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Abstract

Deep neural networks are often overparameter-
ized and may not easily achieve model gen-
eralization. Adversarial training has shown
effectiveness in improving generalization by
regularizing the change of loss on top of adver-
sarially chosen perturbations. The recently pro-
posed sharpness-aware minimization (SAM)
algorithm conducts adversarial weight pertur-
bation, encouraging the model to converge to
a flat minima. Unfortunately, due to increased
computational cost, adversarial weight pertur-
bation can only be efficiently estimated per-
batch instead of per-instance by SAM, lead-
ing to degraded performance. In this paper,
we tackle this efficiency bottleneck and pro-
pose the first instance-based weight perturba-
tion method: sharpness-aware minimization
with dynamic reweighting (§-SAM). §-SAM
dynamically reweights perturbation within each
batch by estimated guardedness (i.e. unguarded
instances are up-weighted), serving as a bet-
ter approximation to per-instance perturbation.
Experiments on various tasks demonstrate the
effectiveness of 6-SAM.

1 Introduction

Although deep neural networks (DNNs) have
demonstrated promising results in various fields
such as natural language understanding (Devlin
etal., 2019) and computer vision (Krizhevsky et al.,
2012), they are often overparameterized and can
easily overfit the training data (Zhang et al., 2021).
Adversarial training has been proven effective in
improving both model generalization (Zhu et al.,
2019; Zhang et al., 2020) and adversarial robust-
ness (Madry et al., 2018; Zhang et al., 2019). A
general approach for adversarial training is (1) aug-
menting the inputs with small perturbations that
lead to the maximum possible change of loss, and
then (2) optimizing the model to the direction such
that the changed amount is minimized.

Besides perturbing inputs, a recent work of
sharpness-aware minimization (SAM; Foret et al.

2020) has further considered adversarially perturb-
ing model weights. It works by first adversari-
ally calculating a weight perturbation that maxi-
mizes the empirical risk and then minimizing the
empirical risk on the perturbed network. This
method demonstrates improved model generaliza-
tions across different datasets and models. Nev-
ertheless, as the weight perturbation is derived
on a large space of all model parameters, adding
this mechanism in training leads to a significant
increase in computational and memory cost. To
mitigate this drawback, SAM speeds up training
by calculating perturbations on per-batch instead
of per-instance. However, as per-batch perturba-
tion averages perturbations yielded by different in-
stances, it weakens the derived perturbations (com-
pared to per-instance perturbations) as being less
fine-grained, and may lead to a performance drop.

In this paper, we study how to bridge the per-
formance gap to efficiently realize the first per-
instance weight perturbation method. Our intuition
is that the performance gap from per-batch pertur-
bation is caused by the loss of per-instance charac-
teristics when averaging independent perturbations
and can be narrowed by prioritizing unguarded
instances! in perturbation. Based on this intu-
ition, we propose sharpness-aware minimization
with dynamic reweighting (6-SAM). We first esti-
mate how guarded each instance is by its change
of loss with a random weight perturbation. Next,
instead of equally perturbing all instances in the
batch, 6-SAM dynamically reweights the perturba-
tion within each batch of training instances, where
the perturbations on less guarded instances are up-
weighted. Finally, we update the perturbed network
on the original (unweighted) batch. Compared to
SAM, 6-SAM only requires one extra computa-
tion cost in guardedness estimation, which can be

'Similar to Zhang et al. (2020), we describe more cer-
tain instances that are far from decision boundaries as more
guarded, or having higher guardedness.



efficiently performed using two forward passes.

We evaluate 6-SAM on finetuning pretrained lan-
guage models (PLMs) using both BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) as
the backbone. Experiments on language under-
standing and unsupervised STS show that besides
significantly outperforming base models, §-SAM
also consistently outperforms SAM with only 18%
extra computational cost.

2 Methodology

In this section, we briefly review the principle of
SAM and present the proposed 6-SAM algorithm.

2.1 Sharpness-Aware Minimization (SAM)

Literature has observed a direct correlation be-
tween flat minima and better model generalization,
both empirically and theoretically (Keskar et al.,
2016; Dziugaite and Roy, 2017; Li et al., 2018;
Jiang et al., 2019). To find a flat loss landscape,
SAM (Foret et al., 2020) adversarially perturbs the
neural network weights and optimizes the follow-
ing min-max objective on a batch of size NV:
| N
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where given the network weights w, the inner max-
imization seeks for a perturbation € with Ly-norm
< p that maximizes the empirical risk, and the
outer minimization minimizes the empirical risk of
the perturbed network. As finding the exact solu-
tion to € is NP-hard, SAM estimates the solution €*
to inner maximization with a single-step gradient
descent on the empirical risk of the batch:

1 N
l(w) = NZzi(w)
=1
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= pVi(w)/ [Vi(w)], -

The outer minimization can be performed with a
standalone optimizer (e.g., Adam; Kingma and Ba
2015). SAM roughly doubles the computational
cost of training the network, requiring two forward
and two backward passes for each batch. The SAM
algorithm is outlined in Alg. 1.

Besides perturbing by batches, weight perturba-
tion can also be performed on individual instances:

1 N

min — max

li(w + €), (2)
w N — eilleill<p ( )

Algorithm 1: SAM and §-SAM
|S|

Input: network f, training set S = {(z:, y:) }i2)
loss function [ : W x X x Y — R4, batch size NV,
neighborhood size p € R, optimizer h.

Output: a flat solution w.

Initialize model weights w.

while not converge do

Sample a batch B = {(z;, y;}_1.

0-SAM:

Estimate guardedness of instances in 3 and
reweigh B by Eq. 3 and Eq. 4.

Rescale the weighting by Eq. 5 and Eq. 6.

Compute gradient Vig(w) of the (reweighted)
batch’s empirical risk.

Perturb the network weights by
e = pVis(w)/ |[Vis(w)],.

Update w w.r.t. the empirical risk
% 200 i (w + €) with the optimizer h.

where €; is calculated by gradient descent on in-
dividual instances. This approach is similar to
many adversarial training methods in NLP, such as
VAT (Miyato et al., 2018) and FreeLLB (Zhu et al.,
2019), except that the perturbation is computed on
network weights instead of input embedding only.
We refer to the objectives of Eq. 1 and Eq. 2 as per-
batch weight perturbation and per-instance weight
perturbation, respectively. It is observed in the
same paper by Foret et al. (2020) that per-instance
weight perturbation produces a smaller test error
and is a better predictor of model generalization.

Despite its effectiveness, per-instance weight
perturbation increases the computational and mem-
ory cost significantly, requiring 2N forward and
2N backward passes for a batch of size N. Be-
cause per-instance weight perturbation modifies all
network weights, the perturbation for each indi-
vidual instance needs to be trained on a distinct
network copy. Therefore, per-instance weight per-
turbation can be computationally unaffordable for
large-scale training.

2.2 SAM with Dynamic Reweighting (6-SAM)

In this paper, we seek to adapt SAM to adver-
sarially, and more efficiently, train NLP models.
As the per-batch weight perturbation adopted by
SAM weakens the adversarial training, we propose
a simple yet effective modification of SAM, the
0-SAM (SAM with dynamic reweighting), that can
simulate per-instance weight perturbation without
requiring much additional computational cost.

Motivation. We motivate our approach from the
perspective of sharpness in SAM, which quantifies
the flatness of loss landscape as the increase of loss



in the neighborhood region of network weights.
The sharpness of per-batch and per-instance weight
perturbations are defined as:
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€) — li(w)).
Due to non-shared €;, Rinst = Roatch, Suggesting
stronger regularization effects of ‘Riy. To bridge
the gap between Rpaeen and Ringt, We examine the
following reweighted sharpness measure:
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where p; is the instance weight. From R, we can
observe that: (1) When all instance weights equal
> Rs is identical to Rpach, and (2) Assume that
instance j is the most unguarded instance in Ripg,
ie, j = argmax;eqy,. Ny (lLi(w + &) — Li(w)),
if we set p; to 1 and other instances’ weights to 0,
we will have Ry, = + (;(w +€;) — j(w)) >
%Rimt, which means that R upper bounds
%Rimt. Therefore, by assigning larger instance
weights to more unguarded instances, Rs may
approximate the per-instance weight perturbation.
This intuition leads to the following inner maxi-
mization problem:

max
”db<P

€s — arg i(w+€)

Z 9
where g is a measure of the unguardedness of in-
stances. €z can be estimated with a single-step
gradient descent on the reweighted batch.

—li(w)),

Implementation. As explained above, g should
be positively correlated to the per-instance sharp-
ness. In this paper, we simply set g proportional to
MaXe,:| ¢, <p (li(w + €) — li(w)). As we only
need the value of g without the weight perturba-
tion, we estimate g by first sampling a random
weight perturbation € from the normal distribution
N (0, I), and then calculate the change of loss:

aj =lj(w+p-€/||€]ly) —lj(w), (3)
N

g; = la;l/ > laj- (4)
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This estimation takes two forward passes. As we
do not need to save the intermediate states for back-
propagation, these forward passes are faster than
the normal ones.

Besides, we observe that some instances have
high unguardedness, making the reweighted pertur-
bation focus on very few instances while neglecting
others. This leads to inefficient training. Therefore,
we set the instances weights as a mixture of g and
the uniform instance weights, controlled by a hy-
perparameter 5. Specifically, we first estimate the
value of Rpach and Rs by a = % Zf\; 1 a; and
ag = ZZ]\; 1 9ia;, and then rescale g by:

=3 al/lasl, Q)
9i =(9i—1/N)-r+1/N. (©6)

This rescaling makes the estimated per-batch sharp-
ness Rpatch and the reweighted sharpness R s to be
close as Ry < (54 1) - Rpatch- We use the rescaled
g, as the final instance weights in training.

We hereby summarize our algorithm, as outlined
in Alg. 1. Modifications made for §-SAM are high-
lighted in blue. Given a batch B, we first dynami-
cally reweigh the instances, then estimate the per-
turbation €, that maximizes the reweighted loss by
a single-step gradient descent, and finally minimize
the empirical risk of the perturbed network on the
original (unweighted) batch.

3 Experiments

This section presents experimental evaluation of
0-SAM based on GLUE benchmark tasks (Wang
et al., 2018) and the unsupervised Semantic Tex-
tual Similarity (STS) task. We use BERT g, and
ROBERTag sk /1 arce @8 base PLMs to evaluate our
method. We implement SAM based on an open-
source repository?. Hyperparameter settings and
compared methods are described in Appx. §A.

3.1 GLUE Results

We first evaluate our method on the GLUE bench-
mark. We use the same set of finetuning hyperpa-
rameters as R-Drop (Liang et al., 2021) for BERT
and R3F (Aghajanyan et al., 2020) for RoBERTa.
Following their work, we report the best develop-
ment result out of 5 runs of training. Results are
shown in Tab. 1. We observe that in average, SAM
improves BERT/RoBERTa by 1.06%/0.63%, re-
spectively, showing that SAM enhances the general-
ization of PLMs, being consistent with the findings

https://github.com/davda54/sam
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Method avg. MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B
Acc-m Acc  Acc  Acc Acc Mcc Acc  Pearson
BERTgAse 8285 838 91.0 682 90.8 85.3 623 924 89.3
R-Drop (Liang et al., 2021) 84.06 855 914 711 920 87.3 62.6 93.0 89.6
SAM 8391 850 91.6 693 917 88.2 63.1 93.0 89.4
0-SAM 8454 852 917 708 917 89.7 63.8 934 90.0
RoBERTa, zrge (Liu et al., 2019) 8893 902 922 86.6 94.7 90.9 68.0 964 92.4
R-Drop (Liang et al., 2021) 89.73 909 925 884 952 914 70.0  96.9 92.5
FreeLB (Zhu et al., 2019) 89.78 90.6 92.6 88.1 95.0 914 71.1 96.7 92.7
SMART (Jiang et al., 2020) 90.08 91.1 924  92.0° 95.6 89.2* 70.6 969 92.8*
R3F (Aghajanyan et al., 2020) - 91.1 924 885 953 91.6 712 97.0 -
SAM 89.56 91.0 923 885 950 914 69.2  96.7 92.4
J-SAM 90.14 91.1 92.5 888 950 92.2 719 969 92.7

Table 1: Results on the development set of the GLUE benchmark. * denotes results derived from the model
intermediately trained on the MNLI dataset, while others are derived by finetuning the original BERT/RoBERTa
model. The results of BERT,g is from the reimplementation by Liang et al. (2021).

model|, dataset— avg. STS12 STS13 STS14 STS15 STS16 STS-B SICK-R
Mirror-BERT i 74.67 68.02 80.68 71.80 8146 7448 76.86 69.41
+R3F 7525 6853 80.82 7236 8199 75.57 7174 69.78
+ 0-SAM 75.14 6848 80.66 72.15 82.05 7445 7756 70.61
+ R3F & 0-SAM 7555 6845 81.03 72.63 8233 7544 78.18 70.83
Mirror-RoBERTag,s; 7540 65.08  82.02 73.40 8033 77.81 79.14 69.74
+ R3F 76.10 66.43 82.66 74.22 81.11 7872 79.51 70.08
+0-SAM 7554 6560 82.03 7348 80.56 78.05 79.15 69.87
+ R3F & 0-SAM 7592 66.28 8250 7393 81.09 7845 79.29 69.91

Table 2: Unsupervised STS results (metric: Spearman’s rho).

in recent work (Bahri et al., 2021). 5-SAM further
improves SAM by 0.63%/0.58%, respectively, and
also achieves better or comparable results to other
compared methods, demonstrating its effectiveness.
In terms of individual tasks, -SAM sees more per-
formance gain on smaller datasets (e.g., MRPC,
RTE, CoLA), while the performance gain becomes
less prominent on larger datasets. We hypothe-
size that due to increased training steps and num-
ber of instances in large datasets, the gap between
per-batch and per-instance perturbation becomes
smaller. Besides, we observe that the improved
performance and generalization by §-SAM is ob-
tained at a merely little average extra computatioal
cost of 18% to SAM. Taking RoOBERTa, srsr and
the SST2 dataset as an example, the average run-
ning time is 285/348 min for SAM/6-SAM, respec-
tively, meaning that 5-SAM is only 22% slower
than SAM. The complete running time results are
given in Appx. §B.

3.2 Unsupervised STS Results

We also experiment with unsupervised sentence em-
bedding learning on 7 STS datasets including Se-
mEval 2012-2016 datasets (STS12-16, Agirre et al.
2012, 2013, 2014, 2015, 2016), STS Benchmark
(STS-B, Cer et al. 2017), and SICK-Relatedness
(SICK-R, Marelli et al. 2014). We strictly follow
and replicate the model and experimental setup

of the recently proposed Mirror-BERT (Liu et al.,
2021), and test Mirror-BERT with and without ap-
plying 6-SAM, R3F?, and a combination of both.
We report average performance under five fixed
random seeds for all models (incl. baselines). The
hyperparameters of both -SAM and R3F are tuned
on the dev set of STS-B. From the results in Tab. 2,
we observe consistent improvements over the base-
line with both adversarial perturbation methods,
and a combination of both approaches have a syner-
gistic effect, leading to the optimal performance on
BERT. However, on RoOBERTa, R3F alone achieves
the best average score.

4 Conclusion

This paper presents sharpness-aware minimization
with dynamic reweighting (5-SAM), which is a first
successful attempt in realizing an instance weight-
ing scheme by prioritizing unguarded instances in
adversarial weight perturbation. We show that per-
turbation calculated on reweighted batch can serve
as a better approximation to per-instance network
weight perturbation, while requires only similar
computational cost to per-batch perturbation. Ex-
periments on the GLUE benchmark demonstrate
the effectiveness and efficiency of §-SAM.

*We re-implemented R3F for unsupervised STS and
searched its hparameter. See appendix for details.
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Appendices

A More Experiments Settings

Compared methods. We compare SAM and 0-
SAM to the following methods, which were all pro-
posed for improving the generalization of PLMs:
(1) R-Drop (Liang et al., 2021) enforces the pre-
diction of the same instances augmented by dif-
ferent dropout masks to be similar with a consis-
tency term (KL divergence for classification and
mean squared loss for regression), which leads to
improved performance on various NLP and CV
tasks. (2) R3F (Aghajanyan et al., 2020) also uses
a consistency term to make the prediction of the
same instance to be similar. Besides augmenting
the instances by different dropout masks, it fur-
ther adds random noise to the token embedding in
PLMs. (3) FreeLLB (Zhu et al., 2019) adversari-
ally perturbs the token embedding using a multi-
step projected gradient descent (PGD; Madry et al.
2018) to maximize the empirical risk and regular-
izes the increase of the empirical risk to be small.
(4) SMART (Jiang et al., 2020) is a framework
that consists of multiple techniques for improving
model generalization. In terms of adversarial train-
ing, it adversarially perturbs the input embedding
with PGD to maximize the change of loss, defined
as the KL divergence for classification and mean
squared loss for regression. It then uses a consis-
tency term to regularize the change of loss to be
small.

Hyperparameters. For task-specific hyperparam-
eters including batch sizes, optimizers, learning
rates, training steps, weight decay, dropout rates,
and learning rate scheduling, we directly adopt
the values from Liang et al. (2021) for BERT
and values from Aghajanyan et al. (2020) for
RoBERTa on the GLUE benchmark, and we
adopt the original values from Liu et al. (2021)
on unsupervised STS tasks.* For SAM and
0-SAM, we search p in {0.01,0.02,0.05} and
B in {3,5,10,20,50,70}. The hyperprameter
values used on the GLUE benchmark are listed
in Tab. 3. For unsupervised STS experiments, we
use p = 0.05, @ = 3 for BERT},g¢ and p = 0.01,

*https://github.com/cambridgeltl/
mirror-bert


https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://aclanthology.org/2021.emnlp-main.109
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
https://dl.acm.org/doi/10.1145/3446776
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/forum?id=iAX0l6Cz8ub
https://openreview.net/pdf?id=BygzbyHFvB
https://openreview.net/pdf?id=BygzbyHFvB
https://openreview.net/pdf?id=BygzbyHFvB
https://github.com/cambridgeltl/mirror-bert
https://github.com/cambridgeltl/mirror-bert

Hyperparameter MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B
BERTsase

P 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01
B 3 3 70 3 10 10 3 10
ROBERTa, zrge

p 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.01
B8 3 3 5 3 5 20 3 10

Table 3: Hyperparameters for SAM and §-SAM on the GLUE benchmark.

Running time MNLI QQP RTE QNLI MRPC CoLA SST2 STS-B
BERTgs5

SAM 1240 818 15 349 12 25 118 26
0-SAM 1436 1075 16 415 15 28 130 32
RoBERTa; orge

SAM 1056 2591 33 1402 30 38 285 42
0-SAM 1192 2831 41 1425 39 45 348 55

Table 4: Average running time (in min) for SAM and §-SAM on the GLUE benchmark.

a = 5 for ROBERTag,sg. For R3F on unsuper-
vised STS, we searched its uniform noise range
in {le-5,1le-4,1e-3,1e-2,5e-2,1le-1}.
We use 5e-2 and 1le-3 for BERTj,g: and
RoBERTa;, s respectively.

B Running Time

We run experiments with Intel Xeon 5220 and RTX
2080Ti. The average running times on the GLUE
benchmark are shown in 4. We observe that in av-
erage, -SAM increases the running time of SAM
roughly by 18%, showing its efficiency in approx-
imating per-instance perturbation without signifi-
cantly adding computational overhead to per-batch
perturbation.



