (±1) 3666 (±118) 3.152 (±0.16)

AFP-FE 0.7262 (±0.02) 47.12 (±1.1) 25731 (±414) 3.413 (±0.17)

AIFeynman2 0.797 (±0.02) 140.2 (±23) 562.8 (±28) 2.276 (±0.27)

BSR 0.2685 (±0.02) 29.19 (±0.71) 29680 (±1554) 3.961 (±0.12)

DSR 0.3838 (±0.03) 16.45 (±0.48) 882.8 (±33) 1.289 (±0.09)

EPLEX 0.7792 (±0.02) 53.9 (±0.82) 9901 (±240) 3.711 (±0.15)

GP-GOMEA 0.9085 (±0.02) 44.46 (±0.72) 2777 (±197) 3.919 (±0.13)

GPlearn 0.4813 (±0.03) 56.85 (±11) 3084 (±235) 2.064 (±0.13)

Operon 0.9438 (±0.01) 87.29 (±0.42) 2835 (±80) 4.908 (±0.1)

PySR 0.7857 (±0.07) 9.545 (±0.5) 803.6 (±22) 2.034 (±0.22)

RSRM 0.2703 (±0.03) 13.38 (±0.37) 132.7 (±2.3) 1.384 (±0.09)

SBP-GP 0.9338 (±0.01) 623 (±9.2) 28074 (±154) 8.804 (±0.31)

SR4MDL 0.6084 (±0.03) 26.6 (±0.64) 805.6 (±41) 1.876 (±0.08)

GP 0.6642 (±0.05) 34.83 (±2) 1784 (±100) 2.684 (±0.16)

EIC-GP 0.6884 (±0.05) 33.65 (±2.2) 1582 (±104) 2.554 (±0.16)

∆(%) +4% -3% -11.31% -4.84%

MCTS 0.6186 (±0.03) 19.33 (±0.63) 4158 (±464) 1.226 (±0.09)

EIC-MCTS 0.7083 (±0.08) 18.99 (±1.8) 15996 (±1928) 0.9407 (±0.2)

∆(%) +14.51% -1.77% +285% -23%
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Table 6: Whitebox Results at 0.1 noise
Type algorithm R2 > 0.99 complexity duration EIC

Regression FEAT 0.4606 (±0.03) 97.84 (±3.8) 742.3 (±32) 2.891 (±0.17)

Generative
E2ESR 0.0176 (±0.01) 103.3 (±2.1) 6.119 (±0.34) 4.841 (±0.1)

NeurSR 0.0421 (±0.01) 31.83 (±0.24) 24.93 (±0.39) 3.344 (±0.04)

SNIP 0.0346 (±0.01) 30.95 (±0.35) 2.655 (±0.1) 4.862 (±0.11)

Search

AFP 0.5485 (±0.03) 41.18 (±0.99) 3485 (±95) 3.535 (±0.17)

AFP-FE 0.7262 (±0.02) 49.1 (±1) 26795 (±319) 4.077 (±0.19)

AIFeynman2 0.1949 (±0.02) 157.3 (±21) 629.5 (±91) 3.695 (±0.26)

BSR 0.22 (±0.02) 31.01 (±0.84) 31506 (±2521) 4.104 (±0.11)

DSR 0.3823 (±0.03) 16.3 (±0.47) 781 (±24) 1.288 (±0.09)

EPLEX 0.7585 (±0.02) 46.46 (±0.95) 9219 (±192) 3.394 (±0.15)

GP-GOMEA 0.8885 (±0.02) 46.13 (±0.7) 2886 (±207) 4.258 (±0.12)

GPlearn 0.4786 (±0.03) 46.32 (±6.3) 2715 (±209) 1.952 (±0.13)

Operon 0.8892 (±0.02) 88.61 (±0.32) 2768 (±71) 5.29 (±0.1)

PySR 0.6234 (±0.08) 10.49 (±0.78) 798 (±17) 1.797 (±0.23)

RSRM 0.2543 (±0.03) 13.11 (±0.34) 134.2 (±2.1) 1.379 (±0.09)

SBP-GP 0.8662 (±0.02) 652 (±8.9) 28173 (±140) 9.227 (±0.31)

SR4MDL 0.4717 (±0.03) 29.81 (±0.59) 833.9 (±44) 2.577 (±0.07)

GP 0.3258 (±0.05) 29.67 (±1.7) 1157 (±96) 2.938 (±0.15)

EIC-GP 0.3182 (±0.05) 29.97 (±1.9) 861.7 (±91) 2.823 (±0.14)

∆(%) -2% +1% -25.51% -3.92%

MCTS 0.5064 (±0.06) 18.77 (±1.1) 2778 (±325) 1.174 (±0.17)

EIC-MCTS 0.5012 (±0.06) 18.67 (±1.3) 3005 (±403) 1.092 (±0.16)

∆(%) -1% +0.5% +8.17% -6.98%

Table 7: blackbox results
Type algorithm R2 complexity EIC

Regression FEAT 0.7621 (±0.01) 82.49 (±3.3) 1.441 (±0.09)

Generative
E2ESR 0.3612 (±0.02) 61.09 (±1) 3.581 (±0.13)

NeurSR 0.1228 (±0.01) 13.33 (±0.12) 2.208 (±0.07)

SNIP 0.3335 (±0.02) 38.91 (±0.55) 3.307 (±0.14)

Search

AFP 0.6333 (±0.01) 34.89 (±1) 2.941 (±0.12)

AFP-FE 0.64 (±0.01) 36.04 (±1) 3.091 (±0.12)

AIFeynman2 0.211 (±0.02) 2240 (±250) 3.248 (±0.14)

BSR 0.2725 (±0.02) 22.52 (±0.91) 2.92 (±0.08)

DSR 0.5625 (±0.01) 9.465 (±0.26) 2.408 (±0.07)

EPLEX 0.7372 (±0.01) 53.14 (±0.73) 3.315 (±0.11)

GP-GOMEA 0.7381 (±0.01) 30.27 (±0.96) 2.996 (±0.08)

GPlearn 0.539 (±0.01) 19.06 (±0.96) 2.151 (±0.08)

Operon 0.7945 (±0.02) 65.69 (±1.3) 3.264 (±0.06)

SBP-GP 0.7869 (±0.01) 634 (±18) 6.252 (±0.22)

SR4MDL 0.6258 (±0.01) 29.88 (±0.56) 2.267 (±0.10)

GP 0.6881 (±0.04) 34.84 (±2.4) 2.452 (±0.18)

EIC-GP 0.6433 (±0.05) 27.48 (±2.1) 2.202 (±0.21)

∆(%) -6.50% -26.00% -10%

MCTS 0.6038 (±0.06) 35.91 (±1.9) 2.463 (±0.27)

EIC-MCTS 0.6227 (±0.05) 33.89 (±1.9) 1.951 (±0.2)

∆(%) +3.13% -5.62% -20.80%
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(e.g., numerous occurrences of simple expressions like a × b, retaining only one). The final set
contains 940 physical formulas.

In addition to the training process we reported in Figure 7, we also provide the training process
of SNIP and SR4MDL in Figure 9 and Figure 10. The SNIP model trained on random formulas
reaches a final R2 performance of 0.5299, while it trained on EIC-filtered formulas reaches a final
R2 of 0.6016, which is 13.5% higher. For the SR4MDL, trained on random formulas, it reaches final
RMSE and MAE of 8.6778 and 6.9254, respectively. While trained on EIC-filtered formulas, it can
reach final RMSE and MAE of 8.2319 and 6.5763, which are 5.14% and 5.04% higher, respectively.
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Figure 9: Training process of SNIP using both random and filtered formulas
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Figure 10: Training process of SR4MDL using both random and filtered formulas

C.3 EXPERT EVALUATION RESULTS

To demonstrate that EIC evaluates formula interpretability in a manner consistent with human intu-
ition, we compared formulas discovered by EIC-MCTS and PySR. These two methods were chosen
because, as shown in Section 4.2, they achieved the lowest average EIC scores (EIC-MCTS) and
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the lowest average complexity (PySR), respectively, while exhibiting comparable R2 performance.
We focused on the Pareto fronts obtained from 19 one- or two-dimensional black-box problems in
SRBench, as these problems are easier for experts to interpret through visual inspection. From each
pair of Pareto fronts, we selected formula pairs by minimizing the distance function:

L(f1, f2) = (Complexity[f1]−Complexity[f2])
2+(R2[f1]−R2[f2])

2−(EIC[f1]−EIC[f2])
2, (8)

subject to the following constraints:

|Complexity[f1]− Complexity[f2]| ≤ 2, |R2[f1]−R2[f2]| ≤ 0.02,

|EIC[f1]− EIC[f2]| ≥ 3, max(R2[f1], R
2[f2]) > 0.85,

(9)

where f1 and f2 traverse each formula on the Pareto front of PySR and EIC-MCTS, respectively.
This procedure ensured that selected pairs exhibited similar complexity and accuracy but substan-
tially different EIC values. In total, 172 formula pairs were obtained across the 19 Pareto fronts.

Each pair was then presented to large language models (LLMs) acting as a domain expert to select
the preferred one. To provide independent evaluations of interpretability, we employed two large
language models: GPT-4o-Mini and Qwen3, which are trained on different linguistic distributions
and can thus reduce the risk of model-specific bias. We format the prompt based on the format
shown in Figure 13, where we provided the LLms with the dataset name, textual description, (x, y)
sampled points, the mathematical expressions of the two formulas, as well as their R2 values and
complexities. Importantly, the EIC scores were withheld from the models to ensure unbiased evalu-
ation. We evaluate every formula pair on every LLM five times under a temperature setting of 0.7 to
account for sampling variability. The result is shown in Figure 14, where LLM shows a preference of
72.19% to formulas discovered by EIC, which is similar to that of the human experts, demonstrating
the reliability of the results.

For the human rating experiment, we invite 108 volunteer participants with at least a bachelor’s
degree in science or engineering. Each participant was randomly assigned 10 formula pairs. For each
pair, participants received the data samples visualization, dataset description, and the two candidate
formulas with their R2 and complexity, and were asked to choose the more interpretable one (EIC
scores were withheld), as demonstrated in Figure 11 and 12. We collected 1080 evaluations in total.
After discarding responses completed in under 60 seconds, 840 evaluations remained, with each pair
assessed on average 4.9 times.
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Figure 11: Website interface used by human experts for scoring, where a one-dimensional dataset is
demonstrated
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Figure 12: Website interface used by human experts for scoring, where a two-dimensional dataset is
demonstrated
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Figure 13: Prompt we used to ask LLM to act as domain experts to evaluate formula interpretability.
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Figure 14: Results of LLM and human experts’ preferences for formula interpretability.
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