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Abstract

Medical time series analysis is challenging due to data sparsity, noise, and highly
variable recording lengths. Prior work has shown that stochastic sparse sampling
effectively handles variable-length signals, while retrieval-augmented approaches
improve explainability and robustness to noise and weak temporal correlations. In
this study, we generalize the stochastic sparse sampling framework for retrieval-
informed classification. Specifically, we weight window predictions by within-
channel similarity and aggregate them in probability space, yielding convex series-
level scores and an explicit evidence trail for explainability. Our method achieves
competitive iEEG classification performance and provides practitioners with greater
transparency and explainability. We evaluate our method in iEEG recordings
collected in four medical centers, demonstrating its potential for reliable and
explainable clinical variable-length time series classification.

1 Introduction

Artificial intelligence (Al) is increasingly embedded across clinical and translational workflows,
with reported benefits for diagnostics, treatment planning, monitoring, and population health [[1-3]].
Nevertheless, routine deployment remains uneven. Two persistent barriers are the heterogeneity of
clinical data and the need for transparent, clinician-oriented explanations [4].

One domain where the challenges are most keenly felt is medical-time series classification. Heart
rate, glucose, and electrophysiology are examples of physiological signals that are both sparse and
prone to noise, with their durations differing significantly between persons and events [} 6]. Most of
the time series classification (TSC) research, however, remains centered on approaches that operate
with fixed-length sequences only [7H9].

Recently, Mootoo et al. [9] proposed the Stochastic Sparse Sampling (SSS) to address variable-length
time series classification (VTSC). SSS samples fixed-length windows from long recordings, computes
local predictions using a backbone model, and aggregates these to obtain a series-level decision
[O. While effective and computationally tractable, SSS aggregates window predictions uniformly,
thereby treating all sampled segments as equally informative; its explainability relies primarily on
visualizations of local scores. This assumption might especially be problematic in real-world time
series, however, where non-stationary, irregular patterns may occur infrequently and lack strong
temporal correlations, making generalization difficult [10} [11]].

Retrieval-augmented methods address this by selectively leveraging similar past instances rather than
memorizing all patterns. In time series, retrieval has also been explored across entities, where simi-
larities guide aggregation for forecasting [12}[13]]. Most recently, Retrieval-Augmented Forecasting
of Time series (RAFT) [[14] introduces a similarity-based retrieval mechanism for forecasting: it
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Figure 1: RAXSS workflow: (a) end-to-end pipeline and (b) retrieval-weighted explainable module.

retrieves past patches most similar to the current input and leverages their future continuations to
improve predictions, with notable gains for rare patterns and weak temporal correlations

[14]. However, RAFT is tailored to forecasting and does not directly address TSC. Motivated by these
advances, we propose RAxSS: Retrieval-Augmented Sparse Sampling for Explainable Physiological
Time Series Classification, a variable-length time series classification (VTSC) framework that
integrates a retrieval-informed relevance computation into the SSS pipeline. Using a medical usecase,
we tackle the Seizure Onset Zone (SOZ) localization problem. More details about the problem can be
found in the Appendix

RAXSS retains SSS’s stochastic, length-proportional sampling and replaces uniform averaging
with a similarity-weighted convex mix of window predictions. Using pearson or cosine similarity
(as in Han et al. [[14])), each window’s top-m within-series neighbors define a support score that
is softmax-normalized into aggregation weights. This design amplifies informative segments and
downweights noisy ones. It also enables drill-down explanations: the series score is an additive sum
of window contributions, each justified by a within-channel retrieval leaderboard.

Our contributions. (i) We provide a methodological advance for variable-length time-series
classification by introducing a retrieval-weighted aggregation mechanism that ranks and weights
windows within each series, thereby improving uniform averaging while preserving the efficiency
of stochastic sampling. (ii) We align explanation with aggregation through a weighting scheme
that produces quantitative, window-level attributions. These extend beyond static heatmaps and
enable principled drill-down from series-level predictions to segment-level contributions. (iii) We
demonstrate robustness in challenging regimes (the settings where retrieval excels for time-series
modeling [14]), while retaining compatibility with diverse backbones, including transformer variants.
RAXSS adapts retrieval mechanisms developed for forecasting the task of variable-length classifica-
tion, combining stochastic coverage with similarity-guided prioritization to establish a framework
that is selective, explainable, and well-suited to the demands of clinical time-series analysis.

2 Method

2.1 Datasets

Epilepsy iIEEG Multicenter Dataset We use the Epilepsy iEEG Multicenter Dataset, comprising of
intracranial EEG (iEEG) recordings with seizure onset zone (SOZ) from four centers: Johns Hopkins
Hospital (JHH), the National Institutes of Health (NIH), University of Maryland Medical Center
(UMMC), and University of Miami Jackson Memorial Hospital (UMH). Following the evaluation
practice of [9]], we report F1 score, area under the curve (AUC), and accuracy as primary metrics.
Summary statistics and additional dataset and data-preprocessing details are provided in Appendix

B.1

2.2 Framework overview

RAXSS builds on SSS to handle variable-length medical time series by unifying sampling, retrieval,
and aggregation in a single loop. As outlined in Fig.|lajand implemented in Alg. (1} long, noisy
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recordings are segmented into fixed-length windows, sampled length-proportionally so that the
probability of drawing from series i is p; < T;/ > ; T, and scored by a backbone fo. In parallel
(see Fig.[Ib), a within-series retrieval computes Pearson or cosine similarities, forms for each query
window the top-m nonidentical neighbors (which may temporally overlap due to sliding extraction),
and summarizes their support. The retrieval-aware aggregator (Alg.[2) then converts these supports
into softmax weights across windows and produces a convex series-level prediction by re-weighting
and aggregating window-level outputs. Fig. [Lb|further illustrates the explanatory consequence: each
influential window is accompanied by a ranked, possibly overlapping but nonidentical set of neighbors
whose weights quantify why it matters. The result maintains SSS efficiency while incorporating
resilient, retrieval-guided weighting and a clear evidence path from windows to the final prediction.

2.3 Enhancing explainability with RAXSS

A consequence of applying RAXSS is explainability, where we go beyond just localization but can
also access the attributions. In more detail, for series ¢ with window index set K;, the base model
outputs window posteriors p, = softmax(z;) € A1 k € K.

For each k € K, retrieve the m most similar nonidentical windows from the same series under
¢ € {Pearson, Cosine}:

. ) B 1 .
s = ¢(we,wy), jENu, |Np|=m. 5 = - > 50 (1
JENk

Subsequently, we define window influence weights via a temperatured softmax over {5; }+ck,:

g

exp(8x/T) €[0,1], Z o =1. 2

B ZteKi exp(5;/7) hek,

Aggregation in probability space. Series-level probabilities are a convex combination of window
posteriors (proof in Appendix [A.T):

PP =D akpi. 3)

keK;

From "'where?" to "why?'" Explainability should go beyond localization and provide reasons for
why specific regions are trusted. In Fig.[Tb] the left panel shows the window-probability heatmaps of
Mootoo et al. [9], which indicate where the model is confident. RAXSS adds attributions to answer
the why: for each influential window k, we expose the evidence used to compute its weight. oy, by
reporting (i) its summary support 5y, the mean similarity to its top-m within-series neighbors, and (ii)
a ranked neighbor leaderboard {(w,(f ), s,(j )) : j € Ni} with timestamps. These quantities explain
why window k received a high contribution Ay, py, . to the final series-level probability. Since

L’("_v = La(i—a) >0, )

) Skﬂ) mr
increasing any neighbor similarity strictly increases ay, (holding all other 5, fixed), making the
leaderboard a faithful explanation of why wy, was weighted highly. For a selected channel we overlay:
(a) the raw signal, (b) the window probability heatmap (localization), and (c) for the top-m supporting
windows and their support vy, ; values (attribution). See Fig.[Tb|for an example visualization of our
proposed explainability framework.

3 Experiments & Results

Results On multicenter iEEG, RAXSS is competitive with strong baselines (Table[T). The cosine
variant achieves the best AUC (0.8046 £ 0.0346), edging the reproduced SSS (0.8035 £ 0.0686)
and outperforming non-SSS baselines (e.g., PatchTST 0.7852). The Pearson variant yields higher
F1 than cosine (0.7275 £ 0.0489 vs. 0.6967 4 0.0791) and strong accuracy (70.51 £ 3.59), close
to SSS (71.14 &+ 6.31). Overall, cosine favors AUC, while Pearson offers a better Fl/accuracy
trade-off, letting practitioners pick the similarity to prioritize discrimination or balanced detection,
while retaining built-in explainability. The training details are provided in Appendix
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Table 1: SOZ localization on All centers. F1, AUC, and Accuracy are averaged over 5 seeds. For our
runs (RAxSS variants and SSS (reproduction)), we used the same seed set and backbone code; the line
SSS (paper) is the value reported by the original authors. Boldface values with * and T denote the
best and second-best results per column, respectively.

Model F1 AUC Acc.(%)
RAXSS (cosine) 0.6967 £0.0791  0.8046" + 0.0346  69.76 + 5.25
RAXSS (pearson) 0.7275" £0.0489  0.7980 + 0.0537  70.517 +3.59
SSS (reproduction) 0.7437* £ 0.0537 0.8035" = 0.0686 71.14* + 6.31
SSS (Mootoo et al. [9]) 0.7629 0.7999 72.35
PatchTST (Nie et al. [15])) 0.7097 0.7852 66.83
TimesNet (Wu et al. [[16]) 0.6897 0.7174 65.98
ModernTCN (Luo and Wang [[17]) 0.6938 0.7305 68.42
DLinear (Zeng et al. [[L8])) 0.6916 0.7044 68.41
ROCKET (Dempster et al. [19]) 0.6847 0.7481 69.27
Mamba (Gu and Dao [20]]) 0.6452 0.7134 64.39
GRUs (Bahdanau et al. [21]]) 0.6948 0.7340 65.85
LSTM ([22]) 0.6709 0.7144 65.43

4 Discussion & Conclusion

In this paper, our primary goal was to provide a more clinician-oriented, steerable and explainable
framework for VTSC. To achieve this, we: (i) coupled stochastic sparse sampling with within-
recording retrieval and probability-space aggregation; (ii) made explanations by exposing additive
window contributions and an evidence leaderboard for influential windows; and (iii) preserved
practicality via a model-agnostic, privacy-friendly design with simple knobs for steering. Results
showed robust, competitive performance across centers, all while maintaining more transparency and
explainability. RAXSS consistently ranks among the top approaches across metrics and sites, and we
expect routine calibration and hyperparameter tuning to further boost absolute performance.

The window-based design already gives granular localizations by overlaying window-level proba-
bilities (the where). To explain the why, we present, for each influential window, a ranked list of
its (top-m) within-recording neighbors (nonidentical, overlap allowed) with their similarity scores
and resulting weights. This is justified because a) similarities determine the window’s weight via
mean support and b) the cross-window softmax is strictly increasing in that support. Thus the same
evidence that raises a window’s weight justifies its contribution, yielding a faithfulness-oriented
"why", on top of "where". Despite this transparency, finer-grained, mechanistic explanations will
require probing internal representations and decision pathways.

In clinical use, inference is typically per recording, so length-proportional sampling offers no
test-time benefit. Retrieval remains pivotal: it reweights window predictions by agreement with
within-recording neighbors, improving robustness to noisy and idiosyncratic windows and providing
inspectable evidence via the neighbor leaderboard. Over this medical setting, we couple the retrieval
concept into time series classification (prior work emphasized forecasting [14]]) enabling domain-
aligned control to match clinical priorities.

Future work. Our current implementation performs retrieval and aggregation strictly within the
same channel/recording. This choice (i) avoids dependence on cross-subject/center labels, (ii)
reduces privacy exposure by not querying external data, and (iii) keeps the approach generic for
other clinical time-series tasks. A natural extension is pattern-level retrieval: indexing canonical
events (e.g., seizure onsets) and retrieving neighbors from the same subject or a curated, cross-center
repository. While this may strengthen the quality of evidence and enable case-based reasoning, it
requires additional curation/metadata and stronger governance (privacy and access control). Beyond
scope, two technical directions are promising: learning the similarity/temperature parameters from
data, and conducting comprehensive faithfulness stress tests (e.g., deletion/insertion tests, retrieval
randomization, and counterfactual probes) to further validate the explanations.
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A Technical Appendices and Supplementary Material

A.1 Proposition (convexity of the series-level probabilities).

Let K; be the set of windows for series 2. Assume each window posterior p; € AC~1 (entries
nonnegative and summing to 1). Define

_ exp(su/7)
e, exp(5,/7)’

Then p(¥) = > kex, Ok Dk € A€~ e, itis a convex combination of {py}.

7> 0.

(673

Proof. Since exp(-) > 0, we have ay, > 0 for all k, and by construction } -,z ax = 1. For each
class ¢,

13'(3") = Zakpk’c > 0 because g, pi,c > 0.
k

c
Ziﬁgi) = Zzakpk,c = Zak(ZPk,c) = Zak -1=1.
c=1 c k k c k

Thus $(*) has nonnegative entries summing to 1, so (¥ € A®~! and, by definition, is a convex
combination of the {py}. O

Moreover,

A.2 Seizure Onset Zone (SOZ) Localization problem description

Developing explainable methods for variable-length time series classification (VTSC) is especially
critical in seizure onset zone (SOZ) localization, where clinicians must determine the brain regions
that initiate seizures [23]]. Epilepsy affects over 50 million people worldwide, making it one of
the most prevalent but still poorly characterized neurological conditions [24, 25| [9]. For nearly
one-third of patients, medication is ineffective, leaving surgery as the only option and placing high
demands on accurate SOZ mapping. Current practice involves surgically implanting electrodes in
candidate regions and visually inspecting intracranial EEG (iEEG) recordings to classify which
channels correspond to the SOZ.



255 A.3 Algorithms

Algorithm 1: Variable Length Time Series Training Algorithm with Retrieval-augmented Aggre-
gation (Single Epoch)

Input :Time series X' = {(a{")7, ... (2"}
Labels Y = {y(l), A y(")}; model fy; batch size B; loss L; .
Output : Updated parameters 6
W < set of all windows from each series in X
while W # () do
// Sample a minibatch of windows with length-proportional
probabilities

T;

Zj T;
fori=1,...,ndo
W; < {w € Wy | w comes from series 7 }
if W; = () then
L continue
// Per-window retrieval signals for series ¢
foreach w; € W, do
R;[k] < RETRIEVE(wg, T;)

Wy < SAMPLE(W, B) with Pr(series i) =

// a dictionary {kl(l):pgl),...,k:gm):pgm)} of Pearson | Cosine
scores

// Window-level predictions

Vi {fo(w) |weW;}

// Aggregate window predictions using retrieval signals
7 < AGGREGATE(Y;, R;)

// Batch loss over (non-empty) series present in W

T {ie{l,...n}|Wi#2)

1 . .
Cbalch < mzﬁ(g“)a y(l))
i€l
// Parameter update
0 < UPDATE(0, Lyach)
// Remove sampled windows from the pool
| W =WAW,

return 60
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Algorithm 2: AGGREGATE

Input :Windows for series i: W;;
Vi {fo(w) |weW;} // Window-level predictions
Retrieval map R; with R;[k] = (s\",...,s™)  // top-m
Temperature 7 > 0

Output : Series-level probability () € R

// 1) Summarize neighbor support per window
foreach k£ € W, do

1 ,
L Sk %Z;nzl S,(f) // mean similarity for window k

// 2) Softmax weights across windows
foreach k£ € W, do

L ay €Xp(§k/7')
Z = ZtGWi at
foreach k& € W, do

Lak<—ak/Z // ap >0, Ekak=1
// 3) Aggregate in probability space
P > kew, ok Vik

return ("

B Dataset and Preprocessing

B.1 Dataset

Following the protocol of [9], we use a multicenter iEEG cohort with clinical annotations of the
seizure onset zone (SOZ). For each site, we report the number of patients recorded (n), the number
with SOZ labels (ngoz), the total number of channel time series (ny), the proportion of SOZ labeled
(psoz), the iIEEG modality, nominal sampling frequency, and availability of postoperative outcome
labels. A summary is provided in Table 2}
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Table 2: Multicenter iEEG summary. n: patients recorded; nsoz: patients with SOZ annotation; n:
channel time series; psoz: fraction of series labeled SOZ.

Medical Center n ngoz s psoz IEEG Type Freq (Hz) Outcomes

JHH 7 3 1458 7.48% ECoG 1000 No
NIH 14 11 3057 12.23% ECoG 1000 Yes
UMMC 9 9 2967 5.56% ECoG 250-1000  Yes
UMF 5 1 129 25.58% ECoG 1000 No

Per Mootoo et al. [9]], we filter to patients with SOZ annotations when forming the supervised subsets
(nsoz). Because SOZ vs. non-SOZ is highly imbalanced at the series level, later class balancing
reduces the effective number of training/validation examples for each site.

B.2 Data preprocessing

Unless stated otherwise, we largely adhere to [9]. Each patient contributes multiple channels
(electrodes). For every site we:
1. Extract all channels and form per-channel univariate time series;

2. Perform class balancing so that SOZ and non-SOZ series counts are equal within the
training/validation splits (non-SOZ downsampling);

3. Split channels into train/validation/test at approximately 70% /10% /20%, ensuring no
temporal leakage across splits during window sampling;

4. Z-score normalize each channel independently to zero mean and unit variance.

We report F1, AUC, and accuracy in the main results.

B.3 Reproducibility & Hyperparameters

All training hyperparameters are listed in Table [3] Each experiment is run with five fixed seeds
(69421-69425). We will release the full codebase, configuration files, and run scripts in a public
repository at camera-ready, including exact commands and environment specifications to reproduce
Table [T

B.4 Computational Resources

Experiments were conducted on a single NVIDIA T4 GPU with 32 GB system RAM, each training
run (per seed) took about 1 hour. All computations used PyTorch with CUDA [26].
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Table 3: RAXSS hyperparameters and data settings.

Experiment / Reporting
Model ID PatchTSTBlind
Seeds (69421, 69422, 69423, 69424, 69425]
Learning type s1 (supervised)
Metrics & selection  report acc, ch_acc, others; tune on ch_£1; select on ch_acc
Task classification
GPU gpu_id=0; single-GPU runs (see|B.4)

Data / Sampling / Preprocess

Dataset open_neuro (multicenter iEEG)
Split train/val/test = 0.7/0.1/0.2, no temporal leakage; class balancing in train/val
Windowing length L=1024, stride = 5; univariate channels (C'=1)
Batching length-proportional stochastic sparse sampling (SSS)
Resizing pad_trunc; seq_load=True; num_workers=8
Scaling per-channel z-score; scale=True; shuffle_test=True

Backbone / Architecture
Encoder layers num_enc_layers=2
Dims / heads d_model=32, d_ff=128, num_heads=4
Dropout attn_dropout=0.3, ff_dropout=0.3, pred_dropout=0.0
Head linear
RevIN revin=True, revin_affine=True, revout=False

Retrieval & Aggregation (RAXSS)

Similarity Pearson or cosine (within series/channel)
Support — weights  average top-m [10] similarities; softmax with temperature 7 > 0 across windows
Aggregation In probability space (Alg.
Use relevance use_relevance=True

Optimization / Training
Epochs & batch epochs=50, batch_size=8192
Optimizer adam, weight_decay=1e-6
Scheduler cosine warmup: warmup_steps=100, T_max=700, start_1r=0.0, final_lr=1e-6, max_lr=3e-4
Early stopping patience=5
Loss BCE (ch_loss=True, type BCE, «=0.0, 5=1.0)

Dataset-specific (OpenNeuro settings)

Kernels/pooling kernel_size=24, kernel_stride=-1, pool_type=avg
Centers all_clusters=True
Task binary classification (pred_len=1)

11
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