
δ-SAM: Sharpness-Aware Minimization with Dynamic Reweighting

Anonymous ACL submission

Abstract
Deep neural networks are often overparameter-001
ized and may not easily achieve model gen-002
eralization. Adversarial training has shown003
effectiveness in improving generalization by004
regularizing the change of loss on top of adver-005
sarially chosen perturbations. The recently pro-006
posed sharpness-aware minimization (SAM)007
algorithm conducts adversarial weight pertur-008
bation, encouraging the model to converge to009
a flat minima. Unfortunately, due to increased010
computational cost, adversarial weight pertur-011
bation can only be efficiently estimated per-012
batch instead of per-instance by SAM, lead-013
ing to degraded performance. In this paper,014
we tackle this efficiency bottleneck and pro-015
pose the first instance-based weight perturba-016
tion method: sharpness-aware minimization017
with dynamic reweighting (δ-SAM). δ-SAM018
dynamically reweights perturbation within each019
batch by estimated guardedness (i.e. unguarded020
instances are up-weighted), serving as a bet-021
ter approximation to per-instance perturbation.022
Experiments on various tasks demonstrate the023
effectiveness of δ-SAM.024

1 Introduction025

Although deep neural networks (DNNs) have026

demonstrated promising results in various fields027

such as natural language understanding (Devlin028

et al., 2019) and computer vision (Krizhevsky et al.,029

2012), they are often overparameterized and can030

easily overfit the training data (Zhang et al., 2021).031

Adversarial training has been proven effective in032

improving both model generalization (Zhu et al.,033

2019; Zhang et al., 2020) and adversarial robust-034

ness (Madry et al., 2018; Zhang et al., 2019). A035

general approach for adversarial training is (1) aug-036

menting the inputs with small perturbations that037

lead to the maximum possible change of loss, and038

then (2) optimizing the model to the direction such039

that the changed amount is minimized.040

Besides perturbing inputs, a recent work of041

sharpness-aware minimization (SAM; Foret et al.042

2020) has further considered adversarially perturb- 043

ing model weights. It works by first adversari- 044

ally calculating a weight perturbation that maxi- 045

mizes the empirical risk and then minimizing the 046

empirical risk on the perturbed network. This 047

method demonstrates improved model generaliza- 048

tions across different datasets and models. Nev- 049

ertheless, as the weight perturbation is derived 050

on a large space of all model parameters, adding 051

this mechanism in training leads to a significant 052

increase in computational and memory cost. To 053

mitigate this drawback, SAM speeds up training 054

by calculating perturbations on per-batch instead 055

of per-instance. However, as per-batch perturba- 056

tion averages perturbations yielded by different in- 057

stances, it weakens the derived perturbations (com- 058

pared to per-instance perturbations) as being less 059

fine-grained, and may lead to a performance drop. 060

In this paper, we study how to bridge the per- 061

formance gap to efficiently realize the first per- 062

instance weight perturbation method. Our intuition 063

is that the performance gap from per-batch pertur- 064

bation is caused by the loss of per-instance charac- 065

teristics when averaging independent perturbations 066

and can be narrowed by prioritizing unguarded 067

instances1 in perturbation. Based on this intu- 068

ition, we propose sharpness-aware minimization 069

with dynamic reweighting (δ-SAM). We first esti- 070

mate how guarded each instance is by its change 071

of loss with a random weight perturbation. Next, 072

instead of equally perturbing all instances in the 073

batch, δ-SAM dynamically reweights the perturba- 074

tion within each batch of training instances, where 075

the perturbations on less guarded instances are up- 076

weighted. Finally, we update the perturbed network 077

on the original (unweighted) batch. Compared to 078

SAM, δ-SAM only requires one extra computa- 079

tion cost in guardedness estimation, which can be 080

1Similar to Zhang et al. (2020), we describe more cer-
tain instances that are far from decision boundaries as more
guarded, or having higher guardedness.

1

efficiently performed using two forward passes.081

We evaluate δ-SAM on finetuning pretrained lan-082

guage models (PLMs) using both BERT (Devlin083

et al., 2019) and RoBERTa (Liu et al., 2019) as084

the backbone. Experiments on language under-085

standing and unsupervised STS show that besides086

significantly outperforming base models, δ-SAM087

also consistently outperforms SAM with only 18%088

extra computational cost.089

2 Methodology090

In this section, we briefly review the principle of091

SAM and present the proposed δ-SAM algorithm.092

2.1 Sharpness-Aware Minimization (SAM)093

Literature has observed a direct correlation be-094

tween flat minima and better model generalization,095

both empirically and theoretically (Keskar et al.,096

2016; Dziugaite and Roy, 2017; Li et al., 2018;097

Jiang et al., 2019). To find a flat loss landscape,098

SAM (Foret et al., 2020) adversarially perturbs the099

neural network weights and optimizes the follow-100

ing min-max objective on a batch of size N :101

min
w

max
ϵ:∥ϵ∥2≤ρ

1

N

N∑
i=1

li(w + ϵ), (1)102

where given the network weights w, the inner max-103

imization seeks for a perturbation ϵ with L2-norm104

≤ ρ that maximizes the empirical risk, and the105

outer minimization minimizes the empirical risk of106

the perturbed network. As finding the exact solu-107

tion to ϵ is NP-hard, SAM estimates the solution ϵ∗108

to inner maximization with a single-step gradient109

descent on the empirical risk of the batch:110

l(w) =
1

N

N∑
i=1

li(w)111

ϵ∗ ≈ arg max
ϵ:∥ϵ∥2≤ρ

l(w) + ϵ⊺∇l(w)112

= ρ∇l(w)/ ∥∇l(w)∥2 .113

The outer minimization can be performed with a114

standalone optimizer (e.g., Adam; Kingma and Ba115

2015). SAM roughly doubles the computational116

cost of training the network, requiring two forward117

and two backward passes for each batch. The SAM118

algorithm is outlined in Alg. 1.119

Besides perturbing by batches, weight perturba-120

tion can also be performed on individual instances:121

122

min
w

1

N

N∑
i=1

max
ϵi:∥ϵi∥2≤ρ

li(w + ϵi), (2)123

Algorithm 1: SAM and δ-SAM
Input: network fw, training set S ≜ {(xi,yi)}|S|

i=1,
loss function l : W ×X × Y → R+, batch size N ,
neighborhood size ρ ∈ R+, optimizer h.

Output: a flat solution ŵ.
Initialize model weights w.
while not converge do

Sample a batch B = {(xj ,yj}Nj=1.
δ-SAM:
Estimate guardedness of instances in B and

reweigh B by Eq. 3 and Eq. 4.
Rescale the weighting by Eq. 5 and Eq. 6.
Compute gradient ∇lB(w) of the (reweighted)

batch’s empirical risk.
Perturb the network weights by
ϵ∗ = ρ∇lB(w)/ ∥∇lB(w)∥2.

Update w w.r.t. the empirical risk
1
N

∑N
j=1 lj(w + ϵ∗) with the optimizer h.

where ϵi is calculated by gradient descent on in- 124

dividual instances. This approach is similar to 125

many adversarial training methods in NLP, such as 126

VAT (Miyato et al., 2018) and FreeLB (Zhu et al., 127

2019), except that the perturbation is computed on 128

network weights instead of input embedding only. 129

We refer to the objectives of Eq. 1 and Eq. 2 as per- 130

batch weight perturbation and per-instance weight 131

perturbation, respectively. It is observed in the 132

same paper by Foret et al. (2020) that per-instance 133

weight perturbation produces a smaller test error 134

and is a better predictor of model generalization. 135

Despite its effectiveness, per-instance weight 136

perturbation increases the computational and mem- 137

ory cost significantly, requiring 2N forward and 138

2N backward passes for a batch of size N . Be- 139

cause per-instance weight perturbation modifies all 140

network weights, the perturbation for each indi- 141

vidual instance needs to be trained on a distinct 142

network copy. Therefore, per-instance weight per- 143

turbation can be computationally unaffordable for 144

large-scale training. 145

2.2 SAM with Dynamic Reweighting (δ-SAM) 146

In this paper, we seek to adapt SAM to adver- 147

sarially, and more efficiently, train NLP models. 148

As the per-batch weight perturbation adopted by 149

SAM weakens the adversarial training, we propose 150

a simple yet effective modification of SAM, the 151

δ-SAM (SAM with dynamic reweighting), that can 152

simulate per-instance weight perturbation without 153

requiring much additional computational cost. 154

Motivation. We motivate our approach from the 155

perspective of sharpness in SAM, which quantifies 156

the flatness of loss landscape as the increase of loss 157

2

in the neighborhood region of network weights.158

The sharpness of per-batch and per-instance weight159

perturbations are defined as:160

Rbatch = max
ϵ:∥ϵ∥2≤ρ

1

N

N∑
i=1

(li(w + ϵ)− li(w)) ,161

Rinst =
1

N

N∑
i=1

max
ϵi:∥ϵi∥2≤ρ

(li(w + ϵi)− li(w)) .162

Due to non-shared ϵi, Rinst ≥ Rbatch, suggesting163

stronger regularization effects of Rinst. To bridge164

the gap between Rbatch and Rinst, we examine the165

following reweighted sharpness measure:166

Rs = max
ϵ:∥ϵ∥2≤ρ

N∑
i=1

pi (li(w + ϵ)− li(w)) ,167

s.t.
N∑
i=1

pi = 1; pi ≥ 0, ∀i ∈ {1, ..., N},168

where pi is the instance weight. From Rs, we can169

observe that: (1) When all instance weights equal170
1
N , Rs is identical to Rbatch, and (2) Assume that171

instance j is the most unguarded instance in Rinst,172

i.e., j = argmaxi∈{1,...,N} (li(w + ϵi)− li(w)),173

if we set pj to 1 and other instances’ weights to 0,174

we will have Rs = 1
N (lj(w + ϵj)− lj(w)) ≥175

1
NRinst, which means that Rs upper bounds176
1
NRinst. Therefore, by assigning larger instance177

weights to more unguarded instances, Rs may178

approximate the per-instance weight perturbation.179

This intuition leads to the following inner maxi-180

mization problem:181

ϵs = arg max
ϵ:∥ϵ∥2≤ρ

N∑
i=1

gi (li(w + ϵ)− li(w)) ,182

where g is a measure of the unguardedness of in-183

stances. ϵs can be estimated with a single-step184

gradient descent on the reweighted batch.185

Implementation. As explained above, g should186

be positively correlated to the per-instance sharp-187

ness. In this paper, we simply set g proportional to188

maxϵi:∥ϵi∥2≤ρ (li(w + ϵi)− li(w)). As we only189

need the value of g without the weight perturba-190

tion, we estimate g by first sampling a random191

weight perturbation ϵ̂ from the normal distribution192

N (0, I), and then calculate the change of loss:193

aj = lj(w + ρ · ϵ̂/ ∥ϵ̂∥2)− lj(w), (3)194

gj = |aj |/
N∑
i=1

|aj |. (4)195

This estimation takes two forward passes. As we 196

do not need to save the intermediate states for back- 197

propagation, these forward passes are faster than 198

the normal ones. 199

Besides, we observe that some instances have 200

high unguardedness, making the reweighted pertur- 201

bation focus on very few instances while neglecting 202

others. This leads to inefficient training. Therefore, 203

we set the instances weights as a mixture of g and 204

the uniform instance weights, controlled by a hy- 205

perparameter β. Specifically, we first estimate the 206

value of Rbatch and Rs by ā = 1
N

∑N
i=1 ai and 207

as =
∑N

i=1 giai, and then rescale g by: 208

r = β · |ā|/|as|, (5) 209

g′i = (gi − 1/N) · r + 1/N. (6) 210

This rescaling makes the estimated per-batch sharp- 211

ness Rbatch and the reweighted sharpness Rs to be 212

close as Rs ≤ (β+1) ·Rbatch. We use the rescaled 213

g′i as the final instance weights in training. 214

We hereby summarize our algorithm, as outlined 215

in Alg. 1. Modifications made for δ-SAM are high- 216

lighted in blue. Given a batch B, we first dynami- 217

cally reweigh the instances, then estimate the per- 218

turbation ϵs that maximizes the reweighted loss by 219

a single-step gradient descent, and finally minimize 220

the empirical risk of the perturbed network on the 221

original (unweighted) batch. 222

3 Experiments 223

This section presents experimental evaluation of 224

δ-SAM based on GLUE benchmark tasks (Wang 225

et al., 2018) and the unsupervised Semantic Tex- 226

tual Similarity (STS) task. We use BERTBASE and 227

RoBERTaBASE/LARGE as base PLMs to evaluate our 228

method. We implement SAM based on an open- 229

source repository2. Hyperparameter settings and 230

compared methods are described in Appx. §A. 231

3.1 GLUE Results 232

We first evaluate our method on the GLUE bench- 233

mark. We use the same set of finetuning hyperpa- 234

rameters as R-Drop (Liang et al., 2021) for BERT 235

and R3F (Aghajanyan et al., 2020) for RoBERTa. 236

Following their work, we report the best develop- 237

ment result out of 5 runs of training. Results are 238

shown in Tab. 1. We observe that in average, SAM 239

improves BERT/RoBERTa by 1.06%/0.63%, re- 240

spectively, showing that SAM enhances the general- 241

ization of PLMs, being consistent with the findings 242

2https://github.com/davda54/sam

3

https://github.com/davda54/sam

Method avg. MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B
Acc-m Acc Acc Acc Acc Mcc Acc Pearson

BERTBASE 82.85 83.8 91.0 68.2 90.8 85.3 62.3 92.4 89.3
R-Drop (Liang et al., 2021) 84.06 85.5 91.4 71.1 92.0 87.3 62.6 93.0 89.6

SAM 83.91 85.0 91.6 69.3 91.7 88.2 63.1 93.0 89.4
δ-SAM 84.54 85.2 91.7 70.8 91.7 89.7 63.8 93.4 90.0

RoBERTaLARGE (Liu et al., 2019) 88.93 90.2 92.2 86.6 94.7 90.9 68.0 96.4 92.4
R-Drop (Liang et al., 2021) 89.73 90.9 92.5 88.4 95.2 91.4 70.0 96.9 92.5
FreeLB (Zhu et al., 2019) 89.78 90.6 92.6 88.1 95.0 91.4 71.1 96.7 92.7
SMART (Jiang et al., 2020) 90.08 91.1 92.4 92.0∗ 95.6 89.2∗ 70.6 96.9 92.8∗
R3F (Aghajanyan et al., 2020) - 91.1 92.4 88.5 95.3 91.6 71.2 97.0 -

SAM 89.56 91.0 92.3 88.5 95.0 91.4 69.2 96.7 92.4
δ-SAM 90.14 91.1 92.5 88.8 95.0 92.2 71.9 96.9 92.7

Table 1: Results on the development set of the GLUE benchmark. ∗ denotes results derived from the model
intermediately trained on the MNLI dataset, while others are derived by finetuning the original BERT/RoBERTa
model. The results of BERTBASE is from the reimplementation by Liang et al. (2021).

model↓, dataset→ avg. STS12 STS13 STS14 STS15 STS16 STS-B SICK-R

Mirror-BERTBASE 74.67 68.02 80.68 71.80 81.46 74.48 76.86 69.41
+ R3F 75.25 68.53 80.82 72.36 81.99 75.57 77.74 69.78
+ δ-SAM 75.14 68.48 80.66 72.15 82.05 74.45 77.56 70.61
+ R3F & δ-SAM 75.55 68.45 81.03 72.63 82.33 75.44 78.18 70.83

Mirror-RoBERTaBASE 75.40 65.08 82.02 73.40 80.33 77.81 79.14 69.74
+ R3F 76.10 66.43 82.66 74.22 81.11 78.72 79.51 70.08
+ δ-SAM 75.54 65.60 82.03 73.48 80.56 78.05 79.15 69.87
+ R3F & δ-SAM 75.92 66.28 82.50 73.93 81.09 78.45 79.29 69.91

Table 2: Unsupervised STS results (metric: Spearman’s rho).

in recent work (Bahri et al., 2021). δ-SAM further243

improves SAM by 0.63%/0.58%, respectively, and244

also achieves better or comparable results to other245

compared methods, demonstrating its effectiveness.246

In terms of individual tasks, δ-SAM sees more per-247

formance gain on smaller datasets (e.g., MRPC,248

RTE, CoLA), while the performance gain becomes249

less prominent on larger datasets. We hypothe-250

size that due to increased training steps and num-251

ber of instances in large datasets, the gap between252

per-batch and per-instance perturbation becomes253

smaller. Besides, we observe that the improved254

performance and generalization by δ-SAM is ob-255

tained at a merely little average extra computatioal256

cost of 18% to SAM. Taking RoBERTaLARGE and257

the SST2 dataset as an example, the average run-258

ning time is 285/348 min for SAM/δ-SAM, respec-259

tively, meaning that δ-SAM is only 22% slower260

than SAM. The complete running time results are261

given in Appx. §B.262

3.2 Unsupervised STS Results263

We also experiment with unsupervised sentence em-264

bedding learning on 7 STS datasets including Se-265

mEval 2012-2016 datasets (STS12-16, Agirre et al.266

2012, 2013, 2014, 2015, 2016), STS Benchmark267

(STS-B, Cer et al. 2017), and SICK-Relatedness268

(SICK-R, Marelli et al. 2014). We strictly follow269

and replicate the model and experimental setup270

of the recently proposed Mirror-BERT (Liu et al., 271

2021), and test Mirror-BERT with and without ap- 272

plying δ-SAM, R3F3, and a combination of both. 273

We report average performance under five fixed 274

random seeds for all models (incl. baselines). The 275

hyperparameters of both δ-SAM and R3F are tuned 276

on the dev set of STS-B. From the results in Tab. 2, 277

we observe consistent improvements over the base- 278

line with both adversarial perturbation methods, 279

and a combination of both approaches have a syner- 280

gistic effect, leading to the optimal performance on 281

BERT. However, on RoBERTa, R3F alone achieves 282

the best average score. 283

4 Conclusion 284

This paper presents sharpness-aware minimization 285

with dynamic reweighting (δ-SAM), which is a first 286

successful attempt in realizing an instance weight- 287

ing scheme by prioritizing unguarded instances in 288

adversarial weight perturbation. We show that per- 289

turbation calculated on reweighted batch can serve 290

as a better approximation to per-instance network 291

weight perturbation, while requires only similar 292

computational cost to per-batch perturbation. Ex- 293

periments on the GLUE benchmark demonstrate 294

the effectiveness and efficiency of δ-SAM. 295

3We re-implemented R3F for unsupervised STS and
searched its hparameter. See appendix for details.

4

References296

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,297
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.298
2020. Better fine-tuning by reducing representational299
collapse. In International Conference on Learning300
Representations.301

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel302
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei303
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada304
Mihalcea, German Rigau, Larraitz Uria, and Janyce305
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-306
tual similarity, English, Spanish and pilot on inter-307
pretability. In Proceedings of the 9th International308
Workshop on Semantic Evaluation (SemEval 2015),309
pages 252–263, Denver, Colorado. Association for310
Computational Linguistics.311

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,312
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,313
Rada Mihalcea, German Rigau, and Janyce Wiebe.314
2014. SemEval-2014 task 10: Multilingual semantic315
textual similarity. In Proceedings of the 8th Interna-316
tional Workshop on Semantic Evaluation (SemEval317
2014), pages 81–91, Dublin, Ireland. Association for318
Computational Linguistics.319

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,320
Aitor Gonzalez-Agirre, Rada Mihalcea, German321
Rigau, and Janyce Wiebe. 2016. SemEval-2016322
task 1: Semantic textual similarity, monolingual323
and cross-lingual evaluation. In Proceedings of the324
10th International Workshop on Semantic Evaluation325
(SemEval-2016), pages 497–511, San Diego, Califor-326
nia. Association for Computational Linguistics.327

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor328
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A329
pilot on semantic textual similarity. In *SEM 2012:330
The First Joint Conference on Lexical and Compu-331
tational Semantics – Volume 1: Proceedings of the332
main conference and the shared task, and Volume333
2: Proceedings of the Sixth International Workshop334
on Semantic Evaluation (SemEval 2012), pages 385–335
393, Montréal, Canada. Association for Computa-336
tional Linguistics.337

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-338
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared339
task: Semantic textual similarity. In Second Joint340
Conference on Lexical and Computational Semantics341
(*SEM), Volume 1: Proceedings of the Main Confer-342
ence and the Shared Task: Semantic Textual Similar-343
ity, pages 32–43, Atlanta, Georgia, USA. Association344
for Computational Linguistics.345

Dara Bahri, Hossein Mobahi, and Yi Tay. 2021.346
Sharpness-aware minimization improves lan-347
guage model generalization. arXiv preprint348
arXiv:2110.08529.349

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-350
Gazpio, and Lucia Specia. 2017. SemEval-2017351
task 1: Semantic textual similarity multilingual and352

crosslingual focused evaluation. In Proceedings 353
of the 11th International Workshop on Semantic 354
Evaluation (SemEval-2017), pages 1–14, Vancouver, 355
Canada. Association for Computational Linguistics. 356

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 357
Kristina Toutanova. 2019. BERT: Pre-training of 358
deep bidirectional transformers for language under- 359
standing. In Proceedings of the 2019 Conference of 360
the North American Chapter of the Association for 361
Computational Linguistics: Human Language Tech- 362
nologies, Volume 1 (Long and Short Papers), pages 363
4171–4186, Minneapolis, Minnesota. Association for 364
Computational Linguistics. 365

Gintare Karolina Dziugaite and Daniel M Roy. 2017. 366
Computing nonvacuous generalization bounds for 367
deep (stochastic) neural networks with many more 368
parameters than training data. In Conference on Un- 369
certainty in Artificial Intelligence (UAI). 370

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and 371
Behnam Neyshabur. 2020. Sharpness-aware mini- 372
mization for efficiently improving generalization. In 373
International Conference on Learning Representa- 374
tions. 375

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi- 376
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020. 377
SMART: Robust and efficient fine-tuning for pre- 378
trained natural language models through principled 379
regularized optimization. In Proceedings of the 58th 380
Annual Meeting of the Association for Computational 381
Linguistics, pages 2177–2190, Online. Association 382
for Computational Linguistics. 383

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, 384
Dilip Krishnan, and Samy Bengio. 2019. Fantas- 385
tic generalization measures and where to find them. 386
In International Conference on Learning Representa- 387
tions. 388

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No- 389
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. 390
2016. On large-batch training for deep learning: Gen- 391
eralization gap and sharp minima. In International 392
Conference on Learning Representations. 393

Diederik P Kingma and Jimmy Ba. 2015. Adam: A 394
method for stochastic optimization. In International 395
Conference on Learning Representations. 396

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin- 397
ton. 2012. Imagenet classification with deep convo- 398
lutional neural networks. Advances in neural infor- 399
mation processing systems, 25:1097–1105. 400

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and 401
Tom Goldstein. 2018. Visualizing the loss landscape 402
of neural nets. Advances in Neural Information Pro- 403
cessing Systems, 31. 404

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, 405
Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie- 406
Yan Liu. 2021. R-drop: regularized dropout for neu- 407
ral networks. In Advances in neural information 408
processing systems. 409

5

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1703.11008
https://arxiv.org/abs/1703.11008
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=SJgIPJBFvH
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5a66b9200f29ac3fa0ae244cc2a51b39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5a66b9200f29ac3fa0ae244cc2a51b39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5a66b9200f29ac3fa0ae244cc2a51b39-Abstract.html

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel410
Collier. 2021. Fast, effective, and self-supervised:411
Transforming masked language models into universal412
lexical and sentence encoders. In Proceedings of the413
2021 Conference on Empirical Methods in Natural414
Language Processing, pages 1442–1459, Online and415
Punta Cana, Dominican Republic. Association for416
Computational Linguistics.417

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-418
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,419
Luke Zettlemoyer, and Veselin Stoyanov. 2019.420
Roberta: A robustly optimized bert pretraining ap-421
proach. arXiv preprint arXiv:1907.11692.422

Aleksander Madry, Aleksandar Makelov, Ludwig423
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.424
Towards deep learning models resistant to adversarial425
attacks. In International Conference on Learning426
Representations.427

Marco Marelli, Stefano Menini, Marco Baroni, Luisa428
Bentivogli, Raffaella Bernardi, and Roberto Zam-429
parelli. 2014. A SICK cure for the evaluation of430
compositional distributional semantic models. In431
Proceedings of the Ninth International Conference432
on Language Resources and Evaluation (LREC’14),433
pages 216–223, Reykjavik, Iceland. European Lan-434
guage Resources Association (ELRA).435

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,436
and Shin Ishii. 2018. Virtual adversarial training:437
a regularization method for supervised and semi-438
supervised learning. IEEE transactions on pattern439
analysis and machine intelligence, 41(8):1979–1993.440

Alex Wang, Amanpreet Singh, Julian Michael, Felix441
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:442
A multi-task benchmark and analysis platform for nat-443
ural language understanding. In Proceedings of the444
2018 EMNLP Workshop BlackboxNLP: Analyzing445
and Interpreting Neural Networks for NLP, pages446
353–355, Brussels, Belgium. Association for Com-447
putational Linguistics.448

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin449
Recht, and Oriol Vinyals. 2021. Understanding450
deep learning (still) requires rethinking generaliza-451
tion. Communications of the ACM, 64(3):107–115.452

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing,453
Laurent El Ghaoui, and Michael Jordan. 2019. Theo-454
retically principled trade-off between robustness and455
accuracy. In International Conference on Machine456
Learning, pages 7472–7482. PMLR.457

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han,458
Masashi Sugiyama, and Mohan Kankanhalli. 2020.459
Geometry-aware instance-reweighted adversarial460
training. In International Conference on Learning461
Representations.462

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-463
stein, and Jingjing Liu. 2019. Freelb: Enhanced ad-464
versarial training for natural language understanding.465

In International Conference on Learning Representa- 466
tions. 467

Appendices 468

A More Experiments Settings 469

Compared methods. We compare SAM and δ- 470

SAM to the following methods, which were all pro- 471

posed for improving the generalization of PLMs: 472

(1) R-Drop (Liang et al., 2021) enforces the pre- 473

diction of the same instances augmented by dif- 474

ferent dropout masks to be similar with a consis- 475

tency term (KL divergence for classification and 476

mean squared loss for regression), which leads to 477

improved performance on various NLP and CV 478

tasks. (2) R3F (Aghajanyan et al., 2020) also uses 479

a consistency term to make the prediction of the 480

same instance to be similar. Besides augmenting 481

the instances by different dropout masks, it fur- 482

ther adds random noise to the token embedding in 483

PLMs. (3) FreeLB (Zhu et al., 2019) adversari- 484

ally perturbs the token embedding using a multi- 485

step projected gradient descent (PGD; Madry et al. 486

2018) to maximize the empirical risk and regular- 487

izes the increase of the empirical risk to be small. 488

(4) SMART (Jiang et al., 2020) is a framework 489

that consists of multiple techniques for improving 490

model generalization. In terms of adversarial train- 491

ing, it adversarially perturbs the input embedding 492

with PGD to maximize the change of loss, defined 493

as the KL divergence for classification and mean 494

squared loss for regression. It then uses a consis- 495

tency term to regularize the change of loss to be 496

small. 497

Hyperparameters. For task-specific hyperparam- 498

eters including batch sizes, optimizers, learning 499

rates, training steps, weight decay, dropout rates, 500

and learning rate scheduling, we directly adopt 501

the values from Liang et al. (2021) for BERT 502

and values from Aghajanyan et al. (2020) for 503

RoBERTa on the GLUE benchmark, and we 504

adopt the original values from Liu et al. (2021) 505

on unsupervised STS tasks.4 For SAM and 506

δ-SAM, we search ρ in {0.01, 0.02, 0.05} and 507

β in {3, 5, 10, 20, 50, 70}. The hyperprameter 508

values used on the GLUE benchmark are listed 509

in Tab. 3. For unsupervised STS experiments, we 510

use ρ = 0.05, α = 3 for BERTBASE and ρ = 0.01, 511

4https://github.com/cambridgeltl/
mirror-bert

6

https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/pdf?id=BygzbyHFvB
https://openreview.net/pdf?id=BygzbyHFvB
https://openreview.net/pdf?id=BygzbyHFvB
https://github.com/cambridgeltl/mirror-bert
https://github.com/cambridgeltl/mirror-bert

Hyperparameter MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B

BERTBASE

ρ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01
β 3 3 70 3 10 10 3 10

RoBERTaLARGE

ρ 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.01
β 3 3 5 3 5 20 3 10

Table 3: Hyperparameters for SAM and δ-SAM on the GLUE benchmark.

Running time MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B

BERTBASE

SAM 1240 818 15 349 12 25 118 26
δ-SAM 1436 1075 16 415 15 28 130 32

RoBERTaLARGE

SAM 1056 2591 33 1402 30 38 285 42
δ-SAM 1192 2831 41 1425 39 45 348 55

Table 4: Average running time (in min) for SAM and δ-SAM on the GLUE benchmark.

α = 5 for RoBERTaBASE. For R3F on unsuper-512

vised STS, we searched its uniform noise range513

in {1e-5,1e-4,1e-3,1e-2,5e-2,1e-1}.514

We use 5e-2 and 1e-3 for BERTBASE and515

RoBERTaBASE respectively.516

B Running Time517

We run experiments with Intel Xeon 5220 and RTX518

2080Ti. The average running times on the GLUE519

benchmark are shown in 4. We observe that in av-520

erage, δ-SAM increases the running time of SAM521

roughly by 18%, showing its efficiency in approx-522

imating per-instance perturbation without signifi-523

cantly adding computational overhead to per-batch524

perturbation.525

7

