
Schwarz–Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Yu Wang 1 2 3 S. Mazdak Abulnaga 1 2 Yaël Balbastre 1 4 Bruce Fischl 1 2

Abstract
Sparse linear solvers are fundamental to science
and engineering, applied in partial differential
equations (PDEs), scientific computing, computer
vision, and beyond. Indirect solvers possess char-
acteristics that make them undesirable as stable
differentiable modules; existing direct solvers,
though reliable, are too expensive to be adopted in
neural architectures. We substantially accelerate
direct sparse solvers or generalized deconvolution
by up to 3 orders-of-magnitude faster, violating
common assumptions that direct solvers are too
slow. We “condense” a sparse Laplacian matrix
into a dense tensor, a compact data structure that
batch-wise stores the Dirichlet-to-Neumann ma-
trices, reducing the sparse solving to recursively
merging pairs of dense matrices that are much
smaller. The batched small dense systems are
sliced and inverted in parallel to take advantage
of dense GPU BLAS kernels, highly optimized in
the era of deep learning. Our method is efficient,
qualified as a strong zero-shot baseline for AI-
based PDE solving and a reliable differentiable
module integrable into machine learning pipelines.
Our code is available at https://github.com/
wangyu9/Schwarz_Schur_Involution.

1. Introduction
In this paper, we propose a conceptually simple approach
that reduces solving certain sparse linear system (A,b) to
“involuting” tensors (α,β), leading to significant improve-
ments. Global linear systems in computer vision and scien-
tific computing, such as the Laplacian or Hessian systems on
image domains, are usually very large yet sparse, as induced
by pixel affinity. For a sparse A, direct solvers find the
exact solution: x = A−1b, for which we present the first

1Athinoula A. Martinos Center, Massachusetts General Hospi-
tal, Harvard Medical School 2Massachusetts Institute of Technol-
ogy, MIT CSAIL, USA 3Sony, USA 4University College London,
UK. Correspondence to: <{yw823,bfischl}@mgh.harvard.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Table 1. Our substantially faster sparse solver (including the fac-
torization and substitution stages) is the first direct method to run
at interactive rates. It takes our method 10.9 ms (resp. 220 ms) to
solve a Laplacian system (Dirichlet) on an image of 513 × 513
(resp. 25612). Runtime is reported in milliseconds.

Example CUDA SciPy ours speedup
25612 36926 253318 220.1 168X 1151X
20492 21354 143100 158.5 135X 903X
10252 4710 16512 36.45 129X 453X
5132 1036 2051 10.90 95.0X 188X
2572 234 355 5.82 40.2X 61.0X

interactive rate algorithm on common-size images. Solving
the linear system A−1b is equivalent to the generalized de-
convolution of an image b with a spatially varying kernel (in
rows of) A. Sparse linear solvers underpin modern image
processing, computer vision, graphics, as well as numerical
methods for PDEs such as finite difference/element meth-
ods (FD/FEM) used in electrical/mechanical engineering
and computational sciences. Users in these areas can also
benefit from our approach if efficiency is a primary concern.
Our direct solver—even naı̈vely prototyped in PyTorch—is
60 to 1000× faster than SciPy and 40 to 170× faster than
CUDA (cuDSS), which are highly optimized (Table 1).

Successes of modern deep learning are largely built on dif-
ferentiable numerical linear algebras, particularly matrix
multiplications of dense—such as attentions (Vaswani et al.,
2017)—and sparse matrices—notably convolutions (LeCun
et al., 1989). High performance AI systems rely on effi-
cient implementation of these operations, including dense
(Strassen, 1969; Blahut, 2010; Dao et al., 2022; Dao, 2023)
and sparse multiplications (Winograd, 1980; Cook, 1966;
Lavin & Gray, 2016). In contrast, matrix inversions are
almost never employed in neural architectures. We believe
that inversions are underexplored and can play a prominent
role, since (sparse) matrix inversions encompass a large
range of operations such as generalized deconvolution, ge-
ometry representation, results of physical simulations, de-
correlation, and equilibrium states of localized interactions.

As detailed in §F.2, a key obstacle preventing neural ar-
chitectures from adopting linear solvers is the lack of
SCHWARZ—a Sparse solver like ours that is Consistent-
performance, Hyperspeed, in-the-Wild, Accurate, Robust,
and Zero-parameter. Indirect, a.k.a. iterative, solvers fall
short of these goals due to their strong problem dependency,

1

https://github.com/wangyu9/Schwarz_Schur_Involution
https://github.com/wangyu9/Schwarz_Schur_Involution

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

parameter sensitivity, and unpredictable runtime. The large
diversity of PDEs results in laborious workflows requiring
expert users in the loop to tweak parameters or precondi-
tioners to employ indirect solvers. Iterative solvers struggle
to deconvolute indefinite kernels, such as the Helmholtz
PDE (Ernst & Gander, 2011). While existing direct solvers
are promising candidates for meeting the desiderata, they
are too slow—a limitation that our method overcomes. Cat-
alyzed by the surge of interest in physics-informed machine
learning and AI for PDE/Science (Berens et al., 2023), iden-
tification or learning of unknown physical systems open up
a unique setting to solve matrix A whose properties are
unknown in advance to apply appropriate iterative schemes,
necessitating a general-purpose solver that is deployable
for any A and/or a large varieties of matrices from some
training batch. This is similar to the generalized deconvo-
lution with unknown kernels in computer vision. Applying
unsuitable indirect solvers can yield catastrophic failure.

Our improvement is due to “condensing”—transfer GPU’s
capacity of dense BLAS (Dongarra et al., 1988; 2018) to
sparse computation, through design choices with a com-
pact data structure—a tensor storing Dirichlet-to-Neumann
or sub-systems in batches, and a procedure we coin
as “Schwarz-Schur involution”—recursively applying the
Schur complement formula to block-wisely contract nodes
and keep track of sparsity explicitly. Our approach amounts
to a parallel implementation of Gaussian elimination under
nested dissections (George, 1973) and the induced multi-
frontal solvers (Duff & Reid, 1983), recursively canceling
variables. We take advantage of the regularity of image grids
to aggressively explore parallelisms, leveraging advances in
GPUs sparked by deep learning that shift the best practice
towards algorithms better exploiting parallelisms.

Our sparse solvers, with speeds exceeding iterative solvers,
retain the accuracy and reliability of direct solvers, efficient
enough to be integrated within neural architectures. Owing
to the central role of linear solvers, our method enables
efficient implementations including but not limited to:
• generalized deconvolution of spatially varying kernels.
• identify and reduce gaps between AI & conventional meth-

ods: zero-shot baselines for learning-based PDE solvers.
• exact Newton solvers made tractable on image domains.
• mathematical optimization layers embedded in neural

nets (Amos & Kolter, 2017), (physics) solver-in-the-loop.
• geometric deep learning & algorithms (Litany et al., 2017),

shape/deformation representation, graph/mesh/FEM neu-
ral networks (Wang et al., 2019; Pfaff et al., 2020).

• eigenbases for spectral neural nets (Bruna et al., 2013),
spectral clustering (Shi & Malik, 2000) made interactive.

1.1. Related Work

We refer readers to standard texts on direct solvers of
dense (Davis, 2006) and sparse systems (Duff et al., 2017)

for extensive surveys. Direct solvers first perform the
numerical factorization—Cholesky or LDLT factorization
for symmetric A and LU factorization for asymmetric
systems—followed by a back substitution to spread out
b to yield x. Major backends for direct sparse solvers
include SuperLU (Li, 2005), UMFPACK (Davis, 2004),
CUDA (Nickolls et al., 2008), Pardiso (Schenk & Gärtner,
2004), Eigen (Guennebaud et al., 2014), and Cholmod/-
SuiteSparse (Chen et al., 2008). When A comes from a
spatially constant kernel or point spread function (PSF), the
problem becomes an image deconvolution, with efficient
frequency domain solvers (Sezan & Tekalp, 1990; Hansen
et al., 2006); spectral solvers like FFT/IFFT (Fast Fourier
Transform) (Frigo & Johnson, 2005) are limited to solving
homogeneous Laplace systems. Instead, we attack PDEs or
deconvolution with spatially varying coefficients/kernels.

We consider solving indefinite and nonsymmetric square
linear systems (Trefethen & Bau, 1997), and thus methods
requiring symmetric or positive-definite A do not apply,
such as CG (Conjugate Gradient) (Hestenes et al., 1952),
MINRES (Paige & Saunders, 1975; Liu & Roosta, 2022).
Methods apply to our setting include: CGS (Conjugate Gra-
dient Squared) (Sonneveld, 1989) and the improved variant
biCGstab (Bi-Conjugate Gradient Stabilized) (Van der Vorst,
1992; Sleijpen & Fokkema, 1993), iterative sparse least-
squares LSQR (Paige & Saunders, 1982b;a) that amounts
to CG applied to (A⊺A)

−1
A⊺b and a recent improvement

LSMR (Fong & Saunders, 2011), GMRES (generalized min-
imal residual) (Saad & Schultz, 1986) and improvements
DQGMRES (Saad & Wu, 1996) and FGMRES (Saad, 1993).
Other methods include BILQ (Montoison & Orban, 2020;
Fletcher, 1976), QMR (Freund & Nachtigal, 1991; 1994),
FOM (Saad, 1981), and DIOM (Saad, 1984). The multigrid
methods (Bramble, 1993) apply a hierarchical coarse-to-fine
strategy, effective as iterative solvers or the preconditioners
in CG to yield PCG, especially for elliptic PDEs. We defer
discussions on solvers in vision & graphics (Barron & Poole,
2016; Krishnan et al., 2013; Bolz et al., 2003; Jeschke et al.,
2009; Horvath & Geiger, 2009; Liu et al., 2016) to §A.

2. Mathematical Preliminaries
Sparse linear solver = exact generalized deconvolution.
In the paper, for an H×W image with n pixels, n := HW ,
whose boundary has b := 2W+2H−4 pixels, we consider a
sparse matrix A ∈ Rn×n that encodes the affinity of pixels:
each row/column of A corresponds to one pixel and Aij is
nonzero only if pixels i, j ∈ {1, ..., n} are adjacent in the
image, namely their integer coordinates (xi, yi), (xj , yj) ∈
N2 satisfying that (xi−xj)

2+(yi−yj)2 ≤ 2. For a function
u(x, y) on the image grid, consider the linear operator or a
3×3 convolution centered at (x, y) with a(x,y) ∈ R3×3:

v(x, y)←
∑∑

δx,δy∈{−1,0,1}
a(x,y)(δx, δy)u(x+ δx, y + δy)

2

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Figure 1. Our method immediately accelerates direct solvers in a large variety of tasks by orders of magnitude, including: FEM for
solving PDEs, deconvolution (generalized to spatially varying kernels), eigen solver and spectral method, image segmentation and matting,
physical simulation, deformation, geometry processing, shape optimization, Newton’s method, and diffeomorphic image registration.

using a 9-point stencil a(x,y)—a spatially varying kernel:

a(x,y) :=

[
a(x,y)(−1,−1) a(x,y)(−1, 0) a(x,y)(−1, 1)

a(x,y)(0,−1) a(x,y)(0, 0) a(x,y)(0, 1)

a(x,y)(1,−1) a(x,y)(1, 0) a(x,y)(1, 1)

]
. (1)

By flattening the 2-dim array u, v into the vector u,v ∈
Rn×1 (see Figure 24), for Aij = a(xj ,yj)(xi − xj , yi − yj),
the convolution with a(x,y) can be written as the matrix-
vector product v ← Au. Thus, the linear solve A−1v
generalizes deconvolution to the case with a spatially vary-
ing kernel a(x,y). Theoretically, our approach generalizes to
larger stencils and 3D, which we leave for future work.

Differentiable and repetitive linear solvers. In the learn-
ing setting, the system A,b come from some learnable
parameters θ to be identified with gradient descent. Thus,
in addition to solving x=A−1b, we need to obtain ∂x/∂b
and ∂x/∂A, which have closed-form expressions that can be
derived using the adjoint method; evaluating these gradients
requires solving the transposed system A⊺, see §C.3.

A common setting is to sequentially solve multiple pairs
(A,b1), (A,b2),..., (A,bk), i.e., the same left-hand side A
but different right-hand sides. Direct solvers, including ours,
stand out for allowing separating numerical factorization
from back substitution and reuse the former. Numerical
factorization is the computation involving A only, which
is the dominant cost that can be reused for direct solvers.
This is not possible for indirect solvers, which have to start
over for each right-hand side. The typical value of k is
2 ∼ 20+: 2 in differentiating linear solvers, or k > 20 in,
e.g., being applied in eigen solvers. Thus, when compared to
iterative solvers in these settings, computationally it means
that iterative solvers get an extra ×k slow down.

PDE and FEM preliminaries. Our method applies to any
invertible A with the aforementioned sparsity. But first
let us examine the A that arises from discretizing elliptic
PDEs (Gilbarg et al., 1977), a situation that motivates our
initial development. Surprisingly, the strategy generalizes
beyond elliptic PDEs without adaptations to other linear
systems in practice, even non positive-semidefinite (PSD).
Let us consider solving the Laplace equation defined using

the anisotropic diffusion coefficient C(x) ∈ R2×2,∀x ∈ Ω
on the domain Ω, subject to either the Dirichlet condition
(2) or the Neumann condition (3) at the boundary ∂Ω:

−∇ · [C(x)∇u(x)] = f(x), u(x)|∂Ω= g(x). (2)

−∇·[C(x)∇u(x)] = f(x), n⊺(x)C(x)∇u(x)|∂Ω= h(x).
(3)

Discretizing with a first-order piecewise linear FEM yields:

L=G⊺CG, [Lu]|b+1:n= f , u|1:b=g or [Lu]|1:b=h,

following the notation and discretization (Wang et al., 2023),
in which u ∈ Rn, f ∈ Rn−b,g,h ∈ Rb discretize the so-
lution u and right-hand side functions f, g, h; n(x) is the
normal direction at the boundary point x; ·|1:b or ·|b+1:n

selects rows for boundary or interior pixels, resp.; the ma-
trices G, C discretize the gradient operator ∇ and C(x).
Under Dirichlet boundary condition g(x), the solution to (2)
u(x) is unique, which determines the Neumann boundary
condition h(x), inducing the Dirichlet-to-Neumann (DtN)
map: g(∂Ω)→ h(∂Ω). After discretization, the DtN map
becomes the Schur complement of the matrix L. Thus,
the coefficient-to-solution operator: C(x)→ u(x), under
FD/FEM, can be simply viewed as a linear solver.

What exactly A represents—which helps to motivate—does
not make any difference to our method. Our method does
not assume A is symmetric, though this is often the case.
Solving Neumann boundary value problems amounts to
setting A = L; solving parabolic PDEs amounts to setting
A= tL+M, and setting A=L−κ2M corresponds to solving
the Helmholtz equation that arises in wave propagation
and electromagnetism, in which M plays a role similar
to the identity matrix—M is the mass matrix discretized by
FEM (Allaire, 2007) with the same sparsity pattern as L.

3. Schur Involution for Parallel Elimination
We demonstrate a procedure to convert the solution of the
linear system x← (A,b) to the “involution” of the ten-
sors χ← (α,β)—slicing and inverting many small dense
matrices in batches to leverage modern GPU hardware.

3

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

→ → → → →
α

(∗)
: (4, 4, 25, 25) → α

(0)
: (4, 4, 16, 16)→ α

(1)
: (2, 4, 24, 24) → α

(2)
: (2, 2, 32, 32)→ α

(3)
: (1, 2, 48, 48) → α

(4)
: (1, 1, 64, 64).

β
(∗)

: (4, 4, 25, 1) → β
(0)

: (4, 4, 16, 1)→ β
(1)

: (2, 4, 24, 1) → β
(2)

: (2, 2, 32, 1)→ β
(3)

: (1, 2, 48, 1) → β
(4)

: (1, 1, 64, 1).

Figure 2. Schwarz–Schur involution on a 17×17 image. Our method (Algorithm 1) apply batched linear algebras to parallelize Gaussian
elimination in a prescribed order—pixels marked in color correspond to nodes to be eliminated in that step. As the initialization, the
Schwarz step converts the image into a wire-frame by canceling the interior pixels of each patch. Multiple Schur steps are applied to
progressively simplify the wire-frame, until only pixels at the border are left. A Schur step merges every two adjacent subdomains by
removing pixels on some “edges.” We compact all subdomains’ left- and right-hand sides in the tensors α(j),β(j) whose shapes evolve
as shown. The solutions χ(j), with the same shape as β(j), flow reversely: χ(∗) ← χ(0) ← χ(1)...← χ(3) ← χ(4) := (α(4))−1β(4).

3.1. A motivating example: sparse solvers too slow?

A 4096×4096 image can be divided into a 1024×1024 array
of 4×4 patches. If adjacent patches overlap by sharing one
layer of pixels, then we have a similar division: a 4097×4097
image (or 17×17 as shown in Figure 2, or 9×5 in Figure 3)
can be divided into a 1024×1024 (or 4×4, or 2×1, resp.)
array of small patches of size 5×5, since boundary pixels
have duplicated representations. On this image, SciPy solver
takes more than 20 minutes to solve a sparse system A ∈
Rn×n, n = 16785409. However, inverting one million 9×9
matrices in a batch only takes 0.008 seconds using PyTorch.

1 # alpha.shape is (1024,1024,9,9)
2 torch.linalg.inv(alpha) #0.008 sec.
3 # A: sparse matrix
4 scipy.sparse.linalg.spsolve(A,b) #1200 sec.

The batched matrix inversion can be viewed as the first
step of Gaussian elimination to remove the 9 pixels in the
interior 3×3 block of each patch, and we already make
major progress by removing approximately 9/16 ≈ 56.25%
variables from the problem, while being 105× faster than
SciPy to solve the entire problem! This is strong evidence
that the speed of sparse linear solvers has been significantly
underestimated and parallelism has been under exploited.

3.2. Parallel block Gaussian elimination

10

19

28

11

20

29

12

21

30

0

36

1

37

2

38

3

39

9

18

27

4

13

22

31

40

14

23

32

15

24

33

16

25

34

5

41

6

42

7

43

8

44

17

26

35

→ 0

36

1

37

2

38

3

39

9

18

27

4

13

22

31

40

5

41

6

42

7

43

8

44

17

26

35

Figure 3. Schwarz step removes the interior pixels for each patch.

We introduce a procedure that we term as “Schwarz–Schur
involution.” For simplicity of illustration, let us first con-
sider a simple case: with only two subdomains, the original
problem (4) is first reduced to (5) by the Schwarz step, and
then via (9) to (12) by a Schur step. Readers unfamiliar with
numerical algebra should refer to §E.

3.2.1. SCHWARZ STEP: DECOMPOSE & INITIALIZE DTN

As shown in Figure 3, let P,Q be two subdomains and
divide all pixels in the image domain into five (disjoint)
groups r, s, t,a,b that: (r, s) is the boundary of P and (s, t)
is the boundary of Q—s is the boundary shared between P
and Q, and the interior of P and Q are a and b, resp. 1 The
original sparse system Au = v, A ∈ Rn×n can be written:

Arr 0 Ars Ara 0
0 Att Ats 0 Atb

Asr Ast Ass Asa Asb

Aar 0 Aas Aaa 0
0 Abt Abs 0 Abb



ur

ut

us

ua

ub

 =


vr

vt

vs

va

vb

 (4)

in which there are 0 blocks because the interface s separates
the pixels into non-adjacent groups, and Ass = A

(P)
ss +

A
(Q)
ss , vs = v

(P)
s + v

(Q)
s can be divided into contributions

from P and Q, resp. 2 Note that matrix A and system (4)
are only for illustration purposes and never allocated as an
actual matrix in our algorithm (see §E). (4) further becomes:Prr 0 Prs

0 Qtt Qts

Psr Qst Pss +Qss

ur

ut

us

 =

 pr

qt

ps + qs

 , (5)

by exercising Gaussian elimination to cancel ua,ub, where[
Prr Prs

Psr Pss

]
:=

[
Arr −AraA

−1
aaAar Ars −AraA

−1
aaAas

Asr −AsaA
−1
aaAar A

(P)
ss −AsaA

−1
aaAas

]
[
Qtt Qts

Qst Qss

]
:=

[
Att −AtbA

−1
bbAbt Ats −AtbA

−1
bbAbs

Ast −AsbA
−1
bbAbt A

(Q)
ss −AsbA

−1
bbAbs

]
[
pr

ps

]
:=

[
vr −AraA

−1
aa va

v
(P)
s −AsaA

−1
aa va

]
,

[
qt

qs

]
:=

[
vt −AtbA

−1
bbvb

v
(Q)
s −AsbA

−1
bbvb

]
.

1Concretely speaking, s=[4, 13, 22, 31, 40],

r=[0, 1, 2, 3, 39, 38, 37, 36, 27, 18, 9], a=[10, 11, 12, 19, 20, 21, 28, 29, 30],

t=[5, 6, 7, 8, 17, 26, 35, 44, 43, 42, 41],b=[14, 15, 16, 23, 24, 25, 32, 33, 34].

2The values of A(P)
ss and A

(Q)
ss can be arbitrary, as long as their

summation is the correct Ass. See §E for details.

4

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

using the last two equations in §4 to eliminate ua,ub:[
ua

ub

]
=

[
A−1

aa 0
0 A−1

bb

]([
va

vb

]
−
[
Aar 0 Aas

0 Abt Abs

][ur

ut

us

])
.

(6)

Let P
P
:←
[
Prr Prs

Psr Pss

]
p
P
:←
[
pr

ps

]
(7)

Q
P
:←
[
Qtt Qts

Qst Qss

]
q
P
:←
[
qt

qs

]
(8)

The symbol G
P
:← H,g

P
:← h means matrix G comes from

entries of H but after some row/column-wise permutation
F ∈ Pn×n, so G := F−1HF,g := F−1h, such that rows/-
columns of P,Q list boundary pixels counterclockwise in
the ordering of Figure 4. See §E for details. The rationale be-
hind dividing the domain is that once values at the boundary
wire-frame r, s, t are known, the sub-problems to solve for
ua and ub become independent: constructions of reduced
systems P,Q are independent of each other, concurrently
computed (in a size-2 batch).

3.2.2. SCHUR STEP: MERGE ADJACENT DTNS

A Schur step merges two subdomains P and Q into a joint
domain D, while converting their left-hand and right-hand
sides (P,p) and (Q,q) into a new left-hand and right-
hand sides (D,d). Divide the nodes in P into contiguous
subsets α,β,γ, δ, ϵ, such that α = [0, 1, 2, 3], β = [4],
γ = [5, 6, 7], δ = [8], ϵ = [9, 10, 11, 12, 13, 14, 15]. Di-
vide the nodes in Q into contiguous subsets κ,λ,µ,ν, such
that: κ= [0], λ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], µ= [12],
ν = [13, 14, 15]. Under the indexing in Figure 4, D’s bound-
ary consists of the nodes corresponding to α,β,λ, δ, ϵ. Af-
ter merging, β,κ represent the same node , so are δ,µ; γ
represents the same set of nodes as ν but reversely ordered.

0

12

1

11

2

10

3

9

4

8

15

14

13

4

8

5

6

7

0 1 2 3 0

12

15

14

13

1

11

2

10

3

9

4

8

5

6

7

→ 0

20

1

19

2

18

3

17

4

16

23

22

21

4

16

5

15

6

14

7

13

8

12

9

10

11

0 1 2 3

Figure 4. Schur step collapses subdomains P and Q into D.

The node grouping implies partitioning the matrix P,Q into
submatrices, by dividing the rows and columns into subsets.
Pαα Pαβ Pαγ Pαδ Pαϵ

Pβα Pββ Pβγ Pβδ Pβϵ

Pγα Pγβ Pγγ Pγδ Pγϵ

Pδα Pδβ Pδγ Pδδ Pδϵ

Pϵα Pϵβ Pϵγ Pϵδ Pϵϵ

 := P,


pα

pβ

pγ

pδ

pϵ

 := p,


Qκκ Qκλ Qκµ Qκν

Qλκ Qλλ Qλµ Qλν

Qµκ Qµλ Qµµ Qµν

Qνκ Qνλ Qνµ Qνν

 := Q,


qκ

qλ

qµ

qν

 := q.

(9) is the linear system for the joint domain D. Since β,κ
represent the same node, they correspond to the same row/-
column; the same applies to δ,µ. Now we assemble the
new system D by Schur “involuting” the sub-systems P,Q.
When eliminating the “wire-frame” nodes γ (i.e. ν in re-
verse order), introduce the symbols to simplify notation:

X :=


Pαα Pαβ 0αλ Pαδ Pαϵ

Pβα Pββ +Qκκ Qκλ Pβδ +Qκµ Pβϵ

0λα Qλκ Qλλ Qλµ 0λϵ

Pδα Pδβ +Qµκ Qµλ Pδδ +Qµµ Pδϵ

Pϵα Pϵβ 0ϵλ Pϵδ Pϵϵ



Y :=


Pαγ

Pβγ +QκνJ
QλνJ

Pδγ +QµνJ
Pϵγ

 y :=


pα

pβ + qκ

qλ

pδ + qµ

pϵ

 x :=


uα

uβ

uλ

uδ

uϵ


Z := [Pγα Pγβ + J⊺Qνκ J⊺Qνλ Pγδ + J⊺Qνµ Pγϵ]

W :=
[
Pγγ + J⊺QννJ

]
w :=

[
pγ + J⊺qν

]
where J ≡ J⊺ is the reverse permutation matrix (see §E),
whose action is to reverse the rows (or columns) of a matrix
when being multiplied with from left (or right). By plugging
in our new definitions, (9) becomes:[

X Y
Z W

] [
x
uγ

]
=

[
y
w

]
(10)

Schur eliminate uγ using:

uγ = W−1 (w − Zx) (back-fill), (11)

the system (4) to (5) to (9) finally becomes Dx = d, where:

D :=
(
X−YW−1Z

)
d := y −YW−1w (12)

In summary, to solve the original problem (4) in the spe-
cial case of two subdomains, after the Schwarz step that
constructs the system matrices P,Q, our final algorithm of
the Schur step first solves for the values x = D−1d, then
recovers uγ—the solution at the interface—using (11), and
finally recovers ua,ub—values in the interior of each patch
from ur,ut,us—values at the patch’s boundary.

3.2.3. GENERAL CASES

Summarized in Figure 2, when there are 2k patches of 5×5,
we apply the Schwarz step once, and the Schur step k times
to recursively glue every two subdomains together. These
steps play the role of the standard LU factorization (Davis,
2006). See full details in §C, §E and Algorithm 1.

The Schwarz step to eliminate interior nodes in the 3×3 block
is basically the same as introduced before: for each patch P
the interior nodes a are eliminated and the system matrix for
the remaining nodes r becomes (A(P)

rr −A
(P)
ra A−1aaA

(P)
ar).

5

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers



Pαα Pαβ 0αλ Pαδ Pαϵ

Pβα Pββ 0βλ Pβδ Pβϵ
0λα 0λβ 0λλ 0λδ 0λϵ
Pδα Pδβ 0δλ Pδδ Pδϵ
Pϵα Pϵβ 0ϵλ Pϵδ Pϵϵ



Pαγ
Pβγ
0λγ
Pδγ
Pϵγ


[
Pγα Pγβ 0γλ Pγδ Pγϵ

] [
Pγγ

]

+



0αα 0αβ 0αλ 0αδ 0αϵ

0βα Qκκ Qκλ Qκµ 0βϵ
0λα Qλκ Qλλ Qλµ 0λϵ
0δα Qµκ Qµλ Qµµ 0δϵ
0ϵα 0ϵβ 0ϵλ 0ϵδ 0ϵϵ




0αγ
QκνJ
QλνJ
QµνJ
0ϵγ


[
0γα J⊺Qνκ J⊺Qνλ J⊺Qνµ 0γϵ

] [
J⊺QννJ

]





uα
uβ
uλ
uδ
uϵ
uγ

 =


pα

pβ + qκ

qλ
pδ + qµ

pϵ
pγ + J⊺qν


(9)Figure 5. The joint linear system.

The step transforms the domain to a wire-frame with 2k hol-
low subdomains, each of which initially has one patch and is
associated with a system matrix (like P,Q, ...) and a right-
hand side (p,q, ...). Again, this stage takes a small fraction
of overall runtime but removes the majority of pixels.

A Schur step further simplifies the wire-frame by eliminat-
ing pixels on some “edges” along the x (or y) direction for
j that is odd (or even). The j-th Schur step (j = 1, ..., k)
starts with 2k−j+1 subdomains that each consists of 2j−1

patches, and ends with 2k−j subdomains that each has 2j

patches. To merge each pair of adjacent subdomains that
are marked in red and blue, we gather the system matrices
for them, also denoted as P,Q, and apply the formula (12).

Tensorized representations of batched reduced systems
are adopted as our method’s data structure: we never main-
tain the global system A as a sparse matrix like all other di-
rect solvers. Instead, in the j-th Schur step of our algorithm,
the linear system is a 4-dim tensor α(j) that α(j)[k, l, :, :]
stores the left-hand side of the (k, l)-th subdomain. For
j = (2i+ 1), the j-th Schur step takes as input α(j) of size
(2k/2−i, 2k/2−i, 16 ·2i, 16 ·2i), and outputs α(j+1) of size
(2k/2−i−1, 2k/2−i, 24 ·2i, 24 ·2i); α(j) contains all reduced
systems; P,Q are fetched batch-wise from α(j) for all red
and blue subdomains, e.g., in PyTorch syntax:

1 P = a{j}[1::2, :, :, :] # odd subdomains
2 Q = a{j}[2::2, :, :, :] # even subdomains

Batched dense linear algebras are employed for automatic
parallelisms in PyTorch. For superior performance, it is
critical to batch matrix operations including inversion, mul-
tiplication, sum, slicing into rows and columns, etc. For
example, W,X,Y,Z are 4-dim tensors obtained by batch-
wise slicing into the last two dimensions of P,Q, e.g.,
W := P[:, :,γ,γ] + J⊺Q[:, :,ν,ν]J, and the following
code computes the merged system across all subdomains:

1 D = X - Y * torch.linalg.inv(W) * W

3.3. Discussion

While our method is simple to describe—recursively apply-
ing the Schur complement formula in batches, fully under-
standing the motivation and appreciating the superiority in
performance and numerical behavior, empirically demon-
strated in §4, requires familiarity with in numerical methods,
elliptic PDEs, and references. We highlight a few aspects.

One question is why the matrices D,P,Q are numerically
well-behaving and the sum of their sub-blocks W is invert-
ible. When the system A comes from discretizing an elliptic
PDE, including the “Laplacian matrix” considered in graph

theory and computer vision, which means A is positive
semidefinite (PSD) and Aii = −∑j:j ̸=i Aij , the Schur
complements D,P,Q are also PSD, and discretizing the
Dirichlet-to-Neumann (DtN) operator, which is well-defined
and enjoys numerous nice theoretical properties. See Wang
et al. (2018); Levitin et al. (2023) and references therein.

DtN also plays a central role in the study of domain decom-
position in numerical methods (Quarteroni & Valli, 1999).
Consider the classic example of solving Laplace’s equa-
tion under Dirichlet boundary condition. After dividing the
image domain into subdomains, however, the usual prob-
lem arises: Dirichlet data at the interface between subdo-
mains are unknown, preventing naı̈ve divide-and-conquer.
But whatever the Dirichlet data at the interface is, the so-
lution is linear to it (through the Green’s function), since
we work with a linear PDE: the DtN operator encodes the
solution operator that yields the solution for whatever Dirich-
let data—a simple intuition why DtN is central in domain
composition (Quarteroni & Valli, 1999). Unlike common
practices in larger problems that implicitly realize DtN’s
matrix-vector-product (Liu et al., 2016), our algorithm main-
tains the DtN/solution operators explicitly as dense matrix.

A note on novelty. We remark that key ingredients of our
algorithm exist in the literature. We essentially perform
Gaussian elimination with a particular pivoting ordering
induced by the nested dissection (George, 1973). Similar
procedures were applied in early studies of distributing FEM
solves among multiple processors, e.g., in civil (Farhat &
Wilson, 1987; Farhat et al., 1987; Farhat & Roux, 1991)
and ocean engineering (Rakowsky, 1999). However, our
setting is different from scientific computing communities,
which focus on much larger problems where inter-processor
communication rises as a central consideration. Without
recent advances in GPUs both in terms of high throughput
and memory size, stirred by the needs of deep learning,
applying the Schur formula to invert a massive amount of
small dense matrices on a single device is either infeasi-
ble or uncompetitive compared to alternative direct solvers.
Solving a massive amount of dense systems on a single
device—without needing cross-device communication, is
made efficiently only recently, to rise as the best practice.

Condense sparsity and restrict the number of variables.
For an 103×103 image, its discrete Laplacian A is a sparse
matrix of 106×106, which is much too large to deal with
as a dense matrix. If we can instead somehow work with
one (dense) 103×103 matrix and a few smaller ones, then
we can leverage the efficient dense linear algebraic kernels

6

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Table 2. Uncertain runtime of iterative solvers. When solving an anisotropic or isotropic Laplacian (Dirichlet) system, our solver is not
affected by anisotropy, while AMG (Ruge-Steuben) (Bell et al., 2022) can be much slower compared to solving isotropic systems.

anisotropic Laplacian isotropic Laplacian
Example CUDA SciPy ours ours-64 AMG (1e-4) AMG (1e-7) AMG (1e-10) AMG (1e-4) AMG (1e-7) AMG (1e-10)
20492 21354 143100 158.5 OOM 12205 49487 53877 6559 7757 9202
10252 4710 16512 36.45 175.6 2678 8112 13446 1388 1754 2236
5132 1036 2051 10.90 31.81 832.2 1658 2353 321.9 387.2 515.3
2572 234 355 5.82 7.46 203.0 385.2 556.0 91.0 117.3 347.8

BLAS (Dongarra et al., 1988; 2018). Indeed, the largest
dense matrix we have to invert is at the scale of 106×106.

Handling different boundary conditions. Beyond han-
dling the usual Dirichlet or Neumann boundary condition,
we even introduce a midpoint reflective boundary condition
to handle no-disk topology such as the sphere. See §C,§D.5.

4. Results and Validations
We compare our method with direct and iterative solvers
and demonstrate significant advantages in runtime.

Comparison with direct solvers. As the performance of
direct solvers, especially our method is less affected by A,
Table 1 can represent the timing comparison for whatever A.
Our method supports both single and double floating-point
numbers (float-32 and float-64), while existing direct solvers
only support float-64, or support float-32 without major
speedups (cuDSS). Implemented in float-64, our method
often achieves a relative error of 10−16−10−14, even better
than SciPy (Table 9). Our method can use float-32 for further
speedup, in which case the error range from 10−6−10−5, a
typical error tolerance that iterative solvers use, sufficient
for many tasks. We evaluate the accuracy of the solution
using the standard metric—the (relative) error tolerance:

tol(x) := ∥Ax− b∥2/∥b∥2 (13)

which is the stop criterion for most iterative methods. For
direct solvers, we compare with SciPy (Virtanen et al., 2020)
and CUDA (Nickolls et al., 2008)—the cuDSS LDU method
which defaults to the METIS (nested dissection) ordering.
For iterative solvers, we compare with the algebraic multi-
grid solver (Ruge-Stuben) from PyAMG (Bell et al., 2022).
For SciPy, we use the “spsolve” function, which defaults to
the COLAMD ordering and is backended by SuperLU (Li,
2005). While CUDA can be faster than SciPy, it is still on
the same order of magnitude and cannot achieve interactive
rates like ours. Our experiments are collected on an Nvidia
GPU A6000 Ada 48GB and an Intel CPU Xeon w9-3475X.

The speedup from our approach potentially can be much
more significant than what is reported in the paper. Com-
pared to standard solvers that is already highly optimized,
ours is naı̈vely prototyped in PyTorch—re-implementing our
algorithm as low-level operators or optimization at the hard-
ware level like CUDA solvers will result in further speed
increases. Additionally, direct solvers including ours enjoy

extra speedups in repetitive solves by reusing numerical
factorization—impossible for iterative solvers.

Comparison with iterative solvers. §F.2 extensively dis-
cusses why iterative solvers can be undesirable modules in
deep learning pipelines. Note that although we do compare
with iterative methods and demonstrate advantages, direct
methods remain our primary theoretical point of compar-
ison. Direct solvers are more reliable and robust, with a
predictable runtime; in contrast, iterative solvers have per-
formance that heavily depends on A, and in challenging
cases can significantly slow down or fail.

Table 3. The time of a single linear solve on a few 5132 problems,
solving to the relative tolerance of 10−6 for iterative solvers. No
iterative solvers out-of-the-box can perform well on all tasks. “(s)”:
CG, MINRES benefit from the symmetry assumption when it holds,
while other methods do not. “×k”: time for iterative solvers should
be multiplied by an extra factor of 2 ∼ 20+ in some applications,
since iterative solvers need to run 2 times to differentiate, and 20+
times in eigen solving, while direct solvers do the factorization
once and reuse it. “×2”: should be multiplied by an extra 2 due
to transposed solve to differentiate. “NaN”: the solver diverges
or fails to yield a small error. “*” indicates the method stops at a
larger tolerance since it adopts a different stopping criteria:
1: 1.19e-5, 2: 1.16e-4, 3: 2.6e-6, 4: 1.41e-4, 5: 2.11e-6, 6: 1.41e-4, 7: 2.84e-6.

Lap 1e-2 Lap 1e-4 Hel 1e-2 Hel 1.0 R-Decon
Ours-64 35.6 35.4 35.6 35.5 35.5
Ours-32 12.3 12.2 12.3 12.2 NaN

SciPy-LU 2208 2487 2333 2133 3145
CUDSS-LDU 1011 1029 1040 1020 1038

(s) CG 65.1 459 563 6442 NaN
(s) MINRES 97.3 1319 1595 (*3) 11156 (*5) NaN

LSMR 7288 426499 76928 80617 12282
LSQR 2896 (*1) 215758 (*2) 84442 (*4) 16158 (*6) 3290 (*7)

biCGstab 299 1898 NaN NaN NaN
CGS 58.3 922 NaN NaN NaN

DIOM 228 12716 1484 13221 NaN
FOM 1157 499930 61344 NaN NaN
QMR 70.8 570 463 6849 NaN
BILQ 86.5 634 635 6878 NaN

GMRES 954 31017 56478 4675551 NaN
DQ-GMRES 172 1029 1391 12885 NaN

F-GMRES 933 30793 56665 NaN NaN

×2

×k

}


We compare with out-of-the-box GPU linear solvers from
CuPy (Okuta et al., 2017) and Julia (Bezanson et al., 2017),
using the CUDA implementation in the Krylov.jl pack-
age (Montoison & Orban, 2023). We are primarily inter-
ested in indefinite and nonsymmetric square linear solvers
including: LSQR, LSMR, CGS, biCGstab, DIOM. FOM,
QMR, BILQ, GMRES, DQGMRES, and FGMRES, While
we also report results on CG and MINRES, please note that
the comparison may be slightly unfair: they benefit from the
symmetry assumption that other methods do not. As shown
in Table 3, out-of-the-box iterative solvers can slow down by

7

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

many orders of magnitude or fail to converge for harder prob-
lems. We test all methods on solving the Laplacian equation
A = L+λM, the Helmholtz equation A = L−κ2M under
different parameters, and random A—whose entries Aij are
i.i.d., uniformly drawn from [−1, 1]. The iterative solvers
are highly problem-dependent—changing the parameters
that generate the problem can slow down them significantly;
in contrast, our solver is problem-independent.

Anisotropic Laplacian. We solve Poisson equation with
random or constant right-hand sides, with an isotropic or
anisotropic kernel. As shown in Table 2, iterative solvers
can slow down significantly with anisotropic kernels, while
direct solvers are less affected. Table 2 reports the time to
solve Laplace equation with Dirichlet condition with either
the isotropic kernel K1, or the anisotropic K2 in Figure 9.
The number of iterations increases for anisotropic kernels
by a factor of 6×, with the same number of non-zeros (0s
in K1 are treated as non-zero entries with value 0.0).

Unlike general-purpose sparse solvers, we do not aim at a
solver with minimal floating-point operations or memory
consumption and reducing fill-in sparsity during the solving,
for very large-scale problems with billions of variables. In-
stead, we focus on runtime for common image sizes, such as
1024×1024 with around 1 million variables. As a limitation:
our method is more demanding in memory (see §D.4).

Parabolic PDEs and high-precision diffusion kernels.
The parabolic PDE du(x,t)

dt = ∆u(x, t) is solved by our
method. The standard practice to approximate u(x, t) is the
implicit Euler scheme that solves the system A← tL+M.
Heat geodesics is a situation in which the high precision
of direct solvers within a tolerance of 10−10 becomes
critical. Crane et al. (2017) approximate geodesic distance
from a point x0, using the solution under the initial condi-
tion u(x, 0) = δ(x − x0). The right-hand side is a delta
function that is nonzero only at one pixel. The solution
u(x, t), known as the heat kernel, is a Gaussian-like func-
tion centered at x0, with infinite support. Then geodesics
are recovered from log u(x, t)—logarithm is of direct inter-
ests. x has to be computed within a tolerance of 10−10 or
even 10−15 to produce non-negative heat kernel values to
apply the heat method (Crane et al., 2017). Requiring a tiny
tolerance makes iterative methods incompetent, while direct
solvers can be simply applied. Figure 8 shows the result of
our method. Our method (float-64) solves the system to an
error tolerance of 10−16, smaller than that of SciPy. Our
method can succeed under extreme numerics even when
SciPy fails, by decreasing the stepsize t→0.

4.1. A zero-shot baseline of efficient PDE solvers

Learned PDE solvers emerge in scientific tasks (Lu et al.,
2019; 2021; Raissi et al., 2019; Lagaris et al., 1998). In
addition to surrogate modeling (e.g., when the governing

PDEs are unknown and must be inferred from data), a major
advantage of learned solvers over conventional numerical
methods is speed: the former can be 3 orders-of-magnitude
faster, the main inspiration for our work. Surprisingly, we
demonstrate a zero-shot approach also capable of improving
runtime by only leveraging GPUs, without needing training.

A successful line of research achieves orders-of-magnitude
speedup in solving the PDE (2) which is also known as
a Darcy flow, by learning the coefficient-to-solution oper-
ator (Li et al., 2020; Wang et al., 2021; Li et al., 2024).
Our solver can implement FEM to realize the same opera-
tor, which becomes the mapping: c → x=A−1b where
A :=G⊺diag([c, c])G. We compare with the state-of-the-
art learning solver on the task of Darcy flows. We test on
1024 Darcy flow examples available with the Python pack-
age “neuraloperator” from Li et al. (2024) resampled from
4212 to 2572. Our method as a direct solver does not need
any training and solves the linear system within a tolerance
of 10−12 (float 64) on all examples. For our method the
relative “errors” are 0.869%± 0.0927%, smaller than that
of 1.56% in Li et al. (2024). Note that the “error” of our
method, i.e., differences between our result and the ground
truth, is due solely to the use of different numerical schemes.
Our method, if used as the simulation engine, is the ground
truth, achieving comparable “inference” speed without any
training. Ours at 2572 has a running time of 5− 7 ms, com-
parable with many neural architectures—Darcy flows take a
few milliseconds for some recent methods (Li et al., 2025).

The results suggest the suitability of our method as an effi-
cient solver-in-the-loop importable by existing architectures,
such as solution super-resolution (Ren et al., 2023). As
learning-based solvers increasingly import modules from
numerical PDEs, it is promising to generalize our involu-
tion to procedures with learnable parameters for data-driven
discretizations (Wang et al., 2019; Bar-Sinai et al., 2019).

5. Applications
Featured in Figure 1, due to the foundational role of the
linear solver, numerous applications immediately benefit
from our method, removing the need to design problem-
specific solvers. For A coming from different applications,
our solver consistently demonstrates speedup over other
direct solvers to a level similar to the case of solving PDEs
in §4. Examples of sparse A encompass:

Mathematical optimization. When A,b are the Hessian
and gradient, our solver implements the Newton’s method.
See §B.1 for detailed discussions and experiments. Despite
theoretical superiority, Newton’s method has very limited
applications in practice due to the expensive Hessian solves,
an obstacle that our orders-of-magnitude speedup removes.
Similar use cases include shape optimization and inverse
rendering (Nicolet et al., 2021).

8

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

The Laplacian paradigms for graph theory (Chung, 1997),
spectral clustering, manifold learning, image/geometry pro-
cessing, and vision have been extremely successful; see
Wang & Solomon (2019); Chen et al. (2021b) for a sur-
vey. Early examples include: Laplace equations in optical
flow (Horn & Schunck, 1981), semi-supervised learning
with harmonic label propagation (Zhu et al., 2003), Per-
ona–Malik model with anisotropic diffusion (Perona & Ma-
lik, 1990), and normalized cuts for segmentation (Shi &
Malik, 2000). These are examples where PDE or linear al-
gebraic solvers play a central role and ∆−1 or (t∆+I)−1≈
e−t∆, instead of the forward operator ∆, is of primary in-
terest. Sparse solvers play an even more prominent role in
geometry modeling, where almost every algorithm solves
some form of Laplacian systems (Solomon et al., 2014).

Image processing: matting, segmentation, and editing.
A can be a graph or matting Laplacian L that Lij encodes
the similarity between adjacent pixels. In this setting, L can
be viewed as discretizing an anisotropic Laplace equation.
Our solver L−1b can be used for spectral segmentation (Shi
& Malik, 2000): see §B.4. Often a constraint term is added
to the linear system A := L+λRR⊺, in image matting, and
Poisson image editing (Pérez et al., 2003). While the con-
straint term RR⊺ makes the problem’s difficulty unevenly
distributed across the image and a large λ makes the system
ill-conditioned, our method in double precision consistently
yields an error smaller than SciPy. See details in §B.3.

Diffeomorphic image registration. Diffeomorphisms, or
smooth bijective maps between image domains (Younes,
2010), are not only a central concept in differential man-
ifolds and geometry, but also foundational in image reg-
istration (Beg et al., 2005). Recent results in variational
quasi-harmonic maps (Wang et al., 2023) demonstrate that
the map x → (u(x), v(x)) is diffeomorphic if and only if
∇ · [C(x)∇u(x)] = 0 (resp. v(x)) for some C(x), with
appropriate boundary conditions. Intuitively, this condition
states that each pixel must be placed about some weighted
average of its neighbors’ positions, which is enforced by
a sparse linear system. To compute diffeomorphic image
registration in Figure 7, we use Wang et al. (2023), which
recursively solves anisotropic Laplacian systems. Replacing
their linear solver with ours as the backend again leads to
orders-of-magnitude speedups. Registering a pair of images
of size 1024×768 requires solving 150 sparse systems se-
quentially and takes 5 seconds with our solver, compared to
8 minutes in Wang et al. (2023) if using a SciPy backend.

Geometry algorithms. §4 shows how to reduce geometric
PDEs to anisotropic PDEs: evaluate L,M using a curved
surface’s metric, pushed back to the plane. §B.5 handles
non-disk topology with appropriate boundary conditions.

Generalized deconvolution. As shown in Figure 6, we
recover an image from its convolution with a spatially vary-

ing kernel in the form (1), which reduces to solving a linear
system (Hansen et al., 2006). To our knowledge, the only
algorithm applicable to this setting is to use linear solvers
(since solving PDE reduces to this problem). Our method
is again orders-of-magnitude faster than SciPy: on 2572

images, SciPy has an average runtime of 494.4ms, slowing
down compared to solving the Laplacian in Table 2, while
it takes 7.51ms for ours (float-64). As expected, PyAMG
fails for kernel a(x,y)2 since it is not symmetric.

(Differentiable) physics simulation. When A comes from
discretizing a physics-based energy, our method immedi-
ately accelerates the physical simulator. §B.2 shows an
example. Robot learning engines (Du et al., 2021; Hu
et al., 2019) and scientific machine learning (Sanchez-
Gonzalez et al., 2020) are increasingly relying on solver-
in-the-loop (Amos & Kolter, 2017) using CUDA sparse
solvers, which can be replaced with ours.

6. Conclusion and Future Work
It is observed that in many areas—from medical image anal-
ysis to learning for solving PDEs—traditional optimization-
based methods can be orders-of-magnitude slower com-
pared to deep learning. We identify that this is partially
because the implementation of conventional methods is not
specially tailored to a new setting of HPC (high performance
computing) on a single workstation, enabled by GPUs. In
interactive vision and graphics, considerable effort has been
devoted to designing numerical schemes that avoid direct
linear solvers, with the assumption that exact linear solvers
are too slow. Whether or not the computation time is within
tens of milliseconds makes an essential difference for the de-
ployability of algorithms in video conferencing, self-driving
cars, and virtual reality environment. For example, Bro-
Nielsen & Cotin (1996) note “speed is everything” in virtual
surgery. Our method eliminates the need for customizing
solvers, and revives methods that used to be slow due to
(repetitive) linear solvers in a straightforward manner. Our
method can serve as a strong baseline for learning-based
PDEs, or an efficient solver/simulator-in-the-loop in robot
learning or vision pipelines (Barron & Poole, 2016).

Due to the foundational role of sparse linear solvers, our
method can potentially impact a broad range of applica-
tions beyond what is presented. Many classical algorithms
can be viewed as one or more steps of the Schwarz–Schur
involution—solving a linear Laplacian-like system (Barron
& Poole, 2016; Pérez et al., 2003; Germer et al., 2020; Shi
& Malik, 2000). For future work, we plan to design neu-
ral architectures based on the SS-involution, generalizing
optimization-based Laplacian paradigms, and extend our
method to work with an arbitrary mesh/graph. Our exact
solver can be converted to an approximate solver by down-
sampling the DtN and integrated with iterative schemes.

9

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, Optimization, Computer Vision, and
Scientific Computing. We call attention to the fact that even
for a fundamental and well-studied task—solving linear sys-
tems, speedups of up to 1000× are still achievable, demon-
strating the potential for substantial performance gains by
developing novel methods like our solver to best leverage
hardware capacity. We suspect that perhaps the advances in
GPUs have been underutilized in terms of improving con-
ventional methods, with or without relying on deep learning.
Possible societal impacts of our work include improved en-
ergy efficiency and reduced carbon footprint: significantly
reducing computational time, methods like ours lower power
consumption and contribute to a more sustainable and envi-
ronmentally friendly computing landscape.

Acknowledgements
We thank Justin Solomon and Mike Taylor for insightful
discussions. We thank the anonymous reviewers, especially
for their comments on improving clarity, self-containment,
and accessibility to the broader ICML community. YB
is supported by a fellowship from the Royal Society
(NIF-R1-232460). Support for this research was provided in
part by the BRAIN Initiative Cell Atlas Network (BICAN)
grants U01MH117023 and UM1MH130981, the Brain
Initiative Brain Connects consortium (U01NS132181,
1UM1NS132358-01), the National Institute for Biomed-
ical Imaging and Bioengineering (1R01EB023281,
R21EB018907, R01EB019956, P41EB030006), the Na-
tional Institute on Aging (R21AG082082, 1R01AG064027,
R01AG016495, 1R01AG070988), the National Institute of
Mental Health (UM1MH130981, R01 MH123195, R01
MH121885, 1RF1MH123195), the National Institute for
Neurological Disorders and Stroke, (1U24NS135561-
01, R01NS070963, 2R01NS083534, R01NS105820,
R25NS125599), and was made possible by the resources
provided by Shared Instrumentation Grants 1S10RR023401,
1S10RR019307, and 1S10RR023043. Much of the
computation resources required for this research was
performed on computational hardware generously
provided by the Massachusetts Life Sciences Center
(https://www.masslifesciences.com/). In addition, BF is
an advisor to DeepHealth, a company whose medical
pursuits focus on medical imaging and measurement
technologies. BF’s interests were reviewed and are
managed by Massachusetts General Hospital and Partners
HealthCare in accordance with their conflict of interest
policies. Support for this research was provided in part by
the National Institute of Diabetes and Digestive and Kidney
Diseases (1-R21-DK-108277-01).

Algorithm 1 Schwarz–Schur Involution.
(Overall solve: numerical factorization + back substitution.)

Require: α(∗) ∈ R2k/2×2k/2×25×25

Require: β(∗) ∈ R2k/2×2k/2×25×1

Require: χ(k) ∈ R1×1×b×1 only for Dirichlet condition.
b := 2H + 2W − 4 is the number of boundary pixels.
The Schwarz forward step—Algorithm 2:

α(0),β(0) ← α(∗),β(∗)

for i in range(k/2): do
The Schur forward step (horizontal)—Algorithm 4:

α(2i+1),β(2i+1) ← α(2i),β(2i)

The Schur forward step (vertical):

α(2i+2),β(2i+2) ← α(2i+1),β(2i+1)

end for
if Dirichlet boundary condition then

χ(k) is given
χ(k) ← ...

else
either use the improved implementation of Dirichlet or
other non-disk topology boundary conditions (§C.2)

χ(k) ← ...

or the naı̈ve slow approach: χ(k) is solved by matrix
inversion using: α(k) ∈ R1×1×b×b, β(k) ∈ R1×1×b×1

χ(k) ← (α(k))−1β(k)

end if
for i in range(k/2, 0,−1) do

The Schur backward step (vertical):

χ(2i−1) ← χ(2i)

The Schur backward step (horizontal)—Algorithm 5:

χ(2i−1) ← χ(2i)

end for
The Schwarz backward step—Algorithm 3:

χ(∗) ← χ(0)

return χ(∗) of size (2k/2, 2k/2, 25, 25).

10

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

References
Allaire, G. Numerical analysis and optimization: an intro-

duction to mathematical modelling and numerical simu-
lation. OUP Oxford, 2007.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
conference on machine learning, pp. 136–145. PMLR,
2017.

Arisaka, S. and Li, Q. Principled acceleration of iterative
numerical methods using machine learning. In Interna-
tional Conference on Machine Learning, pp. 1041–1059.
PMLR, 2023.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.
Learning data-driven discretizations for partial differen-
tial equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

Barron, J. T. and Poole, B. The fast bilateral solver. In
European conference on computer vision, pp. 617–632.
Springer, 2016.

Bebendorf, M. Hierarchical matrices. Springer, 2008.

Beg, M. F., Miller, M. I., Trouvé, A., and Younes, L. Com-
puting large deformation metric mappings via geodesic
flows of diffeomorphisms. International journal of com-
puter vision, 61:139–157, 2005.

Bell, N., Olson, L. N., and Schroder, J. Pyamg: Algebraic
multigrid solvers in python. Journal of Open Source
Software, 7(72):4142, 2022.

Belongie, S., Fowlkes, C., Chung, F., and Malik, J. Spectral
partitioning with indefinite kernels using the nyström ex-
tension. In Computer Vision—ECCV 2002: 7th European
Conference on Computer Vision Copenhagen, Denmark,
May 28–31, 2002 Proceedings, Part III 7, pp. 531–542.
Springer, 2002.

Berens, P., Cranmer, K., Lawrence, N. D., von Luxburg, U.,
and Montgomery, J. Ai for science: an emerging agenda.
arXiv preprint arXiv:2303.04217, 2023.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.
Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

Blahut, R. E. Fast algorithms for signal processing. Cam-
bridge University Press, 2010.

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. Sparse
matrix solvers on the gpu: conjugate gradients and multi-
grid. ACM transactions on graphics (TOG), 22(3):917–
924, 2003.

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M.
Projective dynamics: Fusing constraint projections for
fast simulation. Acm Transactions On Graphics, 33(4):
154, 2014.

Bramble, J. H. Multigrid Methods, volume 294. CRC Press,
1993.

Bro-Nielsen, M. and Cotin, S. Real-time volumetric de-
formable models for surgery simulation using finite ele-
ments and condensation. In Computer graphics forum,
volume 15, pp. 57–66. Wiley Online Library, 1996.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Chen, J., Schäfer, F., Huang, J., and Desbrun, M. Multi-
scale cholesky preconditioning for ill-conditioned prob-
lems. ACM Transactions on Graphics (TOG), 40(4):1–13,
2021a.

Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam,
S. Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate. ACM Transactions
on Mathematical Software (TOMS), 35(3):1–14, 2008.

Chen, Y., Chi, Y., Fan, J., Ma, C., et al. Spectral methods for
data science: A statistical perspective. Foundations and
Trends® in Machine Learning, 14(5):566–806, 2021b.

Chung, F. R. Spectral graph theory, volume 92. American
Mathematical Soc., 1997.

Cook, S. On the minimum computation time for multipli-
cation. Doctoral diss., Harvard U., Cambridge, Mass, 1,
1966.

Crane, K., Weischedel, C., and Wardetzky, M. The heat
method for distance computation. Communications of the
ACM, 60(11):90–99, 2017.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

Davis, T. A. Algorithm 832: Umfpack v4. 3—an
unsymmetric-pattern multifrontal method. ACM Transac-
tions on Mathematical Software (TOMS), 30(2):196–199,
2004.

Davis, T. A. Direct methods for sparse linear systems.
SIAM, 2006.

11

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Dongarra, J., Duff, I., Gates, M., Haidar, A., Hammarling,
S., Higham, N. J., Hogg, J., Lara, P. V., Luszczek, P.,
Zounon, M., et al. Batched blas (basic linear algebra
subprograms) 2018 specification. Technical report, Uni-
versity of Tennessee, 2018.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson,
R. J. An extended set of fortran basic linear algebra sub-
programs. ACM Trans. Math. Softw., 14(1):1–17, 1988.

Du, T., Wu, K., Ma, P., Wah, S., Spielberg, A., Rus, D., and
Matusik, W. Diffpd: Differentiable projective dynamics.
ACM Transactions on Graphics (TOG), 41(2):1–21, 2021.

Duff, I. S. and Reid, J. K. The multifrontal solution of
indefinite sparse symmetric linear. ACM Transactions on
Mathematical Software (TOMS), 9(3):302–325, 1983.

Duff, I. S., Erisman, A. M., and Reid, J. K. Direct methods
for sparse matrices. Oxford University Press, 2017.

Ernst, O. G. and Gander, M. J. Why it is difficult to solve
helmholtz problems with classical iterative methods. Nu-
merical analysis of multiscale problems, pp. 325–363,
2011.

Farhat, C. and Roux, F.-X. A method of finite element
tearing and interconnecting and its parallel solution al-
gorithm. International journal for numerical methods in
engineering, 32(6):1205–1227, 1991.

Farhat, C. and Wilson, E. A new finite element concurrent
computer program architecture. International Journal for
Numerical Methods in Engineering, 24(9):1771–1792,
1987.

Farhat, C., Wilson, E., and Powell, G. Solution of finite
element systems on concurrent processing computers.
Engineering with Computers, 2:157–165, 1987.

Fletcher, R. Conjugate gradient methods for indefinite
system. Springer-Verlag Berlin. Heidelberg. New York,
pp. 73, 1976.

Fong, D. C.-L. and Saunders, M. Lsmr: An iterative algo-
rithm for sparse least-squares problems. SIAM Journal
on Scientific Computing, 33(5):2950–2971, 2011.

Freund, R. W. and Nachtigal, N. M. Qmr: a quasi-minimal
residual method for non-hermitian linear systems. Nu-
merische mathematik, 60(1):315–339, 1991.

Freund, R. W. and Nachtigal, N. M. An implementation of
the qmr method based on coupled two-term recurrences.
SIAM Journal on Scientific Computing, 15(2):313–337,
1994.

Frigo, M. and Johnson, S. G. The design and implementa-
tion of fftw3. Proceedings of the IEEE, 93(2):216–231,
2005.

George, A. Nested dissection of a regular finite element
mesh. SIAM journal on numerical analysis, 10(2):345–
363, 1973.

Germer, T., Uelwer, T., Conrad, S., and Harmeling, S. Py-
matting: A python library for alpha matting. Journal of
Open Source Software, 5:2481, 2020.

Gilbarg, D., Trudinger, N. S., Gilbarg, D., and Trudinger,
N. Elliptic partial differential equations of second order,
volume 224. Springer, 1977.

Grady, L., Schiwietz, T., Aharon, S., and Westermann, R.
Random walks for interactive alpha-matting. In Proceed-
ings of VIIP, volume 2005, pp. 423–429. Citeseer, 2005.

Grementieri, L. and Galeone, P. Towards neural sparse
linear solvers. arXiv preprint arXiv:2203.06944, 2022.

Guennebaud, G., Jacob, B., et al. Eigen: a c++ linear algebra
library. URL http://eigen. tuxfamily. org, Accessed, 22,
2014.

Hansen, P. C., Nagy, J. G., and O’leary, D. P. Deblurring
images: matrices, spectra, and filtering. SIAM, 2006.

He, K., Sun, J., and Tang, X. Fast matting using large
kernel matting laplacian matrices. In 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pp. 2165–2172. IEEE, 2010.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate gra-
dients for solving linear systems. Journal of research of
the National Bureau of Standards, 49(6):409–436, 1952.

Horn, B. K. and Schunck, B. G. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981.

Horvath, C. and Geiger, W. Directable, high-resolution
simulation of fire on the gpu. ACM Transactions on
Graphics (TOG), 28(3):1–8, 2009.

Hovland, P. and Hückelheim, J. Differentiating through
linear solvers. arXiv preprint arXiv:2404.17039, 2024.

Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-
Kelley, J., and Durand, F. Difftaichi: Differentiable
programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019.

Jeschke, S., Cline, D., and Wonka, P. A gpu laplacian solver
for diffusion curves and poisson image editing. ACM
Transactions on Graphics, 28(5):1–8, 2009.

12

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Krishnan, D., Fattal, R., and Szeliski, R. Efficient precondi-
tioning of laplacian matrices for computer graphics. ACM
transactions on Graphics (tOG), 32(4):1–15, 2013.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial neu-
ral networks for solving ordinary and partial differential
equations. IEEE transactions on neural networks, 9(5):
987–1000, 1998.

Lavin, A. and Gray, S. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4013–
4021, 2016.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

Levin, A., Lischinski, D., and Weiss, Y. A closed-form
solution to natural image matting. IEEE transactions
on pattern analysis and machine intelligence, 30(2):228–
242, 2007.

Levitin, M., Mangoubi, D., and Polterovich, I. Topics in
spectral geometry, volume 237. American Mathematical
Society, 2023.

Li, H., Miao, Y., Khodaei, Z. S., and Aliabadi, M. An
architectural analysis of deeponet and a general exten-
sion of the physics-informed deeponet model on solving
nonlinear parametric partial differential equations. Neu-
rocomputing, 611:128675, 2025.

Li, M., Lian, X.-C., Kwok, J. T., and Lu, B.-L. Time and
space efficient spectral clustering via column sampling.
In CVPR 2011, pp. 2297–2304. IEEE, 2011.

Li, X. S. An overview of superlu: Algorithms, implementa-
tion, and user interface. ACM Transactions on Mathemat-
ical Software (TOMS), 31(3):302–325, 2005.

Li, Y., Chen, P. Y., Du, T., and Matusik, W. Learning
preconditioners for conjugate gradient pde solvers. In In-
ternational Conference on Machine Learning, pp. 19425–
19439. PMLR, 2023.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. ACM/JMS Journal of Data Science, 1(3):1–27,
2024.

Litany, O., Remez, T., Rodola, E., Bronstein, A., and Bron-
stein, M. Deep functional maps: Structured prediction
for dense shape correspondence. In Proceedings of the
IEEE international conference on computer vision, pp.
5659–5667, 2017.

Liu, H., Mitchell, N., Aanjaneya, M., and Sifakis, E. A
scalable schur-complement fluids solver for heteroge-
neous compute platforms. ACM Transactions on Graph-
ics (TOG), 35(6):1–12, 2016.

Liu, Y. and Roosta, F. Minres: from negative curvature
detection to monotonicity properties. SIAM Journal on
Optimization, 32(4):2636–2661, 2022.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Montoison, A. and Orban, D. Bilq: An iterative method
for nonsymmetric linear systems with a quasi-minimum
error property. SIAM Journal on Matrix Analysis and
Applications, 41(3):1145–1166, 2020.

Montoison, A. and Orban, D. Krylov. jl: A julia basket of
hand-picked krylov methods. Journal of Open Source
Software, 8(89):5187, 2023.

Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. Spectral
conformal parameterization. In Computer Graphics Fo-
rum, volume 27, pp. 1487–1494. Wiley Online Library,
2008.

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., De-
mouth, J., Eaton, J., Layton, S., Markovskiy, N., Reguly,
I., Sakharnykh, N., et al. Amgx: A library for gpu ac-
celerated algebraic multigrid and preconditioned iterative
methods. SIAM Journal on Scientific Computing, 37(5):
S602–S626, 2015.

Négiar, G., Mahoney, M. W., and Krishnapriyan, A. S.
Learning differentiable solvers for systems with hard con-
straints. In ICLR, 2023.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable
parallel programming with cuda: Is cuda the parallel pro-
gramming model that application developers have been
waiting for? Queue, 6(2):40–53, 2008.

Nicolet, B., Jacobson, A., and Jakob, W. Large steps in
inverse rendering of geometry. ACM Transactions on
Graphics (TOG), 40(6):1–13, 2021.

13

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Okuta, R., Unno, Y., Nishino, D., Hido, S., and Loomis, C.
Cupy: A numpy-compatible library for nvidia gpu calcu-
lations. In Proceedings of workshop on machine learning
systems (LearningSys) in the thirty-first annual confer-
ence on neural information processing systems (NIPS),
volume 6, 2017.

Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A.,
and Guibas, L. Functional maps: a flexible representation
of maps between shapes. ACM Transactions on Graphics
(ToG), 31(4):1–11, 2012.

Paige, C. C. and Saunders, M. A. Solution of sparse in-
definite systems of linear equations. SIAM journal on
numerical analysis, 12(4):617–629, 1975.

Paige, C. C. and Saunders, M. A. Algorithm 583: Lsqr:
Sparse linear equations and least squares problems. ACM
Transactions on Mathematical Software (TOMS), 8(2):
195–209, 1982a.

Paige, C. C. and Saunders, M. A. Lsqr: An algorithm for
sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software (TOMS), 8(1):
43–71, 1982b.

Pérez, P., Gangnet, M., and Blake, A. Poisson image editing.
ACM Transactions on Graphics, 22(3):313–318, 2003.

Perona, P. and Malik, J. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on pattern
analysis and machine intelligence, 12(7):629–639, 1990.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International conference on learning repre-
sentations, 2020.

Praun, E. and Hoppe, H. Spherical parametrization and
remeshing. ACM transactions on graphics (TOG), 22(3):
340–349, 2003.

Quarteroni, A. and Valli, A. Domain decomposition methods
for partial differential equations. Oxford University Press,
1999.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rakowsky, N. The schur complement method as a fast par-
allel solver for elliptic partial differential equations in
oceanography. Numerical linear algebra with applica-
tions, 6(6):497–510, 1999.

Ren, P., Rao, C., Liu, Y., Ma, Z., Wang, Q., Wang, J.-
X., and Sun, H. Physr: Physics-informed deep super-
resolution for spatiotemporal data. Journal of Computa-
tional Physics, 492:112438, 2023.

Reuter, M., Wolter, F.-E., and Peinecke, N. Laplace–
beltrami spectra as ‘shape-dna’of surfaces and solids.
Computer-Aided Design, 38(4):342–366, 2006.

Saad, Y. Krylov subspace methods for solving large unsym-
metric linear systems. Mathematics of computation, 37
(155):105–126, 1981.

Saad, Y. Practical use of some krylov subspace methods
for solving indefinite and nonsymmetric linear systems.
SIAM journal on scientific and statistical computing, 5
(1):203–228, 1984.

Saad, Y. A flexible inner-outer preconditioned gmres al-
gorithm. SIAM Journal on Scientific Computing, 14(2):
461–469, 1993.

Saad, Y. and Schultz, M. H. Gmres: A generalized mini-
mal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on scientific and statistical com-
puting, 7(3):856–869, 1986.

Saad, Y. and Wu, K. Dqgmres: A direct quasi-minimal
residual algorithm based on incomplete orthogonalization.
Numerical linear algebra with applications, 3(4):329–
343, 1996.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate
complex physics with graph networks. In International
conference on machine learning, pp. 8459–8468. PMLR,
2020.

Schenk, O. and Gärtner, K. Solving unsymmetric sparse sys-
tems of linear equations with pardiso. Future Generation
Computer Systems, 20(3):475–487, 2004.

Sezan, M. I. and Tekalp, A. M. Survey of recent develop-
ments in digital image restoration. Optical Engineering,
29(5):393–404, 1990.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on pattern analysis and machine
intelligence, 22(8):888–905, 2000.

Sleijpen, G. L. and Fokkema, D. R. Bicgstab (l) for linear
equations involving unsymmetric matrices with complex
spectrum. Electronic Transactions on Numerical Analysis,
1(11):2000, 1993.

Solomon, J. Numerical algorithms: methods for computer
vision, machine learning, and graphics. CRC press, 2015.

14

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Solomon, J., Crane, K., and Vouga, E. Laplace-beltrami:
The swiss army knife of geometry processing. In Sympo-
sium on Geometry Processing Graduate School (Cardiff,
UK, 2014), volume 2, 2014.

Sonneveld, P. Cgs, a fast lanczos-type solver for nonsym-
metric linear systems. SIAM journal on scientific and
statistical computing, 10(1):36–52, 1989.

Strassen, V. Gaussian elimination is not optimal. Nu-
merische mathematik, 13(4):354–356, 1969.

Trefethen, L. N. and Bau, III, D. Numerical linear algebra,
1997.

Van der Vorst, H. A. Bi-cgstab: A fast and smoothly con-
verging variant of bi-cg for the solution of nonsymmetric
linear systems. SIAM Journal on scientific and Statistical
Computing, 13(2):631–644, 1992.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature
methods, 17(3):261–272, 2020.

Vladymyrov, M. and Carreira-Perpinan, M. The variational
nystrom method for large-scale spectral problems. In
International Conference on Machine Learning, pp. 211–
220. PMLR, 2016.

Vladymyrov, M., Von Oswald, J., Miller, N. A., and Sandler,
M. Efficient linear system solver with transformers. In
AI for Math Workshop@ ICML, 2024.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed deeponets. Science advances, 7(40):
eabi8605, 2021.

Wang, Y. and Solomon, J. Intrinsic and extrinsic operators
for shape analysis. In Handbook of numerical analysis,
volume 20, pp. 41–115. Elsevier, 2019.

Wang, Y. and Solomon, J. Fast quasi-harmonic weights
for geometric data interpolation. ACM Transactions on
Graphics (TOG), 40(4):1–15, 2021.

Wang, Y., Ben-Chen, M., Polterovich, I., and Solomon,
J. Steklov spectral geometry for extrinsic shape analysis.
ACM Transactions on Graphics (TOG), 38(1):1–21, 2018.

Wang, Y., Kim, V., Bronstein, M., and Solomon, J. Learning
geometric operators on meshes. In Representation Learn-
ing on Graphs and Manifolds 2019 (ICLR workshop),
2019.

Wang, Y., Guo, M., and Solomon, J. Variational quasi-
harmonic maps for computing diffeomorphisms. ACM
Transactions on Graphics (TOG), 42(4):1–26, 2023.

Winograd, S. Arithmetic complexity of computations, vol-
ume 33. Siam, 1980.

Yi, L., Su, H., Guo, X., and Guibas, L. J. Syncspeccnn:
Synchronized spectral cnn for 3d shape segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2282–2290, 2017.

Younes, L. Shapes and diffeomorphisms, volume 171.
Springer, 2010.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International con-
ference on Machine learning (ICML-03), pp. 912–919,
2003.

15

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Table of Contents

1 Introduction 1

1.1 Related Work 2

2 Mathematical Preliminaries 2

3 Schur Involution for Parallel Elimination 3

3.1 A motivating example: sparse solvers too
slow? . 4

3.2 Parallel block Gaussian elimination 4

3.2.1 Schwarz step: decompose & initial-
ize DtN 4

3.2.2 Schur step: merge adjacent DtNs . . 5

3.2.3 General cases 5

3.3 Discussion 6

4 Results and Validations 7

4.1 A zero-shot baseline of efficient PDE solvers 8

5 Applications 8

6 Conclusion and Future Work 9

A Extended Discussions on Related Work 17

B Visualization, Applications, and Experiments 17

B.1 Newton’s method and interactive graphics . 18

B.2 Physical simulation and shape optimization 19

B.3 Image matting and segmentation 20

B.4 Fast eigen solver for spectral segmentation . 20

B.5 PDEs on domains with a non-disk topology 21

B.6 Timing details 21

B.7 Numerical stability 22

B.8 Complexity analysis 23

C Method: Extended Discussions 24

C.1 Dirichlet-to-Neumann factorization 24

C.2 Solvers for Neumann boundary condition . 24

C.2.1 Solution 1 24

C.2.2 Solution 2 25

C.2.3 Solution 3 25

C.3 Differentiable linear solvers and derivatives 25

C.4 Two settings in linear solvers 26

C.5 Involution: exact inverse convolution
(spatially varying kernel) 26

C.6 Inverse problems, optimal control of PDEs,
and PDE-constrained optimization 27

C.7 Generalize to larger kernels 27

D Discussions and Implementation Details 27

D.1 Details on the algorithm 27

D.2 Distributed representations of sparse systems 27

D.3 Details on experiment setups 27

D.4 Memory complexity 27

D.5 Midpoint reflective boundary condition . . 28

E Detailed Method Description with Necessary
Background Information 29

E.1 Case study: two subdomains 29

E.2 Parallel Schwarz elimination step 34

E.3 Details on Schur step 35

E.4 Final algorithm 37

E.5 Graph algorithm perspective 40

E.6 Illustration on a 3x7 image 41

F Extra Information 44

F.1 Details on FEM and PDE discretization: ad-
dibility of parallel linear elements 44

F.2 Issues with incorporating iterative solvers
in deep learning 44

F.3 Differentiable sparse solvers: widely de-
sired, yet absent 46

16

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

A. Extended Discussions on Related Work
We focus on direct solvers—exact solutions that are com-
puted up to numerical errors accumulated due to machine
precisions, rather than iterative ones that only yield approxi-
mate solutions under a given error bound. The performance
of direct solvers is more stable, whereas iterative solvers can
greatly slow down for difficult A and may fail to converge
if used without care. In contrast to direct solvers, itera-
tive methods such as multigrid solvers only yield solutions
within a prescribed error tolerance. Even so, they are still
much slower than ours in scenarios that they are specifi-
cally designed for, and many orders of magnitude slower on
challenging examples. Direct solvers are praised for their
robustness and reliability, while being much slower. We im-
plement a direct solver to achieve both accuracy/reliability
and speed, combining the best of both worlds.

Despite a well-studied problem, general-purpose sparse di-
rect solvers, introduced decades ago and having remained
stable since, are not specifically designed for today’s vi-
sion and learning applications. We focus on problems that
fit on a single GPU, that nonetheless encompass common
image sizes, avoiding considerations in cross-device com-
munication that arise in larger scale problems in scientific
computing. In addition, advances in GPUs sparked by deep
learning shift the best practice towards algorithms exploit-
ing parallelisms and that modern GPU BLAS kernels are
extremely good at solving a large number of small problems.
We observe that the high throughput offered by modern
GPUs has been under-exploited in direct sparse solvers at
the common scale of problems in vision.

Sparse linear solvers in vision & graphics. In computer
vision and graphics, previous developments have focused
on iterative solvers, and we are not aware of a prior effort to
design direct solvers for Laplacian-like systems—a missing
setting we address. A major component of contributions in
optimization-based methods is to develop problem-specific
iterative solvers. Our approach can bypass the need for
iterative schemes in many tasks.

Hierarchical approaches or multigrid methods are popular
especially when A arises from elliptic PDEs (Allaire, 2007).
However, in situations where the solution is non-smooth,
such as the Helmholtz equation, common preconditioned it-
erative solvers can work very poorly (Ernst & Gander, 2011).
Incomplete LU factorizations are another family of precon-
ditioning schemes. For positive semi-definite systems, in-
complete Cholesky factorization can be applied (Chen et al.,
2021a). Depending on the properties of A, popular choices
of iterative methods include Jacobi methods, Gauss–Seidel,
Krylov subspace including (preconditioned) conjugate gradi-
ents (PCG) for positive-definite A, and generalized minimal
residual (GMRES) for un-symmetric A (Solomon, 2015).

Bolz et al. (2003) pioneer the application of GPUs to accel-
erate iterative solvers for computer graphics applications.
Barron & Poole (2016) apply preconditioned conjugate gra-
dients for fast bilateral filtering; their solvers operate in a
lower dimensional bilateral space, unlike our method which
aims for pixel-space solvers. Krishnan et al. (2013) use a
Schur complement formula to construct a Laplacian precon-
ditioning scheme. For very small-scale problems, it is well-
known that dense direct solvers can be faster (Bro-Nielsen
& Cotin, 1996). Problem-specific iterative solvers have been
designed for image processing (Jeschke et al., 2009), physi-
cal simulation (Horvath & Geiger, 2009; Liu et al., 2016),
and geometry processing (Krishnan et al., 2013). Direct
solvers such as CHOLMOD have been used in differen-
tiable rendering and inverse geometry design (Nicolet et al.,
2021).

Li et al. (2023) apply a preconditioner learned from data, and
Arisaka & Li (2023) develop learning-based acceleration of
iterative methods under a meta-learning framework.

Domain decomposition. Our approach conceptually fol-
lows the divide-and-conquer strategy, dating back to the cel-
ebrated Schwarz alternating method in domain decomposi-
tion (Quarteroni & Valli, 1999). The Dirichlet-to-Neumann
(DtN) operator is a standard object used to “glue” solutions
between subdomains (Quarteroni & Valli, 1999). Typically,
it is implicitly maintained through its matrix-vector prod-
uct, realized by solving sparse systems on subdomains (Liu
et al., 2016). In contrast, we make a different design choice
to explicitly maintain the discrete DtNs as dense matrices.

Sparse solvers: missing in differentiable programming.
Differentiable sparse linear or eigen solvers have been as
popular requested feature in deep learning packages: please
refer to §F.3 for a list of examples of community requests
and discussions on sparse linear or eigen solvers. In a related
but different effort, recent works (Grementieri & Galeone,
2022; Négiar et al., 2023; Vladymyrov et al., 2024) learn to
solve linear systems, for which our method can serve as a
strong baseline or an efficient training engine. Our analysis
and discussion of FEM in §2 suggest that the learning-based
PDE solvers and learning-based linear solvers are in fact
attacking the same underlying problem—yet they are cur-
rently studied as separate fields with little cross-referencing.

B. Visualization, Applications, and
Experiments

Note that our goal in this section is not to compete on ev-
ery task with state-of-the-arts, but to pick classic methods
already requiring a solution to some Laplacian-like systems,
collecting sparse matrices A covering a broad array of cases
to test our methods with. Details on the timing are provided
in §B.6.

17

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Input b1:
convolved image.

Recovered image:
x1 = A−1

1 b1.
Input b2:
convolved image.

Recovered image:
x2 = A−1

2 b2.

Figure 6. Our solver is applied to image deconvolution with A.
We test with two cases of spatially varying kernels: a

(x,y)
1 =

sin(8πx)2K1 + y3K2, K1,K2 ∈ R3×3; a
(x,y)
2 is randomly

drawn at (x, y). where K1,K2 are defined in Figure 9.

(a) Moving image. (b) Target image. (c) Moved (ours).

Figure 7. For computing diffeomorphisms and image registration,
previous optimization-based methods can take a few minutes on
high-res images. Switching the backend to our solver immediately
reduces the runtime to a few seconds.

B.1. Newton’s method and interactive graphics

As an immediate benefit, our fast solver potentially unlocks
the capacity of Newton’s method (Nocedal & Wright, 1999)
relying on Hessian solves for applications in interactive
physics, computer vision, and graphics.

When A = H is the Hessian and b = g is the gradient of
some energy of a function on the image domain, the solution

The kernel on a smooth surface. The kernel on a noise surface.

Figure 8. Our solver accelerates by orders of magnitude the com-
putation of geodesic distances. The heat kernel computed by our
method is shown (in log scale). This is a task where iterative meth-
ods struggle: often the kernel solution must be within a tolerance
of 10−10 for accurate geodesic distances (Crane et al., 2017).

K1 :0.0 −1 0.0
−1 4 −1
0.0 −1 0.0



K2 :−0.25 −0.5 0.25
−0.5 2 −0.5
0.25 −0.5 −0.25



Kernel a(x,y) ∈ R3×3 x from b = 1 x from random b

Figure 9. Our solutions to isotropic and anisotropic Poisson. For
fair comparison, 0s in K1 are treated as non-zero entries with
value 0.0 in all solvers.

H−1g yields the descent direction in Newton’s method. It is
very common that H and g come from an energy in which
pixels interact locally with their neighbors, rather than all
other pixels in the image. In this setting, the Hessian H
has the same sparsity as the Laplacian matrix to apply our
method; in fact, for some physics-based energy, H equals
exactly to an anisotropic Laplacian, H ← L. In this case,
the sparse linear solver is the sole bottleneck in applying
Newton’s method: constructing entries in H,g involves
only per-element/pixel computation, which can happen in
parallel.

400× faster Hessian solvers for minimal surfaces. As an
application, in Figure 11, we apply our solver to Newton’s
method to compute the surface that minimizes the area with
a fixed boundary—the minimal surface problem. The sur-
face is parameterized as a height field z = u(x, y), and the
goal is to find the one minimizing the total area, which is a
nonlinear objective. Minimal surface area can be used as a

18

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Coefficients c:
A←G⊺diag(c,c)G

Solution x:
x = A−1b

Difference with the
“ground truth”

Figure 10. Our solvers realize the FEM coefficient-to-solution
map.

Figure 11. The minimal surface problem searches for the surface
whose area is minimized under a prescribed boundary, having been
a prior in, e.g., shape completion. The minimal surface computed
by Newton’s method, which is accelerated by 400× with our
Hessian solver compared to the SciPy backend.

prior in shape completion. Newton’s method sequentially
solves H−1g. Thanks to the second-order convergence,
using Newton’s method with our solver as the backend, it
converges within 20 iterations, while gradient descent using
L-BFGS takes more than 1000 iterations to get to the same
accuracy. Replacing SciPy in Newton’s method with our
solver immediately yields a speedup of 400×.

Newton solver made efficient. Despite superiority in the
convergence rate, we find that Newton’s method has very
limited applications in computer vision. Perhaps it is par-
tially because of the expensive Hessian solves, a barrier that
our method removes.

This phenomenon is even more prominent in interactive
computer graphics. In the seminal work Projective Dynam-

ics (PD) (Bouaziz et al., 2014), as the central assumption
when it comes to fast simulators, it is made explicit that
Newton’s method requires orders-of-magnitude fewer itera-
tions while solving the Hessian in each iteration is expensive,
making it less competitive.

The assumption that linear solve is expensive necessitates
the development of alternative methods. A common pattern
of the alternative fast methods is to reuse the factorization
of the Laplacian matrix and run tens of thousands of such
cheaper iterations, while Newton’s method can converge in
tens of iterations. This assumption also governs the best
practice in differentiable simulation, e.g., in robot learn-
ing (Du et al., 2021).

Our method challenges this long-standing assumption, po-
tentially unlocks the capacity of Newton’s method, and eases
the design of efficient algorithms.

B.2. Physical simulation and shape optimization

restpose

Figure 12. Some shape deformation produced by our method.

Physical simulation already can benefit from our method:
Laplace equation governs physical phenomena in electro-
magnetism, gravity, heat diffusion, fluid dynamics, and
shape deformation. Incorporating the coefficients C(x)
allows pushing forward the PDEs in some irregular geo-
metric domain onto a canonical domain, and accounts for
the distortion induced by the geometric mapping—like how
we compute distances on surfaces in §4. In addition, a
straightforward way to utilize our solver is to write down
some quadratic objective whose minimizer yields a linear
system solve. The quadratic objective may come from the
linearization of some nonlinear energy, such as the Hes-
sian. Our solver currently only supports one variable per
pixel; we plan to generalize it to multiple variables per pixel,
e.g., two variables can represent the x, y coordinates of a
deformation. This can be done by generalizing the “DtN
matrix” to be twice as large and viewing our method sim-
ply as a block Gaussian elimination. Instead, we present
a simple trick to directly leverage our current solver in the
setting of two variables per pixel. We put both the x-,y-
components in a complex number uz = ux + iuy. For in-
stance, we can squeeze the 2n × 2n block matrix arising
in a conformal deformation energy (Mullen et al., 2008)

19

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

into a single n× n complex-valued Hermitian matrix that
A = conj(A⊺). Without modifying the code, our solver
applies to complex-valued linear systems. Figure 12 shows
the deformation obtained in this way.

B.3. Image matting and segmentation

In image matting (Grady et al., 2005; He et al., 2010; Levin
et al., 2007), the matrix A encodes both an affinity matrix L,
a Laplacian with values decided by pixels’ color, and a soft
constraint term. It typically minimizes for an alpha function
x that is smooth as measured by L, and constrained to be 0 or
1 (stored in k) in the foreground or background, respectively.
R is a binary matrix selecting those constrained pixels.

x⊺Lx+ λ∥R⊺x− k∥2+constant (14)

In this case, A := L + λRR⊺,b := λRk. Most of the
change in x is restricted to the band between two layers
of the user-provided masks (often called the trimap). We
validate using the linear system obtained by PyMatting on
the examples shown in Figure 13. We use the image matting
framework PyMatting (Germer et al., 2020) and its imple-
mentation of the random walk Laplacian (Grady et al., 2005)
with a small 3 × 3 stencil as L. The error of our method
in double precision is on the scale of 10−16, and is slightly
smaller than SciPy in every image.

We choose to test it with our method for a particular reason:
the difficulty of solving concentrates at the band, not evenly
distributed across the image. The problem can be converted
to an easy task for geometry-aware PDEs if solving only
within the band region with Dirichlet condition at known
pixels. But (14) represents a common way to incorporate
the constraint softly: add a penalty term weighted by a very
large coefficient λ. It makes some entries Aij at constrained
pixels very large compared to unconstrained pixels. Uncare-
ful direct solvers potentially follow a numerically unstable
order when performing Gaussian elimination.

A purpose of this validation is to emphasize that viewed
as a Gaussian elimination, our method cancels variables
in an order that is dependent on the entries in A, avoiding
many numerical issues. A common misperception of our
method is that it performs a Gaussian elimination that is
blind to data A. This is not the case. Our method does
prescribes some block structures, which are independent
of A. However, within each block, the canceling order
of nodes are still permuted, leading to robust numerical
behaviors. This is a critical detail hidden in how to compute
matrix inversions—we use “torch.linalg.inv” function which
is backended by cuBLAS. Thus, when inverting a batch of
dense matrices, it performs careful numerical schemes on
each matrix individually to avoid usual pitfalls in numerical
operations.

Input→ L Trimap→ R,k Alpha← our x Our output

Figure 13. The input image is used to generate an affinity matrix
A, the trimap for A,b, and the output alpha is x = A−1b.

B.4. Fast eigen solver for spectral segmentation

Often it is the low-frequency components of the Lapla-
cian that are relevant for practical applications, rather than
the high-frequency ones: x ← A−1x magnifies the low-
frequency components while x ← Ax does the opposite.
This observation makes our method relevant for many vision
tasks.

In many applications, matrix A comes from pixel values
and can be considered as a surrogate representation of an
image, but it is not clear what constitutes a relevant b. Then,
the eigenvalue problem Ax = λx becomes the right com-
putational model to extract information from A.

The design of fast eigen solvers can be reduced to that of
linear solvers, immediately benefiting from our method.
Instead of designing a standalone hierarchical eigen solver,
our fast linear solver can be used as the inverse iteration in
implementing a fast eigen solver. Our linear solver can serve
as the atomic linear operator x← A−1x for iterative eigen
solvers. For example, our solver can immediately speed
up the spectral image segmentation method, normalized
cuts (Shi & Malik, 2000). In this case, we choose the matrix
A as (I − L̂), where L is the matting Laplacian with the
3× 3 kernel in §B.3 that becomes L̂ after having its rows

20

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

and columns normalized, following Shi & Malik (2000).

Figure 14. Our linear solver, when being used to realize the in-
verse iteration in iterative eigen solvers, is immediately transferred
into an orders-of-magnitude faster eigen solver—455× faster than
MATLAB’s sparse eigen solver for 513× 513 images, with appli-
cations to spectral image segmentation (Shi & Malik, 2000). The
top 5 eigenfunctions of the astronaut, cameraman, coffee, pepper,
and lemur images, computed by 20 calls to A−1x, are shown.

For examples shown in Figure 14, we found iterative eigen
solvers require only 13 ∼ 20 calls to A−1x, to compute
the top 6 eigenvectors within the tolerance of 10−3 ∼ 10−2.
For an image of size 5132, it takes 25 seconds to solve
the top-6 eigenvalue problem for MATLAB, on which the
code of Shi & Malik (2000) relies, while it takes as short
as 55 milliseconds for our method, yielding an acceleration
of 455×. Our method is many orders of magnitude faster
compared to the Nyström methods that only approximate the
spectrum (Vladymyrov & Carreira-Perpinan, 2016; Li et al.,
2011; Belongie et al., 2002). For our method, the eigenvalue
problem requires 1 step of numerical factorization (11 ms
for our method), and tens of the back substitution steps.

Recall that the back substitution can be much faster than the
numerical factorization since it skips calculating any new
left-hand sides. Thus, our solver can immediately accel-
erate by orders of magnitude the spectral segmentation in
the full pixel space. This is different from previous meth-
ods like Barron & Poole (2016), where a major source of
speedup comes from reducing the computation to a lower-
dimensional space. Future work might combine our ap-
proach with the dimension-reduction strategy for further
improvement, and leverage our solver as a parameter-free
differentiable layer similarly to Barron & Poole (2016).

B.5. PDEs on domains with a non-disk topology

Figure 15. Our solver applies to shape analysis and geometry pro-
cessing for curved surfaces as well. The heat kernel computed on
two surfaces with the spherical topology are shown, accelerated by
orders of magnitude using our method. Using a corner reflective
boundary condition and an octahedral parameterization (Praun
& Hoppe, 2003), our method can solve a geometric PDE that is
defined on a surface with the spherical topology (§B.5).

We can solve PDEs on a surface with a non-disk topology,
by leveraging the surface parameterization techniques, such
as the octahedral parameterization (Praun & Hoppe, 2003)
to cut and map a spherical topology surface onto an image
domain. Our method can easily incorporate a midpoint
reflective boundary condition induced by the octahedral
parameterization (Praun & Hoppe, 2003), by modifying the
last step to fill in the Dirichlet boundary condition in the
Neumann solver (§C.2). It allows us to process surfaces
with spherical parameterization. Figure 15 shows the heat
kernel computed on curved surfaces that have the spherical
topology using our method.

Adding the ability to handle curved surfaces also makes
our solver applicable to shape analysis and geometric
deep learning, such as spectral methods for shape corre-
spondence (Ovsjanikov et al., 2012; Litany et al., 2017;
Yi et al., 2017), Laplacian eigenvalues for shape classi-
fication (Reuter et al., 2006), and many other applica-
tions (Solomon et al., 2014).

B.6. Timing details

We provide details on the timing comparison. Again, un-
like the baseline solvers that are already highly optimized
with official support from Nvidia, our method is simply
prototyped in PyTorch with great potential for further accel-
eration. We have used torch.compile to reduce the overhead
of PyTorch, which makes PyTorch code 1.2 to 1.8× faster.
In addition to Table 2, Table 8 and 9 report the average
runtime (in milliseconds) and the error tolerance to solve
an isotropic or anisotropic system with the Dirichlet condi-
tion, respectively. The runtime of direct solvers including
CUDA and our method are not affected by the anisotropic
coefficients that make the problem much harder for iterative

21

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

2 3 4 5 6

10 20 30 40 50

Figure 16. Our linear solver with the midpoint reflective bound-
ary condition can be used as the reverse iteration for computing
eigen functions of a surface with the the octahedral parameter-
ization (Praun & Hoppe, 2003). Some Laplace-Beltrami eigen
functions of the Stanford bunny are shown. Eigen functions of
the Laplace-Beltrami operator are foundational for manifold data
analysis and geometric deep learning.

solvers as demonstrated in Table 2. SciPy does slow down
for the anisotropic coefficients, but is still comparable to
the isotropic case. In all experiments, we do not treat any
matrix as symmetric even though they are.

Table 9 and 10 compare the average runtime when solv-
ing the Dirichlet or Neumann boundary condition. Since
we reuse the Dirichlet solver to the Neumann problem, it
can take slightly more time for the Neumann problem, but
still comparable to the Dirichlet case. Future work may
implement §C.2 for a better Neumann solver.

Surprisingly, the error tolerance of our method in float 64
is consistently smaller than that of SuperLU from SciPy
when solving elliptic PDEs, though our method does not
optimize for accuracy like the SuperLU method does. We
had suspected that the more careful pivoting in SuperLU
might help to achieve a better precision, which nonetheless
is not observed for solving Laplacian systems.

Table 11 reports the runtime when solving the matting sys-
tem. Interestingly, SuperLU from SciPy significantly slows
down in the matting example, due to the unbalanced con-
centration in spatial difficulty, as we have discussed in §B.3.
However, our method (float 64) still has an error smaller
than SciPy.

B.7. Numerical stability

Our method prescribes a structure of pivoting and elimina-
tion ordering for embarrassingly parallel elimination, which
means that the row- and column-wise pivoting is limited to
switching rows and columns corresponding to nodes within
the same sub-domain. Theoretically, such restriction on
the pivoting scope could compromise the numerical stabil-
ity for some problems. However, we consistently observe

Table 4. The experiments same to the ones in Table 3 but for
1025× 1025 images.

Lap 1e-2 Lap 1e-4 Hel 1e-2 Hel 1.0 R-Decon
Ours-64 175 175 175 175 175
Ours-32 36.4 36.3 36.5 36.4 36.4

SciPy-LU 16001 15882 15899 16008 23175
CUDSS-LDU 4566 4592 5095 4554 4687

(s) CG 92.1 682 2280 21473 NaN
(s) MINRES 113 1292 5037 33864 NaN

LSMR 8244 1042012 749481 600585 1871 (*)
LSQR 4520 NaN NaN 118307 (*) 827 (*)

biCGstab 356 823 NaN NaN NaN
CGS 95 538 NaN NaN NaN

DIOM 2263 17549 39340 347352 NaN
FOM 5934 866361 667058 NaN NaN
QMR 147 4268 2444 NaN NaN
BILQ 150 4228 2694 NaN NaN

GMRES 1028 279031 285348 NaN NaN
DQGMRES 279 13018 5172 49156 NaN

FGMRES 1051 40096 NaN NaN NaN

×2

×k

}


Table 5. The error as measured by relative tolerance corresponding
to Table 4. Note that random deconvolution (R-Decon) may not be
a very well-defined task to evaluate accuracy, since the matrix A
can be close to singular due to randomness.

Error Lap 1e-2 Lap 1e-4 Hel 1e-2 Hel 1.0 R-Decon
Ours-32 1.04E-05 1.21E-05 5.33E-03 3.57E-04 NaN
Ours-64 1.89E-14 2.26E-14 1.37E-11 8.83E-13 1.89E-09
SciPy-LU 2.75E-14 2.82E-14 2.16E-13 4.32E-13 1.78E-15
CUDSS-LDU 2.03E-14 2.05E-14 7.37E-14 9.86E-13 5.41E-13

Table 6. The error as measured by relative tolerance corresponding
to Table 3.

Error Lap 1e-2 Lap 1e-4 Hel 1e-2 Hel 1.0 R-Decon
Ours-32 1.52E-05 1.71E-05 1.94E-04 2.30E-03 NaN
Ours-64 2.71E-14 3.03E-14 5.45E-13 4.30E-12 3.39E-08
SciPy-LU 4.06E-14 4.19E-14 7.22E-13 1.03E-12 2.06E-15
CUDSS-LDU 2.97E-14 3.04E-14 1.56E-13 2.86E-12 6.24E-12

Table 7. The back substitution time for our method to solve a Neu-
mann problem. Surprisingly, the speed for a 10252 image is similar
to that of a 2572 image, suggesting that there are probably a large
room for low-level optimization for the scale of 2572.

Resolution Time (milliseconds)
Ours (float-64) 257 2.56
Ours (float-64) 513 3.01
Ours (float-64) 1025 3.13

that when solving Laplacian systems or elliptic PDEs, our
method even has a smaller error consistently than that of
SuperLU or cuDSS (METIS ordering), which employ more
conservative pivoting strategies. These should be related to
the fact that the sub-systems that our method explicitly main-
tains are discrete Dirichlet-to-Neumann operators which are
well-defined objects in some sense. It will be interesting for
future work to study the numerical behavior of our method
theoretically. For Helmholtz equations that are not elliptic,
our errors in float-64 are still comparable to the baseline
methods. For the deconvolution with a random kernel, our
method can have a larger error; it can fail if using float-32,
but note that this is not a well-defined task, since under ran-
dom spatial kernels with large probability the sub-system

22

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Table 8. Average runtime (in milliseconds) to solve an isotropic Laplacian with Dirichlet condition.

time error tolerance
Example CUDA SciPy ours ours-64 SciPy ours-64 ours
20492 21297 138219 158.5 OOM 1.92e-14 1.07e-14 6.86e-6
10252 4663 15526 37.4 172.9 1.27e-14 7.56e-15 5.28e-6
5132 1053 2223 10.9 31.9 8.52e-15 5.43e-15 3.87e-6
2572 235 334 5.11 7.55 5.49e-15 3.79e-15 2.53e-6

Table 9. Average runtime (in milliseconds) to solve an anisotropic system with Dirichlet condition.

time error tolerance
Example CUDA SciPy ours ours-64 SciPy ours-64 ours
20492 21354 143100 159.3 OOM 3.43e-14 2.03e-14 1.07e-5
10252 4710 16512 37.5 171.3 2.54e-14 1.57e-14 7.97e-6
5132 1036 2051 10.9 31.77 1.36e-14 8.85e-15 4.44e-6
2572 234 355 5.82 7.43 2.24e-16 1.57e-16 2.45e-6

Table 10. Average runtime (in milliseconds) to solve an anisotropic system with Neumann condition.

time error tolerance
Example CUDA SciPy ours ours-64 SciPy ours-64 ours
20492 21396 186231 171.6 OOM 2.41e-15 1.47e-15 6.73e-7
10252 4779 17511 42.2 187.4 2.40e-15 1.47e-15 6.74e-7
5132 1038 2174 12.2 35.4 2.37e-15 1.47e-15 6.61e-7
2572 235 389 6.47 8.82 2.28e-15 1.47e-15 6.56e-7

Table 11. Average runtime (in milliseconds) to solve the matting system with Neumann condition.

time error tolerance
Example CUDA SciPy ours-64 SciPy ours-64
20492 22601 244125 OOM 2.89e-16 1.80e-16
10252 4721 16969 187.6 2.73e-16 1.77e-16
5132 1046 6223 35.8 2.50e-16 1.65e-16
2572 232 1045 8.79 2.24e-16 1.57e-16

in some patch can be quite close to singular to make the
global system A also close to singular, so it is expected that
SuperLU with global pivoting will be the most numerical
safe option. Still, in numerically challenging situations, our
method with float-64 can offer accuracy that is sufficient for
deep learning systems.

However, the row-wise pivoting in the LU factorization is
meant to improve the numerical stability of the right solve,
not for the left solve c⊺A−1, or equivalently, the transposed
solve A−⊺c, for the back propagation step. Instead, our
Dirichlet-to-Neumann factorization can be directly applied
to both the left and right solves, without the need of a sepa-
rate factorization for A⊺.

B.8. Complexity analysis

To emphasize, unlike the standard numerical analysis, in
our setting, we are less concerned about the asymptotic
complexity of the numerical algorithm, but rather the actual
runtime on common image sizes. These are very small-
scale problems by the standard of scientific computing, so
having a small constant in the complexity can be equally or
even more important than the asymptotic rate. The constant
and thus the best algorithm are hardware dependent, so the
actual runtime as we have reported in the paper should be
the only criterion, in addition to which we still provide an
asymptotic complexity analysis.

The time complexity of our algorithm is dominated by the

23

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

parallel matrix inversion in the Schur steps:

logn∑
j=1

((2j)1/2)3 =n3/2 +
1

21.5
n3/2 +

(
1

21.5

)2

n3/2 + · · ·

=O(n1.5)
(15)

where we have assumed the cubic cost of inverting dense
matrices and that the parallelized inversions take the same
time as inverting one matrix of the same size.

C. Method: Extended Discussions

Figure 17. After the Schwarz step that eliminates interior
nodes/pixels for each of the subdomains, the domain becomes
a “wire-frame” that is progressively simplified in the Schur steps.
The Schur step recursively collapses adjacent hollow subdomains
by applying a Schur formula to merge two DtN matrices.

In summary, our “Schwarz–Schur involution” recursively
merges subdomains and eliminates nodes/pixels at the in-
terface between subdomains, and updates the maintained
system matrix by applying a Schur complement formula.

Following the nested dissection hierarchy (George, 1973),
we recursively divide the domain into two subdomains and
reduce the degrees of freedom: nodes at the interface be-
tween subdomains have duplicated copies in each subdo-
main. This yields a quad-tree in 2D: as shown in Figure 17,
recursively applying this step reduces the number of subdo-
mains following the sequence: (512, 512)→ (256, 256)→
(128, 128)→ (64, 64)...→ (1, 1). This procedure visually
corresponds to Figure 17 but in the reverse order.

C.1. Dirichlet-to-Neumann factorization

We call the Schwarz and Schur steps as the Dirichlet-to-
Neumann factorization, a numerical factorization procedure
similar to the LU factorization. The role of the dense matri-
ces we saved in α(j) and the overall hierarchy is analogous
to the L and U factors in standard LU factorization (Davis,
2006). In the Schur step, small patches are recursively
merged, during which the new left-hand side—the DtN
matrices for the merged subdomains are constructed by in-
verting sub-block of the DtN matrices P,Q at subdomains
using the equations in §3.2.2; every matrix there will be
saved for later usage—in the back substitution stage to ap-
ply to the right-hand side.

The output in the last Schur step is the tensor α(k) of size
(1, 1, b, b), where again b is the number of pixels on the
border of the image domain. Denoting α(k)[0, 0, :, :] as the

dense matrix D ∈ Rb×b, the original linear system Ax = b
at the last level of the hierarchy becomes Du = d, where
D ∈ Rb×b and d ∈ Rb×1.

Back substitution is the standard step to fill in solutions for
all rows of x. For Dirichlet boundary condition, we directly
fill in rows that correspond to boundary pixels, x|1:b← g.
Then values at the interface can be recursively backed filled
by solving (11), so the values in x at the wire-frame of the
image domains can be obtained. Finally, we recover the
values in x that correspond to the interior 3 × 3 block of
each patch.

C.2. Solvers for Neumann boundary condition

For Neumann boundary condition, there are multiple ways
to directly apply our Dirichlet solvers: 1) solve some DtN
system for the final domain to fill in the missing Dirichlet
data and call the Dirichlet solver (§C.2.1); 2) the actual
option we use in the paper for better performance: modify
the first Schwarz step to also eliminate pixels at the boundary
of the domain (§C.2.3).

We use the Dirichlet boundary value problem to explain our
method as it arises naturally: our method is a hierarchical
construction of DtN matrices that are directly applicable
under the known Dirichlet condition. The linear condition
(11) that we enforced at the interface says that the Dirichlet
data should be chosen so that the resulting Neumann data
on either side of the interface must match each other—flux
into the interface should equal to flux outward on the other
side of the interface.

Most tasks in computer vision have the natural (Neumann)
boundary condition. The Neumann boundary value prob-
lem can be solved in a similar fashion. In principle, one
can recursively work with the Neumann-to-Dirichlet ma-
trix instead of the Dirichlet-to-Neumann matrix, which are
(pseudo) inverses of each other. Then we can fill in the miss-
ing Neumann boundary condition in a hierarchical fashion.
Instead, we present a simple solution that directly leverages
the Dirichlet solver. The goal is to minimize effort and reuse
Dirichlet solvers.

C.2.1. SOLUTION 1

The original linear system Ax = b at the last level of
the hierarchy becomes Du = d, where D ∈ Rb×b and
d ∈ Rb×1. From the Gaussian elimination viewpoint, the
DtN matrix D is nothing more than the linear system matrix
with the interior nodes in the image eliminated. Thus, the
Dirichlet boundary condition that is missing in order to
apply the Dirichlet solver for the Neumann problem can be
simply found by solving D−1d.

Indeed, this immediately gives a Neumann solver. How-
ever, there is one drawback with this strategy of reusing

24

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

the Dirichlet solver in a Neumann problem. The system
matrix D is 16× as large as the largest matrix that one has
to solve in the Dirichlet problem. (D is 4× as large in rows
and columns so a total of 16). This makes the Neumann
solver for large-scale problem noticeably slower than the
Dirichlet solver, even though in principle they should be
equally difficult.

C.2.2. SOLUTION 2

As shown in Figure 18, to avoid the need to invert a larger
matrix, we design a pre-processing step to further eliminate
nodes at the beginning.

Figure 18. The wire-frame structure resulted in the Neumann elim-
ination, obtained by modifying the Dirichlet elimination in Fig-
ure 17.

In general, it is better to eliminate nodes as early as possible,
since that can happen in parallel, rather than deferring it to
the final stage to increase the size of the large dense matrix.
In some sense, the Neumann boundary value problem is
easier than the Dirichlet counterpart, since the former allows
node elimination at an earlier stage.

C.2.3. SOLUTION 3

While Solution 2 should be the theoretically optimal way
in this paper, it requires implementing a new edge collapse
procedure and handling boundary patches differently. In

Figure 19. The final hierarchy for Neumann solver.

order to reuse the Dirichlet solver like Solution 1 does, we
propose a further simplification: at the boundary of the im-
age domain we only eliminate wire-frames without two end
points. The nodes at the boundary of the image domain are
still kept, though any rows and columns corresponding to
them in the left-hand side are zeros, and any rows corre-
sponding to them in the right-hand side are also zeros. Then,
we can reuse the same equations in §3.2.2. This solution
has the advantage that at the last level, the system to solve
will be smaller than D: while D has the same size, we know
that most rows and cols in D are zeros and can be thrown
away. So we only need to solve for, e.g., D−11:4:b,1:4,bd1:4:b

when patch size is 4× 4 enlarged to 5× 5 so (·)1:4:b selects
one from every 4 pixels along the border. The new system

matrix D−11:4:b,1:4,b ∈ Rb/4×b/4 records the interplay among
the scatter points on the border of the image domain.

C.3. Differentiable linear solvers and derivatives

Differentiable linear solvers are useful in many scientific
applications (Hovland & Hückelheim, 2024). Following
notations of Wang & Solomon (2021), let us derive the
closed-form formulas for the partial derivatives x = A−1b:
we need to obtain ∂x/∂b and ∂x/∂A.

It is convenient to introduce the notation to flatten the matrix
A into a vector:

a := FLATTEN(A) ∈ Rn(nz)

(16)

which stores the the nonzero entries of A in a vector a,
where n(nz) is the number of nonzero entries, such that the
matrix product

A = J⊺
1DIAG(a)J2 (17)

recovers the matrix A in the coordinate format, where
J1,J2 ∈ Rn(nz)×n. Here DIAG(·) converts a vector into a
diagonal matrix and notice that

DIAG(u)v = DIAG(v)u = u⊙ v (18)

for two vectors u,v, where u⊙ v is the element-wise mul-
tiplication of two vectors. Namely, their i-th rows, J1(i, :)
and J2(i, :), are one-hot sparse vectors that put the entry ai
in the correct row and column in the matrix.

Then, any infinitesimal deviation (δA, δb, δx) from the
stationary (A,b,x) such that Ax = b must satisfy that:

(δA)x+Aδx = δb

J⊺
1DIAG(δa)J2x+ J⊺

1DIAG(a)J2δx = δb

J⊺
1DIAG(J2x)δa+Aδx = δb

So we have:

∂x/∂a =−A−1J⊺
1DIAG(J2x) (19)

∂x/∂b =A−1 (20)

Thus, provided with ∇xE, the gradient of the energy E(x)
w.r.t. x, the chain rule gives the gradients∇aE and∇bE.

∇aE =− (J2x)⊙
(
J1(A

⊺)
−1∇xE

)
(21)

∇bE =(A⊺)
−1∇xE (22)

Remark: to evaluate the gradients, we need to solve the
system A⊺ instead of A in general, unless A is symmetric.
Unlike, e.g., LU factorization that applies row pivoting to

25

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

→ → → →

Figure 20. The node elimination order corresponds to Figure 18. An ideal elimination order for the Neumann boundary conditions.

→ → → → →
Figure 21. The node elimination order corresponds to Figure 19. The elimination order we actually use for the Neumann boundary
conditions for the ease of implementation.

improve only right solve, our method is an exactly “sym-
metric” algorithm for A and A⊺: For our method, it is not
necessary to run the Dirichlet-to-Neumann factorization one
more time for A⊺, since our algorithm already gathers all
ingredients to simply apply the left multiplication c⊺A−1

in lieu of A−⊺c. This can lead to an extra 2× speedup of
our method compared to other direct solvers, when differen-
tiating linear solvers.

C.4. Two settings in linear solvers

We clarify that there are two different settings when solving
(multiple instances of) x = A−1b:

• A is unchanged and fixed. This is when the common
trick can be applied, e.g. in interactive computer graph-
ics (Bouaziz et al., 2014; Du et al., 2021): pre-factorize
A = B⊺B once and at runtime reuse the fixed factoriza-
tion for speedup, only performing back substitution.

• A is changed over iterations, solving systems with co-
efficients unknown in advance. This is a more common
situation for nonlinear systems. For example, in Newton’s
method, A is the Hessian that changes over iterations.

In this paper, we focus on the second setup, where the
system must be solved from scratch and the numerical fac-
torization stage—which is the main bottleneck—is therefore
included. Nonetheless, both settings can benefit from our
method significantly.

C.5. Involution: exact inverse convolution
(spatially varying kernel)

Many classical algorithms can be viewed as a single step
of Schwarz–Schur involution—solving a linear Laplacian-
like system. Image filtering (Barron & Poole, 2016), edit-

ing (Pérez et al., 2003), matting (Germer et al., 2020), and
segmentation (Shi & Malik, 2000) are classical examples.
The linear solving in these methods can be viewed as the
generalized deconvolution with a spatially varying kernel,
but they are usually not called a deconvolution task. To
distinguish from the common setting of deconvolution, we
term our process Schwarz–Schur (SS) involution, the exact
inversion of the convolution with a spatial kernel. We call
the set of dense matrices that are applied across all subdo-
mains as the Schwarz–Schur (SS) involution kernel at that
level, which are stored in the tensor α(∗).

Theoretically, our method can enjoy further improvements
when the kernel a(x,y) is a spatially constant matrix (the
timing reported in the paper does not take advantage of
this: we always treat a(x,y) as spatially varying even if
it is constant for fair comparisons). In this case, at each
subdivision level, the SS-involution kernels are the same
across the domain. Thus, there is no need to maintain a
dense matrix for each subdomain individually; instead, we
can maintain one SS-involution kernel that applies to every
subdomain.

What is even better: for a prescribed kernel, the SS-
involution kernel has a closed-form formula that can be
derived and calculated ahead of time, bypassing the need of
numerical factorization. When A is the isotropic Laplacian,
the resulting DtN matrix approximates a continuous DtN
operator which has a known low-rank approximation, the
structure that may be leveraged in future work (Bebendorf,
2008).

26

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

C.6. Inverse problems, optimal control of PDEs, and
PDE-constrained optimization

Our method accelerates not only the forward linear solver,
but also the “backward” process of differentiating into the
linear solver, which is useful in, e.g. inverse problems, opti-
mal control of PDEs, and PDE-constrained optimization.

For x = A−1b, back-propagating the gradient w.r.t. x to
that w.r.t. b is straightforward since δx = A−1δb, so we
will focus on how to differentiate into the coefficients of A.
There are two ways:

• In fact, our method implemented in PyTorch, is already
end-to-end differentiable w.r.t. entries of A. However, it is
generally advised against differentiating through the low-
level implementation details: see Hovland & Hückelheim
(2024) empirical studies and references therein for discus-
sions. We also find it that indeed this naı̈ve approach is
inefficient in the backward step to obtain gradients.

• Alternatively, as described in §C.3, without relying on
the automatic differentiation feature of PyTorch, we can
explicitly calculate the gradient by solving the adjoint
system A−⊺c, where c depends on x, similarly to the dif-
ferentiable bilateral solver (Barron & Poole, 2016). When
A is symmetric, this involves solving a linear system with
the same left-hand side, see, e.g., Wang et al. (2023).

Thus, our solver immediately speeds up the optimization
of some distributed parameters A, which—written in the
equivalent form a(x,y)—can represent a convolutional ker-
nel, local material property, or the Jacobian of a deformation
field. In the literature of inverse PDEs, this is often referred
to as the problem of distributed parameter identification.

In §5, we apply the differentiable solver to search for the A
that minimizes an objective E(·). This is an inverse problem

min
A

E(x)

s.t. x = A−1b
(23)

In §5, the linear system comes from FEM: A = G⊺CG to
yield a PDE-constrained optimization (Wang & Solomon,
2021; Wang et al., 2023), and the goal is to optimize C
that encodes a deformation field that minimizes the image
matching loss.

C.7. Generalize to larger kernels

Our approaches can be generalized to a larger kernel size
of 5× 5 or 7× 7 with a more complicated implementation.
Currently, one layer of boundary pixels can separate two
subdomains P, Q, and it will require two layers of boundary
pixels in the case of 5 × 5 to separate two subdomains
P,Q (or 3 layers of boundary pixels in the case of 7 × 7).
Similarly, the boundary pixels (at the border of the whole
image) in the last Schur step will have two layers of pixels.

The parallel elimination procedure will be similar, but will
have to account for the fact that the “wire-frame” has two
layers of pixels.

In fact, in some sense, our current method already supports
kernels larger than 3× 3. The actual constraint that we have
is that every pixel can only contribute to pixels in the same
5 × 5 patch (and recall that pixels at the patch boundary
belong to multiple patches). Thus, the convolution window
for a pixel can cover the entire 1/2/4 patches it belongs to:
for example, pixels at the patch boundary can use a local
window of 9 × 9 or 9 × 5, and it is 5 × 5 for an interior
pixel, though the window may not be centered at it. Also,
recall that the 5× 5 patch size is a hyperparameter that we
are free to change arbitrarily in the current method.

D. Discussions and Implementation Details
D.1. Details on the algorithm

A hyperparameter in our method is the size of patches,
which we choose as 4 × 4 (enlarged to 5 × 5 for dupli-
cating boundary pixels at interfaces), except for the image
of size 25612 where we choose the size to be 5×5 (enlarged
to 6× 6).

D.2. Distributed representations of sparse systems

In our method, we never have to construct a global sparse
matrix as other direct sparse solvers do, leading to extra sav-
ing in time. In the initialization step the Schur complements
are stored in a distributed fashion.

D.3. Details on experiment setups

Compared to Python, the Julia ecosystem has much better
support for sparse linear algebraic CUDA APIs that are criti-
cal in scientific computing. For this reason, when comparing
our method with CUDA, we use the up-to-date Julia binding
that provides APIs backended by the most recently released
cuDSS with cuSolver, cuSparse and CUDA. cuDSS is the
state-of-the-art official CUDA library that supports sparse
linear solvers including sparse LU (LDU) factorization, be-
coming our direct point of comparison.

D.4. Memory complexity

We emphasize that the reported memory for our solver is
the maximum GPU usage for its workspace storing all in-
termediate matrices and can be released after the solution
is obtained: if the solver is included as a layer in the neural
networks, the memory can be released after the forward
pass (though storing the workspace can skip the numerical
factorization stage in the back-propagation step to improve
performance). For example, if the solver layer is included 10
times in the neural architecture, the peak memory usage for

27

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

the model is same to including the solver only 1 time. Our
solver currently treats symmetric A as asymmetric ones:
future work can leverage the symmetry to save half of the
memory usage.

Table 12. Memory usage (MB) comparison. Note we do not op-
timize our memory usage and there is likely large room for im-
provement. Note that if used in a differentiable solver setting, the
memory of CUDA might have to be multiplied by an extra factor
of 2 due to transposed solve, while there is no need for our method.
(*: while it fits in memory to run the code, using “torch.compile”
for an optimized runtime exceeds the limit.)

GPU memory usage (MB)
Example CUDA ours-32 ours-64
40972 33330 OOM OOM
20492 8104 16094 32188 (*)
10252 2234 3880 7244
5132 880 890 1736
2572 548 242 420

Our method achieves speed at the cost of memory usage.
Table 12 compares the GPU memory usage with the CUDA
solver. Note that our current implementation is generous
in memory usage and we believe there is likely plenty of
room for improvement. We save every intermediate dense
matrices to allow quick experimentation of ideas, and do
not use any PyTorch in-place operations, which we find may
cause counterintuitive behaviors for sliced matrices, making
debugging challenging.

In addition, the memory usage can be significantly reduced
or even eliminated, if the kernel a(x,y) is constant spatially;
future implementation may take advantage of this. In this
case, all dense matrices are the same across the domain, and
even have known closed form that can be derived ahead of
time.

D.5. Midpoint reflective boundary condition

b

d

f

h

a c

eg

Figure 22. Name pixels at the boundary of the image domain in
counter-clockwise ordering.

To handle spherical topology, we introduce a midpoint re-
flective boundary condition, as induced by the octahedral
parameterization (Praun & Hoppe, 2003) that maps from a

surface with spherical topology to the image domain. Shown
in Figure 22, the boundary of the image domain is split into
the chain a→ b→ c→ d→ e→ f → g → h→ a. The
problem becomes

min
u

1

2
u⊺Du− d⊺u

s.t. ua = uc = ue = ug

u(a→b) = u(c→b),

u(c→d) = u(e→d),

u(e→f) = u(g→f),

u(g→h) = u(a→h).

(24)

The sub-vector u(a→b) does not include two endpoints a, b.
The constraints come from how the octahedral parameteriza-
tion (Praun & Hoppe, 2003) specifically sets the boundary
condition to enforces the spherical topology. To solve the
problem, we stack the unique values in u into a vector v,
such that

u =



ua

u(a→b)

ub

u(b→c)

uc

u(c→d)

ud

u(d→e)

ue

u(e→f)

uf

u(f→g)

ug

u(g→h)

uh

u(h→a)



=



ua

u(a→b)

ub

REV(u(a→b))
ua

u(c→d)

ud

REV(u(c→d))
ua

u(e→f)

uf

REV(u(e→f))
ua

u(g→h)

uh

REV(u(g→h))



v =



ua

u(a→b)

ub

u(c→d)

ud

u(e→f)

uf

u(g→h)

uh



in which REV(·) indicates flipping a vector, i.e. the vector
with the same elements appearing in the reverse order. In
this case, we can reduce the number of variables using
u = Fv. F is a sparse binary matrix, describing how entries
in u can be copied from entries in v, such that 1 = F1.

System (24) then can be solved via v = (F⊺DF)
−1

F⊺d
and the solution can be recovered from u← Fv.

28

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

E. Detailed Method Description with Necessary Background Information
In this section, we provide a detailed description of our method along with the necessary background, supplementing the
brief explanation in the main text (kept short due to space constraints). Nonetheless, understanding the internal details is
typically unnecessary for most users, as our method is designed to be used as a black-box module. Readers familiar with
numerical methods can skip this section.

Plug-and-play for end users Just as convolution and matrix multiplication are accessed via CUDA (cuDNN/cuBLAS),
we that envision our solver can be similarly exposed through low-level APIs (e.g., via a cuDSS-like interface) with further
opportunities of optimization, allowing users to easily integrate it without needing to implement anything themselves.

Notation: matrix slicing For a matrix A ∈ Rn×n, we use the matrix slicing notation Ars to denote the submatrix of A
that takes the rows specified by r and columns specified by s. For example, for r = [2, 1, 3], s = [6, 7], Ars refers to:

Ars :=

A2,6 A2,7

A1,6 A1,7

A3,6 A3,7

 (25)

the 3 × 2 submatrix that is obtained by selecting the first three rows, in the order of 2, 1, 3, and 6-th, 7-th columns from
matrix A. The lower scripted Ars should not be confused with upper scripted Ars, which is just a variable that contains r, s
as part of its name and does not necessarily have anything to do with slicing.

Reverse permutation matrix Define J so that J⊺X (or XJ) permutes rows (or columns) of X in reverse order.

J :=


1

···
1

1

 ≡ J⊺ ≡ J−1 (26)

Schur complement Schur complement reduces the problem of solving the 2× 2 block matrix,[
X Y
Z W

] [
x
z

]
=

[
y
w

]
(27)

to that of solving a smaller matrix Dx = d, assuming an invertible W, where

D :=
(
X−YW−1Z

)
d := y −YW−1w (28)

by canceling z using the second line of the equation that rewrites z = W−1[w − Zx] as a function of x.

While equations in the paper might look a bit dense, at the high level the overall procedure is quite simple: recursively
applying the Schur complement to the system many times to reduce the problem to a smaller system. There are a few extra
considerations: 1) implicitly or explicitly re-order rows and columns of the matrix as necessary, so that we know the part we
want to eliminate is located at the sub-block W (or anywhere we prescribed); 2) apply many Schur complements in parallel.

E.1. Case study: two subdomains

We review some standard concepts before explaining our method for accessibility to a larger audience. The reader may refer
to §E.6, a smaller 3× 7 image for clarity of illustration.

10

19

28

11

20

29

12

21

30

0

36

1

37

2

38

3

39

9

18

27

4

13

22

31

40

14

23

32

15

24

33

16

25

34

5

41

6

42

7

43

8

44

17

26

35

Figure 23. The connectivity graph resulted from the use of the 3× 3 kernel size, for a 5× 9 image under the lexicographic sweeping order.

29

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

0, 0

9, 0

1, 0

10, 0

v0

u0

0, 9

9, 9

18, 9

1, 9

10, 9

19, 9

v9

u9

9, 18

18, 18

27, 18

10, 18

19, 18

28, 18

v18

u18

18, 27

27, 27

36, 27

19, 27

28, 27

37, 27

v27

u27

27, 36

36, 36

28, 36

37, 36

v36

u36

0, 1

9, 1

1, 1

10, 1

2, 1

11, 1

v1

u1

0, 10

9, 10

18, 10

1, 10

10, 10

19, 10

2, 10

11, 10

20, 10

v10

u10

9, 19

18, 19

27, 19

10, 19

19, 19

28, 19

11, 19

20, 19

29, 19

v19

u19

18, 28

27, 28

36, 28

19, 28

28, 28

37, 28

20, 28

29, 28

38, 28

v28

u28

27, 37

36, 37

28, 37

37, 37

29, 37

38, 37

v37

u37

1, 2

10, 2

2, 2

11, 2

3, 2

12, 2

v2

u2

1, 11

10, 11

19, 11

2, 11

11, 11

20, 11

3, 11

12, 11

21, 11

v11

u11

10, 20

19, 20

28, 20

11, 20

20, 20

29, 20

12, 20

21, 20

30, 20

v20

u20

19, 29

28, 29

37, 29

20, 29

29, 29

38, 29

21, 29

30, 29

39, 29

v29

u29

28, 38

37, 38

29, 38

38, 38

30, 38

39, 38

v38

u38

2, 3

11, 3

3, 3

12, 3

4, 3

13, 3

v3

u3

2, 12

11, 12

20, 12

3, 12

12, 12

21, 12

4, 12

13, 12

22, 12

v12

u12

11, 21

20, 21

29, 21

12, 21

21, 21

30, 21

13, 21

22, 21

31, 21

v21

u21

20, 30

29, 30

38, 30

21, 30

30, 30

39, 30

22, 30

31, 30

40, 30

v30

u30

29, 39

38, 39

30, 39

39, 39

31, 39

40, 39

v39

u39

3, 4

12, 4

4, 4

13, 4

5, 4

14, 4

v4

u4

3, 13

12, 13

21, 13

4, 13

13, 13

22, 13

5, 13

14, 13

23, 13

v13

u13

12, 22

21, 22

30, 22

13, 22

22, 22

31, 22

14, 22

23, 22

32, 22

v22

u22

21, 31

30, 31

39, 31

22, 31

31, 31

40, 31

23, 31

32, 31

41, 31

v31

u31

30, 40

39, 40

31, 40

40, 40

32, 40

41, 40

v40

u40

4, 5

13, 5

5, 5

14, 5

6, 5

15, 5

v5

u5

4, 14

13, 14

22, 14

5, 14

14, 14

23, 14

6, 14

15, 14

24, 14

v14

u14

13, 23

22, 23

31, 23

14, 23

23, 23

32, 23

15, 23

24, 23

33, 23

v23

u23

22, 32

31, 32

40, 32

23, 32

32, 32

41, 32

24, 32

33, 32

42, 32

v32

u32

31, 41

40, 41

32, 41

41, 41

33, 41

42, 41

v41

u41

5, 6

14, 6

6, 6

15, 6

7, 6

16, 6

v6

u6

5, 15

14, 15

23, 15

6, 15

15, 15

24, 15

7, 15

16, 15

25, 15

v15

u15

14, 24

23, 24

32, 24

15, 24

24, 24

33, 24

16, 24

25, 24

34, 24

v24

u24

23, 33

32, 33

41, 33

24, 33

33, 33

42, 33

25, 33

34, 33

43, 33

v33

u33

32, 42

41, 42

33, 42

42, 42

34, 42

43, 42

v42

u42

6, 7

15, 7

7, 7

16, 7

8, 7

17, 7

v7

u7

6, 16

15, 16

24, 16

7, 16

16, 16

25, 16

8, 16

17, 16

26, 16

v16

u16

15, 25

24, 25

33, 25

16, 25

25, 25

34, 25

17, 25

26, 25

35, 25

v25

u25

24, 34

33, 34

42, 34

25, 34

34, 34

43, 34

26, 34

35, 34

44, 34

v34

u34

33, 43

42, 43

34, 43

43, 43

35, 43

44, 43

v43

u43

7, 8

16, 8

8, 8

17, 8

v8

u8

7, 17

16, 17

25, 17

8, 17

17, 17

26, 17

v17

u17

16, 26

25, 26

34, 26

17, 26

26, 26

35, 26

v26

u26

25, 35

34, 35

43, 35

26, 35

35, 35

44, 35

v35

u35

34, 44

43, 44

35, 44

44, 44 v44

u44

Figure 24. For the 5× 9 image, using the pixel indexing in Figure 23, visualization of the sparsity pattern of A ∈ R45×45, for the original
sparse linear system

∑
j Aijuj = vi,∀i. As we can see, the original Laplacian-like A is a banded matrix with three banded diagonals.

For the 5 × 9 image shown in Figure 23, each pixel corresponds to a node in the graph and is assigned with an index
i ∈ {0, 1, ..., 45−1}. Two nodes i and j, where i, j ∈ {0, 1, ..., 45−1}, are connected by an edge if the 3× 3 kernel centered
at one node will cover the other node. Aij = 0 if node i and node j are not connected by an edge in the graph.

For the original sparse linear system, A ∈ R45×45:

45−1∑
j=0

Aijuj = vi,∀i ∈ {0, 1, ..., 45−1}. (29)

Figure 24 visualizes the sparsity pattern of A ∈ R45×45. In this visualization of A, only where there is a (i, j) corresponds
an entry that Aij ̸= 0—namely i and j are connected by an edge in Figure 23, and all other entries that we omitted are
zeros. The original A is a Laplacian-like matrix with a 9-point stencil. A is a banded matrix with three banded diagonals.
Previous direct solvers have to explicitly maintain the sparse matrix A shown in Figure 24, while our solver does not.
Instead, we work with a more compact representation that takes advantage of the regular grid structure: we start with the
dense block submatrices shown in Figure 25.

30

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

0, 0

9, 0

1, 0

10, 0

v0

u0

0, 9

9, 9

18, 9

1, 9

10, 9

19, 9

v9

u9

9, 18

18, 18

27, 18

10, 18

19, 18

28, 18

v18

u18

18, 27

27, 27

36, 27

19, 27

28, 27

37, 27

v27

u27

27, 36

36, 36

28, 36

37, 36

v36

u36

0, 1

9, 1

1, 1

10, 1

2, 1

11, 1

v1

u1

0, 10

9, 10

18, 10

1, 10

10, 10

19, 10

2, 10

11, 10

20, 10

v10

u10

9, 19

18, 19

27, 19

10, 19

19, 19

28, 19

11, 19

20, 19

29, 19

v19

u19

18, 28

27, 28

36, 28

19, 28

28, 28

37, 28

20, 28

29, 28

38, 28

v28

u28

27, 37

36, 37

28, 37

37, 37

29, 37

38, 37

v37

u37

1, 2

10, 2

2, 2

11, 2

3, 2

12, 2

v2

u2

1, 11

10, 11

19, 11

2, 11

11, 11

20, 11

3, 11

12, 11

21, 11

v11

u11

10, 20

19, 20

28, 20

11, 20

20, 20

29, 20

12, 20

21, 20

30, 20

v20

u20

19, 29

28, 29

37, 29

20, 29

29, 29

38, 29

21, 29

30, 29

39, 29

v29

u29

28, 38

37, 38

29, 38

38, 38

30, 38

39, 38

v38

u38

2, 3

11, 3

3, 3

12, 3

4, 3

13, 3

v3

u3

2, 12

11, 12

20, 12

3, 12

12, 12

21, 12

4, 12

13, 12

22, 12

v12

u12

11, 21

20, 21

29, 21

12, 21

21, 21

30, 21

13, 21

22, 21

31, 21

v21

u21

20, 30

29, 30

38, 30

21, 30

30, 30

39, 30

22, 30

31, 30

40, 30

v30

u30

29, 39

38, 39

30, 39

39, 39

31, 39

40, 39

v39

u39

3, 4

12, 4

4, 4

13, 4

5, 4

14, 4

v4

u4

3, 13

12, 13

21, 13

4, 13

13, 13

22, 13

5, 13

14, 13

23, 13

v13

u13

12, 22

21, 22

30, 22

13, 22

22, 22

31, 22

14, 22

23, 22

32, 22

v22

u22

21, 31

30, 31

39, 31

22, 31

31, 31

40, 31

23, 31

32, 31

41, 31

v31

u31

30, 40

39, 40

31, 40

40, 40

32, 40

41, 40

v40

u40

4, 5

13, 5

5, 5

14, 5

6, 5

15, 5

v5

u5

4, 14

13, 14

22, 14

5, 14

14, 14

23, 14

6, 14

15, 14

24, 14

v14

u14

13, 23

22, 23

31, 23

14, 23

23, 23

32, 23

15, 23

24, 23

33, 23

v23

u23

22, 32

31, 32

40, 32

23, 32

32, 32

41, 32

24, 32

33, 32

42, 32

v32

u32

31, 41

40, 41

32, 41

41, 41

33, 41

42, 41

v41

u41

5, 6

14, 6

6, 6

15, 6

7, 6

16, 6

v6

u6

5, 15

14, 15

23, 15

6, 15

15, 15

24, 15

7, 15

16, 15

25, 15

v15

u15

14, 24

23, 24

32, 24

15, 24

24, 24

33, 24

16, 24

25, 24

34, 24

v24

u24

23, 33

32, 33

41, 33

24, 33

33, 33

42, 33

25, 33

34, 33

43, 33

v33

u33

32, 42

41, 42

33, 42

42, 42

34, 42

43, 42

v42

u42

6, 7

15, 7

7, 7

16, 7

8, 7

17, 7

v7

u7

6, 16

15, 16

24, 16

7, 16

16, 16

25, 16

8, 16

17, 16

26, 16

v16

u16

15, 25

24, 25

33, 25

16, 25

25, 25

34, 25

17, 25

26, 25

35, 25

v25

u25

24, 34

33, 34

42, 34

25, 34

34, 34

43, 34

26, 34

35, 34

44, 34

v34

u34

33, 43

42, 43

34, 43

43, 43

35, 43

44, 43

v43

u43

7, 8

16, 8

8, 8

17, 8

v8

u8

7, 17

16, 17

25, 17

8, 17

17, 17

26, 17

v17

u17

16, 26

25, 26

34, 26

17, 26

26, 26

35, 26

v26

u26

25, 35

34, 35

43, 35

26, 35

35, 35

44, 35

v35

u35

34, 44

43, 44

35, 44

44, 44 v44

u44

vb

va

vs

vt

vr

u⊺
r u⊺

t u⊺
s u⊺

a u⊺
b

Figure 25. After reordering rows and columns, the original system becomes the 5× 5 block system:
Arr 0 = Art Ars Ara 0 = Arb

0 = Atr Att Ats 0 = Ata Atb

Asr Ast Ass Asa Asb

Aar 0 = Aat Aas Aaa 0 = Aab

0 = Abr Abt Abs 0 = Aba Abb



ur

ut

us

ua

ub

 =


vr

vt

vs

va

vb

.

By pivoting the rows and columns of A, we arrive at the linear system in Figure 25. It is easy to verify that the pivoting does
not change the problem: it only re-orders the equations and variables. From Figure 25, now it is visually clear that after the
row- and column- pivoting, some submatrices are zero. We treat the nonzero block matrices as dense matrices though they
can be sparse.

31

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Now, let us start with: 
Arr 0 Ars Ara 0
0 Att Ats 0 Atb

Asr Ast Ass Asa Asb

Aar 0 Aas Aaa 0
0 Abt Abs 0 Abb



ur

ut

us

ua

ub

 =


vr

vt

vs

va

vb

 . (30)

where
s=[4, 13, 22, 31, 40],

r=[0, 1, 2, 3, 39, 38, 37, 36, 27, 18, 9],

a=[10, 11, 12, 19, 20, 21, 28, 29, 30],

t=[5, 6, 7, 8, 17, 26, 35, 44, 43, 42, 41],

b=[14, 15, 16, 23, 24, 25, 32, 33, 34].

(31)

Patch division and patch-wise finite element methods Recall that

Ass = A(P)
ss +A(Q)

ss , (32)

vs = v(P)
s + v(Q)

s (33)

can be divided into contributions from P and Q, resp. With this partition, the computations for patch P and Q are made
independent from each other, and thus can be done in parallel. The values of A(P)

ss and A
(Q)
ss can be arbitrary, as long as

their summation is the correct Ass. In fact, their values are never used standalone, only their sum A
(P)
ss +A

(Q)
ss is used

(they become parts of the matrices P,Q which are summed later).

Especially for applications like PDEs (discretized with first-order piecewise linear FEM), each patch P and Q will contribution
to the value of Ass independently: their portions of contributions A(P)

ss and A
(Q)
ss only depend on information within the

patch P and Q, respectively. This makes the computation within P and Q exactly independent from each other, easing
parallel implementation.

System partitioning 
Arr 0 Ars Ara 0
0 Att Ats 0 Atb

Asr Ast A
(P)
ss +A

(Q)
ss Asa Asb

Aar 0 Aas Aaa 0
0 Abt Abs 0 Abb



ur

ut

us

ua

ub

 =


vr

vt

v
(P)
s + v

(Q)
s

va

vb

 (34)


Arr 0 Ars Ara 0
0 0 0 0 0

Asr 0 A
(P)
ss Asa 0

Aar 0 Aas Aaa 0
0 0 0 0 0



ur

ut

us

ua

ub

+


0 0 0 0 0
0 Att Ats 0 Atb

0 Ast A
(Q)
ss 0 Asb

0 0 0 0 0
0 Abt Abs 0 Abb



ur

ut

us

ua

ub

 =


vr

0

v
(P)
s

va

0

+


0
vt

v
(Q)
s

0
vb

 (35)

Instead of working with the sparse matrix A and a right-hand side b, our method works with the dense blocks—that are
compactly put in two tensors α,β as we will introduce later—that come from the nonzero parts of A:Arr Ars Ara

Asr A
(P)
ss Asa

Aar Aas Aaa

ur

us

ua

 ?
=

 vr

v
(P)
s

va

 (36)

Att Ats Atb

Ast A
(Q)
ss Asb

Abt Abs Abb

ut

us

ub

 ?
=

 vt

v
(Q)
s

vb

 (37)

32

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

The symbol “ ?
=” indicates the above systems cannot be solved directly, since our assumption is that the values A(P)

ss and
A

(Q)
ss can be arbitrary, and only their summation is a known value Ass. In fact, the solution depends on every patch so any

local computation cannot yield the correct solution. But we can still eliminate ua,ub by writing their values as a function
of ur,us,ut.

[
ua

ub

]
=

[
A−1aa 0
0 A−1bb

][va

vb

]
−
[
Aar 0 Aas

0 Abt Abs

]ur

ut

us

 (38)

and plugging it into the joint system:Arr 0 Ars

0 Att Ats

Asr Ast Ass

ur

ut

us

+

Ara 0
0 Atb

Asa Asb

[ua

ub

]
=

vr

vt

vs

 (39)

which leads to:Arr 0 Ars

0 Att Ats

Asr Ast Ass

ur

ut

us

+

Ara 0
0 Atb

Asa Asb

[A−1aa 0
0 A−1bb

][va

vb

]
−
[
Aar 0 Aas

0 Abt Abs

]ur

ut

us

 =

vr

vt

vs

 (40)

which further simplifies to:

(41)

Arr −AraA
−1
aaAar 0 Ars −AraA

−1
aaAas

0 Att −AtbA
−1
bbAbt Ats −AtbA

−1
bbAbs

Asr −AsaA
−1
aaAar Ast −AsbA

−1
bbAbt Ass −AsaA

−1
aaAas −AsbA

−1
bbAbs

ur

ut

us


=

 vr −AraA
−1
aa va

vt −AtbA
−1
bbvb

vs −AsaA
−1
aa va −AsbA

−1
bbvb


solving which yields the solution to the original problem.

(42)

Arr −AraA
−1
aaAar 0 Ars −AraA

−1
aaAas

0 0 0

Asr −AsaA
−1
aaAar 0 A

(P)
ss −AsaA

−1
aaAas

ur

ut

us

+

0 0 0
0 Att −AtbA

−1
bbAbt Ats −AtbA

−1
bbAbs

0 Ast −AsbA
−1
bbAbt A

(Q)
ss −AsbA

−1
bbAbs

ur

ut

us

 =

 vr −AraA
−1
aa va

0

v
(P)
s −AsaA

−1
aa va

+

 0
vt −AtbA

−1
bbvb

v
(Q)
s −AsbA

−1
bbvb


The derivations demonstrate that the computation can be split into contributions from each subdomain.

33

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

E.2. Parallel Schwarz elimination step

Previous discussions of the Schwarz step in §3.2.1 are only for illustrative purposes and do not match our implementation of
the Schwarz step. Instead, in this section we provide full details for the Schwarz step that eliminates the interior of each
patch.

The boundary-first ordering. As shown in Figure 26, we adopt a boundary-first ordering that uses η = {0 ∼ 15} to
index the boundary nodes, and ω = {16 ∼ 24} for interior nodes.

η :=[0, 1, 2, ..15] (43)
ω :=[16, 17, 18, ...24] (44)

16

19

22

17

20

23

18

21

24

0

12

1

11

2

10

3

9

15

14

13

4

5

6

7

8

0

15

14

13

12

16

19

22

17

20

23

18

21

24

1

11

2

10

3

9

4

8

5

6

7

→ 0

12

1

11

2

10

3

9

15

14

13

4

5

6

7

8

0

15

14

13

12

1

11

2

10

3

9

4

8

5

6

7

Figure 26. The boundary-first ordering. Schwarz step removes the interior pixels for each patch in parallel.

In contrast, Figure 27 shows the lexicographic sweeping order.

6

11

16

7

12

17

8

13

18

0

20

1

21

2

22

3

23

5

10

15

4

9

14

19

24

0

5

10

15

20

6

11

16

7

12

17

8

13

18

1

21

2

22

3

23

4

24

9

14

19

Figure 27. The lexicographic sweeping ordering.

Define the permutation vector µ that is useful to map array stored in the lexicographic sweeping order to the boundary-first
ordering, and its inverse permutation vector ν:

µ := [0, 1, 2, 3, 4, 9, 14, 19, 24, 23, 22, 21, 20, 15, 10, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18] (45)
ν := [0, 1, 2, 3, 4, 15, 16, 17, 18, 5, 14, 19, 20, 21, 6, 13, 22, 23, 24, 7, 12, 11, 10, 9, 8] (46)

Patch-wise subsystems. This step directly constructs the matrices P,Q ∈ R16×16. The input to the Schwarz step is the
sparse system matrices H(P),H(Q) ∈ R25×25 and right-hand sides h(P),h(Q) ∈ R25×1. Although H(P),H(Q) are sparse,
we treat them as dense matrices in our algorithms. (H(P),h(P)) and (H(Q),h(Q)) play the role of sub-systems in previous
derivations.

H(P) P:←

Arr Ars Ara

Asr A
(P)
ss Asa

Aar Aas Aaa

 h(P) P:←

 vr

v
(P)
s

va

 (47)

H(Q) P:←

Att Ats Atb

Ast A
(Q)
ss Asb

Abt Abs Abb

 h(Q) P:←

 vt

v
(Q)
s

vb

 (48)

In fact, our algorithm always adopts H as the direct representation of A, and never explicitly constructs A as a matrix.
Using H is a much more natural choice to work with parallel linear solvers.

So, our method directly constructs matrix H,h in the following way: the entry H
(P)
ij represents some interaction or affinity

between node i and node j in the subdomain P , under the boundary-first ordering shown in Figure 26. For example, it is

34

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

common that the patch-wise sub-system is given in the lexicographic sweeping order shown in Figure 27 as a matrix and
vector E, e of the same size. in this case, we should first map it to the boundary-first ordering using:

H := E[µ,µ], h := e[µ, :] (49)

The symbol “
P
:←” amounts to using some permutation vector in this way.

We will also be able to map it back to the lexicographic sweeping order if necessary using the inverse permutation vector:

E = H[ν,ν], e = h[ν, :] (50)

We can store the patch-wise sub-systems in the tensors α(∗) ∈ R2×1×25×25, β(∗) ∈ R2×1×25×1:

α(∗)[0, 0, :, :] := H(P), β(∗)[0, 0, :, :] := h(P)

α(∗)[1, 0, :, :] := H(Q), β(∗)[1, 0, :, :] := h(Q)

Then, we call Algorithm 2 for a parallel implementation of the Schwarz step:

Algorithm 2 The parallel Schwarz step. Forward pass.

Require: α(∗) ∈ Rd1×d2×25×25,β(∗) ∈ Rd1×d2×25×1

(d1, d2) is (2k/2, 2k/2), or (2, 1) in the 2-patch illustrative example.

X :=α[:, :,η,η] Y :=α[:, :,η,ω] y :=β[:, :,η, :], (51)
Z :=α[:, :,ω,η] W :=α[:, :,ω,ω] w :=β[:, :,ω, :]. (52)

D :=
(
X−YW−1Z

)
d := y −YW−1w (53)

α := D, β := d (54)

return α(0) ∈ Rd1×d2×16×16,β(0) ∈ Rd1×d2×16×1

Algorithm 2 simultaneously calculates the new sub-systems for all subdomains—P and Q in the case of two subdomains.
and the sub-systems can be fetched from the tensor α.

P = α[0, 0, :, :]

Q = α[1, 0, :, :]

Algorithm 2 still applies when there is an d1 × d2 array of patches, instead of an 2× 1 array of patches that we used as the
illustration example. Algorithm 2 conducts batch-wise computation that simultaneously calculates the new sub-systems for
all patches.

E.3. Details on Schur step

Now we provide details on the Schur step that merges every two adjacent sub-systems, to supplement §3.2.2.

The Schur step assembles the new system D by Schur “involuting” the sub-systems P,Q. The step takes as input the
left-hand and right-hand sides (P,p) and (Q,q), and outputs a new left-hand and right-hand sides (D,d).

We store the sub-systems in a four dimensional tensor α(j) that α(j)[c, d, :, :] stores the system matrix at (c, d) in the array
of subdomains.

35

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Algorithm 3 The parallel Schwarz step. Backward pass.

Require: χ(0): tensor of size (d1, d2, 16, 16).

x := uη (55)

uω := W−1 (w − Zx) (back-substitution), (56)

χ(∗) := ZEROS(2k/2, 2k/2, 25 · 2i, 1). (57)

χ(∗)[:, :,η, :] := uη (58)

χ(∗)[:, :,ω, :] := uω (59)

return χ(∗) tensor of size (d1, d2, 25, 25).

α(j) contains all reduced systems. For j = (2i + 1), the j-th Schur step takes as input α(j) of size (2k/2−i, 2k/2−i, 16 ·
2i, 16 · 2i), and outputs α(j+1) of size (2k/2−i−1, 2k/2−i, 24 · 2i, 24 · 2i);
For j = (2i+ 1), i = 0, 1, ..., k − 1, the j-th Schur step merges subdomains in the horizontal direction.

For j = (2i+ 2), i = 0, 1, ..., k − 1, the j-th Schur step merges subdomains in the vertical direction.

0

12

1

11

2

10

3

9

4

8

15

14

13

4

8

5

6

7

0 1 2 3 0

12

15

14

13

1

11

2

10

3

9

4

8

5

6

7

→ 0

20

1

19

2

18

3

17

4

16

23

22

21

4

16

5

15

6

14

7

13

8

12

9

10

11

0 1 2 3

Figure 28. Figure 4: Schur step collapses subdomains P and Q into D.

Horizontal merge Divide the nodes in P into contiguous subsets α,β,γ, δ, ϵ, such that

α=[0, 1, 2, 3],β = [4],γ = [5, 6, 7], δ = [8], ϵ = [9, 10, 11, 12, 13, 14, 15]. (60)

Divide the nodes in Q into contiguous subsets κ,λ,µ,ν, such that:

κ=[0],λ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],µ=[12],ν = [13, 14, 15]. (61)

Under the indexing in Figure 4, D’s boundary consists of the nodes corresponding to α,β,λ, δ, ϵ. β,κ represent the same
node after merging, so are δ,µ.

It makes sense to define their indices in the merged domain.

α̂ = [0, 1, 2, 3], β̂ = [4], λ̂ = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], δ̂ = [16], ϵ̂ = [17, 18, 19, 20, 21, 22, 23]. (62)

Note that the values of these indices depend on the shape of the patches: we only give their values in the first Schur step.

The node grouping implies partitioning the matrix P,Q into submatrices, by dividing the rows and columns into subsets.

36

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

(63)






Pαα Pαβ 0αλ Pαδ Pαϵ

Pβα Pββ 0βλ Pβδ Pβϵ

0λα 0λβ 0λλ 0λδ 0λϵ

Pδα Pδβ 0δλ Pδδ Pδϵ

Pϵα Pϵβ 0ϵλ Pϵδ Pϵϵ



Pαγ

Pβγ

0λγ

Pδγ

Pϵγ

[
Pγα Pγβ 0γλ Pγδ Pγϵ

] [
Pγγ

]



+




0αα 0αβ 0αλ 0αδ 0αϵ

0βα Qκκ Qκλ Qκµ 0βϵ

0λα Qλκ Qλλ Qλµ 0λϵ

0δα Qµκ Qµλ Qµµ 0δϵ

0ϵα 0ϵβ 0ϵλ 0ϵδ 0ϵϵ




0αγ

QκνJ
QλνJ
QµνJ
0ϵγ

[
0γα J⊺Qνκ J⊺Qνλ J⊺Qνµ 0γϵ

] [
J⊺QννJ

]






uα

uβ

uλ

uδ

uϵ

uγ

 =


pα

pβ + qκ

qλ

pδ + qµ

pϵ

pγ + J⊺qν


is the linear system for the joint domain D. Since β,κ represent the same node, they correspond to the same row/column;
the same applies to δ,µ. Note that γ represents the same set of nodes as ν but in reverse order. Let J ≡ J⊺ to be the reverse
permutation matrix (see §E), whose action is to reverse the rows (or columns) of a matrix when being multiplied with from
left (or right).

E.4. Final algorithm

Algorithm 1 specifies the overall algorithm with both the numerical factorization and back substitution stages.

The numerical factorization variant can be implemented by only keeping the computations involving α, and returns and
saves the values of α(0), α(1), ..., α(k) for the use of the back substitution step.

The back substitution variant can be realized by only keeping the lines involving β,χ, and using the α(0), α(1), ..., α(k)

cached in the numerical factorization step.

37

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Algorithm 4 The parallel Schur step, j-th step, j = (2i+ 1). Forward pass. Horizontal.

Require: α(j) of size (2k/2−i, 2k/2−i, 16 · 2i, 16 · 2i),
Require: β(j) of size (2k/2−i, 2k/2−i, 16 · 2i, 1).
P,Q are fetched in batches from α(j) for all red and blue subdomains.

P := α(j)[0 :: 2, :, :, :], p := β(j)[0 :: 2, :, :, :] (64)

Q := α(j)[1 :: 2, :, :, :], q := β(j)[1 :: 2, :, :, :] (65)


Pαα Pαβ Pαγ Pαδ Pαϵ

Pβα Pββ Pβγ Pβδ Pβϵ

Pγα Pγβ Pγγ Pγδ Pγϵ

Pδα Pδβ Pδγ Pδδ Pδϵ

Pϵα Pϵβ Pϵγ Pϵδ Pϵϵ

 := P,


pα

pβ

pγ

pδ

pϵ

 := p, (66)


Qκκ Qκλ Qκµ Qκν

Qλκ Qλλ Qλµ Qλν

Qµκ Qµλ Qµµ Qµν

Qνκ Qνλ Qνµ Qνν

 := Q,


qκ

qλ

qµ

qν

 := q. (67)

X :=


Pαα Pαβ 0αλ Pαδ Pαϵ

Pβα Pββ +Qκκ Qκλ Pβδ +Qκµ Pβϵ

0λα Qλκ Qλλ Qλµ 0λϵ

Pδα Pδβ +Qµκ Qµλ Pδδ +Qµµ Pδϵ

Pϵα Pϵβ 0ϵλ Pϵδ Pϵϵ

 (68)

Y :=


Pαγ

Pβγ +QκνJ
QλνJ

Pδγ +QµνJ
Pϵγ

 y :=


pα

pβ + qκ

qλ

pδ + qµ

pϵ

 (69)

Z := [Pγα Pγβ + J⊺Qνκ J⊺Qνλ Pγδ + J⊺Qνµ Pγϵ] (70)

W :=
[
Pγγ + J⊺QννJ

]
w :=

[
pγ + J⊺qν

]
(71)

D :=
(
X−YW−1Z

)
d := y −YW−1w (72)

α := D, β := d (73)

return α(j+1) of size (2k/2−i−1, 2k/2−i, 24 · 2i, 24 · 2i),
β(j+1) of size (2k/2−i−1, 2k/2−i, 24 · 2i, 1)

38

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

Algorithm 5 The parallel j-th Schur step, j = (2i+ 1). Backward pass. Horizontal.

Require: χ(j+1) of size (2k/2−i, 2k/2−i, 24 · 2i, 1)


uα̂

uβ̂

uλ̂
uδ̂
uϵ̂

 := β(j) or

uα̂ :=β(j)[:, :, α̂, :]

uβ̂ :=β(j)[:, :, β̂, :]

uλ̂ :=β(j)[:, :, λ̂, :]

uδ̂ :=β(j)[:, :, δ̂, :]

uϵ̂ :=β(j)[:, :, ϵ̂, :]

(74)

x :=


uα̂

uβ̂

uλ̂
uδ̂
uϵ̂

 (75)

χ(j) := ZEROS(2k/2−i, 2k/2−i, 16 · 2i, 1). (76)

uγ := W−1 (w − Zx) (back-substitution), (77)

where we use upper script to emphasize that it does not correspond to slice into a vector.

χ(j)[0 :: 2, :, :, :] :=


uα̂

uβ̂

uγ

uδ̂
uϵ̂

 or

χ(j)[0 :: 2, :,α, :] :=uα̂

χ(j)[0 :: 2, :,β, :] :=uβ̂

χ(j)[0 :: 2, :,γ, :] :=uν

χ(j)[0 :: 2, :, δ, :] :=uδ̂

χ(j)[0 :: 2, :, ϵ, :] :=uϵ̂

,

χ(j)[1 :: 2, :,κ, :] :=uβ̂

χ(j)[1 :: 2, :,λ, :] :=uλ̂

χ(j)[1 :: 2, :,µ, :] :=uδ̂

χ(j)[1 :: 2, :,ν, :] :=J⊺uγ

(78)

return χ(j) of size (2k/2−i, 2k/2−i, 16 · 2i, 1).

39

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

E.5. Graph algorithm perspective

Gaussian elimination, including our method, can be simply understood as a graph algorithm that removes nodes from
a graph, while updating the edge weights accordingly. The graph algorithm perspective can make the overall algorithm
significantly easier to understand.

Weighted graph. The matrix A plays the same role as the adjacency matrix in graph theory. As in Figure 21, initially each
pixel in the image is a node in the graph, and two nodes are connected by an edge with weights Aij , if the pixels i and j are
adjacent (as defined in Sec. 2).

Node elimination Sequential Gaussian elimination removes nodes one by one from the graph. When removing a node k
from the current graph, we only need to apply a simple modification to matrix A: for all pair of nodes i, j that are both
adjacent to k, update Aij by subtracting the term AikA

−1
kkAkj from it.

Aij ← Aij −AikA
−1
kkAkj , ∀i, j

Aik ← 0, ∀i
Aki ← 0, ∀i
Akk ← 0.

(weights updating) (79)

Since Ak,:,A:,k—the row and column that correspond to node k become zero after the step, we can actually delete them
from the matrix; note we will need to relabel and nodes after the deletion. That is, when deleting a node k, the indirect
influence of node j on i via k, is attributed through a direct influence of node j on i.

While the sequential Gaussian elimination is sufficient to solve the linear system and is mathematical equivalent to our
method, it is inefficient. As an improvement, we can remove multiple nodes in a single elimination, to leverage dense CUDA
BLAS kernel.

Block (multiple nodes) elimination The updating formula generalizes to the case when i, j, k each is not a single node,
but each consists of a set of nodes. Then, we have block Gaussian elimination: first divide the domain into three sets of
nodes as r, s, and t, such that any node in r is not connected to any node in t as separated by s. The 3× 3 block: Arr Ars 0 = Art

Asr Ass Ast

0 = Atr Ats Att


becomes the 2× 2 block: [

Ass −AsrA
−1
rr Ars Ast

Ats Att

]

Namely, the update rule is to subtract the adjustment term AsrA
−1
rr Ars.

Arr ← Arr −AsrA
−1
rr Ars,

Ars ← 0,

Asr ← 0,

Arr ← 0.

(weights updating) (80)

Parallel block elimination For efficiency, we apply many Schur complements in parallel. In §3, we simply do two block
Gaussian elimination at the same time. Then our algorithm is basically a parallel block Gaussian elimination in which many
groups of nodes (marked in yellow in Figure 3) are removed by concurrently subtracting many adjustment terms. The major
effort in the code is “index-tracking”: carefully track what the indices of remaining nodes become after some nodes are
removed.

40

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

E.6. Illustration on a 3x7 image

An example with detailed visualization Let us first consider a smaller 3× 7 image for the convenience of illustration, as
shown in Figure 23. Each pixel corresponds to a node in the graph and is assigned with an index i ∈ {0, 1, ..., 21− 1}. Two
nodes i and j, where i, j ∈ {0, 1, ..., 21− 1}, are connected by an edge if the 3× 3 kernel centered at one node will cover
the other node. Aij = 0 if node i and node j are not connected by an edge in the graph. Each of the color includes the
following subsets of nodes: r = [0, 1, 2, 7, 14, 15, 16], s = [3, 10, 17], t = [4, 5, 6, 13, 18, 19, 20], a = [8, 9], b = [11, 12].

The original sparse linear system, A ∈ R21×21:

21−1∑
j=0

Aijuj = vi,∀i ∈ {0, 1, ..., 21− 1}. (81)

0

7

14

1

8

15

2

9

16

3

10

17

4

11

18

5

12

19

6

13

20

→
Figure 29. The connectivity graph resulted from the use of the 3× 3 kernel size, for a 3× 7 image under the lexicographic sweeping order.

41

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

(0, 0)

(7, 0)

(1, 0)

(8, 0)

v0

u0

(0, 7)

(7, 7)

(14, 7)

(1, 7)

(8, 7)

(15, 7)

v7

u7

(7, 14)

(14, 14)

(8, 14)

(15, 14)

v14

u14

(0, 1)

(7, 1)

(1, 1)

(8, 1)

(2, 1)

(9, 1)

v1

u1

(0, 8)

(7, 8)

(14, 8)

(1, 8)

(8, 8)

(15, 8)

(2, 8)

(9, 8)

(16, 8)

v8

u8

(7, 15)

(14, 15)

(8, 15)

(15, 15)

(9, 15)

(16, 15)

v15

u15

(1, 2)

(8, 2)

(2, 2)

(9, 2)

(3, 2)

(10, 2)

v2

u2

(1, 9)

(8, 9)

(15, 9)

(2, 9)

(9, 9)

(16, 9)

(3, 9)

(10, 9)

(17, 9)

v9

u9

(8, 16)

(15, 16)

(9, 16)

(16, 16)

(10, 16)

(17, 16)

v16

u16

(2, 3)

(9, 3)

(3, 3)

(10, 3)

(4, 3)

(11, 3)

v3

u3

(2, 10)

(9, 10)

(16, 10)

(3, 10)

(10, 10)

(17, 10)

(4, 10)

(11, 10)

(18, 10)

v10

u10

(9, 17)

(16, 17)

(10, 17)

(17, 17)

(11, 17)

(18, 17)

v17

u17

(3, 4)

(10, 4)

(4, 4)

(11, 4)

(5, 4)

(12, 4)

v4

u4

(3, 11)

(10, 11)

(17, 11)

(4, 11)

(11, 11)

(18, 11)

(5, 11)

(12, 11)

(19, 11)

v11

u11

(10, 18)

(17, 18)

(11, 18)

(18, 18)

(12, 18)

(19, 18)

v18

u18

(4, 5)

(11, 5)

(5, 5)

(12, 5)

(6, 5)

(13, 5)

v5

u5

(4, 12)

(11, 12)

(18, 12)

(5, 12)

(12, 12)

(19, 12)

(6, 12)

(13, 12)

(20, 12)

v12

u12

(11, 19)

(18, 19)

(12, 19)

(19, 19)

(13, 19)

(20, 19)

v19

u19

(5, 6)

(12, 6)

(6, 6)

(13, 6)

v6

u6

(5, 13)

(12, 13)

(19, 13)

(6, 13)

(13, 13)

(20, 13)

v13

u13

(12, 20)

(19, 20)

(13, 20)

(20, 20) v20

u20

Figure 30. Same as Figure 24 but for a 3× 7 image.

42

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

(0, 0)

(7, 0)

(1, 0)

(8, 0)

v0

u0

(0, 7)

(7, 7)

(14, 7)

(1, 7)

(8, 7)

(15, 7)

v7

u7

(7, 14)

(14, 14)

(8, 14)

(15, 14)

v14

u14

(0, 1)

(7, 1)

(1, 1)

(8, 1)

(2, 1)

(9, 1)

v1

u1

(0, 8)

(7, 8)

(14, 8)

(1, 8)

(8, 8)

(15, 8)

(2, 8)

(9, 8)

(16, 8)

v8

u8

(7, 15)

(14, 15)

(8, 15)

(15, 15)

(9, 15)

(16, 15)

v15

u15

(1, 2)

(8, 2)

(2, 2)

(9, 2)

(3, 2)

(10, 2)

v2

u2

(1, 9)

(8, 9)

(15, 9)

(2, 9)

(9, 9)

(16, 9)

(3, 9)

(10, 9)

(17, 9)

v9

u9

(8, 16)

(15, 16)

(9, 16)

(16, 16)

(10, 16)

(17, 16)

v16

u16

(2, 3)

(9, 3)

(3, 3)

(10, 3)

(4, 3)

(11, 3)

v3

u3

(2, 10)

(9, 10)

(16, 10)

(3, 10)

(10, 10)

(17, 10)

(4, 10)

(11, 10)

(18, 10)

v10

u10

(9, 17)

(16, 17)

(10, 17)

(17, 17)

(11, 17)

(18, 17)

v17

u17

(3, 4)

(10, 4)

(4, 4)

(11, 4)

(5, 4)

(12, 4)

v4

u4

(3, 11)

(10, 11)

(17, 11)

(4, 11)

(11, 11)

(18, 11)

(5, 11)

(12, 11)

(19, 11)

v11

u11

(10, 18)

(17, 18)

(11, 18)

(18, 18)

(12, 18)

(19, 18)

v18

u18

(4, 5)

(11, 5)

(5, 5)

(12, 5)

(6, 5)

(13, 5)

v5

u5

(4, 12)

(11, 12)

(18, 12)

(5, 12)

(12, 12)

(19, 12)

(6, 12)

(13, 12)

(20, 12)

v12

u12

(11, 19)

(18, 19)

(12, 19)

(19, 19)

(13, 19)

(20, 19)

v19

u19

(5, 6)

(12, 6)

(6, 6)

(13, 6)

v6

u6

(5, 13)

(12, 13)

(19, 13)

(6, 13)

(13, 13)

(20, 13)

v13

u13

(12, 20)

(19, 20)

(13, 20)

(20, 20) v20

u20

vb

va

vs

vt

vr

u⊺
r u⊺

t u⊺
s u⊺

a u⊺
b

Figure 31. Same as Figure 25 but for a 3× 7 image.

43

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

F. Extra Information
Please note that our use of the term “involution” is not related to the mathematical concept that refers to a self-inverse
function as an “involution,” though deploying our solver in an eigen solver resembles similar concepts. We use “involution”
to refer to the exact, generalized, and inverted convolution—generalized in the sense of spatially varying kernels. Our use of
“involution” is close to its biomedical meaning—the shrinking or reduction in the size of an organ, but applied to an image.

F.1. Details on FEM and PDE discretization: addibility of parallel linear elements

Although where the matrix A or the tensor α comes from does not matter to apply our sparse solver, as long as A is
invertible with the sparsity pattern we have described, we supplement with implementation details for reproducibility.
Despite that theoretically one could use, e.g., bilinear bases as well, in this paper, we use the first-order piecewise-linear
finite element method (Wang et al., 2023) to discretize the partial differential equations. There are multiple advantages:
1) The discretized system preserved certain algebraic properties of the continuous PDEs that are particularly valuable in
geometry tasks (Wang et al., 2023). 2) Most importantly, the addibility of parallel linear elements. It is easy to verify that
if each of the patch (i, j) puts in α(∗)[i, j, :, :] the Laplacian matrix L(i,j) that is discretized with the Neumann boundary
condition, then assembling together these patch sub-matrices yields the Laplacian matrix L for the whole image
domains, under the same Neumann boundary condition. Here “assembling patch sub-matrices” means summing together
the sub-matrices to a large sparse matrix L by indexing into the rows and columns of L that the patch nodes correspond to.
In other words, we know it holds that:

L ≡
∑
(i,j)

(J(i,j))⊺L(i,j)J(i,j) ∈ Rn×n (82)

where L(i,j) ∈ R25×25 comes from the Laplacian matrix discretizing an elliptic PDE with the Neumann boundary condition,
and L ∈ Rn×n comes from discretizing the same PDE & boundary condition but over the entire image domain. Here
J(i,j) ∈ R25×n is the binary matrix, playing the role of putting the patch sub-system L(i,j) in the correct rows and columns
of the large sparse system.

The fact can be verified by noticing that using first-order piecewise-linear FEM (Wang et al., 2023) to discretize the elliptic
PDE (3) which stores the anisotropic tensor C(x) as a 2× 2 matrix per triangle, each triangle will contribute to the entries
of A independently using information only within that triangle. The fact that patch sub-systems can be “seamlessly” added
together thanks to the use of the Neumann boundary condition—the natural boundary condition. Using certain high-order
finite element methods might necessitate information exchange between adjacent patches, which is still doable but requires
extra care in the implementation.

A double covered FEM mesh layout for images. During the tessellation of the regular grid as triangular meshes, to avoid
bias in choosing the orientation of the long edge of the triangles, we simply use a double-covered triangular mesh—each
square has four cross-edge triangles whose edges connect pixels.

Figure 32. Our double-covered piecewise-linear triangle mesh layout.

F.2. Issues with incorporating iterative solvers in deep learning

In this section, we identify a key obstacle preventing neural architectures from adopting linear solvers: the lack of
SCHWARZ such as our method—a Sparse solver that is Consistent-performance, Hyperspeed, in-the-Wild, Accurate,
Robust, and Zero-parameter. We explain why indirect, a.k.a. iterative, solvers fall short of these goals.

Deploying iterative solvers appropriately comes with a tedious workflow, requiring users in the loop with PhD-level expertise
in numerical analysis, PDEs, GPU optimization, or image processing. Iterative solvers require problem-specific solvers
with many parameters, preconditioners which also have parameters. Although solvers such as LSMR and LSQR seem to
be applicable to all matrices, especially when it comes to random deconvolution, we observe that they can be inefficient

44

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

compared to our method in §4.

The large diversity of possible PDEs makes it difficult for one user to master all the methods well and implement the entire
arsenal of numerical PDEs. Especially, we lack an automatic pipeline to analyze the type of A to deploy the appropriate
iterative solvers, and to automatically set the parameters, preconditioner, and the parameters of the preconditioner for good
performance by analyzing entries of A. In the setup of PDE learning, the exact form of PDE is unknown. To algorithmically
search for the PDE (that is, the matrix A represents it), one will have to implement iterative solvers for all possible PDEs,
which is an infeasible task for unstudied PDEs. Iterative solvers can perform poorly for highly singularly, stiff, anisotropic
coefficients, or oscillatory solutions such as the Helmholtz equation under a relatively large frequency (Ernst & Gander,
2011).

Even restricting to solving some well-studied PDEs, so there are efficient iterative numerical schemes, the best values of these
parameters also depend on the entries and properties of A. The many parameters in iterative solvers must be appropriately
set to yield a correct result: sigma shift values, preconditioning schemes, and parameters such as error tolerance, maximum
iterations. Below is an example taken from the official example of Nvidia AMGX (Naumov et al., 2015).

1 cfg = pyamgx.Config().create_from_dict({
2 "config_version": 2,
3 "determinism_flag": 1,
4 "exception_handling" : 1,
5 "solver": {
6 "monitor_residual": 1,
7 "solver": "FGMRES",
8 "convergence": "RELATIVE_INI_CORE",
9 "tolerance": 1e-6,

10 "max_iters": 10000,
11 "gmres_n_restart": 20,
12 "norm": "L2",
13 "preconditioner": {
14 "solver": "AMG",
15 "algorithm": "CLASSICAL",
16 "max_iters": 2,
17 "presweeps": 1,
18 "postsweeps": 1,
19 "cycle" : "V",
20 },
21 },
22 })

That said, even to solve a single instance of PDE with iterative solvers, the user may have to manually repeat the trial-and-
error steps until convergence: tweak the parameters and then run the iterative solver with them; if not converged or the
result is not desirable, the user has to go back to change the parameters. The tedious user-in-the-loop workflows prevent
training with a solver in the loop on a massive amount of data in scientific machine learning in a way similar to the practice
of computer vision and natural language processing.

Unpredictable runtime: When the input problem changes, the runtime can change dramatically, which is a critical drawback
for interactive applications such as self-driving cars. Conservative parameter settings significantly slow down iterative
solvers, and aggressive parameter settings risk insufficient iterations or unconverged results.

Catastrophic failures can incur when applying unsuitable iterative solvers: it can obtain totally wrong results to ruin trained
models, calling for user intervention: manually fixes for certain training examples and restoration from trained checkpoints.

45

Schwarz-Schur Involution: Lightspeed Differentiable Sparse Linear Solvers

F.3. Differentiable sparse solvers: widely desired, yet absent

Here are links to examples of community requests and discussions on differentiable linear solvers. Despite of the frequent
requests, linear solvers have only very limited support in mainstream deep learning packages, which perhaps makes sense
because existing sparse linear solvers are quite limited in applicability, and inefficient compared to other differentiable
modules and our method. Naı̈vely porting existing solvers to, e.g., PyTorch, makes them the sole bottleneck in the training
pipelines. For example, JAX has a sparse solver, which is CPU-only and wraps up a naı̈ve callback of SciPy’s “spsolve”
function. PyTorch still does not have a sparse linear solver until Oct. 2024 (version 2.4). Concurrent to the development of
our work, since version 2.5, PyTorch recently starts to supporting a sparse solver backended by cuDSS, which, however, can
be much slower than our method.

https://github.com/pytorch/pytorch/issues/58828,

https://github.com/pytorch/pytorch/issues/108977,

https://github.com/pytorch/pytorch/issues/69538,

https://discuss.pytorch.org/t/linear-solver-for-sparse-matrices/200289/6,

https://github.com/tensorflow/addons/pull/2396,

https://github.com/tensorflow/addons/issues/2387,

https://github.com/tensorflow/tensorflow/issues/27380,

https://discuss.pytorch.org/t/solving-ax-b-for-sparse-tensors-preferably-with-backward/102331,

https://discuss.pytorch.org/t/differentiable-sparse-linear-solver-with-cupy-backend-unsupported-tensor-layout-sparse-in-gradcheck/

141309.

https://github.com/jax-ml/jax/discussions/18452

46

https://github.com/pytorch/pytorch/issues/58828
https://github.com/pytorch/pytorch/issues/108977
https://github.com/pytorch/pytorch/issues/69538
https://discuss.pytorch.org/t/linear-solver-for-sparse-matrices/200289/6
https://github.com/tensorflow/addons/pull/2396
https://github.com/tensorflow/addons/issues/2387
https://github.com/tensorflow/tensorflow/issues/27380
https://discuss.pytorch.org/t/solving-ax-b-for-sparse-tensors-preferably-with-backward/102331
https://discuss.pytorch.org/t/differentiable-sparse-linear-solver-with-cupy-backend-unsupported-tensor-layout-sparse-in-gradcheck/141309
https://discuss.pytorch.org/t/differentiable-sparse-linear-solver-with-cupy-backend-unsupported-tensor-layout-sparse-in-gradcheck/141309
https://github.com/jax-ml/jax/discussions/18452

	Introduction
	Related Work

	Mathematical Preliminaries
	Schur Involution for Parallel Elimination
	A motivating example: sparse solvers too slow?
	Parallel block Gaussian elimination
	Schwarz step: decompose & initialize DtN
	Schur step: merge adjacent DtNs
	General cases

	Discussion

	Results and Validations
	A zero-shot baseline of efficient PDE solvers

	Applications
	Conclusion and Future Work
	Extended Discussions on Related Work
	Visualization, Applications, and Experiments
	Newton's method and interactive graphics
	Physical simulation and shape optimization
	Image matting and segmentation
	Fast eigen solver for spectral segmentation
	PDEs on domains with a non-disk topology
	Timing details
	Numerical stability
	Complexity analysis

	Method: Extended Discussions
	Dirichlet-to-Neumann factorization
	Solvers for Neumann boundary condition
	Solution 1
	Solution 2
	Solution 3

	Differentiable linear solvers and derivatives
	Two settings in linear solvers
	Involution: exact inverse convolution (spatially varying kernel)
	Inverse problems, optimal control of PDEs, and PDE-constrained optimization
	Generalize to larger kernels

	Discussions and Implementation Details
	Details on the algorithm
	Distributed representations of sparse systems
	Details on experiment setups
	Memory complexity
	Midpoint reflective boundary condition

	Detailed Method Description with Necessary Background Information
	Case study: two subdomains
	Parallel Schwarz elimination step
	Details on Schur step
	Final algorithm
	Graph algorithm perspective
	Illustration on a 3x7 image

	Extra Information
	Details on FEM and PDE discretization: addibility of parallel linear elements
	Issues with incorporating iterative solvers in deep learning
	Differentiable sparse solvers: widely desired, yet absent

