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ABSTRACT

Large Language Models (LLMs) can be misused to spread online spam and mis-
information. Content watermarking deters misuse by hiding a message in model-
generated outputs, enabling their detection using a secret watermarking key. Robust-
ness is a core security property, stating that evading detection requires (significant)
degradation of the content’s quality. Many LLM watermarking methods have
been proposed, but robustness is tested only against non-adaptive attackers who
lack knowledge of the watermarking method and can find only suboptimal attacks.
We formulate the robustness of LLM watermarking as an objective function and
use preference-based optimization to tune adaptive attacks against the specific
watermarking method. Our evaluation shows that (i) adaptive attacks substantially
outperform non-adaptive baselines. (ii) Even in a non-adaptive setting, adaptive
attacks optimized against a few known watermarks remain highly effective when
tested against other unseen watermarks, and (iii) optimization-based attacks are
practical and need limited computational resources of less than seven GPU hours.
Our findings underscore the need to test robustness against adaptive attackers.

1 INTRODUCTION

Few providers of Large Language Models (LLMs) empower millions of users to generate human-
quality text at scale, raising concerns about dual use (Barrett et al., 2023). Untrustworthy users can
misuse the provided LLMs to generate harmful content, such as online spam (Weidinger et al., 2021),
misinformation (Chen & Shu, 2024), or to facilitate social engineering attacks (Shoaib et al., 2023).
The ability to detect model-generated text can control these risks (Grinbaum & Adomaitis, 2022).

Content watermarking enables the detection of model-generated outputs by embedding hidden marks
that can be extracted with a secret watermarking key. Some LLM providers, such as DeepMind (Deep-
Mind, 2024) and Meta (San Roman et al., 2024), have already deployed watermarking to promote the
ethical use of their models. A threat to these providers are users who perturb model-generated text to
evade watermark detection while preserving text quality. Such undetectable, model-generated text
could further erode trust in the authenticity of digital media (Federal Register, 2023).

A core security property of watermarking is robustness, which requires that evading detection is only
possible by significantly degrading text quality. Testing robustness requires identifying the most
effective attack against a specific watermarking method. However, existing content watermarks for
LLMs (Kirchenbauer et al., 2023a; Aaronson & Kirchner, 2023; Christ et al., 2023; Kuditipudi et al.,
2024) test robustness only against non-adaptive attackers, who lack knowledge of the watermarking
algorithms. This reliance on obscurity makes watermarking vulnerable to adaptive attacks (Lukas
et al., 2024; Nicks et al., 2024) when information about the watermarking algorithms is leaked.

We propose a method to curate preference datasets and adaptively optimize an attack against known
content watermarking algorithms. Optimization is challenging due to (i) the complexity of optimizing
over the discrete textual domain and (ii) the limited computational resources available to attackers.
We demonstrate that adaptively tuned, open-weight LLMs such as Llama2-7b (Touvron et al.,
2023) evade detection at negligible impact on text quality against Llama3.1-70b (Dubey et al.,
2024). Our attacker spends less than 7 GPU hours to achieve over 96% evasion rate against any of
the surveyed watermarking methods with negligible impact on text quality. Our attacks are Pareto
optimal, even in the non-adaptive setting where they transfer to unseen watermarks. Hence, future
watermarking methods must consider our attacks to test robustness.
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1.1 CONTRIBUTIONS

We make the following contributions.

• We propose methods to curate preference-based datasets using LLMs, enabling us to adap-
tively fine-tune watermark evasion attacks against four state-of-the-art language watermarks.

• Adaptively tuned paraphrasers with 0.5-7 billion parameters evade detection from all tested
watermarks at a negligible impact on text quality. We demonstrate their Pareto optimality
for evasion rates greater than 90%1. Optimization requires less than seven GPU hours.

• We test our optimized attacks in the non-adaptive setting against unseen watermarks and
demonstrate that they remain Pareto optimal compared to other non-adaptive attacks. Our
results underscore the necessity of using optimized, adaptive attacks to test robustness.

• We will release our source code and adaptively tuned paraphrasers to facilitate further
research on robustness against adaptive attackers.

2 BACKGROUND

Large Language Models (LLMs) estimate the probability distribution of the next token over a
vocabulary V given a sequence of tokens. Autoregressive LLMs predict each subsequent token based
on all preceding tokens. Formally, for a sequence of tokens x1, . . . , xn, an LLM models:

P (xn|x1, . . . , xn−1) = softmax(fθ(x1, . . . , xn−1))n

where fθ is a neural network with parameters θ. Optimizing LLMs to maximize a reward function is
challenging because the text is discrete, and the autoregressive generation process prevents direct
backpropagation through the token sampling steps (Schulman et al., 2017).

LLM Content Watermarking hides a message in model-generated content, such as text, that can
later be extracted with access to the content using a secret watermarking key. A watermarking method
is a set of algorithms (KEYGEN, EMBED, VERIFY) formalized as follows (Lukas et al., 2024).

• τ ← KEYGEN(θ, γ): A randomized function to generate a watermarking key τ given secret
(i) LLM parameters θ and (ii) random seeds γ ∈ R.

• θ∗ ← EMBED(θ, τ,m): Given a LLM θ, a watermarking key τ and a message m, this
function returns parameters θ∗ of a watermarked LLM that generates watermarked text.

• η ← VERIFY(x, τ,m): Detection requires (i) extracting a message m′ from text x using τ
and (ii) returning the p-value η to reject the null hypothesis that m and m′ match by chance.

A text watermark is a hidden signal in text that can be mapped to a message m ∈ M using a
secret watermarking key τ . The key τ refers to secret random bits of information used to detect a
watermark. A watermark is retained if the verification procedure returns η < ρ, for ρ ∈ R+. Let
Q : V∗ × V∗ → R be a function to measure the quality between pairs of texts. For model-generated
text x, the watermarking method is robust if an attacker can only generate a paraphrased text x′ with
text quality greater than δ ∈ R that does not retain the watermark with probability at most ϵ ∈ R+.

Pr [VERIFY(x′, τ,m) ≥ ρ ∧ Q(x, x′) > δ] < ϵ (1)

Evasion Attacks. Watermark evasion attacks are classified by the attacker’s access to the provider’s
(i) LLM, (ii) detection algorithm VERIFY that uses the provider’s secret watermarking key, and (iii)
knowledge of the watermarking algorithms. A no-box attacker has no access to the provider’s LLM,
whereas black-box attackers have API access, and white-box attackers know the parameters of the
provider’s LLM. Online attackers can query the provider’s VERIFY functionality, as opposed to offline
attackers who have no such access. Adaptive attackers know the algorithmic descriptions (KEYGEN,
EMBED, VERIFY) of the provider’s watermarking method, while non-adaptive attackers lack this
knowledge. Our work focuses on no-box, offline attacks in adaptive and non-adaptive settings.

1Closed models such as GPT4o are on the Pareto front due to high text quality but have lower evasion rates.
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Surveyed Watermarking Methods. Following Piet et al. (2023), we evaluate the robustness of four
state-of-the-art watermarking methods. The Exp (Aaronson & Kirchner, 2023) method marks text by
selecting tokens that maximize a score combining the conditional probability P (xn | x0 . . . xn−1) and
a pseudorandom value derived from a sliding window of prior tokens. The Dist-Shift (Kirchen-
bauer et al., 2023a) method favours tokens from a green list, which is generated based on pseudoran-
dom values and biases their logits to increase their selection probability. The Binary (Christ et al.,
2023) approach converts tokens into bit-strings determined by pseudorandom values and the language
model’s bit distribution, subsequently translating the bit-string back into a token sequence. Lastly,
the Inverse (Kuditipudi et al., 2024) scheme uses inverse transform sampling by computing a
cumulative distribution function ordered pseudorandomly according to a secret key and using a fixed
pseudorandom value to sample from this distribution. We refer to Piet et al. (2023) for more details.

3 THREAT MODEL

We consider a provider capable of training LLMs and deploying them to many users via a black-
box API, such as Google with Gemini or OpenAI with ChatGPT. The threat to the provider are
untrustworthy users who misuse the provided LLM and generate harmful content without detection.

Provider’s Capabilities and Goals (Deployment) The provider fully controls the LLM and the text
generation process, including the ability to embed a watermark into model-generated text. (Watermark
Verification) The provider must be able to verify their content watermark in each model-generated
text. Their goal is to have an (i) quality-preserving and (ii) robust watermark that enables detection of
model-generated text at a given, low False Positive Rate (FPR) ρ ∈ R+.

Attacker’s Capabilities. (Access Restrictions) We consider a (i) no-box attacker who cannot collect
watermarked texts during training but is (ii) offline, meaning that they cannot access the provider’s
VERIFY function. Our focus is on (iii) adaptive attackers, who know the provider’s watermark method
(KEYGEN, EMBED, VERIFY) but do not know the secret inputs used for watermarking, such as the
provider’s LLM or random seeds. We also evaluate how adaptive attacks transfer to the non-adaptive
setting against unseen watermarks. (Surrogate Models) A surrogate model is a model trained for
the same task as the provider’s model. For example, while ChatGPT3.5’s weights are not public,
the attacker could access the parameters of smaller, publicly released models such as those from
the Llama2 (Touvron et al., 2023) model family from open model sharing platforms. Our attacker
can access such open-weight surrogate models and use them for paraphrasing text. We assume the
surrogate model’s text quality is inferior to the provided model; otherwise, there would be no need to
use the watermarked model. Attacker’s Goals. The attacker wants to use the provided, watermarked
LLM to generate text (i) without a watermark that (ii) has a high quality. We measure quality using
many metrics, including a quality function Q : V∗ ×V∗ → R between pairs of text when the attacker
attempts to evade detection. We require that the provider correctly verifies their watermark with a
given p-value threshold η < ρ for ρ ∈ {0.01, 0.025, 0.05, 0.075, 0.1}. Lower p-values make evasion
more likely to succeed for the attacker (i.e., detection becomes more challenging for the provider).

4 CONCEPTUAL APPROACH

We adaptively fine-tune an open-weight paraphraser θP against given watermarking methods. The
attacker lacks knowledge of the provider’s watermarking key τ ← KEYGEN(θ, γ), which depends
on the (unknown) parameters θ of the provider’s LLM and random seed γ. Our attacker overcomes
this uncertainty by choosing an open-weight surrogate model θS to generate so-called surrogate
watermarking keys τ ′ and optimizes the expected evasion rate over many random seeds γ ∼ R.

4.1 ROBUSTNESS AS AN OBJECTIVE FUNCTION

Let Pθ : V∗ → V∗ denote a paraphrasing function, Hθ : V∗ → V∗ is a function to produce model-
generated text given a query q ∈ V∗ and Q : V∗ × V∗ → R measures the similarity between pairs of
text. We formulate robustness using the following objective function that we can optimize.
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max
θP

E γ∼R
m′∼M
q∼T

E τ ′←KEYGEN(θS ,γ)
θ∗
S←EMBED(θS ,τ ′,m′)

r←Hθ∗
S
(q)

[VERIFY (PθP (r), τ
′,m′) +Q (PθP (r), r)] (2)

Equation (2) finds optimal parameters for the paraphraser θP by sampling uniformly at random over
(i) random seeds γ ∼ R, (ii) messages m′ ∼ M and (iii) queries q ∼ T . The second expectation
is taken over a surrogate watermarking key, using the surrogate model’s parameters θS and the
previously sampled random seed γ as input. The surrogate model, key and message are used to embed
a watermark into the surrogate model θ∗S to generate a watermarked sample r. The optimization
aims to find optimal parameters θ∗P , so the paraphraser has a high probability of generating text
r′ ← PθP (r) that evades watermark detection and preserves text quality compared to r.

Optimization presents multiple challenges. The attacker optimizes over different random seeds γ and a
surrogate model θS instead of the provider’s model θ, which may affect the attack’s effectiveness when
testing against the provider’s watermark. The discrete nature of text and the inability to backpropagate
through the text generation process make maximising the reward challenging. Furthermore, the
reward function depends on VERIFY, which may not be differentiable. Deep reinforcement learning
(RL) methods (Schulman et al., 2017; Rafailov et al., 2024) do not require differentiable reward
functions. However, RL is known to be compute-intensive and unstable, making it unclear whether
optimization can achieve a high reward using limited computational resources.

4.2 PREFERENCE DATASET CURATION

We use existing reinforcement learning (RL) methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024) to optimize Equation (2). To optimize, DPO requires collecting a
dataset of positive and negative examples and fine-tunes the paraphraser to increase the probability
of generating positive examples while reducing the probability of generating negative examples.
A negative sample retains the watermark and represents a failed attempt at watermark evasion. In
contrast, positive samples do not retain a watermark and have a high text quality Q(r, r′p) > δ for
an attacker-chosen δ ∈ R+. To bootstrap optimization, we require the ability to curate positive
and negative examples. We bootstrap using publicly available, open-weight paraphrasers and best-
of-N rejection sampling to curate triplets (r, r′n, r

′
p) containing a watermarked sample r and two

paraphrased versions r′n, r
′
p representing the negative and positive examples, respectively.

Algorithm 1 randomly samples from a set of known watermarking methodsW (line 2) and from the
set of task-specific queries T (line 3). It samples a message m (line 4) and generates a surrogate
watermarking key τ ′ to embed a watermark into the surrogate generator (lines 4-5). We generate
text r using the watermarked model θ∗S (line 7) and verify whether it retains the watermark (line 8).
The paraphrase model θP generates N paraphrased versions of r that we partition into positive and
negative samples (lines 10-11). A sample r′p is positive (b = 1) if it does not retain the watermark
and has high text quality ≥ δ and negative r′n (b = 0) otherwise. For each positive sample, we
select one corresponding negative sample and add the watermarked text and the negative and positive
paraphrases to the preference dataset D (lines 15-17).

Attack Name Description

DIPPER (Krishna et al., 2023) Train an 11b Sequence-to-Sequence model for paraphrasing.
Translate (Piet et al., 2023) Translate to another language and back (e.g., French, Russian).
Swap (Piet et al., 2023) Randomly remove, add or swap words.
Synonym (Piet et al., 2023) Replace words with a synonym using WordNet (Miller, 1995).
HELM (Bommasani et al., 2023) Randomly add typos, lowercase or contractions
Llama, Qwen, GPT3.5 Paraphrase text using a publicly accessible LLM.

Ours-Llama2-7b-Exp Paraphrase with a Llama2-7b model tuned adaptively against Exp.

Table 1: (Top) The non-adaptive baseline attacks we consider in our study against (Bottom) our
adaptively fine-tuned attacks. We refer to Piet et al. (2023) for details on the baseline attacks and
Appendix A.7 for our adaptive attack.
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Algorithm 1 Preference Dataset Curation

Require: Surrogate θS , Paraphraser θP , Queries T , MessagesM, Paraphrase Repetition Rate N ,
False Positive Rate Threshold ρ, Quality Threshold δ

1: D ← {} ▷ The preference dataset
2: for (KEYGEN, EMBED, VERIFY) ∈ W do ▷ Optimize over known watermarking methods
3: for each query q ∈ T do
4: m ∼M
5: τ ′ ← KEYGEN(θS , RND()) ▷ Generate a surrogate watermarking key
6: θ∗S ← EMBED(θS , τ

′,m) ▷ Watermark the surrogate model
7: r ← Sθ∗

S
(q) ▷ Generate watermarked text

8: if VERIFY(r, τ ′,m) < ρ then
9: R0, R1 ← {}, {}

10: for i ∈ [N] do ▷ Best-of-N paraphrasing
11: r′ ← PθP (r) ▷ Generate a paraphrased sample

12: b←
{
1 if VERIFY(r′, τ ′,m) > ρ ∧Q(r, r′) ≥ δ,

0 otherwise.
13: Rb ← Rb ∪ {r′}
14: for j ∈ [|R1|] do

15: r′n ←
{
R0

j if |R0| ≥ j,

r otherwise.
▷ Choose a negative sample

16: D ← D ∪ {(r, r′n, R1
j )}

17: return D

Figure 1: An algorithm to curate a preference dataset to optimize Equation (2).

5 EXPERIMENTS

We report all runtimes on NVIDIA A100 GPUs accelerated using VLLM (Kwon et al., 2023) for
inference and DeepSpeed (Microsoft, 2021) for training. Our implementation uses PyTorch and
the Transformer Reinforcement Learning(TRL) library (von Werra et al., 2020), and we use the
open-source repository by Piet et al. (2023) that implements the four surveyed watermarking methods.
We test robustness using the hyper-parameters suggested by Piet et al. (2023). All LLMs used in our
evaluations have been instruction-tuned. Table 1 summarizes all other surveyed evasion attacks.

5.1 PREFERENCE DATASET COLLECTION

2 4 6 8 10 12 14 16
Number of Paraphrases

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
as

io
n 

Ra
te

 ⇑

Non-Adaptive Paraphrasing With PValue = 0.1

Exp
Inverse
Binary
Dist − Shift

Figure 2: The expected evasion versus repetition
rate with Llama2-7b (lines 9-12, Algorithm 1).

For a given watermarked sequence generated by
the surrogate model, the attacker generates N
paraphrased versions using the non-optimized
paraphraser and calculates the best-of-N eva-
sion rate with the surrogate key (Algorithm 1,
lines 9-12). Figure 2 shows the number of rep-
etitions c needed to achieve a given evasion
rate across four watermarking methods using
Llama2-7b as both the surrogate and para-
phrasing model. Our attacker can choose the
best-of-N paraphrases because they know the
surrogate watermarking key to detect a water-
mark. The attacker cannot choose the best-of-N
paraphrases against the provider’s watermarked
text, as they lack access to the provider’s key.

Figure 2 shows the success rate of observing at
least one positive sample after N paraphrases

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

against methods designed for robustness (Dist-Shift, Exp) and undetectability (Inverse,
Binary). The attacker requires only limited computational resources to curate a large preference
dataset against any of the four surveyed watermarks. For instance, to collect |D| = 7000 preference
samples of T = 512 tokens each, at 1 800 tokens/second, we expect to generate |D| positive
examples in approximately 1.5 GPU hours for Dist-Shift, but only 0.5 GPU hours for Inverse.
In practice, when including the overhead of evaluating quality and detecting watermarks, we require
less than 5 GPU hours to curate 7 000 samples for Dist-Shift. At current AWS2 rates, an attacker
faces negligible costs of less than USD 10$ to curate a preference dataset containing 7 000 samples.

5.2 ABLATION STUDIES

In our experiments, we ablate over the following settings.

• Adaptivity: (Adaptive) The same watermarking method is used for training and testing.
(Non-adaptive) The attack is tested against unseen watermarking methods.

• Target Models: We evaluate 2 models used by the provider: Llama2-13b, Llama3-70b
• Attacker’s Models: Our attacker matches surrogate and paraphrasing models. We consider
Llama2 (Touvron et al., 2023) and Qwen2.5 (Qwen, 2024) from 0.5b to 7b parameters.

• Watermarking Methods: Exp (Aaronson & Kirchner, 2023), Dist-Shift (Kirchen-
bauer et al., 2023b), Inverse (Kuditipudi et al., 2024), Binary (Christ et al., 2023)

• Hyper-Parameters: We ablate over multiple hyper-parameters that a provider can choose.
• False Positive Rates (FPR): Appendix A.8 ablates over ρ ∈ {0.01, 0.025, 0.05, 0.075, 0.1}

when the provider can tolerate higher FPR thresholds for detection.

A watermark has been retained if the null hypothesis that the watermark is not present in the content
can be rejected with a given p-value specified by the provider. The evasion rate is calculated as the
fraction of watermarked text that does not retain the watermark after applying the paraphrasing attack.
Due to the lack of a gold-standard metric to assess text quality, we measure quality with multiple
metrics: LLM-Judge, LLM-CoT and LLM-Compare from (Piet et al., 2023), Mauve (Pillutla et al.,
2021) and Perplexity (PPL) with Llama3-8B-Instruct. To enhance clarity, we only report the
LLM-Judge metric in the main paper following Piet et al. (2023) and report other quality metrics in
the Appendix. Unless otherwise specified, we use a p-value threshold of ρ = 0.01.

5.3 EXPERIMENTAL RESULTS
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Figure 3: The evasion rates (Left) and text quality measured with LLM-Judge (Right). The attacker
uses a matching Llama2-7b surrogate and paraphraser model versus the provider’s Llama2-13b.
We evaluate both the adaptive (diagonals) and the non-adaptive case (values not on the diagonal). For
example, we obtain the bottom left value by training against Dist-Shift and testing on Inverse.

Adaptivity. Figure 3 shows the evasion rate and text quality of our methods trained in the adaptive
and non-adaptive settings when the provider uses Llama2-13b and the attacker uses Llama2-7b.

2https://aws.amazon.com/ec2/capacityblocks/pricing/
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Figure 4: The evasion rate versus text quality trade-off of all surveyed attacks when the provider
uses a Llama3-70b model and the Exp (Aaronson & Kirchner, 2023) watermark. The attacker
uses matching surrogate and paraphrase models with parameters ranging between 0.5b to 7b from
the Qwen2.5 and Llama2 model families. A circle and square denote non-adaptive and adaptive
attacks, respectively, and our attacks are highlighted in red. For example, Ours-Qwen-3b-Exp
means that we evaluate a Qwen2.5 model with 3b parameters optimized against the Exp watermark.

We find that all adaptive attacks have an evasion rate of at least 96.6%, while the non-adaptive attacks
have an evasion rate of at least 94.3%. We achieve the highest overall evasion rate when training
against the Exp watermark, which achieves an evasion rate of at least 97.0%. We train one attack,
denoted All, against all four surveyed watermarking methods and test it against each watermark
separately. Interestingly, All performs slightly worse compared to training only on Exp as it has
an evasion rate of at least 96.3% and a lower text paraphrased quality of at least 0.893 against 0.901
when training only on Exp. In summary, Figure 3 shows that adaptive attacks trained against one
watermark remain highly effective when tested against unseen watermarks in the non-adaptive setting.

Model Sizes. Figure 4 shows the Pareto front against the Exp watermark with a Llama3-70b target
model. Our attacker uses paraphraser models with at most 7b parameters, which is less than the 11b
DIPPER model (Krishna et al., 2023) used to test robustness currently. We make three observations:

1. Non-adaptive baseline attacks such as Contraction, Swapping and Synonym replacements
are ineffective and have a low evasion rate of less than 20%.

2. Non-adaptive model-based paraphrasing attacks such as using vanilla Llama2-7b or
ChatGPT3.5 models have a substantially higher evasion rate of 61.8% up to 86.1%
respectively. Tuning Llama2-7b using our approach in the non-adaptive setting improves
the evasion rate substantially to 90.9% (when trained on Binary) and up to 97.6% (when
trained on Inverse). These non-adaptive, optimized attacks have a paraphrased text
quality of 0.853 and 0.845, slightly improving over ChatGPT3.5, rated only 0.837.

3. In the adaptive setting, our fine-tuned Qwen2.5-7b achieves an evasion rate of 97.3% at
a slightly higher text quality of 0.846 compared to Llama2-7b-Inverse.

By ablating over Qwen2.5 between 0.5b and 7b parameters, we find that attackers can strictly
improve paraphrased text quality at similar evasion rates by using more capable paraphrases with
more parameters. Figure 11 in the Appendix shows results against a Llama2-13b target model,
which are consistent with those against Llama3-70b. Against smaller target models, attackers can
achieve higher evasion rates and text quality ratings.

Text Quality. Table 3 shows (i) a watermarked text sample generated using Llama2-13b with
Dist-Shift, (ii) paraphrased text using a non-optimized Llama2-7bmodel, and (iii) paraphrased

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

text obtained with an adaptively tuned Llama2-7b model using our attack. We observe that
all paraphrased texts preserve quality, but our attack has the lowest green-to-red token ratio (i.e.,
maximizes the evasion rate). Table 4 in the Appendix shows a quantitative analysis of the median
quality of generated text for a vanilla Llama2-7b model compared to our best adaptive and non-
adaptive attacks. It shows that text quality is preserved across five text quality metrics when using our
attacks. We only show one paragraph of generated text that we truncated due to space restrictions and
Tables 5 and 6 in the Appendix show non-truncated samples. Table 6 shows a rare case when our
attack fails at evading watermark detection after paraphrasing.

Hyper-Parameters. We evaluate how the strength of the bias parameter used for Dist-Shift
affects its robustness against our attacks. Our attacker does not know which hyperparameters are
used by the provider. We set the bias β ∈ {1, 2, 4, 8}, where higher bias should lead to higher
robustness (Piet et al., 2023; Kirchenbauer et al., 2023b). We train our attacks once with the β = 4
value suggested by Piet et al. (2023) and test it against all other hyper-parameters. Table 2 shows that
our adaptive and non-adaptive attacks remain the most effective across all hyper-parameters.

β Dist-Shift Llama2-7b Llama2-7b-Exp Llama2-7b-Dist-Shift

1 0.94, 0.72 0.94, 0.96 0.94, 0.98 0.95, 0.99
2 0.94, 0.20 0.95, 0.90 0.95, 0.98 0.95, 0.98
4 0.95, 0.00 0.96, 0.67 0.94, 0.97 0.94, 0.97
8 0.71, 0.00 0.92, 0.60 0.94, 0.95 0.94, 0.96

Table 2: We study our attack’s effectiveness for different bias hyper-parameters for the
Dist-Shift (Kirchenbauer et al., 2023a) watermark. The top row label refers to the genera-
tion method, and we show two values: The text quality and the evasion rate at 512 tokens.

Adaptive vs Non-adaptive. Figure 5 shows two results to compare the non-optimized Llama2-7b
with our adaptively tuned Llama2-7b model. The result on the left plots the cumulative density of
p-values. Our method strictly improves over the non-optimized model as it generates paraphrased
text with higher mean p-values for watermark detection. The result on the right plots the expected
p-value against the token length. The watermarked text has a median p-value of less than 0.01 after
approximately 170 tokens, whereas the non-optimized Llama2-7b model has an expected p-value
of 0.10 at around 500 tokens compared to an expected p-value of 0.4 for our adaptively tuned model.

Additional Testing. We present more results to compare adaptive versus non-adaptive attacks in
Appendix A.3, including tests against other recently released watermarking methods. These results
are consistent with our findings in the main part of the paper that adaptive attacks are Pareto optimal
and outperform much larger, closed-source systems such as GPT4o at evading watermark detection.
We kindly refer the reader to Appendix A.3 for more baseline tests and Appendix A.4 for an analysis
of the impact of paraphrasing on the top-50 token distribution.
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Figure 5: (Left) The cumulative density of p-values on the Dist-Shift watermark (blue), a vanilla
Llama2-7b paraphraser (green) and our adaptively tuned Llama2-7b paraphraser (red). (Right)
The median p-value relative to the text token length with a threshold of ρ = 0.01 (dashed line).
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Llama2-13b-Dist-Shift (163 green and 36 red)

Cervantes’ "Don Quixote" is a groundbreaking masterpiece of literature that has enthralled readers for over
400 years. The novel tells the story of Alonso Quixano, an old man who becomes so consumed by the
chivalrous tales of his day that he renames himself Don Quixote and embarks upon an adventurous journey
filled with humor, satire, and timeless themes about the human condition.←↩←↩ The story follows Quixote
and his trustworthy sidekick Sancho Panza, a simple and pragmatic squire who provides moments of humor
and contrast to the lofty ideals of the delusional Quixano/Don Quixote. Their travels in rural Spain lead
them to encounter all sorts of people they mistake for knights, ladies in distress, bandits, and giants who are
in fact ordinary villagers going about their everyday lives.

Llama2-7b (125 green and 69 red)

"Don Quixote" is a groundbreaking masterpiece of literature that has captivated readers for over 400 years.
The novel tells the story of Alonso Quixano, an elderly man whose fixation on chivalrous tales leads him
to change his name to Don Quixote and embark on a thrilling adventure replete with humor, satire, and
timeless themes concerning the human condition.←↩←↩ The narrative follows Don Quixote and his loyal
squire Sancho Panse, a practical and good-natured individual who provides moments of levity and contrast to
the lofty ideals of the delusional Quixano/Don Quixote. Their travels across rural Spain result in encounters
with various people who they misidentify as knights, distressed ladies, bandits, and ordinary villagers going
about their daily lives.

Ours-Llama2-7b-Dist-Shift (81 green and 78 red)

Spain has been blessed with a literary treasure that has captivated readers for over four centuries in the
form of Miguel de Cervantes’ immortal masterpiece, "Don Quixote". This timeless tome weaves a hilarious
and poignant tale of a man consumed by the chivalrous stories of his youth, who renames himself Don
Quixote and sets forth on a journey filled with moments of satire and a piercing examination of the human
condition.←↩←↩As Don Quixote and his trusty squire Sancho Panza traverse rural Spain, they encounter
various unsuspecting villagers, mistaking them for knights, maidens in distress, bandits, and even giants.

Table 3: (Top) Watermarked text from the provider’s Llama2-13b model, (Middle) a paraphrased
version from a vanilla Llama2-7b model, and (Bottom) paraphrased text using our adaptively tuned
Llama2-7b model. Green/red indicates whether a token is watermarked. A lower green-to-red
token ratio implies a higher evasion rate. Due to space constraints, we only show truncated texts.
Tables 5 and 6 in the Appendix show entire samples with up to 512 tokens.

6 DISCUSSION

Effectiveness of Adaptive Attacks. Our work demonstrates that content watermarking methods
for large language models are vulnerable to adaptively optimized attacks. Attackers can adaptively
fine-tune relatively small open-weight models, such as Llama2-7b (Touvron et al., 2023), using
less than seven GPU hours to evade watermark detection from substantially larger and more capable
open-source models, such as Llama3.1-70b (Dubey et al., 2024). Our attacks remain effective
even in the non-adaptive setting when testing with unseen watermarking methods. Our findings
challenge the robustness claims of existing watermarking methods, and we propose improved methods
to test robustness using adaptive attacks.

Analysis. Studying why adaptive attacks work is challenging due to the non-interpretability of the
optimization process. The ability to maximize Equation (2) implies the ability to evade detection since
Equation (2) encodes robustness for any watermarking method. The effectiveness of non-adaptive
attacks could be explained by the fact that all surveyed watermarks are similar in that they operate on
the token level. Hence, an effective attack against one watermark likely generalizes to other unseen
watermarks. Adaptive attacks further improve effectiveness as there are at least three learnable signals
for paraphrasing watermarked text: (1) Avoid repeating token sequences as they likely contain the
watermark, (2) find text replacements with low impact in text quality to maximize evasion rate (e.g.,
uncommon words or sentence structures), and (3) calibrate the minimum token edit distance and
lexical diversity that on average (over the randomness of the key generation process) evades detection.
We refer to Appendix A.5 for a more detailed analysis of our approach’s effectiveness.
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Attack Runtime. Our attacks involve two steps: Dataset Curation and Model Optimization. Curating
7 000 samples requires less than 5 GPU hours, and model optimization requires only approximately 2
GPU hours for a Llama-7b model at 16-bit precision. These attacks can be executed with limited
computational resources and cost less than USD 10$ with current on-demand GPU pricing.

Online Attacks. Our work focuses on offline attacks that do not require access to the provider’s
watermark detection functionality. Offline attacks help study the robustness of a watermarking method
without any information about the specific secret key generated by the provider. An online attacker
can learn information about the provider’s secret key through accessing Verify, which reduces the
attack’s uncertainty and could substantially improve the attack’s effectiveness further.

Limitations. Our study also did not focus on evaluating adaptive defences that could be designed
against our adaptive attacks. Adaptive defences have not yet been explored, and we advocate studying
their effectiveness. We believe our optimizable, adaptive attacks will enhance the robustness of future
watermarking methods by including them in their design process, for instance, by using adversarial
training. We focused exclusively on text generation tasks and did not explore other domains, such as
source code generation or question-answering systems where different text quality metrics may be
used to evaluate an attack’s success. We did not consider the interplay between watermarking and
other defences, such as alignment or content filtering, which could collectively control misuse.

We acknowledge that LLM-as-a-Judge is an imperfect and noisy metric that may not align with
human judgment. In the main part of our paper, we use Llama3-8B-as-a-Judge since this metric is
easily reproducible. Appendix A.3 shows results using GPT4-mini-as-a-Judge that are consistent
with our findings. More work is needed to study the metric’s alignment with human judgment.

7 RELATED WORK

We evaluate the robustness of content watermarking (Lukas & Kerschbaum, 2023) methods against
no-box, offline attackers in the adaptive and non-adaptive settings (see Section 2). Other watermark
evasion attacks (Hu et al., 2024; Kassis & Hengartner, 2024; Lukas et al., 2024) focus on the image
domain, whereas we focus on LLMs. Jovanović et al. (2024); Pang et al. (2024) propose black-box
attacks against LLMs that require collecting many watermarked samples under the same key-message
pair. We focus on no-box attacks. Jiang et al. (2023) propose online attacks with access to the
provider’s watermark verification, whereas we focus on a less capable offline attacker who cannot
verify the presence of the provider’s watermark. Current attacks are either non-adaptive, such as
DIPPER (Krishna et al., 2023) or handcrafted against one watermark (Nicks et al., 2024). We focus
on optimizable, adaptive attacks and show that they remain effective in the non-adaptive setting.

8 CONCLUSION

Our work demonstrates the vulnerability of current LLM watermarking methods to adaptive attacks.
We propose preference-based optimization on open-weight models to undermine the robustness
of four watermarking methods and find that relatively small models such as Llama2-7b can be
adaptively tuned to evade detection from larger models, such as Llama3-70b. Our adaptively tuned
attacks outperform all existing attacks and can be trained using negligible computational resources of
less than seven GPU hours. Adaptively tuned attacks remain effective in the non-adaptive setting
against unseen watermarks. Our findings challenge the security claims of existing watermarking
methods and suggest that future defences must consider adaptive attackers when testing robustness.
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A APPENDIX

A.1 QUALITY METRICS

Ideally, to evaluate the quality of an LLM-generated text, one would need a set of human evaluators,
each giving their own score according to a certain rubric, and then have all the scores aggregated.
However, this is impractical to achieve, both for the attacker and the defender. Therefore, we employ
multiple surrogate metrics from the literature: LLM-Judge, LLM-CoT and LLM-Compare from
(Piet et al., 2023), Mauve (Pillutla et al., 2021) and Perplexity (PPL) with Llama3-8B-Instruct.
Note that all of these are implemented in the MarkMyWords (MMW) (Piet et al., 2023) benchmark
utilized for our experiments. All the metrics evaluate a response (whether watermarked, or pertrubed
sample) against a baseline (either the original prompt, a non-watermarked sample or the model’s
logit-distribution). Below is a description of each metric, along with an indication of whether higher
or lower values are better for that metric.

LLM-Judge: LLM-Judge directly directly prompts an instruction-tuned large language mode to
evaluate the quality of a certain response with respect to its original prompt. The response is decoded
greedily (temperature =0) to ensure deterministic results. Criteria evaluated include:accuracy, level of
details, and typographical, grammatical and lexical correctness. A higher score is better. For this, we
use Llama3-8B-Instruct to evaluate and the following prompt:

LLM-Judge Prompt

You are given a prompt and a response, and you provide a grade
out of 100 measuring the quality of the response, in terms of
accuracy, level of details, and typographical, grammatical and
lexical correctness. Remove points as soon as one of the criteria
is missed. Prompt:{}, Response:{}

LLM-CoT (Chain-of-Thought): LLM-CoT evaluates the quality of the watermarked/attacked
responses using CoT-based reasoning Wei et al. (2023). A higher score is better. For this, we also use
Llama3-8B-Instruct to evaluate and the following prompt:

LLM-CoT Prompt

Please act as an impartial judge and evaluate the quality of
the response provided by an AI assistant to the user question
displayed below. Your evaluation hinges on the following factors:
accuracy, level of details, typographical correctness, grammatical
correctness and lexical correctness. Be as objective as possible,
and account for every one of these criteria in our evaluation.
Begin your evaluation by providing a short explanation. After
providing your explanation, please rate the response on a scale
of 1 to 100 by strictly following this format: "[[rating]]", for
example: "Rating: [[51]]". Your rating must come AFTER your
explanation, not before. Prompt:{}, Response:{}

LLM-Comparator: The LLM-Comparator is used to compare non-watermarked baseline response
and the watermarked or attacked response. 0 indicates that the non-watermarked response is better,
0.5 indicates a tie, and 1 shows that the watermarked or attacked response is better. For this, we also
use Llama3-8B-Instruct to evaluate and the following prompt:
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LLM-Comparator Prompt

Please act as an impartial judge and evaluate the quality of
the responses provided by two AI assistants to the user question
displayed below. You should choose the assistant that follows
the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their
responses. Also account for typographical correctness, grammatical
correctness and lexical correctness. Begin your evaluation by
comparing the two responses and provide a short explanation.
Avoid any position biases and ensure that the order in which the
responses were presented does not influence your decision. Do not
allow the length of the responses to influence your evaluation.
Do not favor certain names of the assistants. Be as objective
as possible. After providing your explanation, you must output
your final verdict by strictly following this format: * "[[A]]"
if assistant A is better, * "[[B]]" if assistant B is better, and
* "[[C]]" for a tie. For example, "Verdict: [[C]]". Prompt:
{}, [[Start of Assistant A]] {} [[End of Assistant A’s Answer]],
[[Start of Assistant B]] {} [[End of Assistant B’s Answer]]

MAUVE. MAUVE measures the similarity between two text distributions. In our case, the two
distributions are the non-watermarked baseline response and the watermarked/paraphrased response.
Higher MAUVE scores indicate that both texts match their content, quality and diversity. MAUVE
is computed with the Kullback–Leibler (KL) divergences between two distributions in a lower-
dimensional latent space. It correlated with human evaluations over baseline metrics for open-ended
text generation Pillutla et al. (2021). We use the gpt2-large model to compute the MAUVE score
in our implementation.

Perplexity (PPL): Perplexity is a common language modelling metric that quantifies how well a
model predicts a text sample. It is calculated based on the probability that the model assigns to a
sequence of words. Lower perplexity values indicate that the model is more confident and accurate in
its predictions, making lower scores better for this metric.

Table 4 shows the median text quality metrics to compare the vanilla Llama2-7b paraphraser
to our best adaptive and non-adaptive attacks against the Llama2-13B and Llama3-70B target
models. The table shows that our attacks have similar quality to the vanilla Llama2-7b paraphraser
across the board. Our attacks have a higher MAUVE score, indicating that our text is closer to
the non-watermarked text than the vanilla Llama2-7b paraphraser. The higher perplexity is not a
concern, as it just shows that the large language model does not expect the text.

Target: Llama2-13B LLM-Judge ⇑ LLM-CoT⇑ LLM-Compare⇑ Mauve⇑ PPL⇓
Llama2-7b 0.92 0.85 0.00 0.17 4.74
Ours-Best-Adaptive 0.92 0.85 1.00 0.42 6.69
Ours-Best-Non-Adaptive 0.92 0.85 0.50 0.37 6.32

Target: Llama3-70B

Llama2-7b 0.95 0.72 0.00 0.22 4.84
Ours-Best-Adaptive 0.95 0.72 0.50 0.55 6.10
Ours-Best-Non-Adaptive 0.95 0.72 0.50 0.31 6.15

Table 4: Various median text quality metrics to compare the vanilla Llama2-7b paraphraser to our
best adaptive and non-adaptive attacks. We limit all attacks to at most 7b parameter models.

A.2 DATASET CURATION

We generate a synthetic prompt dataset spanning various topics, including reviews, historical sum-
maries, biographies, environment, science, math, fake news, recipes, travel, social media, arts, social
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sciences, music, engineering, coding, sports, politics, health, and more. The dataset has 1000 prompts
and is collected by repeatedly prompting a large language model (ChatGPT-4) to generate topic titles.
We then wrap combinations of these titles in prompts. We intend to release the dataset for the public,
but it should be very easy to replicate.

For every prompt, we generate watermarked output from all watermarks; then, we use that as input to
our paraphrasers. Each paraphraser is to generate 16 paraphrases for each input. We then filter these
paraphrases as per Algorithm 1 to create the training preference pairs. Larger models have higher
quality output and so have a higher yield of successful paraphrases. We use the same number of
paraphrases for each model, even when it generates different yields.

Figure 6 shows the expected evasion rate versus the number of paraphrases ablated over varying
model sizes of Qwen2.5 (Qwen, 2024) against the Exp watermark. We find that the expected evasion
rate increases with the number of paraphrases, but the rate of increase diminishes as the number of
paraphrases increases. We find that the expected evasion rate does not improve significantly close
to 16 paraphrases and that bigger models tend to have higher evasion rates for the same number of
paraphrases. An exception to this is the 1.5b model which surprisingly performs very well (better
than the 3b) for the same number of paraphrases. This, however, could be due to different pretraining
parameters of the base model or other factors.
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Figure 6: The expected evasion rate versus the repetition rate ablated over varying model sizes of
Qwen2.5 (Qwen, 2024) against the Exp watermark (Algorithm 1, lines 9-12). Shaded areas denote
95% confidence intervals.

A.3 BASELINE TESTING AGAINST OTHER WATERMARKS

We include more robustness tests against recently released watermarks such as SynthID (Dathathri
et al., 2024), Unigram (Zhao et al., 2024) and SIR (Liu et al., 2024). We refer to the author’s papers
for detailed descriptions of these watermarks. GPT4o is part of the Pareto front against only SIR and
KGW due to its high text quality and low evasion rates of less than 90%. It is not part of the Pareto
front against SynthID, EXP and Unigram, where only our attacks are part of the Pareto front. While
it may be possible to use better prompts for GPT4o to achieve a higher text quality or evasion rate,
there are other limitations when using closed systems to evade detection.

1. Their usage can be expensive as the user is typically charged per token.

2. The system could embed its own watermark into paraphrased text.

3. There could be guardrails such as safety alignments which prevent these systems from
arbitrarily paraphrasing text.
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Figure 7: Additional results using Qwen-3b against KGW and EXP, which we study in the main
part of the paper, and more recently released watermarks such as SynthID (Dathathri et al., 2024),
Unigram (Zhao et al., 2024) and SIR (Liu et al., 2024). Dashed lines denote the Pareto front, and we
highlighted adaptively trained attacks in bold. We used GPT4o’s version from November 23rd, 2024.
The y-axis uses GPT4-mini as a judge, and the x-axis shows the evasion rate.
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Figure 8: The evasion rates against a watermarked Llama2-13b model. We compare non-adaptive
attacks, including ChatGPT3.5, versus our adaptively fine-tuned Llama2-7b paraphraser model.

In contrast, our method allows working with relatively small open-weight models that adversaries
can fully control.

A.4 TOKEN DISTRIBUTION

Text Quality. Appendix A.4 shows the top-50 token distribution that appear in the watermarked text.
We compare it with the token frequency in the paraphrased text using as paraphrasers (i) GPT4o,
(ii) a baseline Qwen-3b model and (iii) our adaptively tuned Qwen3b model against the Unigram
watermark Zhao et al. (2024). We observe that all paraphrasers have a similar token distribution and
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that across all three paraphrasers, on average, the top 50 tokens appear less frequently than in the
original, watermarked text. The largest difference we observe between the baseline Qwen3b and our
adaptively tuned model are the frequencies of the tokens ’The’ and ’ ’ (space between words), which
our model uses less frequently. Compared to GPT4o, the baseline Qwen-3b model uses some tokens,
such as ’ As’, less frequently, while other tokens, such as ’ but’, appear more frequently.
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Figure 9: An analysis of the top-50 tokens in paraphrased text generated with the Unigram water-
mark (Zhao et al., 2024), using as a paraphraser (top) GPT4o, (center) an off-the-shelf Qwen-3b
model and (bottom) our adaptively tuned Qwen-3b model.

A.5 DETAILED TEXTUAL ANALYSIS

Our goal is to further analyze why our adaptively tuned paraphraser better evades detection than other
approaches. We begin by studying the overlap of N-grams between the watermarked and paraphrased
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texts, which we call the N-gram overlap ratio between two sequences x1, x2 ∈ V∗.

Ng(x1, x2, n) =
|ngrams(x1, n) ∩ ngrams(x2, n)|
|ngrams(x1, n) ∪ ngrams(x2, n)|

(3)

The ’ngrams’ function tokenizes a sequence and returns the set of n-grams. The N-gram overlap ratio
is always between [0,1]. A high overlap for a given n ∈ N states that the same N-grams appear in
both sequences. Since the surveyed watermarks operate on a token level, a low overlap ratio would
suggest a high evasion rate. We also evaluate the token edit distance ratio between two sequences,
which is calculated as follows:

L(x1, x2) =
Levenshtein(x1, x2)

len(x1) + len(x2)
(4)

The token edit distance calculates the Levensthein distance between two sequences. Note that the
N-gram overlap ratio is calculated over sets of N-grams. In contrast, the Levenshtein distance is
calculated over (ordered) sequences, meaning that the position of the token matters. A high Token
Edit Distance ratio suggests that two texts do not have the same tokens at the same positions in the
sequence, which also suggests a higher evasion rate.
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Figure 10: (Left) The N-gram overlap ratio between watermarked text and text paraphrased by (i)
GPT3.5, (ii) GPT4o, (iii) our adaptively tuned Qwen-3b paraphraser and (iv) a baseline Qwen-3b
paraphraser. The overlap is calculated as the number of N-grams in the paraphrased text that also
appear in the watermarked text divided by the total number of N-grams in the watermarked text. Lower
overlap means that both texts are less similar. (Right) We plot the evasion rate against the normalized
token edit distance between paraphrased and watermarked text using different paraphrasers. The
dashed line represents the difference between the non-optimized Qwen-3b paraphraser and our
adaptively tuned Qwen-3b paraphraser.

Results. Figure 10 (left) shows the N-gram overlap ratio between watermarked text and the text
produced by four paraphrasing methods. We observe that across all N-grams, our adaptive paraphraser
achieves the lowest overlap ratio. Figure 10 (right) shows the mean token edit distance ratio between
watermarked and paraphrased text in relation to the evasion rate. We observe that the non-optimized,
baseline Qwen-3b model has a low token edit distance ratio and a low evasion rate. In contrast,
our adaptively tuned model has a much higher evasion rate and a high token edit distance ratio.
These findings suggest that our adaptive optimization process learned to increase the mean token edit
distance and minimize the overlap ratio to maximize evasion rates while preserving text quality.

A.6 WATERMARK PARAMETERS

To select the optimal parameters for the watermarking methods, we follow the guidelines provided
by Piet et al. (2023). We use a key length of 4 for all watermarks and a text-dependent sliding
window randomness of size 3. We set the skip-probability to 0.025 for all watermarks except for
the Dist-Shift watermark, where we set it to 0. Skip-probability is a technique that randomly
skips the watermarking selection procedure for some tokens to allow more diverse generation and it
works best with schemes that can be made indistinguishable, like the Exp, Binary and Inverse
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watermarks. We also use the optimal temperature for every watermark (1.0 for all except for the
Dist-Shift watermark, where we use 0.7). Specific to the Dist-Shift watermark, we use the
suggested green-red list ratio γ of 0.5 and a bias parameter β of 4.

A.7 ATTACK DESCRIPTION

Prompting. We use the following prompt to train our paraphraser models. The prompt is adapted
from Kirchenbauer et al. (2023b). Additionally, we prefill the paraphrase answer with the text
[[START OF PARAPHRASE]] to ensure that the model starts generating the paraphrase from the
beginning of the response. During dataset curation, training and testing, we set the temperature to 1.0
to diversify the generated paraphrases.

Paraphrase Prompt

You are an expert copy-editor. Please rewrite the following text in
your own voice and paraphrase all sentences. Ensure that the final
output contains the same information as the original text and has
roughly the same length. Do not leave out any important details
when rewriting in your own voice. Do not include any information
that is not present in the original text. Do not respond with a
greeting or any other extraneous information. Skip the preamble.
Just rewrite the text directly.

Training Hyperparameters We train our paraphraser models using the following hyperparameters:
batch size of 32, learning rate of 5× 10−4, and a maximum sequence length of 512 tokens. We use
the AdamW optimizer with a linear learning rate scheduler that warms up the learning rate for the
first 20% of the training steps and then linearly decays it to zero. We train the models for 1 epoch
only to prevent overfitting. We utilize Low-Rank Adaptation (LoRA) (Hu et al., 2022) to reduce the
number of trainable parameters in the model. We set the rank to 32 and the alpha parameter to 16.

A.8 ADDITIONAL ABLATION STUDIES

False Positive Rates. Figure 8 shows the detection rates at different FPR-thresholds ρ ∈
{0.01, 0.025, 0.05, 0.075, 0.1} against the Dist-Shift and Exp watermarking methods. We
focus on these two methods as they are more robust than Inverse and Binary. Our results show
that across all evaluated FPR thresholds, our adaptive attacks outperform all other surveyed attacks
against both watermarking methods. If the provider tolerates a 10% FPR, our adaptive attacks achieve
an evasion rate of only 80% and 77% against Dist-Shift and Exp, respectively.

A.9 EXTRA TABLES AND FIGURES
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Figure 11: The evasion rate versus text quality trade-off of all surveyed attacks when the provider
uses a Llama3-13b model and the Exp (Aaronson & Kirchner, 2023) watermark. The attacker
uses matching surrogate and paraphrase models with parameters ranging between 0.5b to 7b from
the Qwen2.5 and Llama2 model families. A circle and square denote non-adaptive and adaptive
attacks, respectively, and our attacks are highlighted in red. For example, Ours-Qwen-3b-Exp
means that we evaluate a Qwen2.5 model with 3b parameters optimized against the Exp watermark.
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Llama2-13b-Dist-Shift (463 green vs 41 red tokens)

Cervantes’ "Don Quixote" is a groundbreaking masterpiece of literature that has enthralled readers for over 400 years.
The novel tells the story of Alonso Quixano, an old man who becomes so consumed by the chivalrous tales of his day
that he renames himself Don Quixote and embarks upon an adventurous journey filled with humor, satire, and timeless
themes about the human condition.←↩←↩ The story follows Quixote and his trustworthy sidekick Sancho Panza, a simple
and pragmatic squire who provides moments of humor and contrast to the lofty ideals of the delusional Quixano/Don
Quixote. Their travels in rural Spain lead them to encounter all sorts of people they mistake for knights, ladies in distress,
bandits, and giants who are in fact ordinary villagers going about their everyday lives.←↩←↩ One of the most profound
and enduring elements of the novel’s themes is the conflict of reality and perception. Quixote, driven by the chivalrous
books he reads and his own imagination, mistakes windmills for giants, a puppet play as a real tale of love and betrayal,
and a barber from a nearby village who is dressed in his Sunday best but Quixote sees as the Grand Duchess of Lithuania.
Through these absurd but comedic misadventures, Cervantes creates a timeless commentary on the nature of truth, reality,
and the danger of letting our imaginations run too wild. Don Quixote’s journey also explores issues of class and nobility
as he views his own lowly status as unknightly, while the peasants and traveling players he encounters view him with
suspicion or indifference. Through these contrasts, Cervantes pokes fun at the social order and the idealized notion
of chivalry.←↩ Don Quixote has been praised for its realistic portrayal of human nature, including its weaknesses and
fallibilities as well as the timeless wisdom of Cervantes’ observations on society in late sixteenth-century Spain. At its
core, the novel is an exploration of the human capacity to dream, delusions,

Llama2-7b (301 green vs 201 red tokens)

"Don Quixote" is a groundbreaking masterpiece of literature that has captivated readers for over 400 years. The novel
tells the story of Alonso Quixano, an elderly man whose fixation on chivalrous tales leads him to change his name to
DonQuixote and embark on a thrilling adventure replete with humor, satire, and timeless themes concerning the human
condition.←↩←↩ The narrative follows Don Quixote and his loyal squire Sancho Panse, a practical and good-natured
individual who provides moments of levity and contrast to the lofty ideals of the delusional Quixano/Don Quixote. Their
travels across rural Spain result in encounters with various people who they misidentify as knights, distressed ladies,
bandits, and ordinary villagers going about their daily lives.←↩←↩ One of the most enduring aspects of the novel’s themes
is the conflict between reality and perception. Quixote, driven by the chivalrous books he reads and his imagination,
mistakes wind mills for giants, a puppet show for a real tale of love and betrayal, and a peasant in his Sunday best for the
Grand Duchess of Lithuania. Through these absurd yet comedic misadventures, Cervantes offers a timeless commentary
on the nature of truth, reality, and the dangers of allowing our imaginations to run wild. Don Quixote’s journey also
explores issues of class and nobility as he views his lowly status as unknightly, while the peasants and traveling players he
encounters view him with suspicion or indifference. Through these contrasts, Cervantes pokes fun at the social order and
the idealized notion of chivalry.←↩←↩Don Quixote has been praised for its realistic portrayal of human nature, including
its weaknesses and fallibilities, as well as the timeless wisdom of Cervantes’ observations on society in late 16th-century
Spain. At its core, the novel is an exploration of the human capacity to dream, delude oneself, and confront reality,
ultimately revealing the limitations and struggles of the human experience.

Ours-Llama2-7b-Dist-Shift (201 green vs 240 red tokens)

Spain has been blessed with a literary treasure that has captivated readers for over four centuries in the form of Miguel
de Cervantes’ immortal masterpiece, "Don Quixote". This timeless tome weaves a hilarious and poignant tale of a man
consumed by the chivalrous stories of his youth, who renames himself Don Quixote and sets forth on a journey filled
with moments of satire and a piercing examination of the human condition.←↩←↩As Don Quixote and his trusty squire
Sancho Panza traverse rural Spain, they encounter various unsuspecting villagers, mistaking them for knights, maidens
in distress, bandits, and even giants. Through these absurd yet poignant events, Cervantes deftly explores the blurred
lines between reality and perception, highlighting the dangers of allowing our imaginations to run wild. The novel’s
themes of truth, class, and nobility are also expertly woven throughout the narrative, as Don Quixote’s lowly status is
juxtaposed with the condescending views of the peasants and traveling players he encounters.←↩←↩ Throughout the novel,
Cervantes offers a biting commentary on the social hierarchy of his time, while also providing a realistic depiction of
human nature, complete with its frailties and limitations. At its core, "Don Quixote" is a thought-provoking exploration of
the human capacity for imagination, delusion, and the ever-elusive pursuit of truth.←↩←↩Endlessly praised for its timeless
wisdom and biting social commentary, "Don Quixote" has captivated readers for centuries, leaving a lasting impact on
literature and our understanding of the human experience. Its enduring themes and characters have become ingrained
in our collective consciousness, reminding us of the importance of humility, empathy, and the boundless power of the
human imagination.

Table 5: Watermarked text and paraphrases from different models. Green/red indicates whether a
token is watermarked. The last column shows the detection confidence over the entire text.
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Llama2-13b- Dist-Shift (474 green vs 36 red tokens)

Ok ,here goes!←↩←↩Once upon atime, there was a scholar namedDr. Brainiac , whohad written a academic paper on the most ground
breaking research of the century . Her findings proved the previously hypothetical theory of XYZ, which had long been a hot button topic
in the academic community , and her research was deemed by her peers as game changing .←↩←↩ However ... (you knew there was going
to be a but , didn’ t ya? )... Dr . Brainiac hit a snag . She had written the most comprehensive , meticulously researched , tightly argued
paper of her life ... but she couldn’ t get it published!←↩←↩ Every journal she sent the paper to , every peer review process , every editing
round ... the same result. Reject! Reject! ReJECT! (you could almost see the little rejections letters wiggling their collective fingers at Dr.
Brainiac ).←↩←↩ Dr . B tried everything to boost her luck :←↩←↩ * Bribe editor’s assistants with chocolates and champage (ok , maybe
not the best strategy).←↩ * Asked her cat , Prof. Meowington, to lick the pages of the manuscript (um , that didn’ t go well either)←↩←↩

Baffled by their lack of progress, Dr , B took a step back to reassess the situation. While pondering in her backyard , an epiphany struck:
the problem was the paper’s format! It was too traditional, to bland , too ... academic! She revised the style of her paper into a funky , hip ,
and quirky format complete wuth pop culture referencing , memes , gifs ... and taadaahhh! It was accepted by every journal she submited
to , all on the same day.←↩ Dr , B’s ground-breaking paper on the Xyz Theory , was now a viral sensation among the academic circles ,
with over millions views and shares on Research Gate , Arxive , etc (you know , the academical version of the inter-nets).←↩ And so Dr B
became a legend in the world of acedemia , Proving once and for that , sometimes a paper just needs to be a litlte more SWOON and POP ,
and less HOhum , and the academic world would tak notice . The end.

Llama2-7b (218 green vs 222 red tokens)

Here’s my version of the text :←↩←↩ Once upona time, there was a renowned scholar , Dr. Brainiac, who had penned a ground breaking
academic paper on a highly debated topic in the academic community. Her work was deemed revolutionary by her peers , but she hit a
road block when trying to publish it. No matter how many prestigious journals she submitted her paper to , the same response echoed
back: rejected , rejected , REJECTED! Dr. Brainiac’s persistence was met with utter rejection.←↩←↩ With her reputation on the line, Dr.
Brainiac contemplated desperate measures to break the deadlock. She even enlisted the help of her feline colleague , Prof. Meowington, to
lend a paw to the editing process, but alas, it seemed the paper was beyond salvage.←↩←↩ The diminutive Dr. Brainiac stepped back and
reassessed the situation. After some introspection in her backyard , a brilliant idea struck her - the paper’s format! It was too traditional ,
too dull , too ... academic. She decided to overhaul the style of her paper with a quirky, trendy, and pop-infused format , complete with
memes and gifs. What a transformation! The paper was accepted with unanimous acclaim by every journal she submitted it to, and her
revolutionary work on the XYZ Theory became a viral sensation in academic circles, receiving millions of views and shares on Research
Gate and other platforms.←↩←↩ This remarkable turn of events catapulted Dr. Brainiac to legendary status in the world of academia ,
proving that sometimes, a publication just needs a little more oomph , a little more pizzazz , to captivate the attention of the academic
community. Voila!←↩←↩ As you can see , I’ve maintained the same level of detail and length as the original text while injecting my own
voice and creativity into the paraphrased version.

Ours-Llama2-7b-Dist-Shift (180 green vs 117 red tokens)

Intergalactic luminary, Dr. Brainiac, revolutionized the academic community with her incandescent expose on the long-sought-after
XYZ theory. Bearing witness to her remarkable accomplishment, her fellow scholars hailed her work as a watershed moment, one that
boldly pushed the boundaries of knowledge. However , fortune’s favor was not on Dr. Brainiac’s side , as she encountered a string of
rejections, prompting her to reassess her approach. A chance visit to her backyard inspired a light bulb moment -transforming her drab,
conventional paper into a mesmerizing, pop-culture-infused masterpiece that captured the world’s attention. Featuring vibrant, hip, and
quirky formatting, Dr. Brainiac’s paper became a viral sensation, captiv ating millions of views and shares across esteemed scholarly
platforms.←↩←↩ Dr. Brainiac’s remarkable success served as a testament to the power of creativity and originality in the world of
academia , demonstrating that sometimes a scholarly work needs a dash of flair and charm to truly stand out . With her revolutionary
approach, Dr. Brainiac reshaped the landscape of academic publishing , proving that ground breaking research can captivate and inspire
even the most skeptical of minds. The end.

Ours-Llama2-7b-Exp (185 green vs 175 red tokens)

Of course, I understand the predicament Dr. Brainiac faced when trying to publish her ground breaking research on the highly controversial
XYZ theory. It’ s like, ugh, when you pour your heart and soul into something complex and comprehensive, and then... rejection after
rejection. It’s like, can’t they see how fabulous this work is? But alas, sometimes a make over is in order.←↩←↩ It was while lounging in
her back yard, sipping tea and pondering the mysteries of the universe, that Dr. B had an epiphany. She realized that the issue wasn’t the
content of her paper, but rather its presentation. It was too drab, too traditional, too lacking in flair. In other words, it didn’t exactly scream’
pick me!’←↩←↩ So, armed with a newfound sense of panache, Dr. B gave her paper a major facelift. She added pop culture references,
memes, and GIF s, and voila! It was like a transformed candidide, dazzling editors and academics alike. Suddenly, every journal she
submitted to was intrigued, and her work was published in a heart beat.←↩←↩ The response was nothing short of viral. Dr. B’s research
went from a niche interest to a full- blown sensation, with millions of views and shares across academic platforms. And Dr. B herself
became a legend in the academic world, proving that sometimes, a little bit of flair can make all the difference. The end.

Table 6: A rare example where our adaptive attack fails while other attacks succeed. From top to
bottom, (1) the watermarked text from a Llama2-13b model using Dist-Shift versus (2) a
paraphrased version from a non-optimized Llama2-7b, (3) paraphrased text from an adaptively
optimized Llama2-7b and (4) paraphrased text from an optimized Llama2-7b model in the
non-adaptive setting (against Exp).
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