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Abstract

We investigate the use of large language mod-
els (LLMs) to simulate human responses to sur-
vey questions, and perform uncertainty quantifi-
cation to assess the fidelity of the simulations.
Our approach converts imperfect black-box LLM-
simulated responses into confidence sets for pop-
ulation parameters of human responses. A key
innovation lies in determining the optimal num-
ber of simulated responses: too many produce
overly narrow confidence sets with poor cover-
age, while too few yield excessively loose esti-
mates. Our method adaptively selects the simula-
tion sample size that ensures valid average-case
coverage guarantees. The selected sample size
itself further provides a quantitative measure of
LLM-human misalignment. Experiments on real
survey datasets reveal heterogeneous fidelity gaps
across different LLMs and domains.

1. Introduction

Large language models (LLMs) have demonstrated remark-
able capabilities in mimicking human behaviors. Recent
studies have leveraged LLMs to simulate human responses
in various domains, including economic and social science
experiments (Aher et al., 2023; Horton, 2023; Chen et al.,
2023; Bisbee et al., 2024; Huang et al., 2024; Yang et al.,
2024; Ziems et al., 2024), market research (Brand et al.,
2023; Gui & Toubia, 2023; Goli & Singh, 2024; Wang et al.,
2024), and education (Zelikman et al., 2023; Lu & Wang,
2024). The typical simulation procedure consists in prompt-
ing an LLM with a real or fictional persona as well as a
survey question, and collecting the LLM’s responses. Com-
pared to traditional survey methods that recruit and query
real people, LLM simulations offer significant advantages
in terms of time and cost efficiency, enabling the generation
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of large-scale synthetic responses with minimal effort.

However, a growing body of evidence suggests that LLMs
are not perfectly aligned with the human population, and
in some cases, the misalignment can be substantial (Aher
et al., 2023; Santurkar et al., 2023). This raises critical
concerns about the reliability of insights derived from LLM-
generated data. It remains a challenge how to properly
simulate human responses using LLMs and how to account
for their imperfections when using the simulated samples to
make inference about the true human population.

We propose to address this challenge through the lens of
uncertainty quantification. Specifically, we seek to con-
struct confidence sets for population statistics of human
responses based on LLM-generated data. The confidence
sets will provide a quantitative assessment of the fidelity of
the LLM simulations. A central question in confidence set
construction is:

How many synthetic samples should be generated?

On one hand, generating too many samples risks overfitting
the synthetic distribution, which may deviate from the real
human population. On the other hand, generating too few
samples yields overly large and uninformative confidence
sets. The optimal sample size depends on the discrepancy
between the synthetic and real populations, which is un-
known in practice. This necessitates a data-driven approach
to determine the appropriate number of simulated responses.

Main contributions. In this paper, we develop a general
framework to address these challenges. Our key contribu-
tions are as follows:

* (Formulation) We provide a rigorous mathematical
framework for uncertainty quantification in LLM-
based survey simulations.

* (Methodology) We propose a flexible methodology that
transforms simulated responses into valid confidence
sets for population parameters of human responses.
Our approach adaptively selects the simulation sample
size based on the observed misalignment between the
LLM and human populations. It is applicable to any
LLM, regardless of its fidelity, and can be combined
with any method for confidence set construction.
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Related works. Our work relates to research on assess-
ing the fidelity of LLM simulations and measuring their
alignment with real human populations. Prior studies have
explored similarity metrics between synthetic and human
distributions (Santurkar et al., 2023; He-Yueya et al., 2024,
Dominguez-Olmedo et al., 2024; Durmus et al., 2024;
Calderon et al., 2025) and Turing-type tests (Argyle et al.,
2023; Mei et al., 2024) to evaluate LLM reliability. While
these approaches provide valuable insights into LLM mis-
alignment, they do not offer methods for leveraging imper-
fect LLM simulations to draw reliable conclusions about
human populations. In contrast, our work provides a princi-
pled approach for constructing confidence sets that account
for the inherent discrepancies between LLM-generated and
human responses.

2. Problem Setup

To highlight the key challenges, we focus on the simple
setting where an LLM simulates binary responses to a survey
question.

2.1. Motivating Example: Educational Test

Suppose a school wants to estimate the proportion . € [0, 1]
of students that can answer a newly designed test question
correctly. It will not only provide insights into student
progress but also evaluate the question’s effectiveness in
differentiating among students with varying levels of under-
standing. Such information can guide the school in tailoring
teaching strategies to better address student needs.

The most direct approach is to give the test to n students
and collect their results yy, ..., y, € {0, 1}, where y; indi-
cates whether student ¢ answers the question correctly. A
point estimate for y is the sample mean § = + Zz 1 Yi-
Given « € (0, 1), we can construct a confidence 1nterva1 for
1 based on the Hoeffding’s concentration inequality (e.g.,
Theorem 2.8 in (Boucheron et al., 2013)) to construct a
finite-sample confidence interval

ly - /log(zi/a)’ -

which has at least (1 — «) coverage probability for every
n e Z+.

log(2/a)
%1 SN

Alternatively, the school may use an LLM to simulate stu-
dents’ responses to the question. Compared with directly
testing on real students, this approach is more time-efficient
and cost-saving. If we prompt the LLM k times with ran-
dom student profiles, then it generates k synthetic responses,
which leads to synthetic outcomes yy’", . ,y,iy" e {0,1}.

syn

We may also compute the sample mean ;" = ¢ ZZ LY

and the confidence interval

S [y_c /Tog;i/a)’ - /log;i/a)l’ ®

where ¢ > 1 is a scaling parameter. Such a dilation by ¢
is necessary; without it, whenever the LLM-generated data
deviates from the student population (even by the slightest
amount), the interval Z%" (k) may never achieve (1 — «)
coverage regardless of k.

Due to the misalignment between the LLM and students, the
distribution of the synthetic responses may be very different
from the true response distribution. In this case, the sam-
ple mean §" can be a poor estimate of u, and Z%" (k) is
generally not a valid confidence interval for u. In particular,
as k — oo, the interval concentrates tightly around the syn-
thetic mean E[y}¥"] and fails to cover the true mean . When
k is small, the interval becomes too wide to be informative,
even though it may cover p with high probability.

2.2. Simulation Sample Size as a Fidelity Measure

In this work, we will develop a pr1nc1pled approach for
choosing a good simulation sample size k, so that 75" (k:)
is a valid confidence interval for p while having a modest
width. Solving this problem has the following important
implications.

1. The choice of % offers valuable information for future
simulation tasks on the appropriate number of syn-
thetic samples to generate, so as to produce reliable
confidence intervals. It also helps avoid generating
excessive samples and improves computational effi-
ciency.

2. The width of Z9" (E) provides an assessment of the
alignment between the LLM and the human popula-
tion. A wide confidence interval indicates high uncer-
tainty of its estimate of the true p, and thus a large
gap between the synthetic data distribution and the true
population.

3. The sample size % reflects the size of the target popu-
lation that the LLM can represent. We make an anal-
ogy using the classical theory of parametric bootstrap.
Suppose a model is trained via maximum likelihood
estimation over k i.i.d. human samples. When perform-
ing parametric bootstrap for uncertainty quantification,
the bootstrap sample size is usually set to be the train-
ing sample size k. Thus, our simulation sample size
% reveals the LLM as “being made up of” k people
from the population. The larger % is, the more diversity
that the LLM appears to capture. In contrast, a small k
could imply the peculiarity of the LLM compared to
the major population.
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Remark 2.1 (Comparison with existing works). Existing
works typically measure LLM misalignment using inte-
gral probability metrics and f-divergences (Santurkar et al.,
2023; Dominguez-Olmedo et al., 2024; Durmus et al., 2024),
which do not carry operational meanings themselves and can
be hard to interpret. In contrast, our simulation sample size
k provides actionable guidance and is easy to understand.

3. Methodology

We now introduce our method for choosing a good sim-
ulation sample size k. We focus on the simple setting in
Section 2.1, but our method can be extended to more general
settings. Our approach makes use of similar test questions
for which real students’ results are available. On theses
questions, we can compare LLLM simulations with real stu-
dents’ results on these questions, and use it to guide the
choice of k.

Specifically, we assume access to m similar test questions.
For example, they can come from previous tests or a ques-
tion bank. For j € [m], the j-th test question has been tested
on n; real students, with test results D; = {yﬂ}gl We
also simulate LLM responses D" = {ysy" K | to the j-th

test question, and D" = {ySy"}KZ1 to the new test question.
Here K € Z is the simulation budget.

For each question j, we form confidence intervals similar to

(2) using the synthetic data D", aiming to cover the propor-
tion pi; of students that answer the j-th question correctly:

Isyn( _ |:syn / IOg 2/a 7syn IOg(2/O‘):|
5 - ) ] k 9 )

3
where 37} = ¢ Ly y3; is the sample mean of the first k

samples in D3'". We also set Z%"(0) = Z""(0) = R. We
will pick & € {0,1..., K'} such that " (k) covers pj with
high probability. We expect this choice of % to be also good
for " (k), as the test questions are similar.

Ideally, we would like to pick & such that (1 — «)-coverage
is achieved empirically over the m test questions:

1 o
= W €50} <o “)
j=1

As the true {p;}72, are not available, we use real data

{D;}7-, to compute the sample means y; = n—lj DNEER Y

as proxies. We approximate the empirical miscoverage by
1 m

—> Yy ¢ " (k) 5)

m <
Jj=1

G(k) =

Our criterion for selecting k is given by

F=max{0<k<K:G@)<a/2Vi<k}. (6

Note that & is well-defined because G (0) = 0. Here the
threshold is «/2 instead of « due to the approximation error
of §; =~ ;. We provide a detailed explanation in Section A.

In Section B, we give a theoretical analysis of our method,
which shows that the selected confidence interval Z%" (k)
achieves valid coverage while having a near-optimal width.

4. Extension to More General Settings

In this section, we present a more general method that ap-
plies to the general setting where survey responses and
confidence sets can be multi-dimensional.

4.1. General Problem Formulation

Let Z be a profile space, P a probability distribution over Z
which represents the true population, and P*" a synthetic
distribution over Z used to generate synthetic profiles.

Let ¥ be a collection of survey questions, and ) be the
space of possible responses to the survey questions. When
a person with profile z € Z is asked a survey question ¢ €
W, the person gives a response y following a distribution
Q( - | z,9) over Y. We are interested in the distribution of
the population s response to the survey question ), which is
given by R( =[5 Q(- | z,1) P(dz). In particular,
we seek to construct a conﬁdence set for some statistic 6(1))
of R( - | v), which can be multi-dimensional, say in R<.
We provide examples in Section C.1.

We consider constructing the confidence set by using sim-
ulated responses from an LLM. Given a profile z, a sur-
vey question ¢ and a prompt p, the LLM simulates a re-
sponse y™" from a distribution Q¥"( - | z,4,p) which
aims to mimic Q( - | z,%). We can generate synthetic pro-
files {2} | from some distribution %", then feed them
into the LLM along with 1) and p. The LLM then gener-
ates synthetic responses {y;"}X |, where y'" ~ Q¥"( - |
2", 4, p). Here K is the simulation budget.

Using the simulated samples D" = {y?"} X |, we can
construct a family of candidate confidence sets such as the
one-dimensional CLT-based confidence interval (2). More
generally, the statistics literature has developed a variety
of approaches such as inverting hypothesis tests (Casella &
Berger, 2002), the bootstrap (Efron, 1979), and the empirical
likelihood ratio function (Owen, 1990). We will assume
access to a black-box procedure C that takes as input a
dataset D and outputs a confidence set C(D) C RY. Then,
we construct a family of confidence sets {S"(k)}<_ | b

C({y" o) - 7

We also set S¥"(0) = R%, so §(zp) € S¥"(0) always. We
will not impose any assumptions on the quality of the confi-
dence sets produced by C.

S (k) =
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As the LLM may not be a faithful reflection of the true
human population, we will make use of real data to choose a
good confidence set from {S" (k) }£_,. We assume that we
have collected real human responses from m similar surveys
Y1, .y € U, For each j € [m], we have responses
D.j = {y;j.}:2, from n; iid. surveyees {z;;}.2, ~ P,
with g ~ Q- [ 254, ¥5)-

We also simulate LLM responses to these m survey ques-
tions. For each j € [m], we feed synthetic profiles
{57 K |, the question v; and the prompt p into the
LLM, which simulates responses D" = {y?]'}/X, with
yir o~ QY (- | 2 s, p). The datasets {D } ™ and
{D"}7L, will be used to select a confidence set from
{s¥(k )}kzl

Our goal is to use {D;}72; and {D7"}7_, to choose a

simulation sample size k € [K], such that
P(Q(z/i) € Ssy"(E)) ~1-a.

4.2. General Methodology for Sample Size Selection

We now present our general methodology. For each j € [m],
we form confidence sets similar to (7) using the synthetic
data D™

S (k) = C ({y37 =)

We also set S;7"(0) = RY. We will pick ke{0,1,...K}
such that 3" (k) is a good confidence interval for 6(z;) for

each j € [m]. We expect this choice of k to be also good
for S¥"(k), since the survey questions are similar.

vk € [K]. ®)

Ideally, we would like to pick & such that (1 — «) coverage
is achieved empirically over the m survey functions:

LS 1{6(y) £ S} < o ©)
j=1

However, the population-level quantities {6(¢;)}7"; are
not available, so we must approximate them by the real
data {D;}72,. In Section 3, we have taken the approach
of constructing unbiased point estimates, but it does not
directly extend to the more general case.

Instead, we will use the real data {D;}7*; to construct

confidence sets for {6(1;)}7;. Choose a confidence level
€ (0,1). For each j € [m], we use D; to construct a
confidence set S; that satisfies

P(0(v) € S;

i) = (10)

These confidence sets are easy to construct as the samples
in D; follow the true response distribution. When 6(v;) €

S;, the condition S; C S7" (k) is sufficient for 6(¢);) €

S;"(k). Equivalently, when 6(;) € S;, the condition
0(j) ¢ S;'" (k) must imply S; € S (k). Thus, we take
1 u syn
L(k) = — Z; 1{S; £ §"(k)} (1n)
]:

as a proxy for the empirical miscoverage. Since §(¢);) € S;
happens with probability ~, then the frequency of having
S;j € 87" (k) is at least  times the frequency of 0(¢);) ¢
S37" (k). Roughly speaking,

m

L) 2y | S e g8y a)

Jj=1

Combining (9) and (12) leads to the following criterion for
selecting k:

kF=max{0<k<K: L(i) <~ya, Vi <k}. (13)

Note that & is well-defined because L(0) = 0. In Sec-
tion C.2, we give a theoretical analysis of our method, which
shows that the selected confidence interval S" (E) achieves
valid average-case coverage.

5. Numerical Experiments

We apply our method in Section 3 to LLMs on real data.

5.1. Experiment Setup

LLMs. We consider 8 LLMs: GPT-3.5-Turbo (gpt-
3.5-turbo), GTP-40 (gpt-40), and GPT-40-mini
(gpt—-4o0-mini) (OpenAl, 2022; 2024a;b); Claude 3.5
Haiku (claude-3-5-haiku-20241022) (Anthropic,
2024); Llama 3.1 8B (Llama—-3-8B-Instruct-
Turbo) and Llama 3.3 70B (Llama-3.3-70B-
Instruct-Turbo) (Dubey et al., 2024); Mistral 7B
(Mistral-7B-Instruct-vO0.3) (Jiang et al., 2023);
DeepSeek-V3 (DeepSeek-Vv3) (Liu et al., 2024).

Datasets. We use two datasets for survey questions, each
corresponding to one uncertainty quantification task. The
first dataset is the OpinionQA dataset created by (Santurkar
et al., 2023). It was built from Pew Research’s American
Trends Panel, and contains the general US population’s
responses to survey questions spanning topics such as sci-
ence, politics, and health. After pre-processing we have 385
unique questions, each with at least 400 responses. These
questions have 5 choices corresponding to ordered senti-

ments which we map to sentiment scores —1, —%,0, &, 1.

lhttps ://www.pewresearch.org/the-
american-trends—-panel/
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For each response, we have information on their political
profile, religious affiliation, educational background, socio-
economic status, etc. This information is to generate syn-
thetic profiles. More details about the dataset can be found
in Section D.1. We consider the task of constructing a con-
fidence interval for the US population’s average sentiment
score for a survey question.

The second dataset is the EEDI dataset created by (He-
Yueya et al., 2024), which was built upon the NeurIPS 2020
Education Challenge dataset (Wang et al., 2021). It consists
of students’ responses to mathematics multiple-choice ques-
tions on the Eedi online educational platform?. All questions
have four choices (A, B, C, D). Out of these questions, we
use questions that have at least 100 student responses, which
gives a total of 412 questions. For each student, we have
information on their gender, age, and socioeconomic status.
This information is used to generate synthetic profiles. More
details about the dataset can be found in Section D.2. We
consider the task of constructing a confidence interval for
the probability of a student answering a question correctly.

Hyperparameters. We consider « € {0.05-¢: £ € [10]}
and ¢ = /2. For the EEDI dataset, we set the simulation
budget K = 50 and take M = 1. For the OpinionQA
dataset, we set K = 100 and take M = 2.

Procedure. We randomly split the survey questions into a
training set and a testing set, where the training set is used
to select the simulation sample size %, and the testing set is
used to evaluate the coverage of the constructed confidence
interval. More details can be found in Section D.3.

5.2. Experiment Results

‘We now show the experiment results. We omit Llama 3.1 8B
for the EEDI dataset experiment because it frequently failed
to answer EEDI questions in required formats. As a baseline,
we also include a naive response generator (random) that
chooses an available answer uniformly at random.

We verify the coverage validity of the selected confidence
interval through standard statistical tests. The detailed re-
sults are deferred to Sectign E. Next, we turn to the selected
simulation sample size k. In Figure 1, we plot the aver-
age % over the 100 random splits for various LLMs on the
OpinionQA and EEDI datasets, respectively. The error bars
represent 95% confidence intervals.

In general, a larger % means that the LLM has stronger sim-
ulation power. For the EEDI dataset, DeepSeek-V3 has
the best performance, followed by GPT-40 and Claude 3.5
Haiku. For the OpinionQA dataset, GPT-40 has the best
performance. Interestingly, while on the EEDI dataset only

https://eedi.com/
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Figure 1. Average % for various LLMs and « on the OpinionQA
dataset (top) and the EEDI dataset (bottom)

DeepSeek-V3 and GPT-40 seem to outperform the random
benchmark, on the OpinionQA dataset all LLMs clearly
outperform the random benchmark. Moreover, LLMs ex-
hibit uniformly higher % on the OpinionQA dataset than on
the EEDI dataset, suggesting higher fidelity in simulating
subjective opinions to social problems than in simulating
student answers to mathematics questions.

The experiment results demonstrate the importance of a
disciplined approach to using synthetic samples. The ease of
LLM-based simulation makes it tempting to generate a large
number of responses. Our results show great heterogeneity
in the simulation power of different LLMs over different
datasets: the largest k is below 100, while the smallest k
is less than 10. This means that there is real peril in using
excessive synthetic samples.

6. Discussions

We developed a general approach for converting imperfect
LLM-based survey simulations into statistically valid confi-
dence sets for population statistics of human responses. It
identifies a simulation sample size which is useful for future
simulation tasks and which reveals the degree of misalign-
ment between the LLM and the target human population.
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A. Choice of Threshold in Sample Size Selection

The choice of the threshold «/2 in (6) can be explained as follows. By CLT, when n; is large, P(1; > ;) ~ 1/2. Suppose
pj & I3" (k), then p; is either on the left or the right of Z3'" (k). In the former case, ; is on the left of j1; with probability
around 1/2, which implies y; & Z: 2" (k). Similarly, in the latter case, g; is on the right of 11; with probability around 1/2,
and then g; ¢ Z7"" (k). Roughly speaklng, the frequency of having g; & Z7'" (k) is at least half of the frequency of having
pj & Z3" (k). In other words, the lower bound

%Z g ¢ T (k) (14)

w\»—*

approximately holds. Substituting (14) into (4) yields the threshold «/2 for choosing k.

B. Theoretical Analysis of the Proposed Method
B.1. Coverage Guarantee

In this section, we present a theoretical analysis of our proposed method. To do so, we first describe the setup in Section 2.1
in mathematical terms.

The student population can be represented by a distribution P over a space Z of possible student profiles, say, vectors of
background information, classes taken, grades, etc. To simulate student responses from the LLM, synthetic student profiles
are generated from a synthetic student population P*" over Z, and then fed to the LLM.

We use ¢ and {); };”:1 to refer to the test question of interest and the m similar ones, respectively. Students’ performance
on test questions are characterized by a performance function F': a student with profile = € Z answers a question v
correctly with probability F'(z, 1)) € [0, 1]. The average student performance on the test questions ¢ and {1/, }", are then
p=E. pF(2,9)and u; = E. pF(z,1;), respectively. In addition, the LLM generates synthetic student performance
from a synthetic performance function F*": when prompted with a synthetic profile 2" € Z, the LLM answers a question
1 correctly with probability F'Y"(2%",¢) € [0, 1].

The collection of the real dataset D; = {y;;}., can be thought of as drawing n; i.i.d. student profiles {z;;}., ~ P
and then sampling yj,i ~ Bernoulli(F'(z;,;,1;)) for each i € [n;]. Similarly, the generation of the synthetic dataset

D" = {y} MK | can be thought of as drawing i.i.d. synthetlc profiles {237 K| ~ P9 and then sampling Yo~
Bernoulli(Fsy“( 237, 1b;)) for each i € [K]. For D¥" = {y7""}/<,, we adopt a similar notation {z;"}/<, for the synthetic

profiles. We note that when collecting real or synthetic samples, the performance functions never appear explicitly. They are
introduced only to facilitate the problem formulation.
Finally, we assume that the test questions are drawn randomly from a question bank, and that the datasets are independent.

Assumption B.1 (Randomly sampled questions). The questions v/, /1, ..., 1, are independently sampled from a distribution
over a space .

Assumption B.2 (Independent data). For each j € [m], conditioned on ¢);, the datasets D; and D;y" are independent.
Conditioned on ¥4, ..., ¥y, the dataset tuples (D1, DY), ..., (D,,, D¥") are independent. Finally, (¢, D¥") is independent
of {(¢, J’Dsyn)}

We are now ready to state the theoretical guarantee of our approach. Its proof is deferred to Section B.3. We note that the
assumption P(p; > g, | ;) = 1/2 is a CLT approximation and is for mathematical convenience only.

Theorem B.3 (Coverage guarantee). Let Assumptions B.1 and B.2 hold. Assume that P(§; < p; | ¢,;) = 1/2 for each
j € [m]. Fix a € (0,1). Then the simulation sample size k defined by (6) satisfies

]P)(/L EISV"(@)) >1l—a— \/Z

The probability is taken with respect to randomness of { (v, D;, Dsyn)} , ¥ and D",

=1

On average, the chosen simulation sample size % leads to a confidence interval Isy“(g) that covers the true mean p with
probability at least 1 — o — O(1/1/m). As m — oo, the aforementioned lower bound converges to 1 — .

8
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B.2. Sharpness of Sample Size Selection

We have seen that the chosen interval 75" (E) has good coverage properties. In this section, we complement this result by
showing that the interval is not overly conservative. To simplify computation, we slightly modify the setting.

Example B.4 (Gaussian performance score). Consider the setting in Section B.1 with the following modifications. On a test
question 1) € W, the performance (e.g., score) of a real student follows a Gaussian distribution with mean E,..p F'(z, 1) and
variance 1, instead of a Bernoulli distribution with mean E,.p F (2, ). Similarly, the performance of the LLM follows a
Gaussian distribution with mean [ sy psyn F'Y"(2%Y" 1)) and variance 1. Moreover, the confidence intervals Z*" (k) defined
in (2) and I;y" (k) defined in (3) are changed to

svn _svn C _svn C
' ( ) N |: ky - ﬁ, ky N \/E:| ’

n _svn C  _an C
I‘?y (k) |:y‘7)jk \/E’ yJYk \/E:| ’

respectively, where C' = 2®~1(1 — «/4). For simplicity, we suppose that the real datasets have the same size: n; = n for
all j € [m]. Finally, we define

A = sup ’EZN'PF(Za 11[}) - ]EZSY"NPSY"Fsyn(Zsynvw)"
Ppew

In Theorem B.4, the quantity A measures the discrepancy between the distributions of the real students’ performance and of
the simulated students’ performance. The following theorem presents a lower bound on the chosen simulation sample size k.
Its proof can be found in Section B.4.

Theorem B.5 (Sharpness of chosen sample size). Consider the setting of Theorem B.4. Let % be chosen by the procedure
(6). Choose ¢ € (0,1). There exists a constant C' > 0 determined by o such that when m > C’log(n/J), the following

holds with probability at least 1 — 6:
~ O \?
E>min{ K — .
mln{ , M, <5A) }

When this happens, the selected confidence interval T" (E) has width O (max{K /2, n=1/2 A}).

Theorem B.5 implies that the interval Z" (E) is the shortest possible. To see this, suppose that the simulation budget K
is large, then Theorem B.5 states that with high probability, Z%" (k) has width O(max{A,n~'/2}). This is the optimal
width because of the following reasons. First, in the worst case, any Z*¥" (k) that covers the true mean with high probability
must have width £2(A) in order to address the distribution shift between the real and simulated responses. Second, as n
real human responses can identify the true mean up to an error of O(n~'/2), then any valid Z*" (k) must also have width

Q(n~'/2). This shows the sharpness of the chosen sample size % and the confidence interval Isy“(k)

B.3. Proof of Theorem B.3

We will prove the following stronger guarantee.

Lemma B.6 (Conditional coverage). Consider the setting of Theorem B.3. Let § € (0, 1). With probability at least 1 — 6,

(uef’y“ ‘k) oy Plos1/) (15)

m
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By Theorem B.6, we obtain

P(u e Isy"(%)) —E [P(u e () ’ 2

N———

]
_ /OOOIP(P(MGISV"(E) ‘ E) >t) dt
> /Ola [1—ew (- 20— (1-a)?)] a

>l—a-— /1aexp (—%(t— (1- oz))2> dt

— 00

2
>1l—a—14/—.
m

We will now prove Theorem B.6. Define ¢ = y/21og(1/8)/m and a deterministic oracle sample size

k::inf{ke [K]:IP’(,u ggzsv"(k)) >a+€}. (16)

If £ = inf () does not exist, then there is nothing to prove. Now suppose that k& € [K] exists. We will prove that
with probability at least 1 — 4, it holds that G(k) > «/2. When this event happens, we have k< k, which implies
P(u & 77 (k) | kz) < « + € and thus (15), thanks to the independence of k and (1, D¥™).

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and the conditional independence of
(D1, DY), ..., (D, D) given (Y1, ..., Yi),

1 & log(1/6)
)> - ET(R) -2 | 216 17
- m z:: ( ) 2m - 17
We now bound P(; & Z7""(k)). For each j € [m] and k € [K],
1{y; ¢ I (k )} = 1{y; < pjand p; < min 73" (k (k)} +1{y; > p; and p; > maXIsy"(k)} .
By the conditional independence of D; and D" given 15,

P(gj < pj and pj < minI;yn(k:))

=E[B(5; < n; | ;) - B(w; <min (k) | v)]

i)
= 1H”(uj < minIs.y”(k))
2 J
Similarly,
P(ﬂj > pj; and pj > maxI;-y" (k)) = %]P’(,uj > maxI;-y" (k))
Therefore,

1

P(y; ¢ T (K)) > ; P11y < minZ"(k)) +P(p; > max " (k) ) |
= 2B (w £ ") = 5P (0 £ T"(B)), (s)

10
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where the last equality is due to Assumption B.1. When the event in (17) happens,

G(k) = %ZP(% £T(F)) - log(1/9)
j=1

2m

IV
N =

P(jn g 7o (E)) — 1 2L (by (18))

2m

(by definition of k)

[\J o)

This completes the proof.

B.4. Proof of Theorem B.5

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and a union bound, the following happens with
probability at least 1 — 4:

1S /o ; 1 5 . c\’
G(k)<mj§_:1ﬂ»(yj¢1;y (k)>+ %, Vk<m1n{n K, <5A>} (19)

We now show that the right hand side of (19) is at most «/2 for m large. For all j € [m] and k € [K],

syn syn syn —syn O
p(y ¢ 1) =% (1" - il > ).
Since 53y ~ N(u3",1/k) and g; ~ N(p;,1/n), then

11
vi" =k~ N (Mj -, -+ ) :

Ik n
When k < min{n, K, ()2}, we have
P(5 ¢ 2700) <P (I - 520 - G "+ 8> )
=20 (%) < 2@( — j%) (A < C/(5Vk))
_2<D< 2[520> _2(1)( 4\/§q>1é1—a/4)> _2@<4\/§q>51(a/4)> _ %
- ¢ % B 2@(4\/%;1@/4))’
then £ > 0 and
Py ¢ (k) < 5 — ¢ (20)

When m > log(n/d)/(2£?), substituting (20) into (19) yields that for all k < min{n, K, (<)%},

glzm: ( ¢ " (k ))+ log(n/4)

2m

A
—~

(0%
2
When this happens, we have k > min{n, K, (<)?}.

11
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C. More Details of the General Method

In this section, we provide more details of the general method in Section 4.

C.1. Examples of the General Problem Formulation

Example C.1 (Educational test evaluation). In the educational test evaluation example in Section 2.1, each z € Z is a
student profile, each ¢ € W is a test question, the response space is J = {0, 1}, and Q( - | z,v¢) = Bernoulli(F(z, )).
The statistic 6(1)) is the probability of a student answering the question correctly: E, z (.|y)[y] = E.~p[F(2,9)].

Example C.2 (Market research). Suppose a company is interested in learning its customers’ willingness-to-pay (WTP) for
a new product, which is the highest price a customer is willing to pay for the product. Then, each z € Z can represent a
customer profile (e.g., age, gender, occupation), each survey question v is about a certain product, and a customer’s response
y is a noisy observation of the customer’s WTP. Then R( - | ¢) is the distribution of the customer population’s WTP. We
may take 6(¢)) as the 7-quantile of the WTP distribution R( - | ¢), for some 7 € (0,1):

0(¢) = inf {g € [0,00) : Pyor(fp)(y < q) > 7).

An LLM can be used to simulate customers’ WTP for the product.

Example C.3 (Public survey). Suppose an organization is interested in performing a public survey in a city. Each survey
question v is a multiple-choice question with 5 options. An example is “How often do you talk to your neighbors?”, with
5 choices “Basically every day”, “A few times a week”, “A few times a month”, “Once a month”, and “Less than once a
month”. Every z € Z is a person’s profile (e.g., age, gender, occupation), the response space ) is the standard orthonormal
basis {e;}2_; in R, where y = e; indicates that a person chooses the i-th option. We can take (1)) = Ey gy [y] € R,
which summarizes the proportion of people that choose the i-th option. An LLM can be used to simulate people’s answers
to the survey question.

C.2. Theoretical Analysis of the General Method

We now present the coverage guarantee for our method, which shows that the chosen confidence set S¥" (E) has coverage
probability at least 1 — o — O(1/+/m). Its proof is deferred to Section C.3.

Theorem C.4. Let Assumptions B.1 and B.2 hold. Fix o € (0, 1). The sample size k defined by (13) satisfies

It is worth noting that our method achieves this coverage without any assumptions on the qualities of the LLM and the

-~

procedure C for confidence set construction. Nevertheless, the size of the chosen confidence set S¥"(k), in terms of the
true coverage rate and size, depend on these factors. If there is a large alignment gap between the LLM and the human

population, then S*" (E) will inevitably be large.
C.3. Proof of Theorem C.4
We will prove the following stronger guarantee.
Lemma C.5 (Conditional coverage). Consider the setting of Theorem C.4. Let § € (0, 1). With probability at least 1 — 6,
~ |~ log(1/6
P(9(¢) € S (k) ‘ k) > 1oty /108000 @1

2m

12
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By Theorem B.6, we obtain

P(o(w) essy"(E)) E [P 0(v) € S )‘E)}

P(P( (¥) € S¥(k ’ k) > t) dt

0

1-a
/0 [1—exp (—2m~*(t — (1 — @))?)] dt

Y

>l—a-— /1 aexp (—2m~*(t — (1 — ))?) dt

T 1
=1l—a— /= -y /=
“ 8 K m
1
>1—047'y1 o
m

We now prove Theorem C.5. Define ¢ = 4714/ log(l/ 9 and a deterministic oracle sample size

E:inf{k e [K] ;i»(e(w) gzssy“(k)) > a+5}. 22)

If k = inf () does not exist, then there is nothing to prove. Now suppose / k € [K] exists. We will prove that With probability at
least 10, it holds that L (k) > yo. When this event happens, we have k < k, which implies P(8(1) ¢ S (k ) | k) < a+te
and thus (21), thanks to the independence of % and (v, DYM).

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and the conditional independence of
(Dla ,Diyn)’ ) (Dma D%n) giVGIl (7/11, ) djm)’

1 ¢ ayn log(1/4)
P EZ:: (s 28m) - >1-4. (23)

2m
We now bound P(S;  S;""(k)). For each j € [m] and j € [K],

1{S; £ 8"(k)} > 1{0(y;) € Sjand 6(x;) & S (k) } -

By the conditional independence of D; and D" given 1;,

P(S; 2 87"(8)) 2 E[P(6(y) € 8 and 0(uy) & SP"(K) | v5)]
= E[P(00y) € 8| v5) - P(00,) # () | 05)]
> E[y-P(0(wy) ¢ (k) | )]
=7 P(0(uy) & SP"(R))
=7 P(0(4) ¢ ST(R)), 24
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where the last equality is due to Assumption B.1. Therefore, when the event in (23) happens,

_ 1 & wn - log(1/6
LF) > =3 B(s, 2 8 (R) B
=1
_ log(1/6
> 1B (o) ¢ $7 (k) — A2 (by (24))
> ya. (by definition of k)

This completes the proof.

D. Details of Numerical Experiments
D.1. The OpinionQA Dataset

Selection of survey questions. The original dataset is categorized into topics such as health, crime/security, and political
issues. Ideally, we would want to consider questions from the same category to ensure that they are similar enough. However,
the category with the most questions has fewer than 200 questions, which is not suited for demonstration. We thus consider
all questions. In total, the dataset has 1,442 survey questions, which is too large for our computational resources. We thus
selected a subset of questions. First, while the number of choices ranges from 2 to 19, most questions have 5 choices. To
give a fair comparison and for simplicity, we therefore only consider questions with 5 choices. Second, not all questions
have choices that can be clearly ordered in sentiments; the following question is an example:

Who do you think has the most responsibility to reduce the amount of made-up news and information? 1. The
government, 2. Technology companies, 3. The public, 4. The news media, 5. None of these, 6. Refused.

In contrast, all example questions in the next section have choices that can be clearly ordered in sentiments. To streamline
the process, we ask GPT-40 to determine if a question’s choices can be ordered in sentiments and we keep those that
have GPT-40’s affirmative answer. This leaves us with 546 questions. To compensate for the loss of similarity by pooling
questions across various topics and to further reduce our computational cost, we selected 400 questions that are “most
similar” to each other by embedding the question statements using OpenAl’s text -embedding-3-small, calculating
the mean, and selecting the 400 questions with the smallest Euclidean distance to the mean. Out of these 400 questions,
15 questions have various issues with their choices by manual inspection, so we exclude them. This leaves us with 385
questions. All these questions happen to have at least 400 responses.

Example questions. The questions in the OpinionQA dataset span a wide range of topics, including health, crime/security,
and political issues. Some example questions are as follows:

e How much, if at all, do you think wages and incomes are contributing to your opinion about how the economy is doing?
1. A great deal 2. A fair amount 3. Not too much 4. Not at all 5. Refused

* Regardless of whether you would want to move, how likely is it that you will move to a different community at some
point in the future?

1. Very likely 2. Somewhat likely 3. Not too likely 4. Not at all likely 5. Refused

e How much, if anything, would you be willing to change about how you live and work to help reduce the effects of global
climate change? Would you be willing to make:

1. A lot of changes 2. Some changes 3. Only a few changes 4. No changes at all 5. Refused
Profiles. Excluding surveyees with missing information, each of the 385 questions we consider has at least 400 responses.
Since there was no information on the surveyees’ identification, by dropping repeated profiles we can only say that there are

at least 32,864 surveyees. Each surveyee is described by 12 features. Their corresponding categories are listed in Table 1.

14
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Table 1. Categories of surveyees’ features in the OpinionQA dataset.

Feature Options
US citizenship ‘Yes’, ‘No’
Region ‘Northeast’, ‘Midwest’, ‘South’, “West’
Sex ‘Male’, ‘Female’
Age ‘18-29’, 30-49°, ‘50-64°, ‘65+’
Marital ‘Married’, ‘Divorced’, ‘Separated’,

status ‘Widowed’, ‘Never been married’

Race ‘White’, ‘Black’, ‘Asian’, ‘Hispanic’, ‘Other’
Educational “Less than high school’, ‘,Hi‘gh schpol ’graduate”,
background Some college, no degree’, ‘Associate’s degree’,

‘College graduate/some postgrad’, ‘Postgraduate’
Income ‘Less than $30,000’, ‘$30,000-$50,000’, ‘$50,000-$75,000",
$75,000-$100,000’, ‘$100,000 or more’
Religious ‘Protestant’,. ‘Roman Cgtholic’, ‘Mf)rmon’., ‘Orthodox’,
affiliation .‘Jew1sh’, ‘Mushm’, ‘Buddhlst.’, ‘I.{mdu’,.
‘Atheist’, ‘Agnostic’, ‘Other’, ‘Nothing in particular’
Religious ‘More than once a week’, ‘Once a week’, ‘Once or twice a month’,
attendance ‘A few times a year’, ‘Seldom’, ‘Never’
Political party ‘Republican’, ‘Democrat’, ‘Independent’, ‘Other’
Political ‘Very conservative’, ‘Conservative’,
ideology ‘Moderate’, ‘Liberal’, ‘Very liberal’

Synthetic response generation.

We generate synthetic profiles by bootstrapping the 32,864 unique real profiles. We then
generate synthetic answers by prompting LLMs to pretend that they are a surveyee with the synthetic profile and answer the

question. An example prompt is as follows:

Pretend that you reside in the US and you are a US citizen from the West region of the country. You are female,
your age is between 18 and 29, and you are single. In terms of race, you are white. In terms of education, you
attended college but did not graduate. Your annual income is less than $30,000. Religion-wise, you do not belong
to any particular religion, and you never attend religious services. Politically, you are affiliated with a political
party that is not Democratic or Republican, and you consider your political ideology to be liberal. Please answer

the following question:

How much, if at all, do you think what happens to black people in the country overall affects what happens in your

ownlife? [‘1. A lot’, 2. Some’, ‘3. Not much’, ‘4. Not at all’, ‘5. Refused’].

Please provide your answer choice (a single number from I to 5) in double square brackets.

While LLMs generally provide explanations for the math questions in EEDI dataset, they usually directly provide answers

for the OpinionQA dataset; e.g., ‘[[2]] .

D.2. The EEDI Dataset

Example questions. Some example questions from the EEDI dataset are as follows:

* What number belongs in the box? O + 7 = 2

A)9 B)-5 C)-6 D)5

 If you multiply a square number by 9, you get a square number. Is this statement:

A) always true B) sometimes true C) never true D) impossible to say

» Which calculation is equal to —20?

A)2x (=2) — (-
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Profile distribution. Excluding students with missing information which take up less than 10% of the total population,
there are 2,111 students who answered at least one of the 412 questions. Each student is described by three features: gender,
age, and whether or not they are eligible for free school meals or premium pupil. Gender is represented by 1 or 2, where 1
corresponds to female and 2 corresponds to male. The students’ ages are rounded to integers from 11 and 14. Whether or
not a student is eligible for free school meals is represented by 0 or 1, where 0 corresponds to not eligible and 1 corresponds
to eligible. The distribution of these students’ features is presented in Table 2.

Table 2. Summary statistics of students’ features in the EEDI dataset.

min | max mean median | standard deviation
Gender 1 2 1.4988 1 0.5001
Age 11 14 | 11.2776 11 0.4696
Premium Pupil | 0 1 0.2842 0 0.4512

Synthetic response generation. For each question, we generate synthetic profiles by sampling with replacement from the
real profiles. We then generate synthetic answers by prompting LLMs to pretend that they are a student with the synthetic
profile and answer the question. We adapted the prompt from (He-Yueya et al., 2024) with slight modifications to reduce
computational cost. An example prompt featuring an 11-year-old boy who is not eligible for free school meals is as follows:

Pretend that you are an 11-year-old student. Your gender is male. You are not eligible for free school meals or
pupil premium due to being relatively financially advantaged. Given your characteristics, is it likely that you
would be able to solve the following problem?

Problem: [Insert question here]

If yes, put the final answer choice (a single letter) in double square brackets. If you are likely to struggle with this
problem, put a plausible incorrect answer choice (a single letter) in double square brackets.

An example answer from GTP-40 when given the second example question above is as follows:

As an 11-year-old student, I might have learned about square numbers and multiplication in school. However, the
problem may be a bit tricky if I haven't thought about how multiplying square numbers by other numbers can also
result in square numbers. I might not immediately realize that 9 is actually a square number itself (3 squared),
which makes this property more evident.

Considering this, I could find the reasoning challenging and decide based on a misconception. I might go with
a plausible incorrect answer choice like [[B]] because I might think that it’s only sometimes possible without
realizing the full mathematical principle involved.

D.3. Experiment Procedure

We now describe more formally our experiment procedure for applying our method to each dataset. Denote the dataset
by {(¢;,D;)}7—,, where ; is a survey question and D; = {y;;};~, is a collection of human responses. For each
j € [J], we simulate K responses D" from an LLM. We then randomly split 2 = {(D;, D")}/_, into a training set
2" = {(D;,D;")}jes, and a testing set ' = {(D;, D;")}je .., with | 2" - [ 2] = 3 : 2.

Selection of simulation sample size. We apply our method in (6) with the training set 2% to select a simulation sample
size k.

Evaluation of selected sample size. We use 2°° to evaluate the quality of the chosen simulation sample size k. As the
true population mean p is unavailable, the true coverage probability IP’(M e (k:)) cannot be computed. However, we can
apply the same idea as (5) in Section 3 to compute a proxy for the miscoverage level. For each survey question j € 72, the

selected sample size  leads to the synthetic confidence set I;y"( ) = C({y} }i=1). We form the sample mean j/; from
real data D; and define

me‘ Z 1{y; ¢ 7" (k)}. (25)

JE€ETte
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The proof of Theorem B.3 shows that, for every k € [K] and survey question j,
1 - n 1 .~
SP(u & T"(8) < P(g; ¢ T"() = SE[G(R)].

Thus, if E [@(E)] < a, then P(p & Z9" (E)) < a must hold. To this end, we will test a hypothesis Hy : E[é(z)] <a
against its alternative H, : E[G(k)] > a.

E. Experiment Results on Coverage Validity

In Figure 2, we present histograms of p-values for the hypothesis test E[G(k)] < o against E[G(k)] > o across various
LLMs and «’s over the OpinionQA and EEDI datasets. The p-values are computed using a one-sided z-test over the
100 random splits. As can be seen from the histograms, all p-values are reasonably large, indicating that the hypothesis
]E[E(E)] < « cannot be rejected (e.g., at the 0.05 significance level) for any LLM and « across both datasets. These
experiment results verify the theoretical guarantees in Theorem B.3, showing that the miscoverage rate is effectively
controlled by our method.
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Figure 2. Histograms of p-values for the hypothesis test IE[G (k)] < o against E[é (75)] > o across various LLMs and «’s over the
OpinionQA dataset (left) and the EEDI dataset (right).
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