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ABSTRACT

In the realm of Topological Data Analysis, persistent homology has traditionally
served as a primary tool for extracting topological features. However, approaches
relying on persistent homology often encounter practical challenges due to their
high computational costs. To address this issue, we propose a computationally
efficient novel topological layer tailored for general deep learning architectures,
leveraging the Euler Characteristic Curve (ECC). Unlike methods based on persis-
tent homology, ECC offers computational advantages by circumventing the need
for persistent homology calculation, while still allowing access to crucial infor-
mation about the underlying topological structure. The proposed layer can readily
adapt to diverse data modalities by allowing appropriate filtration according to the
user’s preference, enabling its application across various learning problems with-
out data preprocessing. We present a novel technique for stable backpropagation
that effectively mitigates the vanishing gradient problems commonly encountered
in existing methods, allowing for seamless integration of our layer into deep learn-
ing models. We go on to present stability analysis, showing that the proposed layer
is robust against noise and outliers. We apply our method to topological autoen-
coders, showing that the standard loss function can effectively regularize topo-
logical structures of the latent space. Through classification experiments across
various datasets, we illustrate the benefits of our approach in mitigating informa-
tion loss under conditions of data scarcity or data contamination.

1 INTRODUCTION

In recent years, machine learning communities have witnessed increasing efforts to incorporate
Topological Data Analysis (TDA) into deep learning workflows, an emerging paradigm known as
topological deep learning (Carlsson & Gabrielsson, 2020; Papamarkou et al., 2024). Topological
deep learning integrates tools from TDA to exploit essential topological features within the data
that elude conventional methods, or to enhance understanding and control of computational models.
Persistent homology (PH), a primary tool in TDA, captures multi-scale topological features of the
underlying data structure by tracking the birth and death of homology features, thereby producing
topological summaries such as persistence diagrams or barcodes (Chazal & Michel, 2021). Given
that PH is a multiset by nature, a number of strategies have been proposed to transform these PH-
based topological summaries into alternative representations that are more suitable for subsequent
machine learning tasks (e.g., Bubenik et al., 2015; Adams et al., 2017; Umeda, 2017) (see, for ex-
ample, Hensel et al. (2021) for a review).

Recent efforts have shed light on the possibility of incorporating PH-based topological summaries
as input features for neural networks, enhancing their ability to learn from the intrinsic geometric
structure of the data. Hofer et al. (2017); Carrière et al. (2020) introduced topological layers aimed at
learning vector embeddings of persistence diagrams using a particular parametrization, yet lacking
differentiability required for enabling gradient backpropagation. Hofer et al. (2019); Gabrielsson
et al. (2020); Carriere et al. (2021); Leygonie et al. (2022) explored the differentiability aspects of
the PH-based functions or losses, highlighting the potential of incorporating topological insights
into deep learning frameworks. Kim et al. (2020) were the first to propose a generic differentiable
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topological layer allowing backpropagation, offering flexibility in its integration within arbitrary
network architectures.

Despite its popularity, computations involving PH can demand significant computational resources,
rendering them impractical for large-scale deep learning applications. Its time complexity gener-
ally scales poorly with the size and dimensionality of the data; when the number of simplices is
given by N , the time complexity of the standard PH computation algorithm is O(N3) (Otter et al.,
2017). As a result, there has recently been a growing need for alternative features capable of captur-
ing topological information in a computationally efficient manner. The Euler Characteristic Curve
(ECC) is one such feature that can be computed without the need for PH calculation. Due to their
ability to drastically boost computational efficiency, ECC-based descriptors have recently received
increased attention (e.g., Beltramo et al., 2021; Chen et al., 2022; Dłotko & Gurnari, 2023; Hacquard
& Lebovici, 2023; Malott & Wilsey, 2023; Jiang et al., 2023; Richardson & Werman, 2014; Laky
& Zavala, 2024). However, these descriptors have been primarily utilized in a static manner within
the framework of feature engineering. A more recent contribution in this field is the Differentiable
Euler Characteristic Transformation (DECT) (Röell & Rieck, 2024), though detailed analytical ex-
plorations were not conducted. As indicated by its name, DECT utilizes ECT; a collection of ECCs
computed from various directions (Turner et al., 2014).

In this paper, we aim to develop a novel computationally efficient ECC-based topological layer that
facilitates integration with general deep learning models via stable backpropagation. The preceding
work most closely related to ours is the recent developement of Kim et al. (2020) and Röell & Rieck
(2024). Kim et al. (2020) adopted persistence landscapes to construct a differentiable topological
layer. Notwithstanding its merits, persistence landscapes inherit the high computational complexity
of PH, and their gradients can often be highly sparse, lacking substantial information (see Figure
5 in Appendix). The proposal for a topological layer utilizing DECT (Röell & Rieck, 2024) relies
specifically on the height filtration, which works best with graphs and meshes, but not necessarily
with other data structures; it may be applicable to point clouds, for example, yet with a compromise
in connectivity information. Moreover, Röell & Rieck (2024) achieve differentiability of ECT by
employing a sigmoid approximation, which may result in inconsistent gradients or even vanishing
gradient problems when evaluated at discretized points; this will be further discussed in Section 4.

This work proposes a novel fast and robust ECC-based topological layer, ECLayr, designed to ad-
dress all the aforementioned drawbacks comprehensively. Our proposed method obviates the need
for PH calculations, thereby significantly enhancing computational efficiency while preserving the
capability to extract key topological information from underlying data structures. ECLayr is ca-
pable of utilizing generic filtrations, exhibiting versatility across various data modalities without
necessitating data preprocessing or resorting to a particular filtration. Importantly, we introduce a
novel approach for stable backpropagation with respect to the layer input, addressing the inconsis-
tent/vanishing gradient issues associated with the sigmoid approximation in DECT. We also provide
a stability analysis, showing that the proposed layer is robust against noise and outliers. Our exper-
imental analysis show that ECLayr delivers performance comparable to state-of-the-art PH-based
topological layers, while being significantly faster by several orders of magnitude. Using our pro-
posed backpropagation algorithm, ECLayr exhibits improved performance and greater efficiency
than DECT. We further demonstrate its versatility through the application on topological autoen-
coders.

2 MATHEMATICAL BACKGROUND

This section provides a brief overview of the essential tools in TDA used throughout the devel-
opment, as well as some notations. For further information, see, for example, Hatcher (2002);
Edelsbrunner & Harer (2010); Chazal & Michel (2021); Kaczynski et al. (2004).

Simplex and Simplicial Complex. Let u0, . . . , uk be affinely independent points in Rd. A k-
simplex is the convex hull of the k + 1 points, σk = conv{u0, . . . , uk} (e.g., 0-simplex is a vertex,
1-simplex is an edge, 2-simplex is a triangle, etc.). The dimension of σk is k. τ is a face of σk if it is
a convex hull constructed from any non-empty subset of the k+1 points of σk. A simplicial complex
K is a finite collection of simplices such that (i) the face of any simplex in K is also in K, and (ii)
the intersection of two simplices in K is either empty or a face of both simplices. Commonly used
simplicial complexes include the Vietoris-Rips complex and the Alpha complex (see Appendix A).
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Figure 1: Computation of ECC using sublevel set filtration in filtered cubical complex.

Filtration. A filtration F = {K(a) ⊂ K|a ∈ R} is a collection of nested simplicial complexes
that satisfy K(a) ⊂ K(b) whenever a ≤ b. A typical way of constructing a filtration is to use a
monotonic filtration function f : K → R. f is monotonic in the sense that f(τ) ≤ f(σ) whenever
τ is a face of σ. By defining K(a) := f−1(−∞, a], we have K(a) ⊂ K(b) whenever a ≤ b.

Cubical Complex. Cubical complex is an analogy of simplicial complex that consists of k-cubes
(e.g., vertices, edges, squares, cubes, etc.). It provides a suitable framework for analyzing data that
is naturally aligned with a grid structure (e.g., digital images). An elementary interval is an interval
of form I = [l, l+ 1] or I = [l, l] for some l ∈ Z, where the former interval is called nondegenerate
and the latter degenerate. An elementary cube is the finite product of elementary intervals, i.e.,
Q = I1 × I2 × · · · × In. The dimension of Q is the number of nondegenerate elementary intervals
in the product. P is a face of Q if P ⊂ Q where P and Q are both elementary cubes. A cubical
complex K is a finite collection of elementary cubes such that the face of any cube in K is also in
K. A filtered cubical complex can be constructed by assigning a filtration value to each of the cubes
(see Appendix B for details).

Euler Characteristic. The Euler characteristic is a topological invariant that provides a single
number summarizing the essential topological1 features of data. Given a simplicial or cubical com-
plex K, it is defined as the alternating sum of the number of k-simplices or k-cubes in K. It can
equivalently be defined as an alternating sum of Betti numbers.

χ(K) =

∞∑
k=0

(−1)k|Kk| =
∞∑
k=0

(−1)kβk, (1)

where Kk is the set of k-dimensional simplices or cubes in K, |Kk| is its cardinality, and βk is
the k-th Betti number of K. We can obtain an Euler Characteristic Curve (ECC) C : R → R by
computing the Euler characteristic along a filtration, where the x-axis corresponds to the filtration
values and y-axis corresponds to the Euler characteristic of the subcomplex at a given filtration
value, i.e., for t ∈ R, C(t) = χ(K(t)) (see Figure 1).

3 LAYER CONSTRUCTION

The construction of ECLayr involves two steps: (i) computing the ECC from input data, and (ii)
passing the ECC through a differentiable map. To compute ECC, we consider an alternative repre-
sentation of the Euler characteristic. Let us denote K(t) as the subcomplex of K at a given filtration
value t. Then, the Euler characteristic of K(t) in equation 1 can be equivalently defined as

χ(K(t)) =

∞∑
k=0

(−1)k
∑

σ∈Kk

1 [fσ ≤ t] , (2)

1Depending on the filtration, both PH and ECC can capture geometric information as well.
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Algorithm 1: Computation of Euler Characteristic Curve: X → E
1 Hyperparameters: Tmin, Tmax, v
2 Input: X
3 Choose a simplicial complex suitable for the input data and build a filtration
4 Set tseq = {t1, . . . , tv}, a sequence of v evenly-spaced discretized points from Tmin to Tmax

5 Initialize E = (0, . . . , 0) ∈ Rv , which are values corresponding to locations in tseq
6 for σ ∈ K do
7 if fσ > Tmax then
8 continue
9 t∗ ← min{ti ∈ tseq|ti > fσ}

10 E(t∗)← E(t∗) + (−1)dim(σ)

11 E ← cumsum(E)
12 Output: E ∈ Rv

where fσ is the filtration value of σ. The equivalence between equation 1 and equation 2 is straight-
forward, as the sum of indicator functions is identical to the number of k-simplices in the subcom-
plex K(t). To simplify notation, let X , E , and Oθ represent the input, vectorized ECC, and output
of our layer, respectively.

3.1 COMPUTATION OF ECC: X → E

Before calculating ECC from input data, a filtration must be defined by choosing an appropriate sim-
plicial complex K and a function f : K → R. This is often data-dependent; Vietoris-Rips or Alpha
complexes are commonly used for point clouds while sub/superlevel set filtrations on filtered cubical
complexes are a natural choice for images. Upon constructing a filtration, we proceed to obtain the
vectorized approximation of ECC based on equation 2. First, we set a closed interval [Tmin, Tmax]
and sample v evenly-spaced grid points ranging from Tmin to Tmax. We denote these discretized
points as tseq = {t1, . . . , tv}, where t1 = Tmin and tv = Tmax. Our objective is to derive a vector
E containing the Euler Characteristics of each subcomplex K(ti); E = (χ(K(t1)), . . . , χ(K(tv))).
This vector serves as a finite sample approximation of the ECC function C. To compute E , we begin
by initializing E as a zero vector of size v. Next, we iterate over all simplices σ ∈ K and perform
the following steps: (i) find t∗ = min{ti ∈ tseq|ti > fσ}, which denotes the smallest grid point
that is larger than the filtration value of σ, and (ii) add (−1)dim(σ) to E(t∗). If fσ exceeds the upper
bound Tmax and t∗ cannot defined, we proceed to the subsequent simplex in the iteration. Once the
iteration is terminated, we return the cumulative sum of E for each point ti. The resulting output E
is a vector in Rv . The procedure is summarized in Algorithm 1.

Time Complexity. Given a filtration, computation of ECC (Steps 6 to 12 in Algorithm 1) requires
O(N+v) time, where N is the number of simplices and v is the number of grid points. This shows a
substantial improvement over the O(N3) of the standard PH computation. In our experimental anal-
ysis in Section 6.1, we empirically demonstrate that our proposed layer reduces the computational
complexity up to several orders of magnitude compared to PH.

3.2 COMPUTATION OF LAYER OUTPUT: E → Oθ

By definition, ECC depends on the number of generators (Betti numbers), even if they are small
(noise) generators. This implies that ECC may potentially contain some noise information. Thus,
we do not use ECC directly, but employ a differentiable parametrized map gθ to project ECC to
a learnable task-optimal representation. Given E ∈ Rv and an output dimension m, the map gθ :
Rv → Rm takes E as input and outputs Oθ ∈ Rm. There are no restrictions regarding the structure
of gθ as long differentiability with respect to θ is guaranteed. In this paper, we use a sequence of
fully connected layers and Relu nonlinearity functions to construct gθ.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 STABLE BACKPROPAGATION

We first present the differentiability result for ECC. By applying chain rule, we decompose the
derivative of Euler characteristic into two elements: (i) derivative of the filtration value with respect
to input X , and (ii) derivative of the indicator function with respect to the filtration value, as shown
below.

∂χ(K(t))

∂X
=

∞∑
k=0

(−1)k
∑

σ∈Kk

∂fσ
∂X︸︷︷︸
(i)

∂1(fσ ≤ t)

∂fσ︸ ︷︷ ︸
(ii)

.

The term (i) depends on the specific choice of filtration. While our framework allows the use of
arbitrary differentiable filtration, here we focus on three widely-used filtrations; we provide results
for Vietoris-Rips, Alpha, and sub/superlevel set filtration on filtered cubical complex in Appendix
C.

4.1 GRADIENT INCONSISTENCY IN SIGMOID APPROXIMATION

The key barrier in achieving differentiability arises from the discontinuous nature of the indicator
function 1(fσ ≤ t) in the term (ii). To bypass the need for direct differentiation, Röell & Rieck
(2024) adopted a smooth approximation by substituting the indicator function with a sigmoid func-
tion S(λ(t − fσ)), where the extra hyperparameter λ controls the precision of approximation. De-
spite being theoretically sound, such smoothing-based approximation poses a practical problem in
backpropagation procedures as values are evaluated over a finite set of discretized grid points rather
than a continuous domain. When a filtration value fσ lies between grid points, the gradient with
respect to fσ is not evaluated at the precise location, but at its neighboring grid points. Thus, the
magnitude of gradient varies depending on the proximity of fσ to its adjacent grid points. This will
be referred to as gradient inconsistency (see Figure 2).

Especially, we show that the sigmoid approximation is prone to gradient vanishing problems when
insufficient v leads to excessive spacing between grid points, or when λ is too large (see Figure
2-(c)). To formally state this issue, we suppose the gradients of the indicator function 1(fσ ≤ t)

with respect to fσ are approximated on a fixed grid tseq = {t1, . . . , tv} with ∆t := ti+1−ti
2 being

equal. Let S′tseq
λ,fσ

∈ Rv be the gradient vector of the sigmoid function S(λ(t − fσ)) computed at
t1, . . . , tv , i.e.,

S′tseq
λ,fσ

=
∂S(λ(t− fσ))

∂fσ
|t=t1,...,tv .

The next proposition shows that the local gradient of the sigmoid approximation can approach arbi-
trarily close to zero, regardless of its true value.

Proposition 4.1. When ∂S(λ(t−fσ))
∂fσ

is viewed as a function of t, then its L∞ norm is computed as∥∥∥∥∂S(λ(t− fσ))

∂fσ

∥∥∥∥
∞

=
λ

4
,

while its discretization over tseq is L∞ bounded as

∥∥∥S′tseq
λ,fσ

∥∥∥
∞
≤ λS(λd(fσ, tseq)) [1− S(λd(fσ, tseq))] .

So in particular when λ exp(−λ∆t)→ 0,

inf
fσ∈[t1−∆t,tv+∆t)

∥∥∥S′tseq
λ,fσ

∥∥∥
∞
→ 0.

The issue of diminishing gradients during the training is particularly vexing in deep learning. As
the downstream gradient is computed via a series of multiplications involving local gradients, the
sigmoid approximation in ECC will eventually impede effective backpropagation.
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(a) Optimal (b) Gradient Inconsistency (c) Gradient Vanishing

Figure 2: An illustration of gradient inconsistency issues when using the sigmoid approximation
with λ = 200. The values are assessed at 16 evenly-spaced points over [−1, 1]. In (a), the sigmoid
approximation performs well when the filtration value precisely aligns with one of the grid points.
In (b), however, a slight shift in the filtration value results in a significant change in the gradient.
A further slight adjustment eventually leads to gradient vanishing, as shown in (c). This indicates
that the gradients vary significantly when the sigmoid approximation is used for the ECC layer,
depending on the position of the filtration value relative to the grid points.

4.2 STABLE BACKPROPAGATION VIA DISTRIBUTIONAL DERIVATIVES

To resolve the gradient inconsistency issue, here we propose an alternative approach in which we
approximate the gradient rather than the indicator function itself. In order to compute the gradient,
we resort to distributional derivatives; ∂1[fσ≤t]

∂fσ
= −δ(t− fσ) where δ(x) = limβ→0

1
|β|

√
π
e−(x/β)2

is the dirac delta, a function that has a single impulse at x = 0 and zero elsewhere. Since the
height of this single impulse is infinite, we proceed with approximation max

x

1
|β|

√
π
e−(x/β)2 = 1

|β|
√
π

where β is a hyperparameter that determines the height of the spike. Namely, the estimated gradient
will always be 1

|β|
√
π

at the impulse point and zero elsewhere. It is also critical to ensure that the
gradient does not leak; while the approximated gradient has a single impulse at t = fσ , it may not
necessarily correspond to the predefined positions tseq. Thus, we shift the location of impulse so
that it aligns with one of the points in tseq. Recall from Section 3.1 that for a given simplex σ,
t∗ = min{ti ∈ tseq|ti > fσ} is the grid point where the jump is reflected during the forward
pass. Consequently, we backpropagate the gradient to the identical location t∗. In this formulation,
the gradient invariably traverses one of the discretized locations, unless it was ignored during the
forward pass. As a result, we can assure that a consistent gradient value is properly backpropagated
to the preceding layer. The following proposition shows that our proposed method prevents the
gradient vanishing issues associated with the sigmoid approximation.

Proposition 4.2. Let δ̂tseqβ,fσ
∈ Rv be our gradient approximation of ∂1(fσ≤t)

∂fσ
computed at t1, . . . , tv ,

so δ̂tseqβ,fσ
’s jth element is − 1

β
√
2π

if fσ ∈ [tj−1, tj), and other elements are 0. Then the L∞ norm of

δ̂tseqβ,fσ
is given as ∥∥∥δ̂tseqβ,fσ

∥∥∥
∞

=
1

β
√
2π

.

Aside from the issue of diminishing gradients, we have shown that our proposed approaches
can achieve much lower errors in approximating true gradient values. Specifically, with ∆t :=
ti+1−ti

2 ,∀i, we show that by letting β =
√
π

2∆t , our proposed methods may attain consistency. We
refer to Appendix D for detailed theoretical results.

Time Complexity of Sigmoid Approximation. Computation of ECC via sigmoid approximation
requires O(vN) time, as the sigmoid function must be applied to every ti ∈ tseq during each
iteration across all simplices σ ∈ K. Our backpropagation method enables the use of Algorithm 1
during forward pass, achieving enhanced efficiency of O(N + v).

5 STABILITY THEOREM

An essential benefit of using a topological layer is its robustness against noise. Extending the results
of Dłotko & Gurnari (2023), we can establish a stability property for the layer output with respect to
changes in the input. For notation, let X,X ′ be two distinct inputs, and fX , fX′ be corresponding

6
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filtration functions on fixed simplicial complexes K, K ′, respectively. Let Dk(X),Dk(X
′) be cor-

responding k-dimensional persistence diagrams, and let CX , CX′ : R → R be corresponding ECC
functions. See Appendix A for the definition of persistence diagrams and Wasserstein distance.

We first see the relation between the final layer output and ECC functions.
Proposition 5.1. Let t∗1 < t∗2 < · · · < t∗w be unique values of all births and deaths in
{Dk(X),Dk(X

′) : k ≥ 0}, and let tseq = (t1, . . . , tv). Suppose there exists ∆t > 0 satisfy-
ing that ∆t < tj+1 − tj and ∆t < t∗j+1 − t∗j . Let gθ be L-Lipschitz with respect to ∥·∥1-norm, i.e.,
∥gθ(x)− gθ(y)∥1 ≤ L ∥x− y∥1. Then

∥Oθ(X)−Oθ(X
′)∥1 ≤

2L

∆t
∥CX − CX′∥1 .

Hence what we really need to establish is the stability of ECC functions. We first address the most
general stability result with respect to the 1-Wasserstein distance of the persistence diagrams of
input, which is directly from Dłotko & Gurnari (2023).
Proposition 5.2 (Dłotko & Gurnari (2023), Proposition 3.2).

∥CX − CX′∥1 ≤ 2
∞∑
k=0

W1(Dk(X),Dk(X
′)).

The behavior of the 1-Wasserstein distance W1(Dk(X),Dk(X
′)) is in general complicated and

difficult to analyze. It is possible to further upper bound this by the difference of the filtration
functions fX and fX′ . The difference is represented as L∞ distance below, but there is a more
general version of Theorem 5.3 as well.
Theorem 5.3. Suppose K = K ′ and is a finite simplicial complex or cubical complex. Then there
exists a constant CK only depending on K such that

∥CX − CX′∥1 ≤ CK ∥fX − fX′∥∞ .

Theorem 5.3 provides a stability result whose relation to the difference of the input is clear, and also
applicable to general filtration functions. Since we use DTM functions in Section 6, we present a
specific result for DTM.
Corollary 5.4. Suppose K is a finite cubical complex, and fX , fX′ are restrictions of DTM functions
dPX ,m0

, dPX′ ,m0
to K, where PX , PX′ are empirical distributions on X and X ′, respectively. (for

detailed meaning, see Appendix G.) Then

∥CX − CX′∥1 ≤
CK√
m0

W2(PX , PX′).

Due to the inherent reliance of Euler characteristics on even small generators, we note that the
above stability results in terms of the Wasserstein distance are less strict than those bounded by the
Bottleneck distance in Kim et al. (2020). Thus, Euler characteristic-based descriptors compromise
stability in order to attain computational efficiency over PH-based descriptors.

6 EXPERIMENTS

To showcase the versatility and effectiveness of our layer, we conduct a series of experiments. First,
we demonstrate the computational efficiency of our approach by measuring runtime metrics across
different datasets. Next, we proceed to implement a topological autoencoder using point clouds to
illustrate an application of our layer in imposing topological constraints on the latent space. Fi-
nally, we perform classification tasks on two image datasets: MNIST and Br35H. The first image
classification task shows that our layer can effectively mitigate information loss under conditions of
data scarcity or data contamination. The subsequent experiment highlights the distinct advantages
of our layer by performing operations on moderately high-dimensional data, which would otherwise
necessitate intensive computation for PH, rendering it impractical for real-world applications. All
experiments are implemented using GUDHI (The GUDHI Project, 2021) and Pytorch. Here, we
present only a partial summary of the experimental findings; for comprehensive results and detailed
descriptions of the architecture and hyperparameter selection, please refer to Appendix I.
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Model
Data (Number of samples)

MNIST (60000) Br35H (209) Synth. (1000)

ECC 3.129 sec 0.458 sec 2.17 sec

PH 33.700 sec 11.033 sec 59.288 sec

Table 1: Average runtime performance per iteration (in seconds).

Autoencoder Ours

Figure 3: Latent representations
of Spheres data.

6.1 COMPUTATIONAL EFFICIENCY

In this section, we analyze the empirical time complexity of our method in comparison to PH.
The time complexity of each topological descriptor is assessed by measuring the runtime for a
complete iteration through the training dataset, averaged over 10 repetitions. PH computes the
persistence diagram using the GUDHI package, while ECC computes the vectorized approximation
of ECC using Algorithm 1. In order to investigate how each descriptor scales with increasing data
dimensions, we additionally generate a synthetic dataset containing 1000 samples of size 224×224,
where each pixel is randomly sampled from a uniform distribution. The experiment results for
different datasets are provided in Table 1. We can observe that PH scales poorly as the dimension of
the data increases. Considering the additional computation often required to transform persistence
diagrams into alternative representations better suited for machine learning, our approach offers a
significant benefit over all PH-based metrics in terms of computation, both in theory and in practice.

6.2 TOPOLOGICAL AUTOENCODER

The idea of imposing topological constraints on the latent space was first explored by Hofer et al.
(2019); Moor et al. (2020). Whereas existing works rely on a topology-based loss term to regularize
the latent space, our formulation allows for the utilization of standard loss functions, such as Mean
Squared Error (MSE) or Mean Absolute Error (MAE) to achieve a similar goal. Inspired by the
stability results regarding L1 distance in Section 5, we employ the MAE loss between ECC of input
and ECC of latent representation as our topological constraint. The respective ECCs are computed
using Vietoris-Rips filtration, with maximum dimension set to 1. For the experiment, we use the
synthetic Spheres dataset from Moor et al. (2020). The dataset consists of ten 100-spheres with
radius r = 5 enclosed by one larger 100-sphere with radius = 25, all embedded in 101-dimension.
The ten smaller spheres are shifted in random directions according to Gaussian noise.

Result. We discover that our approach effectively preserves the underlying shape of the encompass-
ing sphere (yellow points in Figure 3), in contrast to the vanilla autoencoder, which loses this shape.
Moreover, it constrains the smaller spheres to remain on the boundary of the encompassing sphere,
whereas in the vanilla autoencoder, numerous smaller circles lie far beyond the boundaries of the
encompassing circle. However, with this simplistic architecture, its capacity to comprehensively
articulate the nested relationship inherent in the data was somewhat restricted. While our method
demonstrates capability of regularizing the latent space, we do not claim superiority over alternative
approaches. Rather, we present it as a motivating example of how topological characterization in
the latent space can be promoted via simple standard loss functions.

6.3 CLASSIFICATION AGAINST DATA SCARCITY AND DATA CONTAMINATION

Our primary interest in this section is to demonstrate that our layer can effectively mitigate in-
formation loss under conditions of data scarcity and data contamination. For such purpose, we
consider two scenarios on the MNIST dataset. In the first scenario, we restrict the training data
to 100, 300, 500, 700 and 1000 samples to observe how model performance changes with data
size. In the second scenario, we consider a corruption and noise process where the pixels are ran-
domly omitted and subsequently contaminated by random noise between 0 and 1 with probability
0.05, 0.1, 0.15, and 0.2.
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(a) Sample Size (b) Noise

Figure 4: MNIST test accuracy: (a) Performance across different
sample sizes; (b) Performance in the presence of noise.

Model Runtime

CNN 0.088 sec

CNN + EC(i) 0.340 sec

CNN + EC 0.731 sec

CNN + DECT 10.763 sec

CNN + Pers 11.170 sec

CNN + PL(i) 7.046 sec

CNN + PL 14.03 sec

Table 2: Average runtime per
epoch over 1000 MNIST data
without noise (in seconds).

Experimental Setup. To impartially illustrate the advantages of our layer, we purposefully retain
a simple experimental setting. The base model consists of two CNN layers followed by two fully
connected layers. We compare the performance of our proposed layer with a base model, and two
other topological layers applicable to image datasets: PersLay (Carrière et al., 2020) and PLLay
(Kim et al., 2020). For the data scarcity scheme, we additionally implement an ECLayr using the
sigmoid approximation (denoted as CNN + DECT) previously applied by (Röell & Rieck, 2024).
For all topological layers, we place a parallel layer at the beginning of the network (referred to as
CNN + EC(i), Pers, PL(i)). For topological layers that allow backpropagation, we add an additional
layer after the last convolutional layer (referred to as CNN + EC, DECT, PL). We implement su-
perlevel cubical filtration for the experiment with varying data size. In the experiment involving
different noise levels, we employ the DTM filtration, a tool used in TDA to robustly extract topo-
logical features in the presence noise (see Appendix A for further details). As DTM can control the
level of locality when extracting topological information, we place two parallel topological layers
with different scales at the beginning of the network when using DTM filtration. Utilizing a very
simple model on limited training samples, we observed random failures across all models with out-
liers significantly affecting the outcome. To remove the influence of outliers and solely evaluate
model performance, we repeat each experiment 15 times and select the top 10 test accuracies for as-
sessment. 30% of the training data is used as a validation set, while model performance is evaluated
on the full test set.

Result. In Figure 4, we observe that by utilizing topological information, the performance of
ECLayr consistently surpasses the baseline in all scenarios. Surprisingly, we notice that ECLayr
outperforms PH-based models despite the fact that PH is more informative than Euler Characteris-
tics. We speculate that this phenomenon stems from an optimization process, coupled with the con-
sideration that solely macroscopic topological features are adequate for this uncomplicated dataset.
PH provides multiple summaries for each homology dimension, which complicates optimization
in scenarios with limited data, whereas ECC yields a single summary for all dimensions. Conse-
quently, the simplicity of ECC renders our layer more appropriate for scenarios with insufficient
data. We also observe that our model outperforms ECLayr with sigmoid approximation, supporting
the use of our proposed stable backpropagation method. Furthermore, ECLayr exhibits resistance
to approximately 5 ∼ 10% of data contamination compared to the baseline model. Nevertheless, the
inherent dependence of ECC on even small generators result results in our layer exhibiting reduced
noise resistance compared to, for instance, PersLay. Runtime metrics are provided in Table 2. Our
method scales approximately 20 to 30 times faster compared to PH-based methods, highlighting the
significant improvement in computational efficiency. The high runtime of CNN + DECT results
from the increased time complexity of O(vN) when using sigmoid approximation.

6.4 CLASSIFICATION ON MODERATELY HIGH-DIMENSIONAL DATA

A significant drawback of PH is that its time complexity generally scales poorly with the dimension
of data, rendering it impractical for high-dimensional data applications. Conversely, the computa-
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Model Test Accuracy Runtime

ResNet 81.705
(±2.899) 0.110 sec

ResNet + EC(i) 82.936
(±2.520) 0.415 sec

ResNet + EC 84.351
(±3.308) 0.470 sec

Table 3: Br35H test accuracy and runtime per epoch.

tional efficiency of ECC enables the use of moderately high-dimensional data without compromising
significant computational costs. We demonstrate that our layer can enhance model performance by
effectively exploiting topological information using a real-world dataset with dimension that would
normally require intense computation for PH applications.

Experimental Setup. We conduct a binary classification task of detecting brain tumors on the
Br35H dataset. The Br35H dataset consists of 3000 brain MRI images that have different size for
each dimension and a varying number of channels. We preprocess the data by cropping along the
shorter dimension, resizing it to 112×112, and converting it to grayscale. ResNet18 (He et al., 2016)
is employed as a baseline model, with an additional fully connected layer of size 64 appended at the
end of the network. For ResNet + EC(i), we add a parallel ECLayr at the beginning of the network
and concatenate the output with the residual layer output before feeding to the fully connected layer.
For ResNet + EC, we place an additional ECLayr before the first residual layer. As the task is a
simple binary classification problem, we only use 10% of the data as training samples and 30% of
training data is used for validation. Our training scheme utilizing limited data mirrors real-world
challenges, as access to medical data is often limited and costly. Each simulation is repeated 10
times, with the average test accuracy and average runtime per epoch reported in Table 3.

Result. The results in Table 3 show that our layer can enhance model performance while maintaining
manageable computational costs on moderately high dimensional data. Furthermore, it suggests
that our layer can be effectively integrated with large models such as ResNet for practical usage.
Another interesting observation is that using an additional ECLayr before the first residual layer
yields further improvement in performance. Fully exploiting the computational efficiency of ECC,
our layer facilitates operations on moderately high-dimensional data that would be impractical for
PH, highlighting the significance of ECLayr for real-world applications.

7 DISCUSSION

ECLayr is a novel topological layer that offers computationally efficiency and stable backprop-
agation, allowing for seamless integration into a wide range of deep learning architectures while
enhancing both robustness and convergence behavior. Our proposed layer can be used generically
for an extensive variety of data structures as long as the filtration is differentiable with respect to
the input data. Nonetheless, there are some important caveats and limitations which should be
addressed. First, while ECCs offer computational efficiency, PH-based summaries provide more
detailed, multi-scale topological information. Understanding this tradeoff is essential. Therefore,
our proposed ECLayr is particularly well-suited for applications where computational efficiency
is prioritized over detailed topological insights. Moreover, as discussed in greater detail in Section
5, ECCs are topologically weaker invariants compared to PHs. Consequently, the ECC-based layer
generally exhibits less robustness than the PH-based layers. Next, as with other topological layers,
further research is necessary to achieve successful systematic hyperparameter exploration. Finally,
extending our analysis to other filtrations, such as the clique complex of a multigraph, and applying
ECLayr to time-series embeddings (Kim et al., 2018; Umeda, 2017) would be a valuable direction
for future research, which could further demonstrate the versatility of our proposed methods.
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measures. Foundations of Computational Mathematics, 11:733–751, 2011.

Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric complexes.
Geom. Dedicata, 173:193–214, 2014. ISSN 0046-5755. doi: 10.1007/s10711-013-9937-z. URL
https://doi.org/10.1007/s10711-013-9937-z.

Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of per-
sistence modules. SpringerBriefs in Mathematics. Springer, [Cham], 2016a. ISBN 978-3-319-
42543-6; 978-3-319-42545-0. doi: 10.1007/978-3-319-42545-0. URL https://doi.org/
10.1007/978-3-319-42545-0.

Frédéric Chazal, Pascal Massart, and Bertrand Michel. Rates of convergence for robust geometric
inference. 2016b.

Yuzhou Chen, Ignacio Segovia-Dominguez, Baris Coskunuzer, and Yulia Gel. Tamp-s2gcnets: cou-
pling time-aware multipersistence knowledge representation with spatio-supra graph convolu-
tional networks for time-series forecasting. In International Conference on Learning Representa-
tions, 2022.

David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz func-
tions have Lp-stable persistence. Found. Comput. Math., 10(2):127–139, 2010. ISSN
1615-3375. doi: 10.1007/s10208-010-9060-6. URL https://doi.org/10.1007/
s10208-010-9060-6.

11

https://doi.org/10.1007/s10711-013-9937-z
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/s10208-010-9060-6
https://doi.org/10.1007/s10208-010-9060-6


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paweł Dłotko and Davide Gurnari. Euler characteristic curves and profiles: a stable shape invariant
for big data problems. GigaScience, 12:giad094, 2023.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Applied Mathematics.
American Mathematical Society, 2010. ISBN 9780821849255.
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APPENDIX

A MORE BACKGROUNDS IN TOPOLOGICAL DATA ANALYSIS

We briefly review basic concepts in Topological Data Analysis that are needed to develop stability
results in Section 5 of this paper, mainly coming from Kim et al. (2020). We refer interested readers
to Chazal & Michel (2021); Hatcher (2002); Edelsbrunner & Harer (2010); Chazal et al. (2009;
2016a) for details and formal definitions.

Vietoris-Rips Complex. Let X be a finite set of points in Rd. For r > 0, the Vietoris-Rips complex
is a collection of simplices where the distance between any two vertices is smaller than 2r:

Rips(r) = {σ ⊂ X|d(ui, uj) < 2r, ∀ui, uj ∈ σ}.
Notice that Rips(r1) ⊂ Rips(r2) when r1 ≤ r2. Thus, we can build a filtration on the Vietoris-Rips
complex by monotonically increasing r.

Alpha Complex. Let X be a finite set of points in Rd. For each ui ∈ X , the Voronoi cell of ui is
the set of points that are closest to ui; Vui

= {x ∈ Rd|d(ui, x) ≤ d(uj , x),∀uj ∈ X,uj ̸= ui}. For
r > 0 and each ui ∈ X , let us denote the closed r-ball with center ui and radius r as Bui

(r). Then,
we define Rui(r) = Bui(r) ∩ Vui , which is the intersection of each r-ball with its corresponding
Voronoi cell. The Alpha complex is a collection of simplices such that all Rui(r) of the vertices in
the simplex have an intersection:

Alpha(r) = {σ ⊂ X| ∩ui∈σ Rui(r) ̸= ∅}.
Similar to the Vietoris-Rips complex, we can build a filtration on the Alpha complex by monotoni-
cally increasing r.

Persistent Homology and Persistence Diagram. Persistent homology is a multiscale approach
to represent the topological features of the complex K, and can be represented in the persistence
diagram. For a filtration F and for each nonnegative k, we keep track of when k-dimensional
homological features (e.g., 0-dimension: connected component, 1-dimension: loop, 2-dimension:
cavity,. . .) appear and disappear in the filtration. If a homological feature αi appears at bi and
disappears at di, then we say αi is born at bi and dies at di. By considering these pairs (bi, di) as
points in the plane, one obtains the persistence diagram defined as follows.
Definition A.1. Let R2

∗ := {(b, d) ∈ (R∪∞)2 : d > b}. A persistence diagramD is a finite multiset
of {(bi, di) : (bi, di) ∈ R2

∗}.

Wasserstein Distance. We suggest two versions of Wasserstein distances, one is for persistence
diagrams and the other is for probability measures.

We first start with Wasserstein distance for persistence diagrams. A matching between two persis-
tence diagrams D1 and D2, is a subset m ⊂ D1 × D2 such that every off-diagonal point in D1 and
D2 only appears once in m. The p-Wasserstein distance between persistence diagrams is defined by

Wp(D1,D2) = inf
matching m

( ∑
(x,y)∈m

∥x− y∥p∞

)1/p

Now we see Wasserstein distance for persistence diagrams. Let P and Q be probability measures
on X , and let J (P,Q) denote all joint distributions J for X × X that have marginals P and Q. In
other words, (Π1)#J = P and (Π2)#J = Q where Π1(x, y) = x and Π2(x, y) = y, and T#P is a

push-forward measure of P , i.e., T#P (A) = P
(
{x : T (x) ∈ A

)
= P (T−1(A)). For p ≥ 1, the

Kantorovich, or Wasserstein, distance is

Wp(P,Q) =

(
inf

J∈J (P,Q)

∫
X×X

||x− y||pdJ(x, y)
)1/p

.

Gromov-Hausdorff distance. The Hausdorff distance is on sets embedded in the same metric
spaces. This distance measures how two sets are close to each other in the embedded metric space.
When S ⊂ X, we denote by Sr the r-neighborhood of a set S in Rd, i.e. Sr =

⋃
x∈S Bx(r).
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Definition A.2 (Hausdorff distance (Burago et al., 2001, Definition 7.3.1)). Let X,Y ⊂ X be subsets
of Rd. The Hausdorff distance between X and Y , denoted by dH(X,Y ), is defined as

dH(X,Y ) := inf {r > 0 : X ⊂ Y r and Y ⊂ Xr} .

The notion of the Hausdorff distance can be generalized to the comparison of any pair of metric
spaces. The Gromov-Hausdorff distance measures how two sets are far from being isometric to each
other.
Definition A.3 ((Burago et al., 2001, Definition 7.3.10)). Let X and Y be two metric spaces. The
Gromov-Hausdorff distance between X and Y , denoted by dGH(X,Y ), is defined as

dGH(X,Y ) := inf{dH(X ′, Y ′) : there exists a metric space Z and X ′, Y ′ ⊂ Z

with X,Y isometric to X ′, Y ′, respectively.}

Distance to measure. Distance to measure (DTM) (Chazal et al., 2011; 2016b; Anai et al., 2020)
is a distance-like function2 that is robust to outliers. For a probability measure µ and parameters
m0 ∈ [0, 1) and r ≥ 1 (default is r = 2), the DTM function dµ,m0 : Rd → R is defined as

dµ,m0
(x) =

(
1

m0

∫ m0

0

δrµ,m(x)dm

)1/r

,

where δµ,m(x) = inf{t > 0|µ(Bx(t)) > m} and Bx(t) is a closed t-ball centered at x. In practice,
an empirical DTM is used. If input data X is considered as weights corresponding to fixed points Y,

d̂m0(x) =

(∑
Yi∈Nk(x)

X ′
i∥Yi − x∥r

m0

∑n
i=1 Xi

)1/r

, (3)

where Nk(x) is a subset of Y containing the k nearest neighbors of x. k is such that satisfies∑
Yi∈Nk−1(x)

Xi < m0

∑n
i=1 Xi ≤

∑
Yi∈Nk(x)

Xi, and X ′
i =

∑
Yj∈Nk(x)

Xj −m0

∑n
j=1 Xj if at

least one of Yi’s is in Nk(x) and X ′
i = Xi otherwise (see Figure 5 (b)).

When input data is considered as empirical data points, the empirical DTM becomes

d̂m0(x) =

(∑
Xi∈Nk(x)

w′
i∥Xi − x∥r

m0

∑n
i=1 wi

)1/r

where Nk(x) is a subset of X containing the k nearest neighbors of x. k is such that satisfies∑
Xi∈Nk−1(x)

wi < m0

∑n
i=1 wi ≤

∑
Xi∈Nk(x)

wi, and w′
i =

∑
Xj∈Nk(x)

wj −m0

∑n
j=1 wj if at

least one of Xi’s is in Nk(x) and w′
i = wi otherwise.

The parameter m0 determines how much local/global structures should be extracted, with smaller
m0 corresponding to more local structures. The DTM function is differentiable (Kim et al., 2020),
and adopting a sublevel or superlevel set filtration on the DTM transformed data yields a DTM
filtration that is robust to outliers.

B CONSTRUCTING FILTERED CUBICAL COMPLEXES FROM IMAGE DATA

Let X ∈ RH×W be a 2D image. There are two methods of constructing a filtered cubical complex:
T-construction and V-construction.

T-construction In T-construction, each pixel in the image is mapped to a top-dimensional cell in
the cubical complex, which is a square in case of 2D images. The filtration value of each square
is assigned as the intensity of its corresponding pixel, and these filtration values are recursively
extended to lower dimensional cubes. The filtration value of each edge is assigned as the minimum
of the filtration values of its neighboring squares. Similarly, the filtration value of each vertex is
assigned as the minimum of the filtration values its neighboring edges.

2This distance function is not the distance function giving a metric between two input points such as lp
distance, but rather measures a distance between a single input point and the support set of a probability distri-
bution.
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V-construction In V-construction, each pixel in the image is mapped to a vertex in the cubical com-
plex. The filtration value of each vertex is assigned as the intensity of its corresponding pixel, and
these filtration values are recursively extended to higher dimensional cubes. The filtration value of
each edge is assigned as the maximum of the filtration values of its neighboring vertices. Simi-
larly, the filtration value of each square is assigned as the maximum of the filtration values of its
neighboring edges.

For both constructions, a sublevel set at a given filtration value t defines a subcomplex K(t) := {σ ∈
K|f(σ) ≤ t}; the collection of cubes with filtration value less than or equal to t. Consequently, a
sublevel set filtration can be built by monotonically increasing t. A superlevel set filtration can also
be obtained by applying the sublevel set filtration to a cubical complex constructed from −X rather
than X . In case of 2D images with multiple channels, such as color images represented by RGB
channels where X ∈ R3×H×W , cubical complexes are constructed independently for each channel.

C DERIVATIVE OF FILTRATION VALUE WITH RESPECT TO INPUT X : ∂f(σ)
∂X

C.1 VIETORIS-RIPS FILTRATION

Assume Vietoris-Rips general position for a point cloud X: (i) all points in X are unique, and (ii)
the length of all attaching edges are unique. The filtration value of a simplex σ in the Vietoris-Rips
filtration is half the length of the longest edge in σ. This edge is the attaching edge of σ, denoted as
τσ . Letting xi and xj be the vertices of τσ , the derivatives of filtration value f(σ) =

∥xi−xj∥
2 with

respect to the points xi and xj are given by (Gameiro et al., 2016):

∂f(σ)

∂xi
=

1

2

xi − xj

∥xi − xj∥
,

∂f(σ)

∂xj
=

1

2

xj − xi

∥xi − xj∥
. (4)

The derivatives with respect to points other than xi and xj are all zero.

C.2 ALPHA FILTRATION

Assume Alpha general position of a point cloud X: (i) general position in the sense of Edelsbrunner
& Mücke (1994), and (ii) filtration values of all attaching simplices are unique. In Alpha filtration,
all simplices are either an attaching simplex, or a simplex attached by another simplex of higher
dimension. In the latter case, filtration value of the attached simplex is given by the filtration value
of its attaching simplex. The filtration value of an attaching simplex σ is the radius of the smallest
circumcircle of σ (Edelsbrunner & Mücke, 1994; Gameiro et al., 2016) and it can be differentiated
with respect to the coordinates of each of the vertices.

C.3 SUB/SUPERLEVEL SET FILTRATION ON FILTERED CUBICAL COMPLEXES

Let us treat a 2D image X ∈ RH×W as a vector x = (x1, . . . , xHW ) ∈ RHW , where the elements
of the vector are arranged in row-major order. Then, the derivative of the filtration value with respect
to the input data can be written as

∂f(σ)

∂x
=

(
∂f(σ)

∂x1
, . . . ,

∂f(σ)

∂xHW

)
Given that the filtration value varies depending on the construction used, we provide differentiability
results for both T-construction and V-constructions. For simplicity of notation, we denote I =
{1, 2, . . . ,HW} as the index set.

T-construction. In T-construction, each pixel is mapped to a square, with the pixel intensity serving
as the filtration value of the corresponding square. Thus, we first explore the scenario where σ is a
square, and then extend our analysis to lower dimensional cubes.

(i) Assume σ is a square, i.e., dim(σ) = 2. Let j ∈ I denote the index of the pixel in x that
corresponds to σ. Then, f(σ) = xj and thus,

∂f(σ)

∂xi
=

{
1, if i = j

0, otherwise
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for all i ∈ I.

(ii) Assume σ is an edge, i.e., dim(σ) = 1. Recall that f(σ) is assigned as the minimum filtration
value of its neighboring squares, which in turn is equivalent to the minimum pixel intensity of the
pixels corresponding to those neighboring squares. Thus, we can identify the pixel associated with
σ by

1. find neighboring squares of σ

2. determine the neighboring square with minimum filtration value

3. identify the pixel that corresponds to the square found in (2)

In step 2, multiple neighboring squares may have the same minimum filtration value. In this case,
we identify the set of pixels that corresponds to all such squares. Letting J ⊂ I denote an index set
labeling the members of such set of pixels,

∂f(σ)

∂xi
=

{
1/|J |, if i ∈ J

0, otherwise

for all i ∈ I. Observe that when multiple pixels contribute to σ, we distribute the gradient evenly
between those pixels.

(iii) Assume σ is a vertex, i.e., dim(σ) = 0. Recall that f(σ) is assigned as the minimum filtration
value of its neighboring edges. Therefore, once we find the neighboring edge(s) with minimum
filtration value, we can repeat the process in (ii) to identify the set of pixels associated with σ.
Letting J ⊂ I denote an index set labeling the members of such set of pixels,

∂f(σ)

∂xi
=

{
1/|J |, if i ∈ J

0, otherwise

for all i ∈ I.

V-construction. In V-construction, each pixel is mapped to a vertex, with the pixel intensity serving
as the filtration value of the corresponding vertex. Thus, we first explore the scenario where σ is a
vertex, and then extend our analysis to higher dimensional cubes.

(i) Assume σ is a vertex, i.e., dim(σ) = 0. Let j ∈ I be the index of the pixel in x that corresponds
to σ. Then, f(σ) = xj and thus,

∂f(σ)

∂xi
=

{
1, if i = j

0, otherwise

for all i ∈ I.

(ii) Assume σ is an edge, i.e., dim(σ) = 1. Recall that f(σ) is assigned as the maximum filtration
value of its neighboring vertices, which in turn is equivalent to the maximum pixel intensity of the
pixels corresponding to those neighboring vertices. Thus, we can identify the pixel associated with
σ by

1. find neighboring vertices of σ

2. determine the neighboring vertex with maximum filtration value

3. identify the pixel that corresponds to the vertex found in (2)

In step 2, multiple neighboring vertices may have the same maximum filtration value. In this case,
we identify the set of pixels that corresponds to all such vertices. Letting J ⊂ I denote an index set
labeling the members of such set of pixels,

∂f(σ)

∂xi
=

{
1/|J |, if i ∈ J

0, otherwise

for all i ∈ I. Observe that when multiple pixels contribute to σ, we distribute the gradient evenly
between those pixels.
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(a) (b) (c) (d)

Figure 5: (b) is the DTM transformation of (a) using m0 = 0.05 on a 28 × 28 unit grid. (c) &
(d) visualize the respective gradients of ECC and persistence landscape with respect to (b). The
gradient of ECC provides more detailed and interpretable information compared to the gradient of
persistence landscapes, which is very sparse.

(iii) Assume σ is a square, i.e., dim(σ) = 2. Recall that f(σ) is assigned as the maximum filtration
value of its neighboring edges. Therefore, once we find the neighboring edge(s) with maximum
filtration value, we can repeat the process in (ii) to identify the set of pixels associated with σ.
Letting J ⊂ I denote an index set labeling the members of such set of pixels,

∂f(σ)

∂xi
=

{
1/|J |, if i ∈ J

0, otherwise

for all i ∈ I.

D APPROXIMATION OF GRADIENTS

For more detailed theoretical analysis of the approximations of the gradients, we suppose that the
algorithm is to approximate the gradients of the indicator function I(fσ ≤ t) with respect to fσ on a
fixed grid t ∈ tseq = {t1, . . . , tv}, with ∆t := ti+1−ti

2 being equal. Suppose the algorithm outputs
approximations of gradients ∂I(fσ≤t)

∂fσ
|t=t1,...,tv as g1, . . . , gv , we treat that the gradient ∂I(fσ≤t)

∂fσ
at

t is approximated as g1 on t ∈ [t1 − ∆t, t1 + ∆t), g2 on t ∈ [t2 − ∆t, t2 + ∆t), and gv on
t ∈ [tv − ∆t, tv + ∆t), where gj can depend on fσ . Hence the corresponding approximation
g : [t1 −∆t, tv +∆t) is

g(t) = gj , for t ∈ [tj −∆t, tj +∆t).

If g is a good approximation of ∂I(fσ≤t)
∂fσ

, then∫
g(t)dfσ ≈

∫
∂I(fσ ≤ t)

∂fσ
dfσ for each t ∈ (t1 −∆t, tv +∆t),

and ∫
g(t)dt ≈

∫
∂I(fσ ≤ t)

∂fσ
dt for each fσ ∈ (t1 −∆t, tv +∆t).

We will analyze the approximations of the gradients based on these criteria.

For given fσ ∈ (t1 −∆t, tv +∆t), let the sigmoid approximation be S′
λ,fσ

: [t1 −∆t, tv +∆t) as

S′
λ,fσ (t) = (S′tseq

λ,fσ
)j = −λ · S(λ(tj − fσ)) [1− S(λ(tj − fσ))] , for t ∈ [tj −∆t, tj +∆t).

Similarly, let our gradient approximation be δ̂β,fσ : [t1 −∆t, tv +∆t) as

δ̂β,fσ (t) =
(
δ̂tseqβ,fσ

)
j
=

{
− 1

β
√
π
, if fσ ∈ [tj−1, tj),

0, otherwise,
for t ∈ [tj −∆t, tj +∆t).

Proposition D.1. For all t ∈ (t1 −∆t, tv +∆t),∣∣∣∣∣
∫ tv+∆t

t1−∆t

Ŝ′
λ,fσ (t)dfσ −

∫ tv+∆t

t1−∆t

∂I(fσ ≤ t)

∂fσ
dfσ

∣∣∣∣∣ ≥ 2S(−λ(2v − 1)∆t). (5)
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And if fσ = tj −∆t for some j, then∣∣∣∣∣
∫ tv+∆t

t1−∆t

Ŝ′
λ,fσ (t)dt−

∫ tv+∆t

t1−∆t

∂I(fσ ≤ t)

∂fσ
dt

∣∣∣∣∣ ≥ |1− 2vλ∆t exp(−λ∆t)| . (6)

Proposition D.2. For all t ∈ (t1 −∆t, tv +∆t),∫ tv+∆t

t1−∆t

δ̂β,fσ (t)dfσ −
∫ tv+∆t

t1−∆t

∂I(fσ ≤ t)

∂fσ
dfσ = − 2∆t

β
√
π
+ 1,

and for all fσ ∈ (t1 −∆t, tv +∆t),∫ tv+∆t

t1−∆t

δ̂β,fσ (t)dt−
∫ tv+∆t

t1−∆t

∂I(fσ ≤ t)

∂fσ
dt = − 2∆t

β
√
π
+ 1.

Suppose the grid is fixed, so ∆t and v is fixed. Then for equation 5 to go to 0, λ→∞ should hold.
However, as λ → ∞, the lower bound of equation 6 converges to 1, which means that the integral
of the sigmoid approximation

∫ tv+∆t

t1−∆t
Ŝ′

λ,fσ (t)dt becomes inconsistent. This is already expected
from the vanishing gradient behavior. However, Proposition equation D.2 suggests that when β is
appropriately chosen as β =

√
π

2∆t , the gradient approximation becomes consistent for the integral
with respect to both fσ and t.

E PROOFS FOR SECTION 4

Proof for Proposition 4.1. First, note that the sigmoid function S(x) = 1
1+exp(−x) satisfies

dS

dx
(x) =

exp(−x)
(1 + exp(−x))2

= S(x)(1− S(x)),

and hence
∂S(λ(t− fσ))

∂fσ
= −λS(λ(t− fσ))(1− S(λ(t− fσ)).

Since x 7→ |x(1− x)| on [0, 1] is maximized when x = 1
2 , so∥∥∥∥∂S(λ(t− fσ))

∂fσ

∥∥∥∥
∞

=
λ

4
.

Meanwhile, ∣∣∣∣∂S(λ(t− fσ))

∂fσ
|t=tj

∣∣∣∣ = λS(λ(tj − fσ)) [1− S(λ(tj − fσ))]

≤ λS(λd(fσ, tseq)) [1− S(λd(fσ, tseq))] .

Hence ∥∥∥S′tseq
λ,fσ

∥∥∥
∞

=

∥∥∥∥∂S(λ(t− fσ))

∂fσ
|t=t1,...,tv

∥∥∥∥
∞

≤ λS(λd(fσ, tseq)) [1− S(λd(fσ, tseq))] .

Hence, if fσ = tj −∆t for some j, then∥∥∥S′tseq
λ,fσ

∥∥∥
∞
≤ λS(λ∆t) [1− S(λ∆t)] .

≤ λ exp(−λ∆t),

and therefore when λ exp(−λ∆t)→ 0,

inf
fσ∈[t1−∆t,tv+∆t)

∥∥∥S′tseq
λ,fσ

∥∥∥
∞
→ 0.
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Proof for Proposition 4.2. δ̂tseqβ,fσ
always has the form(

0, . . . , 0,− 1

β
√
2π

, 0, . . . , 0

)
.

Therefore,

∥∥∥δ̂tseqβ,fσ

∥∥∥
∞

=
1

β
√
2π

.

F PROOFS FOR APPENDIX D

Before beginning the proofs of Appendix D, we would first like to emphasize that for all t ∈ (t1 −
∆t, tv +∆t), ∫ tv+∆t

t1−∆t

∂I(fσ ≤ t)

∂fσ
dfσ = I(tv +∆t ≤ t)− I(t1 −∆t ≤ t) = −1,

and for all fσ ∈ (t1 −∆t, tv +∆t),∫
∂I(fσ ≤ t)

∂fσ
dt = −

∫
∂I(fσ ≤ t)

∂t
dt = −I(fσ ≤ tv +∆t) + I(fσ ≤ t1 −∆t) = −1.

Proof for Proposition D.1. For given t ∈ (t1 − ∆t, tv + ∆t), let tj ∈ tseq be such that t ∈ [tj −
∆t, tj +∆t). Then∫

Ŝ′
λ,fσ (t)dfσ =

∫ tv+∆t

t1−∆t

∂S(λ(tj − fσ))

∂fσ
dfσ

= S(λ(tj − tv −∆t))− S(λ(tj − t1 +∆t)).

This is minimized when tj is close to t1+tv
2 . Hence,∫

Ŝ′
λ,fσ (t)dfσ ≥ S(−λ((2v − 1)∆t)− S(λ((2v − 1)∆t),

and hence∣∣∣∣∫ Ŝ′
λ,fσ (t)dfσ −

∫
∂I(fσ ≤ t)

∂fσ
dfσ

∣∣∣∣ ≥ 1− S(λ(2v − 1)∆t) + S(−λ(2v − 1)∆t)

= 2S(−λ(2v − 1)∆t).

Also, note that from the calculation in the proof of Proposition 4.1, if fσ = tj −∆t for some j, then∥∥∥S′tseq
λ,fσ

∥∥∥
∞
≤ λS(λ∆t) [1− S(λ∆t)] .

≤ λ exp(−λ∆t).

And ∣∣∣∣∫ Ŝ′
λ,fσ (t)dt

∣∣∣∣ ≤ ∥∥∥S′tseq
λ,fσ

∥∥∥
∞

2∆tv ≤ 2λ∆tv exp(−λ∆t).

Therefore, ∣∣∣∣∫ Ŝ′
λ,fσ (t)dt−

∫
∂I(fσ ≤ t)

∂fσ
dt

∣∣∣∣ ≥ |1− 2λ∆tv exp(−λ∆t)| .
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Proof for Proposition D.2. For given t ∈ (t1 − ∆t, tv + ∆t), let tj ∈ tseq be such that t ∈ [tj −
∆t, tj +∆t). Then δ̂β,fσ (t) is nonzero if and only if fσ ∈ [tj−1, tj), and hence

∫
δ̂β,fσ (t)dfσ =

∫ tj

tj−1

− 1

β
√
π
dfσ = − 2∆t

β
√
π
.

And for given fσ ∈ (t1 −∆t, tv +∆t), let tj ∈ tseq be such that fσ ∈ [tj−1, tj). Then δ̂β,fσ (t) is
nonzero if and only if t ∈ [tj −∆t, tj +∆t), and hence∫

δ̂β,fσ (t)dt =

∫ tj+∆t

tj−∆t

− 1

β
√
π
dt = − 2∆t

β
√
π
.

G PROOFS FOR SECTION 5

Proof for Proposition 5.1. Since Oθ(X) = gθ(CX(tseq)) and Oθ(X
′) = gθ(CX′(tseq)),

∥Oθ(X)−Oθ(X
′)∥1 = ∥gθ(CX(tseq))− gθ(CX′(tseq))∥1
≤ L ∥CX(tseq)− CX′(tseq)∥1 .

Now, note that ECC CX can be expanded using persistence diagrams {Dk(X) : k ≥ 0} as follows:
if Dk(X) = {(bki, dki) : 1 ≤ i ≤ nk}, then

CX(t) =

∞∑
k=0

(−1)kI(bki ≤ t < dki).

Since bki, dki ∈ {t∗i }, there exists a1, . . . , am ∈ Z and n1 < · · · < n2m such that CX(t) − CX′(t)
can be expressed as

CX(t)− CX′(t) =

m∑
i=1

aiI(t∗n2i
≤ t < t∗n2i+1

).

Then ∥CX(tseq)− CX′(tseq)∥1 and ∥CX − CX′∥1 is expanded as

∥CX(tseq)− CX′(tseq)∥1 =

v∑
j=1

m∑
i=1

|ai| I(t∗n2i
≤ tj < t∗n2i+1

)

and

∥CX − CX′∥1 =
m∑
i=1

|ai| (t∗n2i+1
− t∗n2i

).

Now for each i = 1, . . . ,m,
∑v

j=1 I(t∗n2i
≤ tj < t∗n2i+1

) is the number of tj’s that falls within the

interval [t∗n2i
, t∗n2i+1

). But since tj+1 − tj ≥ ∆t, such number is at most
⌈

(t∗n2i+1
−t∗n2i

)

∆t

⌉
, and also

from t∗n2i+1
− t∗n2i

≥ ∆t,
v∑

j=1

I(t∗n2i
≤ tj < t∗n2i+1

) ≤
⌈
(t∗n2i+1

− t∗n2i
)

∆t

⌉
≤

2(t∗n2i+1
− t∗n2i

)

∆t
.

Hence ∥CX(tseq)− CX′(tseq)∥1 can be correspondingly upper bounded as

∥CX(tseq)− CX′(tseq)∥1 =

m∑
i=1

|ai|
v∑

j=1

I(t∗n2i
≤ tj ≤ t∗n2i+1

)

≤ 2

∆t

m∑
i=1

|ai| (t∗n2i+1
− t∗n2i

)

=
2

∆t
∥CX − CX′∥1 .
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And correspondingly,

∥Oθ(X)−Oθ(X
′)∥1 ≤

2L

∆t
∥CX − CX′∥1 .

When K = K ′, ∥fX − fX′∥∞ = supσ∈K |fX(σ)− fX′(σ)|, and if K ̸= K ′, ∥fX − fX′∥∞ is not
well defined. However, there is a general distance between two filtration functions fX and fX′ even
when base simplicial complexes (or cubical complexes) are different; it is the interleaving distance
dI(fX , fX′). For the definition, see Section 5.1 from Chazal et al. (2016a). When K = K ′, there is
a bound

dI(fX , fX′) ≤ ∥fX − fX′∥∞ .

Hence we have a general version of Theorem 5.3 as follows.
Theorem G.1. Suppose K is a finite simplicial complex or cubical complex. Then there exists a
constant CK only depending on K such that

∥CX − CX′∥1 ≤ CKdI(fX , fX′).

Proof for Theorem G.1 is in a similar manner from the proof of Wasserstein Stability Theorem of
Cohen-Steiner et al. (2010).

Proof for Theorem G.1. From Proposition 5.2, it is sufficient to show that there exists C ′
K depending

only on K such that
∞∑
k=0

W1(Dk(X),Dk(X
′)) ≤ C ′

KdI(fX , fX′).

Fix k ≥ 0, and let ϵk := W∞(Dk(X),Dk(X
′)) be the bottleneck distance between two diagrams

Dk(X) and Dk(X
′). Let γk : Dk(X) → Dk(X

′) be the bijection that realizes the bottleneck
distance, i.e., for any p ∈ Dk(X),

∥p− γk(p)∥∞ ≤ ϵk.

Then 1-Wasserstein distance W1(Dk(X),Dk(X
′)) satisfies

W1(Dk(X),Dk(X
′)) = inf

γ

∑
x∈Dk(X)

∥x− γ(x)∥∞

≤
∑

x∈Dk(X)

∥x− γk(x)∥∞

≤ ϵk |Dk(X)| .
And hence if we let ϵ := supk≥0{ϵk}, then summing over k ≥ 0 gives

∞∑
k=0

W1(Dk(X),Dk(X
′)) ≤

∞∑
k=0

ϵk |Dk(X)|

≤ ϵ

∞∑
k=0

|Dk(X)| .

Now
∑∞

k=0 |Dk(X)| is the number of points in persistence diagrams of all homological dimensions
on K. This can be bounded by some constant C ′

K that depends only on K: one rough bound can
be as |{σ : σ ∈ K}|2, since each point in persistence diagrams has a unique pair (σb, σd) of a birth
simplex σb and a death simplex σd. And therefore,

∞∑
k=0

W1(Dk(X),Dk(X
′)) ≤ C ′

Kϵ.

Now from fX and fX′ being on a finite simplicial complex K, they are q-tame (see Section 3.8 from
Chazal et al. (2016a)). So from the bottleneck stability theorem (see e.g., Section 5.1 and Theorem
5.23 from Chazal et al. (2016a)), for all k ≥ 0,

ϵk ≤ dI(fX , fX′).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

And hence,
∞∑
k=0

W1(Dk(X),Dk(X
′)) ≤ C ′

KdI(fX , fX′).

Before proving Corollary 5.4, we explain what an empirical distribution and a ’restriction of a DTM
function’ mean. We say PX is an empirical distribution on X = {X1, . . . , Xn}, when PX =
1
n

∑n
i=1 δXi

, where δXi
is a Dirac measure on Xi, i.e., δXi

(A) = I(Xi ∈ A). And suppose
{σi} ⊂ K be vertices of K for V-construction, or top dimensional cells of K for T-construction.
Then we say fX is a ’restrictions of a DTM function’ dPX ,m0

, if there exists a grid G = {xi} ⊂ Rd,
with fX(σi) = dPX ,m0(xi).

Proof for Corollary 5.4. From Theorem 5.3,

∥CX − CX′∥1 ≤ CK ∥fX − fX′∥∞ .

Now we further bound ∥fX − fX′∥∞. Note that

∥fX − fX′∥∞ = max
σ∈K
|fX(σ)− fX′(σ)|

= max
x∈G

∣∣dPX ,m0
(x)− dPX′ ,m0

(x)
∣∣

≤
∥∥dPX ,m0

− dPX′ ,m0

∥∥
∞ .

And from Chazal et al. (2011)[Theorem 3.5],∥∥dPX ,m0 − dPX′ ,m0

∥∥
∞ ≤

1
√
m0

W2(PX , PX′).

Hence putting these things together gives

∥CX − CX′∥1 ≤
(d+ 1)DCK√

m0
W2(PX , PX′).

Let dGH be the Gromov-Hausdorff distance.

Corollary G.2. Suppose fX , fX′ are Vietoris-Rips filtrations of X and X ′, respectively. Then

∥CX − CX′∥1 ≤ CKdGH(X,X ′).

Proof for Corollary 5.4. From Theorem G.1,

∥CX − CX′∥1 ≤ CKdI(fX , fX′).

Then from Lemma 4.3 of Chazal et al. (2014),

dI(fX , fX′) ≤ dGH(X,X ′).

Hence putting these things together gives

∥CX − CX′∥1 ≤ CKdGH(X,X ′).
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(a) 30 sampled points from unit circle with small noise.
(b) ECC of (a) calculated using Alpha filtration
with 32 and 2000 grid points.

Figure 6: Within the interval [0.06, 0.7], both ECCs capture the Euler characteristic of the underlying
loop structure, which is 0. The ECC with 2000 grid points exhibits more noise than the ECC with
32 grid points, as the dense discretization captures even the small (noise) generators that do not
represent the global structure of data.

H CHOICE OF TDA HYPERPARAMETERS

In this section, we discuss the choice of several TDA hyperparameters in ECLayr: filtration, Tmin,
Tmax, v, and β.

Choice of filtration. Although numerous filtration options exist, certain filtrations are commonly
favored for specific data modalities and training contexts. For example, Vietoris-Rips and Alpha fil-
trations are extensively utilized for point clouds, while a sub/superlevel filtration on a filtered cubical
complex is a natural choice for data with grid structure. DTM filtration provides robustness against
outliers, and thereby preferable in scenarios of data contamination. Despite not being discussed
here, other choices of filtrations are also available. Nevertheless, the fundamental idea remains the
same; choose a filtration that can mostly effectively extract topological features from the given data.

Choice of [Tmin, Tmax]. A naive and convenient approach is to assign Tmin and Tmax as the
minimum and maximum of possible filtration values, respectively. For instance, one can set Tmin =
0 and Tmax = 1 for image data with min-max normalized pixel values. An alternative method is
to select [Tmin, Tmax] as a tighter interval within the range of possible filtration values, focusing on
regions of the filtration that contain meaningful topological and geometrical information. Such an
interval can be identified via hyperparameter search, or chosen intuitively by examining the ECC
computed for some data. For example, the ECCs in Figure 6-(b) reveal that [0.06, 0.7] is a suitable
interval for capturing the underlying loop structure depicted in Figure 6-(a).

Choice of v. Spacing between grid points is important as our vectorized ECC does not account
for cycles that are born and dead between ti and ti+1, where ti, ti+1 ∈ tseq. Provided that the
discretization is not overly sparse, the uncaptured cycles are often small (noise) generators with life
span shorter than ti+1 − ti. This implies that with appropriate discretization, noise can be partially
filtered by design. Therefore, using a highly dense discretization is not necessarily beneficial, as
it captures even the small (noise) generators (see Figure 6-(b)). Conversely, using an excessively
sparse discretization may jeopardize the capturing of essential global features. The optimal choice
of v is not always evident; we recommend hyperparameter search using cross validation to determine
the adequate v that balances the two circumstances.

Choice of β. The hyperparameter β regulates the gradient’s magnitude, with smaller values of β
yielding larger gradients. However, the optimal choice of β is somewhat ambiguous. Unfortunately,
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we do not have a clear rationale for choosing β; it is contingent upon numerous factors, including
model architecture and the specific task at hand. Therefore, we recommend conducting hyperpa-
rameter search via cross validation to select an appropriate β.

I EXPERIMENT DETAILS

All experiments were conducted with NVIDIA RTX A6000 GPU, with the exception of empirical
time complexity analysis, which was run on Apple M2.

I.1 COMPUTATIONAL EFFICIENCY

The runtime metrics are computed on the training set of MNIST, Br35H, and synthetic data. MNIST
contains 60000 training samples of size 28 × 28. For Br35H, we use the same training set as
the experiment conducted in Section 6.4, which is 209 samples of size 112 × 112. We generate
1000 samples of size 224× 224 for the synthetic data, where each pixel is randomly sampled from
a uniform distribution. Both ECC and PH use superlevel set filtration on V-constructed cubical
complex. PH is computed using the GUDHI package, while Algorithm 1 is used to compute ECC
with v = 32 on interval [0, 1].

I.2 TOPOLOGICAL AUTOENCODER

The encoder and decoder network each consists of three fully connected layers, with input dimension
size 101, hidden dimension size 32, and latent dimension size 2. BatchNorm and ReLu nonlinearity
is used after each layer, except for the latent dimension. We place one ECLayr at the beginning of
the encoder and one ECLayr at the latent dimension in order to compute the MAE loss between
ECC of input point cloud and ECC of latent representation. This MAE loss acts as a topology
regularizing term, with lambda=0.001 controlling its magnitude. Vietoris-Rips filtration is employed
to compute ECC and max dimension is restricted to 1. v is set to 1000 over interval [0, 2], where
filtration values indicate edge length. β, which controls the magnitude of the gradient, is assigned as
0.01 and we do not use gθ for this experiment. Adam optimizer is used for training with batch size
32 and learning rate 0.0001. We run for 100 epochs and adopt early stopping after patience 10.

I.3 MNIST DATASET

The MNIST dataset contains 60000 training data and 10000 test data of handwritten digits from
0 to 9. We implement a 4 layer baseline model, consisting of two CNN layers followed by two
fully connected layers, with ReLU nonlinearity between every layer. Both CNN layers use 3 × 3
kernels with stride 1 and padding 1. Each CNN layer has channel size 32 and 1, respectively. The
output of the CNN network is flattened and passed to the subsequent fully connected layers with
hidden dimension of 64. For training, we employ the Adam optimizer with learning rate 0.001 and
batch size 32. The learning rate is decayed by a factor of 0.1 when the validation loss plateaus for
10 epochs. While we use a maximum of 1000 epochs for training, early stopping is implemented
to stop training after the validation loss plateaus for 25 epochs. Cross-entropy loss is used for
classification. We compare the performance of our proposed layer with the base model, and two
other topological layers applicable to image datasets: PersLay (Carrière et al., 2020) and PLLay
(Kim et al., 2020). Utilizing a very simple model on limited training samples, we observed random
failures across all models with outliers significantly affecting the outcome. To remove the influence
of outliers and solely evaluate model performance, we repeat each experiment 15 times and select
the top 10 test accuracies for assessment. 30% of the training data is used as a validation set and
model performance is evaluated on the complete test data.

Data Scarcity. To observe how model performance changes with data size, we sample training
data of size 100, 300, 500, 700 and 1000 with equal proportion for each label. For all topological
layers, we place a parallel layer at the beginning of the network (referred to as CNN + EC(i), CNN
+ Pers, and CNN + PL(i)). For ECLayr and PLLay, which allow backpropagation, we add an
additional layer after the last convolutional layer (referred to as CNN + EC, CNN + DECT and
CNN + PL). β = 0.01 is used to control the gradient intensity for ECLayr. For all topological
layers, we implement superlevel set filtrations on T-constructed cubical complex and use v = 32
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Models
Data Size

100 300 500 700 1000

CNN 69.075
(±1.049)

83.282
(±0.566)

85.346
(±0.305)

86.868
(±0.397)

89.066
(±0.518)

CNN + EC(i) 73.417
(±0.718)

86.549
(±1.050)

87.649
(±0.251)

88.642
(±0.335)

90.659
(±0.397)

CNN + EC 73.652
(±0.983)

86.551
(±1.035)

88.335
(±0.458)

88.755
(±0.319)

90.361
(±0.400)

CNN + DECT 70.872
(±1.484)

84.004
(±0.364)

85.702
(±0.502)

86.940
(±0.343)

89.421
(±0.234)

CNN + Pers 64.982
(±2.225)

81.256
(±1.376)

84.239
(±0.617)

86.200
(±0.786)

88.444
(±0.474)

CNN + PL(i) 66.425
(±2.078)

83.176
(±1.156)

86.110
(±0.598)

87.996
(±0.476)

90.072
(±0.364)

CNN + PL 69.656
(±2.673)

83.382
(±1.764)

86.251
(±1.200)

88.123
(±0.231)

90.164
(±0.713)

Table 4: Test accuracy of models trained on different sizes of MNIST dataset. For each data size,
the best accuracy is highlighted in bold.

Models
Corruption & Noise Probability

0.00 0.05 0.10 0.15 0.20

CNN 89.066
(±0.518)

86.556
(±0.495)

85.711
(±0.546)

83.288
(±0.735)

81.357
(±0.464)

CNN + EC(i) 90.659
(±0.397)

88.315
(±0.542)

86.844
(±0.564)

84.341
(±0.753)

82.122
(±0.791)

CNN + EC 90.361
(±0.400)

88.164
(±0.700)

86.762
(±0.700)

84.310
(±0.800)

81.976
(±0.647)

CNN + Pers 88.444
(±0.474)

87.686
(±1.229)

86.680
(±0.304)

84.385
(±0.559)

81.845
(±0.483)

CNN + PL(i) 90.072
(±0.364)

85.723
(±0.740)

84.742
(±0.641)

82.303
(±0.971)

80.593
(±0.493)

CNN + PL 90.164
(±0.713)

85.665
(±0.665)

84.9
(±0.637)

82.668
(±0.595)

80.852
(±0.926)

Table 5: Test accuracy of models trained on 1000 MNIST data with different corruption & noise
probability. For each corruption and noise probability, the best accuracy is highlighted in bold.

over interval [0, 1]. PersLay uses line point transform and a 10× 10 unit grid for learnable weights
over interval [0, 1] × [0, 1]. top2 function is used as the permutation invariant operation for PLLay
and PersLay. After the topological descriptor is computed from the respective layers, it is fed into a
fully connected layer gθ with output dimension of 32 to compute the final output of each topological
layer. We concatenate the output of the topological layer with the output of the CNN network to
feed it to the subsequent fully connected layer. See Table 4 for the full experiment results

Data Contamination. To observe how robust models are against data contamination, we consider a
corruption and noise process where the pixels are randomly omitted and subsequently contaminated
by random noise between 0 and 1 with probability 0.05, 0.1, 0.15, and 0.2. We apply different levels
of noise to 1000 training samples with equal proportion for each label. The overall architecture
and training scheme remain the same as before, except that we now place two parallel layers at the
beginning of the network using DTM filtration. For each DTM filtration, we align the data on a unit
grid and use m0 = 0.05 and m0 = 0.2 to examine the topological structure at different local/global
scales. We use the interval [0.02, 0.28] and [0.06, 0.29] for m0 = 0.05 and m0 = 0.2 respectively.
For CNN + EC and CNN + PL, we place an additional layer using DTM filtration with m0 = 0.05
after the last convolutional layer. β is set at 0.01. See Table 5 for the full experiment results
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(a) Brain tumor (b) No brain tumor

Figure 7: Example brain MRI images from Br35H dataset.

(a) Model architecture of CNN + EC, DECT, and PL
for MNIST experiment. Topo layer 2 is removed for
CNN + EC(i), PL(i), and Pers. For data contamination
scenarios, another topological layer is employed par-
allel to topo layer 1.

(b) Model architecture of ResNet + EC for Br35H ex-
periment. ECLayr 2 is removed for ResNet + EC(i).

Figure 8: Illustration of model architectures.

I.4 BR35H DATASET

The Br35H dataset contains 3000 brain MRI images, used for a binary classification task of detecting
brain tumors. There is 1500 data for each label. As images in this dataset have different size for each
dimension and a varying number of channels, we preprocess the data by cropping along the shorter
dimension, resizing it to 112× 112, and converting it to grayscale to unify the number of channels.
We implement ResNet18 (He et al., 2016) as our baseline model, with an additional fully connected
layer of size 64 appended at the end of the network. For ResNet + EC(i), we add a parallel ECLayr
at the beginning of the network and concatenate the output with the residual layer output before
feeding to the fully connected layer. For ResNet + EC, we place an additional ECLayr before the
first residual layer. We use the same training scheme as before, with only a change in learning rate
and batch size. As we are using ECLayr in conjunction with a large model, we assign different
learning rates for ResNet18 and ECLayr. The learning rate for ECLayr is set at 0.001, while 0.01
is used for ResNet. We use batch size 64. For ECLayr used at the beginning of the network, we use
v = 64 over interval [0.4, 1]. The second ECLayr uses v = 64 over interval [0.3, 1]. Both layers
use superlevel set filtration on V-constructed cubical complexes, and we employ a linear layer of
size 64 for gθ. β is set at 0.01. We only use 10% of the data as training samples and 30% of training
data is used for validation.
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Filtration Interval [Tmin, Tmax]

T, sub V, sup V, sub [0.1, 1] [0, 0.8] [0.1, 0.8]

88.927
(±0.262)

89.205
(±0.291)

88.817
(±0.219)

89.249
(±0.230)

89.659
(±0.430)

89.467
(±0.134)

Discretization v Gradient Control β

16 64 128 0.1 0.001 0.0001
89.299

(±0.453)
89.271

(±0.274)
88.979

(±0.228)
89.228

(±0.176)
89.206

(±0.332)
88.659

(±0.657)

Table 6: Test accuracy on 1000 MNIST data for different choice of hyperparameters.

I.5 HYPERPARAMETER INFLUENCE

ECLayr introduces four hyperparameters: filtration, interval [Tmin, Tmax], discretization v, and
gradient control β. To evaluate the influence of each hyperparameter on performance, we provide
an ablation study on 1000 noiseless samples from the MNIST dataset. We vary a single hyperpa-
rameter while keeping all others consistent with the experiment in Section 6.3. The test accuracies
of EC + CNN model are presented in Table 6. ”T”, ”V”, ”sub”, and ”sup” for different choices of
filtration refer to T-construction, V-construction, sublevel set filtration, and superlevel set filtration,
respectively.
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