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Abstract

Medical time series analysis is challenging due to data sparsity, noise, and highly1

variable recording lengths. Prior work has shown that stochastic sparse sampling2

effectively handles variable-length signals, while retrieval-augmented approaches3

improve explainability and robustness to noise and weak temporal correlations. In4

this study, we generalize the stochastic sparse sampling framework for retrieval-5

informed classification. Specifically, we weight window predictions by within-6

channel similarity and aggregate them in probability space, yielding convex series-7

level scores and an explicit evidence trail for explainability. Our method achieves8

competitive iEEG classification performance and provides practitioners with greater9

transparency and explainability. We evaluate our method in iEEG recordings10

collected in four medical centers, demonstrating its potential for reliable and11

explainable clinical variable-length time series classification.12

1 Introduction13

Artificial intelligence (AI) is increasingly embedded across clinical and translational workflows,14

with reported benefits for diagnostics, treatment planning, monitoring, and population health [1–3].15

Nevertheless, routine deployment remains uneven. Two persistent barriers are the heterogeneity of16

clinical data and the need for transparent, clinician-oriented explanations [4].17

One domain where the challenges are most keenly felt is medical-time series classification. Heart18

rate, glucose, and electrophysiology are examples of physiological signals that are both sparse and19

prone to noise, with their durations differing significantly between persons and events [5, 6]. Most of20

the time series classification (TSC) research, however, remains centered on approaches that operate21

with fixed-length sequences only [7–9].22

Recently, Mootoo et al. [9] proposed the Stochastic Sparse Sampling (SSS) to address variable-length23

time series classification (VTSC). SSS samples fixed-length windows from long recordings, computes24

local predictions using a backbone model, and aggregates these to obtain a series-level decision25

[9]. While effective and computationally tractable, SSS aggregates window predictions uniformly,26

thereby treating all sampled segments as equally informative; its explainability relies primarily on27

visualizations of local scores. This assumption might especially be problematic in real-world time28

series, however, where non-stationary, irregular patterns may occur infrequently and lack strong29

temporal correlations, making generalization difficult [10, 11].30

Retrieval-augmented methods address this by selectively leveraging similar past instances rather than31

memorizing all patterns. In time series, retrieval has also been explored across entities, where simi-32

larities guide aggregation for forecasting [12, 13]. Most recently, Retrieval-Augmented Forecasting33

of Time series (RAFT) [14] introduces a similarity-based retrieval mechanism for forecasting: it34
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(a) RAxSS pipeline. Green box: conceptual addition
to SSS (gray). Dashed boxes: retrieval steps.

(b) Window ranking & attribution. Ranked, non-
identical neighbors explain each window’s influence.

Figure 1: RAXSS workflow: (a) end-to-end pipeline and (b) retrieval-weighted explainable module.

retrieves past patches most similar to the current input and leverages their future continuations to35

improve predictions, with notable gains for rare patterns and weak temporal correlations36

[14]. However, RAFT is tailored to forecasting and does not directly address TSC. Motivated by these37

advances, we propose RAxSS: Retrieval-Augmented Sparse Sampling for Explainable Physiological38

Time Series Classification, a variable-length time series classification (VTSC) framework that39

integrates a retrieval-informed relevance computation into the SSS pipeline. Using a medical usecase,40

we tackle the Seizure Onset Zone (SOZ) localization problem. More details about the problem can be41

found in the Appendix A.2.42

RAXSS retains SSS’s stochastic, length-proportional sampling and replaces uniform averaging43

with a similarity-weighted convex mix of window predictions. Using pearson or cosine similarity44

(as in Han et al. [14]), each window’s top-m within-series neighbors define a support score that45

is softmax-normalized into aggregation weights. This design amplifies informative segments and46

downweights noisy ones. It also enables drill-down explanations: the series score is an additive sum47

of window contributions, each justified by a within-channel retrieval leaderboard.48

Our contributions. (i) We provide a methodological advance for variable-length time-series49

classification by introducing a retrieval-weighted aggregation mechanism that ranks and weights50

windows within each series, thereby improving uniform averaging while preserving the efficiency51

of stochastic sampling. (ii) We align explanation with aggregation through a weighting scheme52

that produces quantitative, window-level attributions. These extend beyond static heatmaps and53

enable principled drill-down from series-level predictions to segment-level contributions. (iii) We54

demonstrate robustness in challenging regimes (the settings where retrieval excels for time-series55

modeling [14]), while retaining compatibility with diverse backbones, including transformer variants.56

RAXSS adapts retrieval mechanisms developed for forecasting the task of variable-length classifica-57

tion, combining stochastic coverage with similarity-guided prioritization to establish a framework58

that is selective, explainable, and well-suited to the demands of clinical time-series analysis.59

2 Method60

2.1 Datasets61

Epilepsy iEEG Multicenter Dataset We use the Epilepsy iEEG Multicenter Dataset, comprising of62

intracranial EEG (iEEG) recordings with seizure onset zone (SOZ) from four centers: Johns Hopkins63

Hospital (JHH), the National Institutes of Health (NIH), University of Maryland Medical Center64

(UMMC), and University of Miami Jackson Memorial Hospital (UMH). Following the evaluation65

practice of [9], we report F1 score, area under the curve (AUC), and accuracy as primary metrics.66

Summary statistics and additional dataset and data-preprocessing details are provided in Appendix67

B.1.68

2.2 Framework overview69

RAxSS builds on SSS to handle variable-length medical time series by unifying sampling, retrieval,70

and aggregation in a single loop. As outlined in Fig. 1a and implemented in Alg. 1, long, noisy71
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recordings are segmented into fixed-length windows, sampled length-proportionally so that the72

probability of drawing from series i is pi ∝ Ti/
∑

j Tj , and scored by a backbone fθ. In parallel73

(see Fig. 1b), a within-series retrieval computes Pearson or cosine similarities, forms for each query74

window the top-m nonidentical neighbors (which may temporally overlap due to sliding extraction),75

and summarizes their support. The retrieval-aware aggregator (Alg. 2) then converts these supports76

into softmax weights across windows and produces a convex series-level prediction by re-weighting77

and aggregating window-level outputs. Fig. 1b further illustrates the explanatory consequence: each78

influential window is accompanied by a ranked, possibly overlapping but nonidentical set of neighbors79

whose weights quantify why it matters. The result maintains SSS efficiency while incorporating80

resilient, retrieval-guided weighting and a clear evidence path from windows to the final prediction.81

2.3 Enhancing explainability with RAXSS82

A consequence of applying RAxSS is explainability, where we go beyond just localization but can83

also access the attributions. In more detail, for series i with window index set Ki, the base model84

outputs window posteriors pk = softmax(zk) ∈ ∆C−1, k ∈ Ki.85

For each k ∈ Ki, retrieve the m most similar nonidentical windows from the same series under86

ϕ ∈ {Pearson,Cosine}:87

s
(j)
k = ϕ

(
wk, wj

)
, j ∈ Nk, |Nk| = m, s̄k =

1

m

∑
j∈Nk

s
(j)
k (1)

Subsequently, we define window influence weights via a temperatured softmax over {s̄t}t∈Ki
:88

αk =
exp(s̄k/τ)∑

t∈Ki
exp(s̄t/τ)

∈ [0, 1],
∑
k∈Ki

αk = 1 . (2)

Aggregation in probability space. Series-level probabilities are a convex combination of window89

posteriors (proof in Appendix A.1):90

p̂(i) =
∑
k∈Ki

αk pk . (3)

From "where?" to "why?" Explainability should go beyond localization and provide reasons for91

why specific regions are trusted. In Fig. 1b, the left panel shows the window-probability heatmaps of92

Mootoo et al. [9], which indicate where the model is confident. RAxSS adds attributions to answer93

the why: for each influential window k, we expose the evidence used to compute its weight. αk by94

reporting (i) its summary support s̄k, the mean similarity to its top-m within-series neighbors, and (ii)95

a ranked neighbor leaderboard {(w(j)
k , s

(j)
k ) : j ∈ Nk} with timestamps. These quantities explain96

why window k received a high contribution λk pk,c to the final series-level probability. Since97

∂αk

∂s
(j)
k

=
1

mτ
αk

(
1− αk

)
> 0, (4)

increasing any neighbor similarity strictly increases αk (holding all other s̄t fixed), making the98

leaderboard a faithful explanation of why wk was weighted highly. For a selected channel we overlay:99

(a) the raw signal, (b) the window probability heatmap (localization), and (c) for the top-m supporting100

windows and their support αk,j values (attribution). See Fig. 1b for an example visualization of our101

proposed explainability framework.102

3 Experiments & Results103

Results On multicenter iEEG, RAxSS is competitive with strong baselines (Table 1). The cosine104

variant achieves the best AUC (0.8046 ± 0.0346), edging the reproduced SSS (0.8035 ± 0.0686)105

and outperforming non-SSS baselines (e.g., PatchTST 0.7852). The Pearson variant yields higher106

F1 than cosine (0.7275 ± 0.0489 vs. 0.6967 ± 0.0791) and strong accuracy (70.51 ± 3.59), close107

to SSS (71.14 ± 6.31). Overall, cosine favors AUC, while Pearson offers a better F1/accuracy108

trade-off, letting practitioners pick the similarity to prioritize discrimination or balanced detection,109

while retaining built-in explainability. The training details are provided in Appendix 3.110
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Table 1: SOZ localization on All centers. F1, AUC, and Accuracy are averaged over 5 seeds. For our
runs (RAxSS variants and SSS (reproduction)), we used the same seed set and backbone code; the line
SSS (paper) is the value reported by the original authors. Boldface values with ∗ and † denote the
best and second-best results per column, respectively.

Model F1 AUC Acc.(%)
RAxSS (cosine) 0.6967 ± 0.0791 0.8046∗ ± 0.0346 69.76 ± 5.25
RAxSS (pearson) 0.7275† ± 0.0489 0.7980 ± 0.0537 70.51† ± 3.59
SSS (reproduction) 0.7437∗ ± 0.0537 0.8035† ± 0.0686 71.14∗ ± 6.31

SSS (Mootoo et al. [9]) 0.7629 0.7999 72.35
PatchTST (Nie et al. [15]) 0.7097 0.7852 66.83
TimesNet (Wu et al. [16]) 0.6897 0.7174 65.98
ModernTCN (Luo and Wang [17]) 0.6938 0.7305 68.42
DLinear (Zeng et al. [18]) 0.6916 0.7044 68.41
ROCKET (Dempster et al. [19]) 0.6847 0.7481 69.27
Mamba (Gu and Dao [20]) 0.6452 0.7134 64.39
GRUs (Bahdanau et al. [21]) 0.6948 0.7340 65.85
LSTM ([22]) 0.6709 0.7144 65.43

4 Discussion & Conclusion111

In this paper, our primary goal was to provide a more clinician-oriented, steerable and explainable112

framework for VTSC. To achieve this, we: (i) coupled stochastic sparse sampling with within-113

recording retrieval and probability-space aggregation; (ii) made explanations by exposing additive114

window contributions and an evidence leaderboard for influential windows; and (iii) preserved115

practicality via a model-agnostic, privacy-friendly design with simple knobs for steering. Results116

showed robust, competitive performance across centers, all while maintaining more transparency and117

explainability. RAxSS consistently ranks among the top approaches across metrics and sites, and we118

expect routine calibration and hyperparameter tuning to further boost absolute performance.119

The window-based design already gives granular localizations by overlaying window-level proba-120

bilities (the where). To explain the why, we present, for each influential window, a ranked list of121

its (top-m) within-recording neighbors (nonidentical, overlap allowed) with their similarity scores122

and resulting weights. This is justified because a) similarities determine the window’s weight via123

mean support and b) the cross-window softmax is strictly increasing in that support. Thus the same124

evidence that raises a window’s weight justifies its contribution, yielding a faithfulness-oriented125

"why", on top of "where". Despite this transparency, finer-grained, mechanistic explanations will126

require probing internal representations and decision pathways.127

In clinical use, inference is typically per recording, so length-proportional sampling offers no128

test-time benefit. Retrieval remains pivotal: it reweights window predictions by agreement with129

within-recording neighbors, improving robustness to noisy and idiosyncratic windows and providing130

inspectable evidence via the neighbor leaderboard. Over this medical setting, we couple the retrieval131

concept into time series classification (prior work emphasized forecasting [14]) enabling domain-132

aligned control to match clinical priorities.133

Future work. Our current implementation performs retrieval and aggregation strictly within the134

same channel/recording. This choice (i) avoids dependence on cross-subject/center labels, (ii)135

reduces privacy exposure by not querying external data, and (iii) keeps the approach generic for136

other clinical time-series tasks. A natural extension is pattern-level retrieval: indexing canonical137

events (e.g., seizure onsets) and retrieving neighbors from the same subject or a curated, cross-center138

repository. While this may strengthen the quality of evidence and enable case-based reasoning, it139

requires additional curation/metadata and stronger governance (privacy and access control). Beyond140

scope, two technical directions are promising: learning the similarity/temperature parameters from141

data, and conducting comprehensive faithfulness stress tests (e.g., deletion/insertion tests, retrieval142

randomization, and counterfactual probes) to further validate the explanations.143
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A Technical Appendices and Supplementary Material236

A.1 Proposition (convexity of the series-level probabilities).237

Let Ki be the set of windows for series i. Assume each window posterior pk ∈ ∆C−1 (entries238

nonnegative and summing to 1). Define239

αk =
exp(s̄k/τ)∑

t∈Ki
exp(s̄t/τ)

, τ > 0.

Then p̂(i) =
∑

k∈Ki
αk pk ∈ ∆C−1, i.e., it is a convex combination of {pk}.240

Proof. Since exp(·) > 0, we have αk ≥ 0 for all k, and by construction
∑

k∈Ki
αk = 1. For each241

class c,242

p̂(i)c =
∑
k

αk pk,c ≥ 0 because αk, pk,c ≥ 0.

Moreover,243
C∑

c=1

p̂(i)c =
∑
c

∑
k

αk pk,c =
∑
k

αk

(∑
c

pk,c
)
=

∑
k

αk · 1 = 1.

Thus p̂(i) has nonnegative entries summing to 1, so p̂(i) ∈ ∆C−1 and, by definition, is a convex244

combination of the {pk}. □245

A.2 Seizure Onset Zone (SOZ) Localization problem description246

Developing explainable methods for variable-length time series classification (VTSC) is especially247

critical in seizure onset zone (SOZ) localization, where clinicians must determine the brain regions248

that initiate seizures [23]. Epilepsy affects over 50 million people worldwide, making it one of249

the most prevalent but still poorly characterized neurological conditions [24, 25, 9]. For nearly250

one-third of patients, medication is ineffective, leaving surgery as the only option and placing high251

demands on accurate SOZ mapping. Current practice involves surgically implanting electrodes in252

candidate regions and visually inspecting intracranial EEG (iEEG) recordings to classify which253

channels correspond to the SOZ.254
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A.3 Algorithms255

Algorithm 1: Variable Length Time Series Training Algorithm with Retrieval-augmented Aggre-
gation (Single Epoch)

Input :Time series X = {(x(1)
t )T1

t=1, . . . , (x
(n)
t )Tn

t=1};
Labels Y = {y(1), . . . , y(n)}; model fθ; batch size B; loss L; .

Output :Updated parameters θ
W ← set of all windows from each series in X
whileW ≠ ∅ do

// Sample a minibatch of windows with length-proportional
probabilities

W0 ← SAMPLE(W, B) with Pr(series i) =
Ti∑
j Tj

for i = 1, . . . , n do
Wi ← {w ∈ W0 | w comes from series i }
ifWi = ∅ then

continue
// Per-window retrieval signals for series i
foreach wk ∈ Wi do

Ri[k]← RETRIEVE(wk, Ti)

// a dictionary {k(1)i :ρ
(1)
i , . . . , k

(m)
i :ρ

(m)
i } of Pearson | Cosine

scores
// Window-level predictions
Yi ← { fθ(w) | w ∈ Wi }
// Aggregate window predictions using retrieval signals
ŷ(i) ← AGGREGATE(Yi, Ri)

// Batch loss over (non-empty) series present in W0

I ← { i ∈ {1, . . . , n} | Wi ̸= ∅ }
Lbatch ←

1

|I|
∑
i∈I

L
(
ŷ(i), y(i)

)
// Parameter update
θ ← UPDATE(θ, Lbatch)
// Remove sampled windows from the pool
W ←W \W0

return θ
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Algorithm 2: AGGREGATE

Input :Windows for series i: Wi;
Yi ← { fθ(w) | w ∈ Wi } // Window-level predictions
Retrieval map Ri with Ri[k] =

(
s
(1)
k , . . . , s

(m)
k

)
// top-m

Temperature τ > 0
Output :Series-level probability ŷ(i) ∈ RC

// 1) Summarize neighbor support per window
foreach k ∈ Wi do

s̄k ←
1

m

∑m
j=1 s

(j)
k // mean similarity for window k

// 2) Softmax weights across windows
foreach k ∈ Wi do

ak ← exp
(
s̄k/τ

)
Z ←

∑
t∈Wi

at
foreach k ∈ Wi do

αk ← ak/Z // αk ≥ 0,
∑

k αk = 1

// 3) Aggregate in probability space
p̂(i) ←

∑
k∈Wi

αk Yik
return ŷ(i)

256

B Dataset and Preprocessing257

B.1 Dataset258

Following the protocol of [9], we use a multicenter iEEG cohort with clinical annotations of the259

seizure onset zone (SOZ). For each site, we report the number of patients recorded (n), the number260

with SOZ labels (nSOZ), the total number of channel time series (nts), the proportion of SOZ labeled261

(pSOZ), the iEEG modality, nominal sampling frequency, and availability of postoperative outcome262

labels. A summary is provided in Table 2.263
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Table 2: Multicenter iEEG summary. n: patients recorded; nSOZ: patients with SOZ annotation; nts:
channel time series; pSOZ: fraction of series labeled SOZ.

Medical Center n nSOZ nts pSOZ iEEG Type Freq (Hz) Outcomes
JHH 7 3 1458 7.48% ECoG 1000 No
NIH 14 11 3057 12.23% ECoG 1000 Yes
UMMC 9 9 2967 5.56% ECoG 250–1000 Yes
UMF 5 1 129 25.58% ECoG 1000 No

Per Mootoo et al. [9], we filter to patients with SOZ annotations when forming the supervised subsets264

(nSOZ). Because SOZ vs. non-SOZ is highly imbalanced at the series level, later class balancing265

reduces the effective number of training/validation examples for each site.266

B.2 Data preprocessing267

Unless stated otherwise, we largely adhere to [9]. Each patient contributes multiple channels268

(electrodes). For every site we:269

1. Extract all channels and form per-channel univariate time series;270

2. Perform class balancing so that SOZ and non-SOZ series counts are equal within the271

training/validation splits (non-SOZ downsampling);272

3. Split channels into train/validation/test at approximately 70% /10% /20%, ensuring no273

temporal leakage across splits during window sampling;274

4. Z-score normalize each channel independently to zero mean and unit variance.275

We report F1, AUC, and accuracy in the main results.276

B.3 Reproducibility & Hyperparameters277

All training hyperparameters are listed in Table 3. Each experiment is run with five fixed seeds278

(69421–69425). We will release the full codebase, configuration files, and run scripts in a public279

repository at camera-ready, including exact commands and environment specifications to reproduce280

Table 1.281

B.4 Computational Resources282

Experiments were conducted on a single NVIDIA T4 GPU with 32 GB system RAM, each training283

run (per seed) took about 1 hour. All computations used PyTorch with CUDA [26].284
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Table 3: RAxSS hyperparameters and data settings.
Experiment / Reporting

Model ID PatchTSTBlind
Seeds [69421, 69422, 69423, 69424, 69425]
Learning type sl (supervised)
Metrics & selection report acc, ch_acc, others; tune on ch_f1; select on ch_acc
Task classification
GPU gpu_id=0; single-GPU runs (see B.4)

Data / Sampling / Preprocess

Dataset open_neuro (multicenter iEEG)
Split train/val/test = 0.7/0.1/0.2, no temporal leakage; class balancing in train/val
Windowing length L=1024, stride = 5; univariate channels (C=1)
Batching length-proportional stochastic sparse sampling (SSS)
Resizing pad_trunc; seq_load=True; num_workers=8
Scaling per-channel z-score; scale=True; shuffle_test=True

Backbone / Architecture

Encoder layers num_enc_layers=2
Dims / heads d_model=32, d_ff=128, num_heads=4
Dropout attn_dropout=0.3, ff_dropout=0.3, pred_dropout=0.0
Head linear
RevIN revin=True, revin_affine=True, revout=False

Retrieval & Aggregation (RAxSS)

Similarity Pearson or cosine (within series/channel)
Support → weights average top-m [10] similarities; softmax with temperature τ > 0 across windows
Aggregation In probability space (Alg. 2)
Use relevance use_relevance=True

Optimization / Training

Epochs & batch epochs=50, batch_size=8192
Optimizer adam, weight_decay=1e-6
Scheduler cosine warmup: warmup_steps=100, T_max=700, start_lr=0.0, final_lr=1e-6, max_lr=3e-4
Early stopping patience=5
Loss BCE (ch_loss=True, type BCE, α=0.0, β=1.0)

Dataset-specific (OpenNeuro settings)

Kernels/pooling kernel_size=24, kernel_stride=-1, pool_type=avg
Centers all_clusters=True
Task binary classification (pred_len=1)
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