Under review as a conference paper at ICLR 2026

THINKING-FREE POLICY INITIALIZATION MAKES
DISTILLED REASONING MODELS MORE EFFECTIVE
AND EFFICIENT REASONERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Reward (RLVR) effectively solves com-
plex tasks but demands extremely long context lengths during training, leading
to substantial computational costs. While multi-stage training can partially miti-
gate this, starting with overly short contexts often causes irreversible performance
degradation, ultimately failing to reduce overall training compute significantly. In
this paper, we introduce Thinking-Free Policy Initialization (TFPI), a simple yet
effective adaptation to RLVR that bridges long Chain-of-Thought (CoT) distilla-
tion and standard RLVR. TFPI employs a simple ThinkingFree operation, explic-
itly discarding the thinking content via a direct </think> append, to reduce to-
ken usage during inference. Training with ThinkingFree-adapted inputs improves
performance and lowers token consumption, even in the original slow-thinking
mode. Extensive experiments across various benchmarks have shown that TFPI
accelerates RL convergence, achieves a higher performance ceiling, and yields
more token-efficient reasoning models without specialized rewards or complex
training designs. With TFPI only, we train a 4B model to reach 89.0% accuracy
on AIME24 and 65.5% on LiveCodeBench using less than 4K H20 hours.

1 INTRODUCTION

Reasoning is a fundamental aspect of human cognition, and equipping artificial intelligence (AI)
with strong reasoning capabilities is critical for its deployment and applications (Morris et al., 2023;
Huang et al., 2024; Xu et al., 2025¢). Progress in pretraining (Shao et al., 2024; Yang et al., 2024;
Chen et al., 2025b), supervised fine-tuning (SFT) (Yu et al., 2023; Xu et al., 2024; Tong et al., 2024;
Ye et al., 2025; Muennighoff et al., 2025), rigorous evaluation (Rein et al., 2024; Phan et al., 2025;
Xu et al., 2025b), reinforcement learning (RL) (Jaech et al., 2024; Guo et al., 2025) has significantly
enhanced the reasoning abilities of large language models (LLMs). Among these, RL with verifiable
rewards (RLVR) stands out as an effective approach that enables large language models (LLMs) to
generate long Chains-of-Thought (CoT) (Wei et al., 2022) spontaneously, and empowers them with
unprecedented performance on challenging reasoning tasks. Thus, these RLVR-trained LLMs are
termed as long-CoT LLMs, slow-thinking LLMs, or large reasoning models (LRMs).

Compared with initializing from a base LLM, starting from an SFT-distilled LRM typically yields
better results and accelerates convergence in RLVR (Guo et al., 2025; An et al., 2025). However,
SFT-distilled LRMs often produce excessively long responses during the rollout stage of RLVR,
which necessitates a large training context length for RLVR. Using such large training contexts
also incurs substantial computational costs. A common mitigation strategy is multistage RLVR,
which begins with a relatively “short” context and gradually increases the training length (Luo et al.,
2025b; An et al., 2025). Nonetheless, Zeng et al. (2025a) argue that multistage training might cause
irreversible performance degradation. Moreover, even multistage training demands significant com-
putational resources. For instance, training a 4B model while progressively increasing the maximum
context length from 40K to 48K to 52K tokens requires approximately 8K H800 GPU hours (An
et al., 2025). These limitations underscore the need for more efficient RLVR training methods.

In this work, we introduce Thinking-Free Policy Initialization (TFPI), a simple yet effective adap-
tation to RLVR that bridges long Chain-of-Thought (CoT) distillation and standard RLVR. We

Under review as a conference paper at ICLR 2026

s

76 :’ Stage 3
TFPI732K RL Sta 9 DeepScaler-1.5B
25
74)
~ i -
2 4K-8K 8K—16K 16K+32K §20 el o ° d
72 i P 3 3 oy
e} ©
® o
14 3
4 o
Z 2 15
L] —— TFPI+RL 10
N —— Direct RL 32K e
H
0 500 1000 1500 2K 4K 8K 16K 2 4 6 8 10 12 14
H20 Hours Tokens (K)

Figure 1: Our proposed TFPI accelerates the convergence of RLVR to a higher performance ceiling
(left) and yields more token-efficient reasoning models (right). Left: avg@32 versus training com-
pute, measured in H20 hours. “Direct RL” refers to directly training Qwen3-4B with a 32K context
window using DAPO, while “TFPI + RL” denotes running 32K-context DAPO after initialization
with our 3-stage TFPI. The x-axis for TFPI uses a linear scale during the TFPI phase, followed by
a logarithmic scale, with the transition indicated by a black vertical line. Right: Average accuracy
on 4 reasoning datasets (AIME24/25, Beyond AIME, and GPQA) versus average output tokens.
Points in the upper-left region indicate better performance. Baseline names and their corresponding
numbers are listed in Table 3. Red dots denote different stages of our TFPI.

first observe that a ThinkingFree operation—explicitly discarding the thinking content via a direct
</think> append—can substantially reduce token usage during inference (Section 3.1). Training
with ThinkingFree-adapted inputs improves performance and lowers token consumption, even when
evaluated in the original slow-thinking mode (Section 3.2). We then formally define TFPI in Sec-
tion 3.3. As illustrated in Figure 1, TFPI accelerates RL convergence, achieves a higher performance
ceiling, and produces more token-efficient reasoning models without requiring specialized rewards
or complex training designs (Section 4).

Our contributions are as follows: @ We find that ThinkingFree can substantially reduce inference
costs for distilled LRMs, and that training with ThinkingFree-adapted inputs enhances slow-thinking
capability. @ We propose TFPI, a fast, low-cost initialization phase for long-CoT RL that accelerates
RL convergence and exhibits transfer across domains, even when trained solely on mathematics. &
We show that long-CoT RL following TFPI achieves a higher performance ceiling while producing
more token-efficient LRMs without the need for specialized rewards or complex training designs,
offering an effective and efficient route to training high-performing LRMs. @ We provide both
behavioral and parameter-level analyses and reveal that TFPI not only preserves the slow-thinking
reasoning pattern but also enables substantially faster rollouts in subsequent long-CoT RL stages.

2 PRELIMINARY

Notation. In this paper, we define an LLM parameterized by 6 as a policy my. Let x denote a query
and D the set of queries. Given a response y to a query z, its likelihood under the policy my is

expressed as my(y |) = Hlﬂl 7o (Yt | ©,y<¢), where |y| denotes the number of tokens in y. A

query-response pair (z,y) is scored by a rule-based outcome reward r(z,y) € {0, 1}, indicating
whether the response y aligns with the ground truth of x.

RLVR Algorithms. RLVR algorithms are central to the recent success of LRMs, with prominent
examples including Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative
Policy Optimization (GRPO) (Shao et al., 2024). PPO constrains updates to remain close to the
previous policy 7, via clipping. GRPO bypasses the need for the value model by computing
relative advantages among responses to the same query. A widely adopted GRPO variant, DAPO (Yu
et al., 2025), adds clip-higher, dynamic sampling, and token-level policy-gradient losses to stabilize
training. The objective is given by Jpapo(0) = E.wp [Tparo (8,)],

G il
1) ~) ~
Joaro(0,) = | =g—— Z Z min (Ti,t(e) Ait, Cllp(Ti,t(9)7 1—clow, 1+ Ehigh) Ai,t) ,
21:1 |yl i=1 t=1
st. 0<|{yi | is_.equivalent(y;,z)}| < G. (1)

Under review as a conference paper at ICLR 2026

20.0

B thinking WEN thinking-free — thinking-free ---- thinking
o 16.5K .
2 6.5 70
15.0 RS 20
.S . 4\\\
*g K60 =% o
15>
210.0 S { 9
Q
g gSO * . <
IS S S 108
g 5.0 “ TR
> 40 B
8 B S
0 20 40 60 80 100

0.0 DS-1.5B Qwen3-4B training step

Figure 2: Results of the meta-experiment on the ThinkingFree operation. Left: Average output
tokens in thinking mode and ThinkingFree mode on AIME25. Right: Evolution of avg@32 and
average output tokens on AIME24 with thinking-mode evaluation over training steps under 4K train-
ing response length (both training in thinking mode and ThinkingFree mode).

Here, {y;}$, ~ mg,,(*|z) and G is the number of generated responses to each query = (i.e., the
group size) and the importance ratio ri7t(t9) and advantage A, ; of token y; ; are:

() — mean ({r(e,p)}E)
A T) @

respectively, where all the tokens in y; share the same advantage as &

rio(0) = oWt ® yict)
1, —_— y
’ ﬂ-eold(yivt‘xﬂyi,<t)

o)

A concise overview of PPO and GRPO is provided in Appendix A.l. Across all experiments, we
adopt DAPO for fair comparison. In principle, any RLVR method can be applied to our TFPI stage.

3 METHODOLOGY

3.1 THINKING-FREE MODE ENABLES MORE EFFICIENT REASONING

To generate a response y ~ mg(- | «) for a query z using an SFT-distilled LRM g, the query is
typically formatted with a chat template. Template 1 illustrates the template adopted by the Qwen
model family (Yang et al., 2025a). We define ThinkingFree as an operator that transforms an input
query 2z into a modified query ' = ThinkingFree(x), in which the thinking content is explicitly
omitted. Under this transformation, response generation follows y ~ mg(- | «’). This mechanism
provides explicit control over whether reasoning content is present or absent in the generated output
(see Template 2). Additional examples using other chat templates are provided in Appendix A.2.
Hereinafter, we use x to denote a query formatted with the thinking template (e.g., Template 1), and
2’ or ThinkingFree(x) to denote the corresponding thinking-free version (e.g., Template 2).

(\

Template 1 (Thinking Mode) <|im_start|>system\nPlease reason step by step, and put your
final answer within \\boxed{}.<|im_end|>\n<|im_start | >user\n{question (x)}
<|im_end|>\n< |im_start|>assistant\n

Template 2 (Thinking-Free Mode) < |im_start|>system\nPlease reason step by step, and put
your final answer within \ \boxed{}.<|im_end|>\n<|im_start |>user\n{question (x)}
<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>

J

During inference, converting z into its thinking-free version z’ can substantially reduce to-
ken consumption. To assess how this transformation affects the reasoning capability of SFT-
distilled LRMs, we evaluate DeepSeek-Distilled-Qwen—-1.5B (abbreviated as DS—1.5B)
and Qwen3-4B on the AIME25. Detailed experimental setup is delayed to Appendix B.1. As
shown in Figure 2 (Left), applying the ThinkingFree reduces the number of output tokens by more
than 70% for both models. It is worth noting that Qwen3-4B is a fast—slow fusion model, whereas
DS-1.5B is an SFT-distilled long-CoT model; nevertheless, both exhibit the same trend.

3.2 THINKING-FREE TRAINING IS BENEFICIAL TO SLOW-THINKING

To train an SFT-distilled LRM, the training response length should not be too short (Setlur et al.,
2025), as this is detrimental to testing performance (An et al., 2025). As evidenced by the dotted

Under review as a conference paper at ICLR 2026

line in Figure 2 (Right), training Qwen—3-4B with a 4K response length using DAPO indeed leads
to a substantial drop in performance on AIME25. Given that using the ThinkingFree variant for
inference can significantly reduce token consumption, we pose an audacious question: can we apply
the ThinkingFree operation to all input queries during the rollout stage of RLVR? Moreover, will
this approach be beneficial to preserving the original slow-thinking capability of the trained LLM?

Surprisingly, RL trained with ThinkingFree rollout can slightly improve accuracy and reduce
token consumption when evaluated in thinking mode, even with very short training context
lengths. Figure 2 (Right) illustrates the training dynamics of Qwen—-3-4B trained with a 4K
response length under the ThinkingFree transformation of queries (detailed settings are in Ap-
pendix B.2). Even with a 4K output length, ThinkingFree RL increases the accuracy on AIME25
in thinking mode by approximately 2% , while reducing output tokens by around 20%. In contrast,
standard RLVR with a 4K length reduces avg@32 by more than 40%. These results suggest that ap-
plying ThinkingFree during rollout can yield steady improvements with minimal training compute.

3.3 THINKING FREE POLICY INITIALIZATION

Hu et al. (2025) introduce a pre-pretraining stage using formal language to accelerate convergence
of pretraining, while Wang et al. (2025b) propose a mid-training stage between pretraining and RL-
zero to facilitate RLVR. Inspired by these works, we ask: can a dedicated stage for SFT-distilled
LRMs improve the efficiency and effectiveness of standard RLVR scaling? ThinkingFree RL, which
enhances slow-thinking within short training context windows, requires substantially less compute
than standard RLVR. Initializing RLVR with a ThinkingFree RL policy could therefore reduce roll-
out tokens while achieving stronger downstream performance. We term this step as Thinking Free
Policy Initialization (TFPI), a stage preceding standard RLVR for SFT-distilled LRMs that aims to
lower rollout costs, raise the ceiling of reasoning ability, and accelerate convergence.

Consider the RLVR objective Jrivr (0) = Epop [Trivr (6,)] , where Jrivr (6,) denotes the per-
example objective of any RLVR algorithm (e.g., DAPO in eq. (1) or GRPO in eq. (5)). For the TFPI
stage, we use a modified objective: Jrrp1(0) = Epnp [Trivr (8, 27)], where 2/ = ThinkingFree(x).
In the rollout stage of TFPI, G responses are generated conditioned on z’: {y;}&., ~ mq,, (- | o).
The importance ratios and advantages (eq. (2)) are then adapted as:

o (yie | 2/, yi,<t) A=A - r(z',yi) — mean({r(w’,y]’)}f:l)’ 3
Toga (Yist | T yi,<t) std({r(af/7yj) f;l)

where Template 1 and Template 2 showcase the correspondence between x and =’ and r(a',y) =
r(x,y) since the ThinkingFree operator does not alter the ground-truth answer of the original prob-
lem. In our experiments, we instantiate RLVR with DAPO, i.e., Jrivr (0) = Jparo(?) (see eq. (1)).
Note that Heuristics for RLVR (e.g., multi-stage RL, data curricula) can be directly applied to TFPI.

Tiyt(g) =

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

In this section, we provide a brief overview of the key experimental setup, including training proce-
dures, baselines, and evaluation details. Additional information can be found in Appendix C.

Training Details. We build on the VeRL codebase (Sheng et al., 2024) with RLVR, following the
DAPO recipe (Yu et al., 2025), which enables dynamic sampling and clipping higher. All methods
use the same hyperparameters (batch size 256, learning rate 1 x 1075, no warm-up) and rollout set-
tings (temperature 1, topp 1, topk —1, 8 rollouts/problem). Training is conducted on DS—-1 . 5B,
Qwen3-4B, and DS—-7B using Polaris-53K (An et al., 2025). Direct RLVR uses a maximum out-
put length of 16K for DS—-1.5B/DS-7B and 32K for Qwen3-4B, while TFPI adopts multi-stage
training: 2K— 4K— 8K for DS—-1.5B/DS-7B and 4K— 8K— 16K for Qwen3-4B.

Baselines. We compare TFPI with direct RLVR training from an SFT-distilled LRM (“Direct RL”)
under matched total training compute (Table 1). To assess TFPI as a pre-RLVR stage, we run “TFPI
+ RL” with similar compute and compare against “Direct RL” (Table 2), also including competitive
LRMs of the same size, such as Polaris (An et al., 2025), DeepScaleR (Luo et al., 2025b), Skywork-
OR1 (He et al., 2025), and so on. For efficiency analysis, we compare with several RL-based

Under review as a conference paper at ICLR 2026

Table 1: Results of TFPI vs. direct RL across different benchmarks. “Avg@k” denotes the average
accuracy (%) over k random generations (i.e., pass@1). All models are evaluated in thinking mode.
The total training compute for the 3 stages of TFPI equals that of “Direct RL” for fair comparison.
Darker colors in the cell background denote better results within each model group.

| Mathematics | Multi-Task | Code | Instruction | Overall

Models AIME 24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall

Avg@32 Avg@32 Avg8 Avgl8 Avgl8 AvgQ4 Avg.

DeepSeek-Distill-Qwen-1.5B
Initial Model 29.6 23.0 8.7 16.3 17.7 36.6 22.0
- Direct RL 33.9 27.1 11.9 19.2 18.2 41.8 25.3
- TFPI stage 1 32.1 26.9 13.9 29.3 18.4 39.5 26.7
- TFPI stage 2 36.8 28.4 14.5 27.8 20.5 423 28.4
- TFPI stage 3 40.1 30.8 13.8 29.6 19.9 40.8 29.2
Qwen3-4B
Initial Model 73.6 68.3 434 56.8 54.9 64.9 60.3
Direct RL 75.7 67.0 43.6 56.3 52.5 66.0 60.2
TFPI stage 1 75.2 67.8 42.4 57.9 55.3 66.0 60.8
TFPI stage 2 76.0 68.2 44.7 57.8 54.8 64.8 61.0
TFPI stage 3 79.9 70.6 46.7 58.5 57.0 70.2 63.8
DeepSeek-Distill-Qwen-7B

Initial Model 56.3 40.0 25.0 36.9 39.5 55.3 42.2
- Direct RL 57.9 40.4 26.6 38.0 38.3 56.7 43.0
- TFPI stage 1 59.4 40.4 29.2 49.0 39.6 56.2 45.6
- TFPI stage 2 61.8 43.9 31.5 48.0 42.0 57.1 474
- TFPI stage 3 62.0 44.6 31.1 46.8 42.1 60.2 47.8

efficient reasoning baselines (Table 3) under the same evaluation for fair comparison, including
TLMRE (Arora & Zanette, 2025), AdaptThink (Zhang et al., 2025b), AutoThink (Tu et al., 2025),
Laser (Liu et al., 2025a), L1Max (Aggarwal & Welleck, 2025), and ThinkLess (Fang et al., 2025).

Evaluation Details. Our evaluation benchmarks cover: @ Math Reasoning: AIME24/25 and Be-
yondAIME (ByteDance-Seed, 2025). & Multi-Task Reasoning: GPQA-Diamond (Rein et al.,
2024). ® Code Generation: LiveCodeBench (Jain et al., 2024). @ Instruction Following: IFE-
val (Zhou et al., 2023). Following Guo et al. (2025), we generate multiple outputs (ranging from
4 to 32 depending on the size of the test set) per problem and report pass@l accuracy. Note that
@ is in-domain evaluation, and @ & @ are out-of-domain evaluation. For IFEval, we report the
strict prompt accuracy. All evaluation scripts are adapted from the DeepscaleR codebase (Luo et al.,
2025b). Following the officially recommended decoding parameters', we set the temperature to 0.6
and top-p to 0.95 for the thinking mode, and 0.7, 0.8 for the thinking-free mode, respectively. The
maximum output length is 32k for all configurations, except for the Qwen3-4B thinking mode,
where 48k is used to reduce the clipping ratio. Further details are provided in Appendix C.3, and
the effects of changing decoding parameters are presented in Appendix F.4.

4.2 TFPI ENHANCES THE SLOW-THINKING OF DISTILLED REASONING MODELS

To evaluate the impact of TFPI on the slow-thinking capabilities, we present the results of TFPI
versus “Direct RL” under the same training compute in Table 1. From the table, we have:

@ TFPI substantially enhances the slow-thinking capabilities of distilled LRMs even when
trained with a small response length. For example, on DS—1 . 5B, TFPI Stage 1 raises the overall
average accuracy from 22.0% to 26.7% (+4.7%) despite being restricted to a 2K training response
length. Results of DS—1.5B continue to improve through stages 1 to 3 on AIME25, accuracy
increases from 23.0% (initial model) to 26.9% after Stage 1, 28.4% after Stage 2, and 30.8% after
Stage 3, representing a total gain of +7.8%. Similar improvements are observed for Qwen3-4B and
DS-7B. These findings indicate that TFPI enables effective training under low-cost settings (short
context windows), and that combining this with multi-stage RL yields substantial accuracy gains.

'See Qwen3-4B Hugging Face page and DS-1.5B Hugging Face page.

https://huggingface.co/Qwen/Qwen3-4B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B

Under review as a conference paper at ICLR 2026

Table 2: Results (%) of RL after TFPI (“TFPI+RL”) vs. “Direct RL” across different benchmarks.
“Avg@k” denotes the average accuracy (%) over k random generations (i.e., pass@1). For LRMs
marked with “*”, results are taken from the corresponding reports (see Appendix C.4); results of 4B
models are from our own runs with 48K response length. All models are evaluated in thinking mode.
The total training compute for “TFPI+RL” is matched to that of “Direct RL” for fair comparison.
Darker colors in the cell background denote better results.

| Mathematics | Multi-Task | Code | Instruction | Overall

Models AIME24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall
Avg@32 Avg@32 Avg@s8 Avg@8 Avg@s8 AvgR4 Avg.

DeepSeek R1* 79.8 65.0 424 715 64.3 86.1 68.2
Seed-1.5-Thinking” 86.7 74.0 48.0 77.3 64.9 87.4 73.0
Claude4 Opus Thinking* | - 75.5 79.6 48.9 89.7 -
Qwen3-235B-Thinking* 85.7 81.5 71.1 55.7 83.4
Qwen3-4B DirectRL | 7838 715 46.4 56.2 543 65.1 62.0
Qwen3-4B TFPI stage 3 79.9 70.6 46.7 58.5 57.0 70.2 63.8
Qwen3-4B TFPI + RL 80.8 76.0 49.5 61.1 55.7 71.3 65.7
Qwen3-4B-2507-Thinking 84.7 79.2 515 66.4 624 68.0 68.7
~TFEPI only 89.0 81.2 513 70.1 65.5 66.7 70.6

@ Compared with “Direct RL”, TFPI delivers faster and larger accuracy improvements under
the same training cost. TFPI outperforms “Direct RL” in nearly all configurations. For example,
Qwen3-4B with TFPI attains 63.8% overall accuracy versus 60.2% for “Direct RL” (+3.6%), while
DS—7B improves by +4.8% (47.8% vs. 43.0%). Given that the equal training compute, these results
imply that TFPI achieves convergence more efficiently than conventional long-CoT RL training.

® Improvements of TFPI indicate some degree of transfer beyond mathematics. Although TFPI
is trained solely on Polaris-53K (math-specific data), it demonstrates great out-of-domain improve-
ments as well. For example, on DeepSeek-Distill-Qwen-1.5B, GPQA accuracy increases
from 16.3% to 29.6%, LiveCodeBench from 17.7% to 19.9%, and IFEval from 36.6% to 40.8%
after Stage 3. Notably, improvements on mathematical benchmarks are often consistent across
successive training stages, whereas other domains sometimes exhibit fluctuations (e.g., GPQA
for DS-7B and LiveCodeBench for DS—1. 5B). This suggests that incorporating more diverse
training data spanning multiple domains could be helpful for TFPL

4.3 TFPI AS A FOUNDATION FOR RLVR TO ACHIEVE HIGHER PERFORMANCE

Table 2 shows the representative results between “TFPI + RL” with “Direct RL” under the same
training cost (full results in Table 9 in Appendix F.2). The results lead to the following observations:

@ TFPI can raise the upper bound of RL-trained performance. RL training on a TFPI-trained
model can still yield notable improvements, particularly in mathematics. For example, adding an
RL stage after TFPI for Qwen3-4B boosts AIME25 accuracy from 70.6% to 76.0% (+5.4%).
Similarly, Beyond AIME scores increase by more than 2%. Across different model scales, applying
RL after TFPI consistently achieves higher accuracies than “Direct RL” under the same compute
budget. For instance, on Qwen3—-4B, the overall accuracy rises from 62.0% (Direct RL) to 65.7%
(TFPI+RL).These results suggest that incorporating TFPI as an intermediate stage between long
CoT distillation and standard RLVR can be beneficial for elevating final performance.

® TFPI + RL is an effective and efficient strategy for training high-performing LRMs. From
Figure 1 (Left), the total compute cost of all three TFPI stages amounts to less than 20% of stan-
dard RL training with 32K token sequences. From Table 2, for DS—7B, TFPI+RL achieves ap-
proximately the same overall performance as Polaris—7B-Preview, despite using a maximum
response length of 16K, whereas Polaris—-7B-Preview follows a 16K — 24K — 32K pro-
gression during RL. Similarly, Polaris-4B-Preview employs a 40K — 48K — 52K length
schedule and consumes approximately 8K H800 GPU hours, while our TFPI+RL requires only
about 1.5K H800 GPU hours (see Appendix C.1) and achieves superior performance under 48K
testing length. Even without a subsequent RL stage, TFPI alone allows DS—1. 5B to outperform
DeepScaleR, which uses a maximum training length of 24K. Using only TFPI (4K—8K—16K),
Qwen3-4B-2507 achieves 89% accuracy on AIME24. Remarkably, this 4B model outperforms
Qwen3-235B-Thinking in math reasoning and code generation. These findings suggest that

Under review as a conference paper at ICLR 2026

Table 3: Comparison of the Thinking-Free inference mode of TFPI with efficient reasoning baselines
across various reasoning tasks. “Avg@k” denotes the average accuracy (in %) over k generations
(i.e., pass@1), and “Toks” indicates the average output length in thousands of tokens (K). Models
with “*” are trained from DeepScaleR-1. 5B, while the remaining are from DS-1 . 5B. Darker
cell background colors indicate better results.

| AIME24 | AIME25 | Beyond AIME | GPQA | Overall |
Models | avg@32 Toks | avg@32 Toks | avg@8 Toks | avg@8 Toks | Avg. Toks |
1) TLMRE-DS-1.5B (o = 0.1) 27.6 12.9 24.8 12.5 9.2 11.9 14.8 7.5 19.1 11.2
2) AdaptThink-1.5B (6 = 0.05) 28.1 8.0 22.6 7.9 10.0 4.8 14.8 5.1 ‘ 18.9 6.5
3) AutoThink-DS-1.5B-Stage3 30.3 10.2 25.2 9.1 9.4 8.7 17.4 7.0 20.6 8.7
4) Laser-DE-L4096-1.5B 30.3 8.3 24.9 7.4 9.7 7.4 21.1 4.7 21.5 6.9
5) AutoThink-Stage3* 38.9 8.7 28.9 7.7 11.6 7.8 27.3 54 26.7 7.4
6) L1-1.5B-Max* 27.2 3.2 26.3 2.9 9.1 3.1 324 2.3 23.8 2.9
7) Thinkless-1.5B-RL* 284 11.3 24.1 11.1 8.1 11.7 20.3 12.7 ‘ 20.2 11.7
DS-1.5B (Thinking) 29.6 16.7 23.0 16.5 8.7 14.4 16.3 9.8 19.4 14.3
DS-1.5B (Thinking-Free) 12.4 5.7 10.9 4.4 4.4 34 4.2 0.9 8.0 3.6
- TFPI stage 1 21.9 1.6 15.3 1.4 8.7 1.3 32.9 0.8 19.7 1.3
- TFPI stage 2 31.5 34 24.2 3.1 10.1 29 35.3 1.6 25.3 2.7
- TFPI stage 3 37.5 5.3 28.4 5.0 124 49 35.6 2.6 28.5 4.4

TFPI can serve both as a strong standalone training approach and as an efficient foundation for
subsequent RL, producing competitive LRMs with significantly reduced compute requirements.

4.4 TFPI IMPROVES THE TOKEN EFFICIENCY OF DISTILLED REASONING MODELS

We compare the thinking-free inference with other RL-based efficient reasoning baselines in 1.5B
size in Table 3 (see also Table 10 in Appendix F.2). We draw the following conclusions:

O Both accuracy and token efficiency steadily improve after stage 3 of TFPI. For DS—-1. 5B,
thinking-free accuracy on AIME24 increases from 29.6% (initial model) to 37.5% (TFPI stage 3),
while the average output length remains substantially shorter than that of the original thinking mode
(5.3K vs. 16.7K tokens). A similar trend is observed for Qwen3-4B, where accuracy improves
from 26.9% to 75.1% across stages, with output lengths still far below those of the original thinking
model. These results demonstrate that TFPI naturally produces more token-efficient LRMs, offering
an alternative pathway to train models that deliver both high accuracy and reduced output length.

6 Compared with other RL-based token control methods, TFPI achieves the best perfor-
mance—efficiency trade-off without specialized reward or training designs. In DS-1 . 5B, both
TFPI stage 2 and stage 3 outperform almost all baselines in terms of overall accuracy while main-
taining competitive or lower token usage. We visualize the overall accuracy—token usage trade-off
in Figure 1 (Right), where TFPI consistently lies on the Pareto frontier across different stages. This
observation motivates a rethinking of existing “token-efficient reasoning RL designs” that rely heav-
ily on specialized length reward shaping: training with TFPI offers an alternative paradigm in which
a strong slow-thinking LRM can be obtained, and a more efficient variant can be realized simply by
switching to the thinking-free mode without any additional length-control mechanisms.

5 ANALYSIS

5.1 WHY TFPI LEADS TO BETTER THINKING-MODE INFERENCE?

In this section, we delve deeper into why TFPI, which leverages void thinking content in Template 2,
can generalize to enhance reasoning in Template 1. We analyze DS—-1 . 5B from two perspectives:

@ Behavioural level: The learned verification behaviours after </think> during TFPI can gen-
eralize to the slow-thinking verification occurring within the <think> and </think>. The blue
lines in Figure 3 show the ratio of verification steps (i.e., the number of verification steps divided by
the total number of steps; see Appendix D for details) for the training set (thinking-free mode) and
AIME 25 dataset (thinking mode). We observe that the verification ratio exhibits a similar trend:
a rapid drop in Stage 1, followed by steady growth in Stage 2, and a sharp increase in Stage 3.
Notably, the sharp decline in Stage 1 resembles an information compression process. In Stages 2
and 3, the model begins to explore more extensively (Figure 3 Right), which may explain why

Under review as a conference paper at ICLR 2026

—— verification 2K—-4K 4K-8K 16000

2K-4K 4K-8K

-
N

—— tokens 4000

14000

-
o

i

o

—— verification
—— tokens

»
3000 £

=3

100008

—
N

2000
8000

verification ratio (%)
toke
verification ratio (%)
-
=~

-
o

1000 6000

0 500 1000 1500 0 500 1000 1500
training steps training steps

Figure 3: Behaviour-Level Analysis of DS-1.5B over the TFPI Training Course. The ratio of
verification steps and the average output tokens over training steps on the training set in thinking-
free mode (Left) and on AIME25 in thinking mode (Right) in 3 stages of TFPIL.

2]

Layer Index

—— Direct RIVR (16K) —— TFPI2K —— TFPI4K TFPI 8K 0 4 s 12 16 20 24 27

0.08

o
1)
=)

o
o
=

cosine similarity

e
o
0

2K-4K 4K-58K

0.00 /

0 250 500 750 1000 1250 1500 1750
training steps

Figure 4: Parameter-Level Analysis. Left: PCA projection of model parameters from DS—-1.5B
to final checkpoints. TFPI (blue) starts at A, passes through intermediate points (B1, B2, B3), and
ultimately converges near the Direct RL final checkpoint (C). Right: Cosine similarity between
parameter updates of TFPI-trained checkpoints and (C-A) across layers during training.

TFPI achieves superior performance. As verification is believed to be vital for slow-thinking rea-
soning (Setlur et al., 2025), the observed generalization of verification behavior suggests a transfer
from thinking-free training to inference in thinking mode.

@ Parameter level: TFPI explores the parameter space more extensively at a faster pace, with its
parameter update directions progressively aligning with those of “Direct RL.” As shown in Figure 4
(Left), the PCA visualization of the initial model, TFPI-trained checkpoints, and Direct RL check-
points exhibits distinct trajectories in parameter space. The TFPI begins from the initial model (A),
moves through intermediate points (B1), (B2), and (B3), and ultimately converges to a region near
the Direct RL final checkpoint (C). This indicates that TFPI traverses a larger and more diverse
region of parameter space before reaching a point close to the RL-trained model. Such broad explo-
ration may help explain why TFPI can lead to better LRMs. Furthermore, Figure 4 (Right) shows
that the cosine similarity of parameter updates between the TFPI-trained checkpoints and the Direct
RL final checkpoint steadily increases across nearly all layers throughout training. This suggests
that during TFPI training, the parameter updates share similarities with those in standard long-CoT
training. To make our analysis more robust, additional results are given in Appendix F.1.

5.2 ABOUT REASONING PATTERN AND ROLLOUT SPEED

TFPI Preserves the Reasoning Pattern of Thinking Mode. In thinking mode (Template 1), a
response y comprises a long thinking section and a concise answer y*". In ThinkingFree mode
(Template 2), the thinking section is omitted, and y*™ contains a shorter reasoning path. While
standard RL tends to lengthen the thinking part, TFPI increases the length of " due to the absence
of explicit thinking. As shown in Figure 5 (Left), for DS—1 . 5B trained with TFPI and evaluated in
thinking mode, |y*™| remains stable at 500-580 tokens, whereas |y*"|/|y| rises as the total length
|y| decreases. This indicates that TFPI preserves the core reasoning pattern of slow-thinking rather
than drifting toward an excessively extended “slow-slow thinking” behavior.

Under review as a conference paper at ICLR 2026

9 580 —— with TFPI
— 9000 —— without TFPI
X8 : i 560 &
° 2K—4K 4K—-8K g
57 : : < 28000
= 540+ Q@
[

=6 o 9
[} s -
E 5 520 & 7000
=1]
@

4 500 6000

3 : :

0 500 1000 1500 1 150 299 448 597 746 896

training steps training steps
Figure 5: Left: For TFPI with DS—1 . 5B on AIME2S5 in thinking mode, showing the average num-
ber of answer tokens (excluding the thinking part) and the ratio of answer length to total response
length over training steps. Right: For long CoT RL with DS-1. 5B, showing the average number

of tokens during rollout on the training set over training steps, with and without the TFPI stage.

Table 4: Additional results of TFPI. All models are evaluated in thinking mode.

Models | AIME 24 AIME 25 Beyond AIME | GPQA | LiveCode | IFEval | Overall
Stage Schedule Sensitivity, Qwen3-4B
4K — 8K — 16K 79.9 70.6 46.7 58.5 57.0 70.2 63.8
8K — 16K 78.0 70.2 46.7 59.5 55.8 64.5 62.4
16K only 77.1 71.5 45.8 56.4 544 66.0 61.9
Multi-Stage Direct RL, Qwen3-4B
TFPI Stage 3 79.9 70.6 46.7 58.5 57.0 70.2 63.8
Multi-Stage Direct RL 64.9 48.6 32.5 55.2 51.0 65.2 52.9
QOwen3-14B
Initial Model 81.7 732 50.2 65.0 63.5 67.3 66.8
- Direct RL 81.7 74.5 50.8 64.8 61.8 68.2 66.9
- TFPI stage 3 83.2 76.0 50.5 65.6 63.8 67.8 67.8
Qwen3-14B Tokens (K)
Initial Model 16.8 20.8 22.8 9.4 16.0 - 17.1
- Direct RL 17.9 22.1 24.5 10.4 17.4 - 18.5
- TFPI stage 3 13.8 17.3 18.3 7.3 13.8 - 14.1

TFPI Speeds Up Rollout for Long-CoT RL Training. Another advantage of TFPI is its ability to
speed up the rollout stage in standard long-CoT RL training. As shown in Figure 5 (Right), when
directly performing RL from DS—1 . 5B, the average output tokens during rollout on the training set
start at over 9K, decrease to around 7.5K within the first 300 steps, and then fluctuate around 7.5K in
the later stages. In contrast, when RL is performed after the TFPI phase, the average output tokens
start at only 6K and the maximum length is below 7K tokens.

5.3 ScALING UP MODEL SIZE

To assess the effect of TFPI on larger reasoning models, we conducted experiments with
Qwen3-14B under the same settings as Qwen3-4B. As shown in Table 4, TFPI still outperforms
Direct RL under the same training compute. Notably, Direct RL yields results only comparable
to those of the initial model (66.9% vs. 66.8% on average). We hypothesize that Polaris-53K is, in
some sense, too easy for Qwen3—-14B (with over 78% rollout accuracy), leaving only approximately
30% effective data after dynamic sampling (excluding 0/8 and 8/8 prompts). Nonetheless, TFPI re-
mains effective in this setting. Additionally, TFPI reduces the average number of output tokens on
the test set by 23.8% even in thinking mode (14.1K vs. 18.5K). These results highlight the effective-
ness of TFPI for larger model sizes, and we believe that with more challenging, higher-quality data,
TFPI can further realize its scalability potential.

5.4 ABLATION STUDY

Stage Schedule Sensitivity. To assess sensitivity to the stage schedule, we train Qwen3—-4B under
alternative schedules (8K — 16K and 16K-only) with approximately matched compute budgets. As

Under review as a conference paper at ICLR 2026

shown in Table 4, all schedules outperform the Direct RL baseline and achieve comparable perfor-
mance on math benchmarks, indicating that TFPI is robust to the choice of schedule. Nevertheless,
4K — 8K — 16K yields the best overall results (63.8% vs. 62.4% and 61.9%). We hypothesize
that this stems from an implicit data curriculum induced by dynamic sampling: beginning at 4K
improves training efficiency and emphasizes easier problems early on.

Multi-Stage Direct RL. As discussed in Section 3.2 and Figure 2 (right), applying Direct RL with a
4K response length causes a substantial performance drop on AIME25 for Qwen3-4B. In contrast,
TFPI trains stably even at 4K. This indicates that, even in a multi-stage setting, the initial stage length
should not be too short. To rule out the potential artifact introduced by multi-stage training, we run
Direct RL with the identical multi-stage schedule on Qwen3—-4B. As shown in Table 4, Direct RL
still incurs a substantial performance decrease under the 4K — 8K — 16K schedule. Additional
details are provided in Appendix F.7.

6 RELATED WORK

LRMs & Efficiency RLVR. RLVR has enabled the development of numerous high-performing
large reasoning models (LRMs) (Yang et al., 2025a; Zeng et al., 2025a; An et al., 2025), inspiring
research on model behaviors (Liu et al., 2025b; Wang et al., 2025a), novel algorithms (Liu et al.,
2025b; Zheng et al., 2025), multimodal extensions (Meng et al., 2025; Xiao et al., 2025; Wang et al.,
2025¢), tool integration (Jin et al., 2025; Feng et al., 2025; Li et al., 2025a; Xue et al., 2025; Team
et al., 2025a), and other related directions (Xu et al., 2025a; Zhang et al., 2025a; Chen et al., 2025c;
Zhang et al., 2025c). RLVR can be applied directly to base LLMs (“RL zero”) (Zeng et al., 2025b;
Guo et al., 2025) or initialized from SFT-distilled long-CoT models, the latter typically yielding
stronger results (Luo et al., 2025b; An et al., 2025). A major challenge for RLVR is the cost of
training with long contexts, as longer outputs are often necessary for harder tasks (Shrivastava et al.,
2025; Zeng et al., 2025a), consuming high computational resources. Multi-stage RLVR mitigates
this by starting with shorter contexts and gradually extending them (Luo et al., 2025b; An et al.,
2025; He et al., 2025), while algorithmic approaches modify GRPO to reduce length bias (Yu et al.,
2025; Liu et al., 2025b; Wang et al., 2025a). Orthogonal to these strategies, we introduce TFPI as a
lightweight stage before RLVR, improving efficiency and strengthening the slow-thinking mode at
inference with minimal training cost, thus facilitating more effective subsequent RLVR.

Efficient Reasoning. To address the issue of overthinking (Chen et al., 2024; Sui et al., 2025), con-
siderable efforts have been made, including prompt-based methods (Muennighoff et al., 2025; Yang
et al., 2025c¢; Fu et al., 2025a; Chen et al., 2025a; Fu et al., 2025b), SFT-based approaches (Kang
et al., 2025; Ma et al., 2025; Munkhbat et al., 2025; Luo et al., 2025a), and RL-related designs. RL-
related approaches can be further categorized into length-based reward shaping (Team et al., 2025b;
Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Liu et al., 2025a), integration of fast and slow
thinking (Fang et al., 2025; Zhang et al., 2025b; Lou et al., 2025; Tu et al., 2025; Jiang et al., 2025;
Zhang et al., 2025d), and thinking budget control (Li et al., 2025b; Hammoud et al., 2025; Wen
et al., 2025). These methods primarily trade accuracy for efficiency and rely on specialized reward
functions or training strategies to encourage more efficient reasoning. In contrast, our proposed
TFPI naturally yields even more efficient LRMs without specialized rewards or training designs.

7 CONCLUSION

After recognizing the benefits of ThinkingFree for both inference and the training of distilled reason-
ing models, we introduce TFPI, a cost-efficient intermediate stage between long-CoT distillation and
standard RL training. As a strong initialization point, TFPI accelerates RL convergence, enhances
attainable performance, and promotes more token-efficient reasoning without complex reward shap-
ing or elaborate training pipelines. We further explain the factors behind TFPI’s success from both
the behavioral and parameter levels. Overall, TFPI provides a complementary path for building
“token-efficient” LRMs, offering an effective and efficient alternative to current RL paradigms.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for scal-
ing reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

Daman Arora and Andrea Zanette. Training language models to reason efficiently. arXiv preprint
arXiv:2502.04463, 2025.

ByteDance-Seed. Beyondaime: Advancing math reasoning evaluation beyond high
school olympiads. https://huggingface.co/datasets/ByteDance—-Seed/
BeyondAIME, 2025. Hugging Face repository.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025a.

Tianhao Chen, Xin Xu, Zijing Liu, Pengxiang Li, Xinyuan Song, Ajay Kumar Jaiswal, Fan Zhang,
Jishan Hu, Yang Wang, Hao Chen, et al. Gpas: Accelerating convergence of 1lm pretraining via
gradient-preserving activation scaling. arXiv preprint arXiv:2506.22049, 2025b.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Zigeng Chen, Xinyin Ma, Gongfan Fang, Ruonan Yu, and Xinchao Wang. Verithinker: Learning to
verify makes reasoning model efficient. arXiv preprint arXiv:2505.17941, 2025c.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop
on Foundation Models in the Wild, 2025a.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
soning. arXiv preprint arXiv:2508.08940, 2025.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Michael Y Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits
and chomsky: Pre-pretraining on formal languages imparts linguistic biases. arXiv preprint
arXiv:2502.19249, 2025.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyu-
manshan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cog-
nitive reasoning for superintelligent ai. Advances in Neural Information Processing Systems, 37:
19209-19253, 2024.

11

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME
https://huggingface.co/datasets/ByteDance-Seed/BeyondAIME

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Lingjie Jiang, Xun Wu, Shaohan Huang, Qingxiu Dong, Zewen Chi, Li Dong, Xingxing Zhang,
Tengchao Lv, Lei Cui, and Furu Wei. Think only when you need with large hybrid-reasoning
models. arXiv preprint arXiv:2505.14631, 2025.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-rl: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312-24320, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025a.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
allocation for efficient 1lm reasoning. arXiv preprint arXiv:2505.11274, 2025b.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang,
and Junxian He. Learn to reason efficiently with adaptive length-based reward shaping. arXiv
preprint arXiv:2505.15612, 2025a.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b.

Chenwei Lou, Zewei Sun, Xinnian Liang, Meng Qu, Wei Shen, Wenqi Wang, Yuntao Li, Qing-
ping Yang, and Shuangzhi Wu. Adacot: Pareto-optimal adaptive chain-of-thought triggering via
reinforcement learning. arXiv preprint arXiv:2505.11896, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl, 2025b. Notion Blog.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multi-
modal reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Alek-
sandra Faust, Clement Farabet, and Shane Legg. Levels of agi for operationalizing progress on
the path to agi. arXiv preprint arXiv:2311.02462, 2023.

12

Under review as a conference paper at ICLR 2026

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi,
Michael Choi, Anish Agrawal, Arnav Chopra, et al. Humanity’s last exam. ArXiv preprint,
abs/2501.14249, 2025. URL https://arxiv.org/abs/2501.14249.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seedl. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Amrith Setlur, Matthew YR Yang, Charlie Snell, Jeremy Greer, lan Wu, Virginia Smith, Max Sim-
chowitz, and Aviral Kumar. e3: Learning to explore enables extrapolation of test-time compute
for llms. arXiv preprint arXiv:2506.09026, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025a.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
Ilms. arXiv preprint arXiv:2501.12599, 2025b.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. ArXiv preprint, abs/2407.13690, 2024. URL
https://arxiv.org/abs/2407.13690.

Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
arXiv preprint arXiv:2505.10832, 2025.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

13

https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2407.13690

Under review as a conference paper at ICLR 2026

Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. arXiv preprint arXiv:2506.20512, 2025b.

Zhenhailong Wang, Xuehang Guo, Sofia Stoica, Haiyang Xu, Hongru Wang, Hyeonjeong Ha, Xiusi
Chen, Yangyi Chen, Ming Yan, Fei Huang, et al. Perception-aware policy optimization for mul-
timodal reasoning. arXiv preprint arXiv:2507.06448, 2025¢c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4fl5af0f7b3labcad-Abstract—-Conference.html.

Hao Wen, Xinrui Wu, Yi Sun, Feifei Zhang, Liye Chen, Jie Wang, Yunxin Liu, Ya-Qin Zhang,
and Yuanchun Li. Budgetthinker: Empowering budget-aware 1lm reasoning with control tokens.
arXiv preprint arXiv:2508.17196, 2025.

Tong Xiao, Xin Xu, Zhenya Huang, Hongyu Gao, Quan Liu, Qi Liu, and Enhong Chen. Advancing
multimodal reasoning capabilities of multimodal large language models via visual perception
reward. arXiv preprint arXiv:2506.07218, 2025.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can llms solve longer
math word problems better? ArXiv preprint, abs/2405.14804, 2024. URL https://arxiv.
org/abs/2405.14804.

Xin Xu, Tianhao Chen, Fan Zhang, Wanlong Liu, Pengxiang Li, Ajay Kumar Jaiswal, Yuchen Yan,
Jishan Hu, Yang Wang, Hao Chen, et al. Double-checker: Enhancing reasoning of slow-thinking
IIms via self-critical fine-tuning. arXiv preprint arXiv:2506.21285, 2025a.

Xin Xu, Qiyun Xu, Tong Xiao, Tianhao Chen, Yuchen Yan, Jiaxin Zhang, Shizhe Diao, Can Yang,
and Yang Wang. Ugphysics: A comprehensive benchmark for undergraduate physics reasoning
with large language models. arXiv preprint arXiv:2502.00334, 2025b.

Xin Xu, Jiaxin Zhang, Tianhao Chen, Zitong Chao, Jishan Hu, and Can Yang. Ugmathbench:
A diverse and dynamic benchmark for undergraduate-level mathematical reasoning with large
language models. arXiv preprint arXiv:2501.13766, 2025c.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Zejun Ma, and Bo An. Simpletir: End-to-
end reinforcement learning for multi-turn tool-integrated reasoning. https://simpletir.
notion.site/report, 2025. Notion Blog.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Chenxu Yang, Qingyi Si, Mz Dai, Dingyu Yao, Mingyu Zheng, Minghui Chen, Zheng Lin, and
Weiping Wang. Test-time prompt intervention. arXiv preprint arXiv:2508.02511, 2025b.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025c.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

14

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2405.14804
https://arxiv.org/abs/2405.14804
https://simpletir.notion.site/report
https://simpletir.notion.site/report

Under review as a conference paper at ICLR 2026

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. ArXiv preprint, abs/2309.12284, 2023. URL https:
//arxiv.org/abs/2309.12284.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025a.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025b.

Fuxiang Zhang, Jiacheng Xu, Chaojie Wang, Ce Cui, Yang Liu, and Bo An. Incentivizing llms to
self-verify their answers. arXiv preprint arXiv:2506.01369, 2025a.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025b.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback. arXiv
preprint arXiv:2506.03106, 2025c.

Xiaoyun Zhang, Jingging Ruan, Xing Ma, Yawen Zhu, Haodong Zhao, Hao Li, Jiansong Chen,
Ke Zeng, and Xunliang Cai. When to continue thinking: Adaptive thinking mode switching for
efficient reasoning. arXiv preprint arXiv:2505.15400, 2025d.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023. doi: 10.48550/arXiv.2311.07911. URL https://arxiv.org/
abs/2311.07911.

15

https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Under review as a conference paper at ICLR 2026

A BACKGROUND AND PRELIMINARY

A.1 RLVR ALGORITHMS

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) constrains the policy update
within a proximal region of the old policy g, through the clipping mechanism. Specifically, PPO
employs the following objective (we omit the KL regularization term hereinafter for brevity):

|yl
1 —~ —~
TJoeo(0) =E,op, Yy, (-12) [|y| Z min (rt (0)As, clip (1¢(0),1 —e,1 +¢) At)] , “4)
t=1

7o (Yt|®,y<t)
TOo1a (yelz,y<t)
is estimated by a value model, and ¢ is the clipping range of importance ratios.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) bypasses the need for
the value model by computing the relative advantage of each response within a group of responses
to the same query. Specifically, GRPO optimizes Jgrpo(0) = E,~p [Torro (0, x)], where:

with the importance ratio of the token y; is defined as r4+(0) = , the advantage Et of y;

lyi

G |
1 1 . —~ . —~
Towro0,2) = | &> :W 3" min (ri,t(e)Ai,t, clip (ri0(8),1 — 2,1 +¢) Ai,t)] ‘)
i=1 17" =1

Here {y;}&., ~ 7, (-|z), G is the number of generated responses to each query x (i.e., the group

~

size), and 7; +(0), A;,; is computed as in eq. (2).

Numerous variants have been proposed to improve GRPO. For example, DAPO (Yu et al., 2025)
introduces token-level normalization and dynamic sampling; Dr GRPO (Liu et al., 2025b) removes
length bias to prevent incorrect responses from growing longer over time; and Wang et al. (2025a)
train selectively on forking tokens (see also Section 6). Our TFPI is orthogonal to these RLVR algo-
rithms. That is to say, any RLVR algorithm can be applied to our proposed TFPI stage. To isolate
the effect of RLVR algorithms, we employ DAPO as our RLVR algorithm in all experiments
for fair comparison.

A.2 ThinkingFree OPERATION

In Section 3.1, we have shown chat templates for both the original query = and its thinking-free
version ©’ = ThinkingFree(z) for Qwen models. Here, we showcase one additional example under
the DeepSeek (Guo et al., 2025) template as below.

Template 3 (Thinking Mode (DeepSeek)) Please reason step by step, and put your final answer
within \\boxed{}.<|User|>{question (x)}<|Assistant |>\n

Template 4 (Thinking-Free Mode (DeepSeek)) Please reason step by step, and put your final
answer within \\boxed{ }. <|User|>{question (x)} <|Assistant|>\n<think>\n\n</think>

B META EXPERIMENTS

B.1 TOKEN CONSUMPTION OF ThinkingFree

We provide the detailed experimental setup for the meta-experiment in Section 3.1 in this appendix.

For DS-1.5B, we use the decoding parameters suggested by Guo et al. (2025) in thinking mode:
temperature = 0.6, top-p = 0.95, and top-k = —1. For Qwen3-4B, we adopt the recommended
settings from Yang et al. (2025a) in thinking mode: temperature = 0.6, top-p = 0.95, and top-k =
20. For ThinkingFree, we set temperature = 0.7, top-p = 0.8, and use both top-k = —1 and top-
k = 20. The maximum output length is fixed at 32K tokens for both modes. For evaluation, we
sample 32 generations per query on AIME 2025 and report the average number of output tokens.
The parameters are given in Table 5 and the results are shown in Figure 2 (Left).

16

Under review as a conference paper at ICLR 2026

Table 5: Decoding Parameters of Meta-Experiment in Section 3.1

\ Thinking Mode Thinking-Free Mode

0.6, top-p =0.95, and top-k = —1 T = 0.7, top-p = 0.8, and top-k = 20
0.6, top-p =0.95, and top-k =20 T = 0.7, top-p = 0.8, and top-k = 20

DS-1.5B T =
Qwen3-4B | T =

B.2 DETAILED SETUP OF ThinkingFree TRAINING

We provide the detailed experimental setup for the meta-experiment discussed in Section 3.2 in this
appendix.

For training, we use the DAPO (Yu et al., 2025) algorithm, with configurations identical to those
in Appendix C.1, except that the maximum output length is set to 4K. For evaluation, we set the
maximum output length to 48K and perform testing in thinking mode as described in Template 1.
All other evaluation parameters follow Appendix C.3. Note that the initial avg@32 value in Figure 2
(Right) is higher than the value reported in (Yang et al., 2025a) (68.2 vs. 65.6), because we adopt
the RoPE scaling method described in Polaris (An et al., 2025).

C EXPERIMENTAL DETAILS
In this appendix, we provide the details of our main experiments in Section 4.

C.1 TRAINING DETAILS

We build on the VeRL codebase (Sheng et al., 2024), with the RLVR loss following the DAPO
recipe (Yu et al., 2025). Specifically, the RLVR loss is defined in eq. (1). For our TFPI, it becomes

Eip [Tparo(0,2")], 2’ = ThinkingFree(z). (6)

For fair comparison, we use identical hyperparameters across methods. For clip-higher, we set
€low = 0.2 and epgn, = 0.28. Training is performed with a batch size and mini-batch size of 256, a
learning rate of 10, and no warm-up scheduling. Both KL divergence loss and entropy loss are
excluded.

For rollout, we use temperature = 1, topp = 1, and topk = —1. We generate 8§ rollouts per problem.
Experiments are conducted on DS—-1.5B, Qwen3-4B, and DS-7B, with Polaris-53K (An et al.,
2025) as the training dataset. In principle, we could apply dataset filtering at each training
stage to accelerate training An et al. (2025). However, for fairness, we deliberately use the full
training set for all experiments.

For Direct RLVR, the maximum output length is set to 16K for DS-1.5B and DS-7B, and 32K for
Owen3-4B. For TFPI, we adopt a multi-stage training strategy (An et al., 2025; Luo et al., 2025b):

e DS-1.5Band DS-7B: 2K — 4K — 8K.
e Qwen3-4B: 4K — 8K — 16K.

Our experiments are conducted with 32 H20 GPUs. A summary of the number of training steps
and training time is provided in Table 6. To provide a comprehensive view of training compute,
we also report the number of processed tokens and the average MFU in Table 7. Notably, our
method achieves a higher MFU and therefore can generate more tokens than “Direct RL” within the
same wall-clock time. This arises because shorter responses during RL training reduce rollout-stage
“bubble”, yielding a practical efficiency advantage.

C.2 BASELINES

To evaluate the efficacy of TFPI, we compare TFPI with direct RLVR training from an SFT-distilled
LRM (“Direct RL” for short) under the same total training compute, i.e., the combined compute of
the three TFPI stages equals that of direct RLVR (Table 1). To examine the effect of inserting a TFPI

17

Under review as a conference paper at ICLR 2026

Table 6: Training Steps and Time of Main Experiments. “kh” denotes one thousand H20 Hours.

| Ds-1.5B Quwen3-4B DS-7B | DS-1.5B Qwen3-4B DS-7B
TFPI Stage 1 2K, 1K steps 4K, 100 steps 2K, 1K steps 0.84 kh 0.35 kh 1.73 kh
TFPI Stage 2 4K, 440 steps 8K, 56 steps 4K, 232 steps 0.62 kh 0.52 kh 0.82 kh
TFPI Stage 3 8K, 440 steps 16K, 64 steps 8K, 144 steps 1.21 kh 0.91 kh 0.94 kh
TFPI Total - - - 2.66 kh 1.79 kh 3.50 kh
Direct RLVR 16K, 456 steps 32K, 20 steps 16K, 280 steps 2.67 kh 1.9 kh 3.52 kh
TFPI: RLVR 16K, 472 steps 32K, 192 steps 536 steps 2.49 kh 13.5 kh 6.55 kh
TFPI + RLVR Total - - - 5.16 kh 15.4 kh 10 kh
Direct RLVR Total | 16K, 896 steps 32K, 216 steps 16K, 820 steps 5.17 kh 15.7 kh 10.1 kh

Table 7: Total processed tokens and the average MFU (in %) of Main Experiments.

| DS-1.5B Qwen3-4B DS-7B | DS-1.5B Qwen3-4B DS-7B |

TFPI Stage 1 2.37 x 10 5.00 x 108 2.75 x 10° 69.27 66.28 73.73
TFPI Stage 2 2.26 x 10 5.02 x 108 1.20 x 10° 69.54 66.67 73.79
TFPI Stage 3 3.92 x 10° 4.94 x 10% 1.24 x 10° 68.66 66.76 73.76
TEPI Total 855 x 109 1.50 x 10° 5.19 x 10° - - -

Direct RLVR 748 x 109 6.48 x 108 4.77 x 10° 68.42 61.57 72.83
TFPI: RLVR 6.26 x 10° 5.80 x 10° 7.98 x 10° 66.20 60.08 72.58
TEPI + RLVR Total | 1.48 x 109 7.30 x 10° 1.27 x 100 - - -

Direct RLVR Total | 1.44 x 10'© 7.36 x 10° 1.38 x 10'° 68.11 62.24 72.89

stage before RLVR, we apply TFPI to an SFT-distilled model (“TFPI + RL"), continue with standard
RLVR, and compare the results with “Direct RL” using approximately the same training compute
(Table 2). We also include several high-performing LRMs of the same model size from previous
works for reference, including Polaris (An et al., 2025), DeepScaleR (Luo et al., 2025b), Skywork-
ORI (He et al., 2025), and AReal-RL. For both Table 1 and Table 2, all models are evaluated in
thinking mode (see also Appendix C.3). To assess the impact of TFPI on reasoning efficiency, we
compare our TFPI-trained model with various RL-based efficient reasoning baselines, including
TLMRE (Arora & Zanette, 2025), AdaptThink (Zhang et al., 2025b), AutoThink (Tu et al., 2025),
Laser (Liu et al., 2025a), L1Max (Aggarwal & Welleck, 2025), and ThinkLess (Fang et al., 2025)
(Table 3). The training and testing settings of these baselines, as reported in their original papers,
are summarized in Table 8. For fair comparison, we standardize the testing parameters to topp
=0.95, topk = —1, and T" = 0.6 with a 32K maximum length, following the recommendations of
DeepSeek-R1 (Guo et al., 2025).

Table 8: Training and evaluation details of efficient reasoning baselines from original papers. We
unify the evaluation setting for fair comparison in Table 3. Details are provided in Appendix C.2
and C.3.

Model Training Data Training Length Test Length Evaluation Details
DeepSeek-Distill-Qwen-1.5B

TLMRE-DS-1.5B (a = 0.1) 3.2K examples from NuminaMath - 32K 10 generations for AIME24

AdaptThink-1.5B (§ = 0.05) DeepScaleR-40K 16K 16K T = 0.6, 16 generations for AIME24

AutoThink-DS-1.5B-Stage3 DeepScaleR-40K 8K — 16K — 24K - T = 0.6, 16 generations

Laser-DE-L4096-1.5B DeepScaleR-40K - 32K 16 generations for AIME24

DeepscaleR-1.5B-Preview
DeepScaleR-40K 8K — 16K — 24K - T = 0.6, 16 generations

DeepScaleR-40K 4K 8K -
DeepScaleR-40K 24K - _

AutoThink-Stage3
L1-1.5B-Max
Thinkless-1.5B-RL

C.3 EVALUATION DETAILS

To comprehensively evaluate model capabilities, we employ a diverse set of benchmarks covering
mathematical reasoning, multi-task reasoning, code generation, and instruction-following:

18

Under review as a conference paper at ICLR 2026

1. Mathematical reasoning: We evaluate on AIME24, AIME25, and Be-
yondAIME (ByteDance-Seed, 2025). For AIME24 and AIME25, we report pass@l
accuracy using 32 samples per problem (avg@32); for BeyondAIME, we report avg@8.

2. Multi-task reasoning: We evaluate on GPQA-Diamond (Rein et al., 2024) and report
pass@1 with 8 samples per problem.

3. Code generation: We assess coding ability on LiveCodeBench (Jain et al., 2024) (2024-
08-2025-01 subset, aligned with DeepSeek-R1 (Guo et al., 2025)), reporting pass@1 with
8 samples per problem.

4. Instruction-following: We evaluate on IFEval (Zhou et al., 2023) and report pass@1 of
the strict prompt accuracy with 4 samples per problem.

All evaluation codes are adapted from the DeepscaleR (Luo et al., 2025b) codebase, where
vLLM (Kwon et al., 2023) is leveraged to accelerate inference. For IFEval, we use the same codes
provided by the official paper (Zhou et al., 2023).

We provide our decoding parameters as follows:

* Table 1: We set the temperature to 0.6 and t opp =0.95. For LRMs trained from DS-1. 5B
and DS-7B, we use topk = —1 with a maximum sequence length of 32K tokens. For
LRMs trained from Qwen3-4B, we use topk = 20 with a maximum sequence length of
48K tokens, applying RoPE scaling as proposed by An et al. (2025).

* Table 2: We set the temperature to 0.6 and topp = 0.95. For LRMs initialized from
DS-1.5B and DS-7B, we use topk = —1 with a maximum sequence length of 32K
tokens. For LRMs initialized from Qwen3-4B, we use topk = 20 with a maximum se-
quence length of 48K tokens, again applying RoPE scaling as proposed by An et al. (2025).
For models marked with “*”, we report the results from their original publications (see Ap-
pendix C.4).

 Table 3: For efficient reasoning baselines listed in Table 8 and the thinking mode of initial
models, we set topp = 0.95, topk = —1, and T' = 0.6, with a maximum sequence length
of 32K tokens (48K for Qwen3-4B). For the thinking-free mode of initial models and our
TFPI, we set topp = 0.8, topk =20, and T = 0.7 with a maximum sequence length of
32K tokens, following Yang et al. (2025a).

C.4 SOURCE OF SOME RESULTS IN TABLE 2

Results for LRMs marked with “*” are taken directly from the Seed-1.5-Thinking report (Seed et al.,
2025) and the corresponding Hugging Face page of Qwen3-2507. Note that the LiveCodeBench test
set subsets of these results, and the metric of IFEval may differ from those in our experiments; their
results are included for reference only.

D ANALYSIS DETAILS

As verification is an important indicator of slow-thinking capabilities (Setlur et al., 2025), we con-
duct experiments in Section 5.1 to examine how verification can generalize to slow-thinking, even
when trained with TFPI (thinking-free mode). Following Yang et al. (2025b), for the experiments
in Figure 3, we segmented the reasoning trajectories using ‘\n\n’ as delimiters and classified each
step according to whether it contained verification-related phrases such as “wait”, “let me verify”,

CLINT3

“let me check”, “checking”, “verifying”, or “double-check”.

E THE USE OF LARGE LANGUAGE MODELS

We only used LLMs (specifically GPT-5) for language refinement during the writing process of this
work; all ideas, experimental designs, and analyses were conducted by the authors. The text polished
by GPT-5 was subsequently reviewed and verified by us to ensure the quality of the content.

19

https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507

Under review as a conference paper at ICLR 2026

Layer Index
0 4 8 12 16 20 24 27

e
<)
a

o
=
=

cosine similarity
o
o
w

e
o
0

e
o
=2

2K-4K 4K—8K

f

0 250 500 750 1000 1250 1500 1750
training steps

e
o
S

Figure 6: Cosine similarity between parameter updates of TFPI-trained checkpoints and an early
“Direct RL” update of DS—1 . 5B across layers during training.

F MORE RESULTS

F.1 ADDITIONAL RESULTS OF PARAMETER-LEVEL ANALYSIS

Figure 4 (right) reports the cosine similarity of parameter-update vectors between TFPI-trained
checkpoints and the final Direct RL checkpoint. For completeness, Figure 6 presents the cosine
similarity between TFPI-trained checkpoints and an early Direct RL checkpoint (step 456) from the
DS-1.5B run used in Table 1. We observe stronger alignment with the final Direct RL checkpoint
than with the early-stage checkpoint.

F.2 COMPLETE RESULTS OF TABLE 2 AND TABLE 3

Due to the page limit, we present only representative results in Sections 4.3 and 4.4, with the com-
plete results provided in Tables 9 and 10, respectively.

F.3 THINKING VS. THINKING-FREE INFERENCE

To compare thinking and thinking-free modes, Table 11 reports accuracy and average output token
counts across training stages of TFPI for Qwen3-4B. The accuracy gap between the two modes
narrows from Stage 1 to Stage 3. In Stage 3, the thinking mode achieves an average accuracy
of 63.9%, whereas the thinking-free mode achieves 60.0%. Meanwhile, the thinking-free mode
produces substantially fewer tokens on average (9.9k vs. 15.3k). One may choose the thinking-free
mode to trade a modest decrease in accuracy for improved efficiency, or switch between modes to
balance accuracy and cost.

F.4 ABOUT DECODING PARAMETERS

The decoding parameters used in our main-text experiments are detailed in Appendices B and C.3.
Following the official Hugging Face recommendations for each model, we adopt different settings
for the thinking and thinking-free modes. To assess robustness, we additionally report results under
a unified configuration: temperature = 0.6, top-p = 0.95, top-k = 20, and a maximum output length
of 32k tokens. As shown in Tables 13, 14, 15, and 16, all of our conclusions remain unchanged
under this unified setting.

Polaris (An et al., 2025) reports that longer-context inference with RoPE scaling improves perfor-
mance on harder questions and evaluates at 90K tokens. We find that 90K is prohibitively slow, and
48K suffices based on the clip ratio analysis (Table 12). As shown in Table 15, constraining the
maximum output length to 32K slightly degrades the performance of the thinking mode for models
RL-tuned from Qwen3-4B. We therefore recommend a 48K context length for Qwen3-4B-based
RL-tuned models.

20

Under review as a conference paper at ICLR 2026

Table 9: Results (%) of RL after TFPI (“TFPI+RL”) vs. “Direct RL” across different benchmarks.
“Avg@k” denotes the average accuracy (%) over k random generations (i.e., pass@1). For LRMs
marked with “*”, results are taken from the corresponding reports (see Appendix C.4); all other
results are from our own runs. All models are evaluated in thinking mode. The total training compute
for “TFPI+RL” is matched to that of “Direct RL” for fair comparison.

| Mathematics | Multi-Task | Code | Instruction | Overall

Models AIME 24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall

Avg@32 Avgl32 Avg@s8 Avg@8 Avg@8 Avg@4 Avg.
DeepSeek R1* 79.8 65.0 42.4 71.5 64.3 86.1 68.2
Seed-1.5-Thinking* 86.7 74.0 48.0 71.3 64.9 87.4 73.0
Claude4 Opus Thinking* - 75.5 - 79.6 48.9 89.7 -
Qwen3-235B-Thinking* 85.7 81.5 - 71.1 55.7 83.4 -
Qwen3-8B 75.3 67.0 43.2 61.7 51.7 66.0 61.7
DS-R1-0528-Qwen3-8B 82.8 74.6 50.6 61.4 59.0 73.9 67.0

1.5B Size
DeepScaleR-1.5B 37.8 31.6 13.1 19.1 21.9 40.5 27.3
DS-1.5B Direct RL 37.2 28.5 129 24.6 19.5 39.5 27.0
DS-1.5B TFPI stage 3 40.1 30.8 13.8 29.6 199 40.8 29.2
DS-1.5B TFPI + RL 42.3 329 15.1 27.8 20.9 41.0 30.0
4B Size
Polaris-4B-Preview 73.2 70.7 39.9 54.9 39.7 63.9 57.0
Qwen3-4B Direct RL 78.8 71.5 46.4 56.2 54.3 65.1 62.0
Qwen3-4B TFPI stage 3 79.9 70.6 46.7 58.5 57.0 70.2 63.8
Qwen3-4B TFPI + RL 80.8 76.0 49.5 61.1 55.7 71.3 65.7
Qwen3-4B-2507-Thinking 84.7 79.2 51.5 66.4 62.4 68.0 68.7
- TFPI only 89.0 81.2 52.5 70.1 65.5 66.7 70.8
7B Size

AReal-boba-RL-7B 61.5 46.1 30.7 35.4 34.2 57.5 44.2
Skywork-OR1-7B-Preview 61.2 46.4 31.2 35.2 433 554 45.5
Polaris-7B-Preview 70.6 48.8 37.0 34.1 439 55.6 48.3
DS-7B Direct RL 62.3 479 30.1 36.9 42.8 57.1 46.2
DS-7B TFPI stage 3 62.0 44.6 31.1 46.8 42.1 60.2 47.8
DS-7B TFPI + RL 65.3 47.1 332 459 433 57.3 48.7

Table 10: Comparison of the Thinking-Free inference mode of TFPI with efficient reasoning base-
lines across various reasoning tasks. “Avg@k” denotes the average accuracy (in %) over k genera-
tions (i.e., pass@1), and “Toks” indicates the average output length in thousands of tokens (K).

| AIME24 | AIME25 | BeyondAIME | GPQA | Overall |
| avg@32 Toks | avg@32 Toks | avg@8 Toks | avg@8 Toks | Avg. Toks |
DeepSeek-Distill-Qwen-1.5B

Models

TLMRE-DS-1.5B (a = 0.1) 27.6 12.9 24.8 12.5 9.2 11.9 14.8 7.5 19.1 11.2
AdaptThink-1.5B (6 = 0.05) 28.1 8.0 22.6 7.9 10.0 4.8 14.8 5.1 18.9 6.5
AutoThink-DS-1.5B-Stage3 30.3 10.2 252 9.1 9.4 8.7 17.4 7.0 20.6 8.7
Laser-DE-L4096-1.5B 30.3 8.3 24.9 7.4 9.7 7.4 21.1 4.7 21.5 6.9
Initial Model (Thinking) 29.6 16.7 23.0 16.5 8.7 14.4 16.3 9.8 19.4 14.3
Initial Model (Thinking-Free) 12.4 5.7 10.9 44 4.4 34 4.2 0.9 8.0 3.6
- TFPI stage 1 219 1.6 15.3 14 8.7 13 329 0.8 19.7 1.3
- TFPI stage 2 31.5 34 24.2 3.1 10.1 29 353 1.6 25.3 2.7
- TFPI stage 3 37.5 53 28.4 5.0 12.4 49 35.6 2.6 28.5 4.4
DeepscaleR-1.5B-Preview
AutoThink-Stage3 38.9 8.7 28.9 7.7 11.6 7.8 273 54 26.7 7.4
L1-1.5B-Max 272 32 26.3 29 9.1 3.1 324 23 23.8 2.9
Thinkless-1.5B-RL 28.4 11.3 24.1 11.1 8.1 11.7 20.3 12.7 20.2 11.7
Qwen3-4B
Initial Model (Thinking) 73.6 18.0 68.3 223 434 235 56.8 10.7 60.5 18.6
Initial Model (Thinking-Free) 26.9 7.2 20.2 5.5 11.0 42 45.0 2.3 25.8 4.8
- TFPI stage 1 43.9 3.7 31.1 34 232 34 47.8 1.5 36.5 3.0
- TFPI stage 2 63.7 72 52.8 8.0 33.0 7.0 50.9 2.3 50.1 6.1
- TFPI stage 3 75.1 10.5 66.9 12.7 42.1 12.7 55.9 3.7 60.0 9.9
Qwen3-4B-Instruct-2507 60.4 7.9 46.1 7.4 33.0 7.3 64.4 4.8 51.0 6.9

21

Under review as a conference paper at ICLR 2026

Table 11: Comparison of the Thinking-Free inference mode with the Thinking mode across various
reasoning tasks after TFPI. “Avg@k” denotes the average accuracy (in %) over k generations (i.e.,
pass@1), and “Toks” indicates the average output length in thousands of tokens (K).

| AIME24 | AIME25 | Beyond AIME | GPQA | Overall |
Models | avg@32 Toks | avg@32 Toks | avg8 Toks | avg@8 Toks | Avg. Toks |
Qwen3-4B
Initial Model (Thinking) 73.6 18.0 68.3 22.3 434 23.5 56.8 10.7 60.5 18.6
Initial Model (Thinking-Free) 26.9 7.2 20.2 5.5 11.0 4.2 45.0 2.3 25.8 4.8
- TFPI stage 1 (Thinking) 75.2 13.8 67.8 17.1 42.4 16.8 57.9 7.5 60.8 13.8
- TFPI stage 1 (Thinking-Free) 439 3.7 31.1 34 232 3.4 47.8 1.5 36.5 3.0
- TFPI stage 2 (Thinking) 76.0 134 68.2 17.0 44.7 16.7 57.8 7.7 61.7 13.7
- TFPI stage 2 63.7 7.2 52.8 8.0 33.0 7.0 50.9 2.3 50.1 6.1
- TFPI stage 3 (Thinking) 79.9 15.1 70.6 18.7 46.7 18.8 58.5 8.6 63.9 15.3
- TFPI stage 3 75.1 10.5 66.9 12.7 42.1 12.7 55.9 3.7 60.0 9.9
Qwen3-4B-Instruct-2507 60.4 7.9 46.1 7.4 33.0 73 64.4 4.8 51.0 6.9

Response Length | 16K 32K 48K 64K 80K 90K

Avg@32 426 64.1 683 685 685 685
Clip Ratio 557 257 52 12 06 00

Table 12: AIME2S5 results for Qwen3-4B: Avg@32 and clip ratio across maximum output lengths.

F.5 ABOUT TRAINING TEMPERATURE

In our main experiments, we set the training temperature to 1.0 (Appendix C.1). Motivated by
Polaris(An et al., 2025), which reports an “optimal” temperature of 1.4 for Qwen3-4B, we conduct
an ablation on training temperature using Qwen3—-4B. As shown in Figure7, performance at 1.4
is comparable to 1.0 for both TFPI Stage 1 and Direct RL (measured by AVG@32 on AIME2S5),
suggesting that our results are robust to this choice of training temperature.

F.6 ABOUT THE STAGE BOUNDARY AND STAGE LENGTH

Following prior multi-stage training practice (An et al., 2025; Luo et al., 2025b), we increase the
training context length when the clip ratio shows a renewed inflection and validation performance
begins to plateau. Figure 8 illustrates this behavior for TFPI Stage 1 on Qwen3-4B; step 100 is a
natural transition point.

Training context length trades off training throughput and effective learning signal: longer contexts
slow training, whereas shorter contexts constrain learning on harder questions. We therefore begin
with a shorter length and expand as training stabilizes. To set stage lengths, we prioritize effective
signal: with 8-sample rollouts, 0/8 or 8/8 correctness contributes no learning signal (Yu et al., 2025),
so for a candidate length L, we compute the share of questions with 1/8—7/8 correctness as a proxy
for effective training mass. We choose L to preserve throughput while maintaining substantial ef-
fective mass at each stage. For Qwen3-4B, L=4K yields 28K/53K questions in the 1/8-7/8 band,
whereas L=8K yields 29K/53K; thus we start at 4K for efficiency and move to 8K once validation
gains plateau. Note that the effective sets across stages are not disjoint; for instance, the same ques-

Table 13: Re-evaluate the meta-experiment in Figure 2 (Left) under a unified evaluation setting
(temperature = 0.6, top-p = 0.95, top-k = 20). “# Tokens” denotes the average number of tokens on
AIME2S and “A” is the percentage of reduction in token consumption.

Model \ # Tokens (Thinking) # Tokens (Thinking-Free) A

DS-1. 5B (original setting) 16.5K 4.4K -73%
Unified Setting 16.4K 3.6K -78%
Qwen3-4B (original setting) 17.4K 5.1K -71%
Unified Setting 17.4K 4.7K -73%

22

Under review as a conference paper at ICLR 2026

Table 14: Results of TFPI vs. direct RL across different benchmarks. “Avg@k” denotes the average
accuracy (%) over k random generations (i.e., pass@1). All models are evaluated in thinking mode.
The total training compute for the 3 stages of TFPI equals that of “Direct RL” for fair comparison.
This table corresponds to Table 1 under a unified decoding setting.

| Mathematics | Multi-Task | Code | Instruction | Overall

Models AIME 24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall

Avg@32 Avg@32 Avg@8 Avg@8 Avg@8 AvgQ4 Avg.

DeepSeek-Distill-Qwen-1.5B
Initial Model 29.1 25.5 9.0 16.3 17.6 40.1 229
- Direct RL 35.5 27.9 12.5 20.2 18.7 38.1 25.5
- TFPI stage 1 31.8 26.7 12.5 30 18.9 39.5 26.6
- TFPI stage 2 35.1 27.6 134 29.7 18.9 44.0 28.1
- TFPI stage 3 36.1 30.1 14.9 28.5 21.0 41.8 28.7
Qwen3-4B
Initial Model 71.6 64.1 41.5 56.6 54.9 64.9 58.9
Direct RL 734 62.2 41.1 56.2 52.1 66.0 58.5
TFPI stage 1 74.7 67.4 42.1 579 55.3 66.0 60.6
TFPI stage 2 75.6 67.5 44.6 57.8 54.6 64.8 60.8
TFPI stage 3 78.7 69.5 46.1 58.5 56.8 70.2 63.3
DeepSeek-Distill-Qwen-7B

Initial Model 53.3 40.5 25.0 36.8 37.6 55.6 41.5
- Direct RL 56.8 41.6 26.7 37.4 39.6 58.2 434
- TFPI stage 1 58.8 39.6 28.8 49.4 40.1 56.6 45.5
- TFPI stage 2 61.7 42.9 31.5 47.5 42.0 57.5 472
- TFPI stage 3 62.6 432 30.7 47.1 424 59.3 47.5

Table 15: Results (%) of RL after TFPI (“TFPI+RL”) vs. “Direct RL” across different benchmarks.
“Avg@k” denotes the average accuracy (%) over k random generations (i.e., pass@1). For LRMs
marked with “*”, results are taken from the corresponding reports (see Appendix C.4); All models
are evaluated in thinking mode. The total training compute for “TFPI+RL” is matched to that of
“Direct RL” for fair comparison. This table corresponds to Table 2 under a unified decoding setting.

\ Mathematics | Multi-Task | Code | Instruction | Overall
Models AIME24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall
Avg@32 Avg@32 Avgl8 Avg@8 Avg8 AvgQR4 Avg.
DeepSeek R1* 79.8 65.0 42.4 71.5 64.3 86.1 68.2
Seed-1.5-Thinking* 86.7 74.0 48.0 77.3 64.9 87.4 73.0
Claude4 Opus Thinking* - 75.5 - 79.6 48.9 89.7 -
Qwen3-235B-Thinking* 85.7 81.5 - 71.1 55.7 83.4 -
Qwen3-4B Direct RL 75.8 65.8 42.1 56.0 53.9 65.1 59.8
Qwen3-4B TFPI stage 3 78.7 69.5 46.1 58.5 56.8 70.2 63.3
Qwen3-4B TFPI + RL 77.9 70.8 47.5 60.8 54.5 71.3 63.8

tion may score 3/8 at 4K and 6/8 at 8K. In all experiments, we train on the full Polaris-53K dataset
to ensure fairness. However, for better efficiency, one can curate stage-specific subsets based on
the effective-signal criterion by filtering out questions that are 0/8 or 8/8 correct under the current
context length.

F.7 MULTI-STAGE DIRECT RL (4K — 8K — 16K)

Figure 2 (right) shows that applying Direct RL with a 4K response length causes a substantial per-
formance drop on AIME2S5 for Qwen3-4B. In contrast, TFPI trains stably even at 4K, suggesting
that—even in a multi-stage setting—the initial stage length should not be too short. We posit that
enabling multi-stage training with short response lengths is a key benefit of TFPI. To rule out the
possibility that this effect is an artifact of staging, we run Direct RL with the identical multi-stage
schedule on Qwen3-4B. The complete results are reported in Table 17, with training details pro-
vided in Table 18.

23

Under review as a conference paper at ICLR 2026

Table 16: Comparison of the Thinking-Free inference mode of TFPI with efficient reasoning base-

lines across various reasoning tasks. “Avg@k” denotes the average accuracy (in %) over k genera-

tions (i.e., pass@l), and “Toks” indicates the average output length in thousands of tokens (K).
Models with “*” are trained from DeepScaleR~-1. 5B, while the remaining are from DS—-1 . 5B.

This table corresponds to Table 3 under a unified decoding setting.

| AIME24 | AIME25 | Beyond AIME | GPQA | Overall
| avg@32 Toks | avg@32 Toks | avg@8 Toks | avg@8 Toks | Avg. Toks

Models

1) TLMRE-DS-1.5B (o = 0.1) 27.6 12.9 24.8 12.5 9.2 11.9 14.8 7.5 19.1 11.2
2) AdaptThink-1.5B (6 = 0.05) 28.1 8.0 22.6 79 10.0 4.8 14.8 5.1 18.9 6.5
3) AutoThink-DS-1.5B-Stage3 30.3 10.2 25.2 9.1 9.4 8.7 17.4 7.0 20.6 8.7
4) Laser-DE-L4096-1.5B 30.3 8.3 24.9 7.4 9.7 7.4 21.1 4.7 21.5 6.9
5) AutoThink-Stage3* 38.9 8.7 28.9 7.7 11.6 7.8 27.3 5.4 26.7 7.4
6) L1-1.5B-Max* 27.2 32 26.3 29 9.1 3.1 324 23 23.8 29
7) Thinkless-1.5B-RL* 28.4 11.3 24.1 11.1 8.1 11.7 20.3 12.7 20.2 11.7
DS-1.5B (Thinking) 29.1 16.5 25.5 16.4 9.0 17.3 16.3 9.8 20.0 15.0
DS-1.5B (Thinking-Free) 13.3 5.1 11.0 3.6 4.0 2.6 6.2 0.9 8.6 3.0
- TFPI stage 1 23.9 1.5 16.2 1.4 9.1 12 36.4 0.8 21.4 1.2
- TFPI stage 2 28.6 3.4 25.0 3.0 10.6 29 35.7 1.6 25.0 2.7
- TFPI stage 3 37.7 52 28.4 5.1 14.5 49 34.1 2.6 28.7 4.4

70

avg@32

68

67

8 20 32 44 56 68 80 8 20 32 44 56 68 80
training steps training steps

Figure 7: AVG@32 (%) on AIME2S5 for Qwen3-4B across training steps under different training

temperatures (1.4 vs. 1.0). Left: Stage 1 of TFPI; Right: Direct RL.

Table 17: TFPI v.s. Multi-Stage Direct RL. All models are evaluated in thinking mode.

| Mathematics | Multi-Task | Code | Instruction | Overall
Models AIME24 AIME25 Beyond AIME | GPQA | LiveCode | IFEval | Overall
Avg@32 Avg@32 Avge8 AvgR8 Avg@s AvgR4 Avg.
Initial Model | 736 68.3 434 | 568 | 549 | 649 | 603
TFPI stage 1 75.2 67.8 424 57.9 55.3 66.0 60.8
Multi-Stage Direct RL Stage 1 49.2 36.0 22.6 51.4 44.0 64.5 44.6
TFPI stage 2 76.0 68.2 44.7 57.8 54.8 64.8 61.0
Multi-Stage Direct RL Stage 2 58.4 42.3 28.2 52.9 48.4 63.2 48.9
TFPI stage 3 79.9 70.6 46.7 58.5 57.0 70.2 63.8
Multi-Stage Direct RL Stage 3 64.9 48.6 32.5 55.2 51.0 65.2 529
22.5 e
el R
L1755 2400 % 6
£15.0 2300 é &
g < Eq
2125 2200% 3
© <
10.0 2100 82
75 2000
0 20 40 60 80 100 0 20 40 60 80 100
training steps training steps

Figure 8: Qwen3—-4B TFPI Stage 1. Left: clip ratio and average output tokens over training steps
Right: MATHS500 validation accuracy. Step 100 marks a turning point.

24

s

Under review as a conference paper at ICLR 2026

Table 18: Training Steps, Time, and MFU of TFPI v.s. Direct RL with Qwen3-4B.

| Training Steps Training Time (kh) MFU (%)

TFPI Stage 1 4K, 100 steps 0.35 66.28
Multi-Stage Direct RL Stage 1 4K, 100 steps 0.45 66.82
TFPI Stage 2 8K, 56 steps 0.52 66.67
Multi-Stage Direct RL Stage 2 8K, 56 steps 0.51 66.31
TFPI Stage 3 16K, 64 steps 0.91 66.76
Multi-Stage Direct RL Stage 3 16K, 64 steps 0.97 65.99
TFPI Total - 1.79 -

Multi-Stage Direct RL Total - 1.93 -

G REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed description of our method in Section 3.3 and present
all experimental setups in Section 4.1 and Appendix C, including training configurations and eval-
uation protocols. All evaluation datasets, the training set, the training framework, testing codes, as
well as the efficient reasoning baselines used in our experiments, are publicly available and prop-
erly referenced (see Appendix C). We will also release our codes and training checkpoints upon
acceptance for reproducibility.

25

	Introduction
	Preliminary
	Methodology
	Thinking-Free Mode Enables More Efficient Reasoning
	Thinking-Free Training Is Beneficial to Slow-Thinking
	Thinking Free Policy Initialization

	Experiments
	Experimental Settings
	TFPI Enhances the Slow-Thinking of Distilled Reasoning Models
	TFPI as a Foundation for RLVR to Achieve Higher Performance
	TFPI Improves the Token Efficiency of Distilled Reasoning Models

	Analysis
	Why TFPI Leads to Better Thinking-Mode Inference?
	About Reasoning Pattern and Rollout Speed
	Scaling Up Model Size
	Ablation Study

	Related Work
	Conclusion
	Background and Preliminary
	RLVR Algorithms
	ThinkingFree Operation

	Meta Experiments
	Token Consumption of ThinkingFree
	Detailed Setup of ThinkingFree Training

	Experimental Details
	Training Details
	Baselines
	Evaluation Details
	Source of Some Results in Table 2

	Analysis Details
	The Use of Large Language Models
	More Results
	Additional Results of Parameter-Level Analysis
	Complete Results of Table 2 and Table 3
	Thinking vs. Thinking-Free Inference
	About Decoding Parameters
	About Training Temperature
	About the Stage Boundary and Stage Length
	Multi-Stage Direct RL (4K8K16K)

	Reproducibility Statement

