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Abstract

In automated task planning, state estimation is the process of
translating an agent’s sensor input into a high-level task state.
It is important because real-world environments are unpre-
dictable, and actions often do not lead to expected outcomes.
State estimation enables the agent to manage uncertainties,
adjust its plans, and make more informed decisions. Tradi-
tionally, researchers and practitioners relied on hand-crafted
and hard-coded state estimation functions to determine the
abstract state defined in a specific task domain. Recent ad-
vancements in Vision-Language Models (VLMs) enable au-
tonomous retrieval of semantic information from visual in-
put. We present Semantic Symbolic State Estimation (S3E),
the first general-purpose symbolic state estimator based on
VLMs that can be applied in various settings without special-
ized coding or additional exploration. S3E takes advantage
of the foundation model’s internal world model and seman-
tic understanding to assess the likelihood of certain symbolic
components of the environment’s state. We analyze S3E as
a multi-label classifier, reveal different kinds of uncertainties
that arise when using it, and show how they can be mitigated
using natural language and targeted environment design. We
show that S3E can achieve over 90% state estimation preci-
sion in our simulated and real-world robot experiments.

Introduction
Automated task planning is a crucial component for intelli-
gent agents to solve complex and ever-changing tasks (Ghal-
lab, Nau, and Traverso 2016; Geffner and Bonet 2013). In
some cases, it is appropriate to assume that an agent has full
domain knowledge (the Closed World Assumption (CWA)
(Reiter 1981)) and that all facts about the world are known.
However, an agent’s observations are often based on its sens-
ing capabilities, especially in real-world applications, from
which extracting these facts is non-trivial. State estimation
is the process of obtaining a high-level state of the envi-
ronment, i.e., translating numeric sensor input into seman-
tic facts. (Chen, Xiao, and Hsu 2024; Castaman et al. 2021;
Lagriffoul et al. 2018). State estimation is crucial for mon-
itoring the execution of a plan. Should an action lead to an
unexpected state, there may be grounds for replanning or re-
porting of task failure.
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Example 1 A robotic arm is tasked with rearranging gro-
ceries on multiple tables. The goal is to move a box of ce-
real and a carton of milk to a specific table where the hun-
gry human would like to prepare her breakfast. A task plan-
ner chooses the following plan: “pick-up(milk, table1)”,
“put-down(milk, table3)”, “pick-up(cereal, table2)”, “put-
down(cereal, table3)”. While moving to place the cereal on
table number 3, the the object is dropped due to a bad grasp,
and lands on table number 1. Using a state estimator, we
notice that the expected state where the cereal box is on ta-
ble number 3 has not been achieved. We thus call the task
planner once more to obtain the following plan that will
lead us to the goal state: “pick-up(cereal, table1)”, “put-
down(cereal, table3)”.

Current state-of-the-art methods for task planning rely
on hand-crafted and hard-coded state estimation functions
(Moreno et al. 2024; Garrett, Lozano-Pérez, and Kaelbling
2020). This is time-consuming work that relies on advanced
sensing equipment, which results in domain-specific outputs
that do not adapt to any changes in the environment or task.
We desire a general state estimation function that requires
no specialized coding, no additional exploration, and gener-
alizes to a large scope of tasks.

With the rise of powerful instruction-based Vision-
Language Models (VLMs), i.e., vision-based foundation
models, it is now possible to answer complex semantic ques-
tions about a scene based on visual input alone (Liu et al.
2023b; OpenAI 2023). Previous approaches required a spe-
cialized combination of computer vision tools to answer spe-
cific questions about an image. By comparison, VLMs are
designed to answer any question about an image. Questions
are specified in natural language and are mostly answered
accurately if the input is within its training distribution.

In this work, we introduce Semantic Symbolic State Es-
timation (S3E), the first zero-shot state estimator based on
these VLMs. Our objective is to provide a general, versatile,
and performant solution for state estimation that will accel-
erate the process of constructing state estimation functions
for researchers and practitioners of task planning. S3E takes
advantage of the foundation model’s internal world model
and semantic understanding (Schneider, Meske, and Kuss
2024; Smeaton 2024) to assess the likelihood of certain sym-
bolic components of the environment’s state that are relevant
to the task being solved. It consists of two stages: (1) trans-



lating symbolic predicate definitions into natural language
questions and (2) answering them given visual input. We
show that the translation stage significantly improves perfor-
mance in the “Translation Stage Ablation” appendix. Fig. 1
demonstrates the usage of S3E in a real-world robotics task.
We show that a zero-shot solution is indeed possible in some
cases. To further improve performance alongside the VLM’s
strong priors, we use natural language instruction and tar-
geted environment design to remove ambiguities and reduce
uncertainties about the environment or task.

We analyze S3E as a multi-label classifier where the la-
bels are the set of grounded predicates that make up all pos-
sible facts about the task state. Our experiments focus on
usability and showcase a simulated and real-world robotic
domain. S3E also achieves high performance in a photoreal-
istic blocksworld with ever-changing objects in the “Object
Diversity Experiment with Photorealistic Blocksworld” ap-
pendix, showing that it is truly general-purpose and versa-
tile. We propose task-specific solutions to handle two kinds
of uncertainties in our proposed state estimator. The first
is the model’s uncertainty regarding the state. The second
stems from the subjective nature of the actual state relative to
the intent of the task designer, i.e., whether a certain property
holds for a given state is in the eye of the beholder. We show
examples of these uncertainties and how they can be reduced
using natural language instruction and minimal environment
design. This improves on previous work that elicit uncertain-
ties in language models (Ren et al. 2023; Xiong et al. 2023)
by leveraging this idea for symbolic state estimation in the
context of task planning. Regardless of these uncertainties,
general-purpose state estimation is a needed change from the
specialized solutions offered by today’s state-of-the-art.

This paper presents the following contributions:

• Introduction of Semantic Symbolic State Estimation
(S3E): first zero-shot symbolic state estimator using
vision-based foundation models.

• Proposal of a general solution for high-level state estima-
tion in task planning.

• Identification and mitigation of model uncertainty and
task-specific ambiguity.

• Empirical demonstration of S3E’s effectiveness in simu-
lated and real-world environments.

Related Work
State estimation is vital for automated agents performing
complex tasks, especially in Task and Motion Planning
(TMP), where recognizing the state amidst uncertain dy-
namics is crucial for integrating high-level actions with
physical motions (Curtis et al. 2024; Garrett et al. 2021; La-
griffoul et al. 2018; Kaelbling and Lozano-Pérez 2011). Tra-
ditionally, state estimators have been hand-crafted (Moreno
et al. 2024; Garrett, Lozano-Pérez, and Kaelbling 2020), and
modern task planning toolkits still rely on such manual cod-
ing (Wertheim, Suissa, and Brafman 2024). Learning-based
methods, like Pankert and Hutter (2023), address specific
tasks but lack generalizability and require exploration steps.
In contrast, our approach eliminates manual coding and ex-

ploration, leveraging Vision-Language Models (VLMs) for
zero-shot generalization.

Large Language Models (LLMs) have been explored in
task planning (Kambhampati et al. 2024; Liu et al. 2023a;
Huang et al. 2022) but typically overlook environment dy-
namics and sensing. Chen et al. (2024) automate TMP using
LLMs but depend on textual domain representations and ig-
nore state uncertainty. Unlike these, S3E incorporates sensor
input for state estimation.

Open-world planning has introduced LLMs in tasks
where the agent lacks prior knowledge of its environment.
Singh et al. (2023) assume known initial states and action
effects, while Ding et al. (2023) predict planning obstacles
without full state estimation. VLM-based state estimation
approaches, such as Chen, Xiao, and Hsu (2024), rely on
external action success indicators. Duan et al. (2024b) uses
VLMs in a robot manipulation pipeline that includes state
estimation. However, the method requires a scene represen-
tation with task-specific elements and demonstrations while
being coupled into a manipulation-centric system. Duan
et al. (2024a) and Liu, Bahety, and Song (2023) also use
VLMs for scene understanding but focus on reasoning over
action failure rather than state estimation.

Another string of related work is that of scene graph gen-
eration. These methods are designed to construct a match-
ing graph of semantic entities and their relationships from a
given scene representation. The scene representation can be
3D, e.g., mesh (Armeni et al. 2019) or point cloud (Wang
et al. 2023b) (which may be hard to come by), while oth-
ers use images Zhao et al. (2023); Wu et al. (2023). Some
approaches are even specifically geared toward perception
and planning (Maggio et al. 2024; Gu et al. 2024). Unlike
these approaches, S3E requires no additional training be-
yond that of the pre-trained VLM. It does not need task-
specific adaptation, making it more versatile out-of-the-box.
Furthermore, S3E and scene graphs do not cancel each other
out, i.e., they can be used together to further improve state
estimation accuracy. For example, scene graph data may be
used as additional input for S3E to mitigate uncertainties
about the scene.

Background
Symbolic Task Domains In this work, we support agents
with tasks for which the task domain (Geffner and Bonet
2013) is defined as a tuple Σ = ⟨S, s0, SG, A, T, c⟩. s0 ∈ S
is the initial state, SG ⊆ S is a set of goal states, A(s) ⊆ A
is the set of actions applicable at state s, T is a determin-
istic transition function where T (a, s) ∈ S is the state that
follows s after performing action a, and c(a, s) is a posi-
tive cost of performing action a at state s. A task plan is a
sequence of actions (a1, ..., an) that are applicable in order
from s0 onwards and ultimately reach some state s ∈ SG.

We focus on symbolic representations of task domains.
Namely, s is defined over a finite feature space F . Thus,
each state s ∈ S is an assignment over the set of features,
i.e., s = (f1, f2, ..., f|F |). This representation makes it easy
to support representations such as Planning Domain Defini-
tion Language (PDDL) (McDermott et al. 1998) which de-
fine actions using three sets of propositions over the features



(a) Setup.

pick-up
spray-bottle

in-table-section(green-mug,blue): False
in-table-section(green-mug,white): True
in-table-section(mineral-water-bottle,blue): False
in-table-section(mineral-water-bottle,white): True
in-table-section(red-can,blue): True
in-table-section(red-can,white): False
in-table-section(spray-bottle,blue): True
in-table-section(spray-bottle,white): False
robot-gripper-empty(): True
robot-holding-in-air(green-mug): False
robot-holding-in-air(mineral-water-bottle): False
robot-holding-in-air(red-can): False
robot-holding-in-air(spray-bottle): False

in-table-section(green-mug,blue): False
in-table-section(green-mug,white): True
in-table-section(mineral-water-bottle,blue): False
in-table-section(mineral-water-bottle,white): True
in-table-section(red-can,blue): True
in-table-section(red-can,white): False
in-table-section(spray-bottle,blue): False
in-table-section(spray-bottle,white): False
robot-gripper-empty(): False
robot-holding-in-air(green-mug): False
robot-holding-in-air(mineral-water-bottle): False
robot-holding-in-air(red-can): False
robot-holding-in-air(spray-bottle): True

(b) Example transition annotated with S3E. State changes highlighted.

Figure 1: Visual results from a robotic pick-and-place task using S3E - after picking up the spray bottle, ’robot-gripper-empty()’
and in-table-section(spray-bottle, blue)’ are set from True to False. We refer the reader to the supplementary materials at for a
demo video of this example at https://drive.google.com/file/d/1KIaDElLjjRRrbilbjOHQxv9TIKlpEM5C/view?usp=sharing.

denoting the preconditions, add effects, and delete effects for
that action. In Fig. 1, the pick-up action has ’robot-gripper-
empty()’ as a precondition, and ’robot-gripper-empty()’ and
’in-table-section(spray-bottle, blue)’ as delete effects. This
highlights the importance of state estimation for automated
agents to assess what is achievable in the current state.

Instruction Tuned Vision-Language Models A Vision-
Language Model (VLM) is a machine-learning model that
combines natural language processing and computer vision
(Li et al. 2022; Radford et al. 2021; Li et al. 2019). Visual
Question Answering (VQA) is a task that uses VLMs to an-
swer natural language questions about visual input, making
them highly versatile question-answering functions.

In the general case, a VQA model is a parameterized func-
tion gϕ that accepts an image Xv and text Xq as input and
outputs a probability distribution over a vocabulary of pre-
defined tokens V . The input text is a sequence of tokens
Xq = (X1

q , ..., X
n
q ) in V , with sequence length n. The out-

put sequence Xa = (X1
a + ... + Xm

a ) of length m is gen-
erated by sampling tokens in an autoregressively. First, the
token X1

a ∼ gϕ(Xv, Xq) is sampled. The next token is then
sampled with a concatenation of the same text and the new
token X2

a ∼ gϕ(Xv, Xq + X1
a), and repeating this process

sequentially until an “end-of-response” token is generated
Xm

a ∼ gϕ(Xv, Xa+X1
a+...+Xm−1

a ). The final response is
the sequence of all sampled tokens Xa = (X1

a + ...+Xm
a ).

VQA models are trained such that Xq is a question about
Xv and Xa is likely the correct answer to the question. For
more information on instruction-tuning these models, see
the “Instruction-Tuned Models” appendix.

Using Semantics for State Estimation
Our objective is to provide a general, versatile solution for
state estimation that will accelerate the construction of state
estimation functions for researchers and practitioners of task
planning. We want to provide a function that, given a sym-
bolic world model, estimates the individual state features.

Let Φ be an image observation space in a fully observable
setting. Given task domain Σ = ⟨S, s0, SG, A, T, c⟩ where
S is defined over features F , let ξΣ be the ground truth state
estimator, that is, ξΣ(Xv) = (f1, .., f|F |) ∈ S is the true
feature assignment corresponding to observation Xv ∈ Φ.

We want to find meta function ξG that accepts a task do-
main as input and outputs an approximate state estimator
function, i.e., ∀Xv ∈ Φ, ξG(Σ)(Xv) ≈ ξΣ(Xv). In sim-
ple terms, we want to find a global function ξG that outputs
a task-specific state estimator function ξG(Σ) that reliably
approximates ground truth estimator ξΣ.

A naı̈ve approach to defining ξG(Σ) is to learn from ap-
plying actions from different states and pairing the result-
ing observations with the expected state according to the do-
main description. But if we could fully trust actions and the
controller executing their trajectory, the downward refine-
ment property (Bacchus and Yang 1991) would hold, mean-
ing low-level actions would guarantee the desired task state.
Thus, the agent can blindly execute planned actions sequen-
tially and reach the goal with certainty, making the state esti-
mator redundant. Since this assumption is unrealistic, a dif-
ferent approach is needed. In this work, we turn to semantics
as the source from which the state is derived.

In real-world symbolic task planning, it is common for
the task designer to maintain states and actions with seman-
tic value. In Example 1, the “pick-up(item)” action has a
clear semantic meaning: the item is picked up by the agent.
Therefore, we assume that the task domain components can
be clearly described using natural language. We use these
descriptions as a semantic guideline for state estimation.

We present Semantic Symbolic State Estimation (S3E), a
semantic approach to state estimation that uses pre-trained
vision-based foundation models to provide a general and
versatile solution that generates a joint probability distribu-
tion over the symbolic state components. This way, we take
advantage of one of the great strengths of foundation mod-
els: their internal world model and semantic understanding
(Schneider, Meske, and Kuss 2024; Smeaton 2024). Specif-
ically, we translate a textual domain description into a col-
lection of natural language queries for which answers deter-
mine the features of a state using a Large Language Model
(LLM). We then answer these questions in reference to
vision-based observations, denoted Xv , using a VQA model,
thus estimating the current task state.

Using a VQA model as a state estimator requires making
some assumptions: (1) the image observations contain the
information required to determine the task state (e.g., no ob-
ject occlusion); (2) the domain description is unambiguous
(e.g., use object names like “white-table” and “black-table”



instead of “table1” and “table2”); (3) all objects are visu-
ally distinguishable (no identical objects). Note that while
assumption 3 seems particularly demanding, it can easily be
overcome by labeling objects using a combination of object
detection and object tracking methods, e.g., YOLO (Red-
mon et al. 2016) and SORT (Bewley et al. 2016). Addition-
ally, S3E assumes that the state space features are defined as
semantic predicates that refer to one or more objects.

A predicate P is a function that that represents a prop-
erty of relation between compatible object parameters ω =
(ω1, ..., ωm). Denote ΩP the set of object sequences that are
valid arguments for predicate P . A grounded predicate is a
predicate-parameters pair P (ω) where ω ∈ ΩP . The fea-
ture space F corresponding to state space S is defined as
the set of all grounded predicates. For each grounded pred-
icate, we would like to answer the question “In this image,
does P (ω) hold true?”. However, we would like to ask these
questions in natural language, e.g., if P is “on-table” and
Ω is “milk-carton, wood-table”, then we would like to an-
swer the question “In this image, is the milk carton on the
wooden table?”. We perform this translation from grounded
predicate to natural language question using a LLM. We ex-
pect the model to answer “yes” or “no” according to what a
human would most likely say, making this task adequate for
a VQA model. In this work, we assume that predicates are
boolean functions. However, this can easily be enhanced to
numeric functions by retrieving numeric answers from the
VQA model rather than boolean answers.

Fig. 2 depicts the S3E pipeline. It is divided into two
stages: the translation stage and the estimation stage. The
translation stage creates a mapping from grounded predi-
cates to natural language questions. This is done once for
a given set of predicates and objects and can be reused for
different goal states. The questions are then answered re-
peatedly at each state during the estimation stage.

Translation Stage. We extract a finite vocabulary of pred-
icates of arbitrary size n, denoted {Pi}ni=1, and objects of in-
terest from task domain Σ. We combine predicates and com-
patible sequences of object parameters into grounded pred-
icates

⋃n
i=1 {Pi(ω)|ω ∈ ΩPi

}. A truth assignment of each
grounded predicate defines a high-level task state.

We then translate grounded predicates into natural lan-
guage queries using a LLM, translating the predicate
name and objects to a natural language question. We
use these to construct a queries map Q, i.e., a mapping
from grounded predicates to their natural language coun-
terparts Q(Pi(ω)) = XqPi(ω). This step is important since
instruction-tuned VQA models are trained to answer ques-
tions, not to determine the truth values of predicates. Using
models as they were trained allows us to use a smaller model
for higher efficiency in both speed and compute power. An
ablation study of the translation stage is shown in the “Trans-
lation Stage Ablation” appendix.

Estimation Stage. Given an image (or several) Xv ren-
dered in the environment, we invoke the VQA model with
the queries corresponding to each predicate separately. The
model is instructed with instruction text XI to answer only
“yes” or “no” as these are the possible assignments. For

grounded predicate Pi(ω), this yields probability distribu-
tion gϕ(Xv, XI+XqPi(ω)). From this distribution we extract
the probabilities of “yes” and “no” tokens (multiple tokens
for each) and calculate the normalized probability of “yes”
vs. “no”, denoted YPi(ω). This induces a mapping between
grounded predicates and a truth probability.

Once predictions are made for all grounded predi-
cates, we threshold their probabilities to obtain binary val-
ues for each one. Specifically, for a given observation
Xv , the S3E state estimation is defined ξG(Σ)(Xv) =(
YPi(ω) ≥ θ

∣∣1 ≤ i ≤ n, ω ∈ ΩPi

)
for some threshold θ ∈

[0, 1]. The estimated state is monitored by a planner/con-
troller unit which chooses the next action to perform. After
action execution, the environment is rendered again and the
estimation process is reiterated.

Uncertainty in Semantic State Estimation

When using vision-based semantic state estimation as de-
picted in Fig. 2 and under the assumptions stated in the pre-
vious section, two kinds of uncertainties arise. The first cor-
responds to the model’s uncertainty about the world. For ex-
ample, if the model had never seen a cereal box during train-
ing (in images or text), estimating the state as in Example 1
would yield a random guess when asked about any predi-
cate containing the “cereal” object. The second arises from
the subjectivity and intention of the task designer. For exam-
ple, in Fig. 2, should we consider the coffee mug as “on the
table” or is it not because the small plate is separating them?

The sources of the uncertainties we address here can
be viewed as both aleatoric and epistemic (Hüllermeier
and Waegeman 2021), depending on what we consider to
be constant. Model uncertainty can be viewed as aleatoric
due to the randomness of the world, but can also be seen
as epistemic because it can be reduced by training on a
more diverse dataset. The task uncertainty can be viewed as
aleatoric due to the randomness of the task and the one who
designed it, but can also be seen as epistemic because feed-
back from the task designer could reveal information that
reduces this uncertainty. We treat the model as constant and
thus its uncertainty as aleatoric. We, therefore, attempt to
reduce this uncertainty by avoiding ambiguous or unclear
states altogether. We treat task uncertainty as epistemic and
attempt to provide clarifying instructions to reduce it.

Note that the kinds of uncertainties faced by S3E are simi-
lar to the ones a human would face when performing manual
state estimation. As such, we attempt to reduce these uncer-
tainties as we would with a human using two approaches.
The first is through providing examples for few-shot adap-
tation of the state estimator. For example, in our simulated
pick-and-place experiment, we describe what certain objects
look like. The second is through manipulation of the envi-
ronment and the way the actions are performed. In our ex-
periments, for example, we force the robot agent to a certain
configuration after each action to make it clear whether or
not it is holding an object. We describe in detail and demon-
strate both these approaches in our empirical evaluation.
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on(Plate, Countertop)
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Figure 2: The S3E pipeline. Translation State (top): A set of grounded predicates that determine the task state is extracted
from a symbolic task domain. Grounded predicates are translated into natural language queries. Estimation Stage (bottom):
A VLM performs VQA on a rendering of the environment and each predicate question individually. Predicates are mapped to
truth probabilities. Highly likely predicates are considered part of the task state and are provided to the planner.

Empirical Evaluation

Our empirical evaluation aims to demonstrate that S3E can
estimate the high-level state with minimal task-specific en-
hancements. We demonstrate this in a grocery sorting pick-
and-place setting with natural language instructions and de-
liberate domain setup that clarifies certain aspects of the en-
vironment for the VLM. We analyze both a simulated and
a real-world example. All code will be made public upon
acceptance of this paper.

While our primary emphasis is on usability, we also
showcase the adaptability of S3E in a photorealistic block
world environment (Asai 2018). This environment features
a wide variety of objects that change between tasks. Not
only is blocksworld a well-studied and challenging prob-
lem in task planning, but also photorealistic blocksworld is
based on, CLEVR, a common dataset for evaluating neuro-
symbolic understanding (Mao et al. 2022; Johnson et al.
2017). Experiment details and results for this domain can
be found in the “Object Diversity Experiment with Photore-
alistic Blocksworld” appendix.

Experiment 1: Simulated Grocery Sorting This experi-
ment analyzes our state estimation pipeline from Fig. 2 as
a multilabel classifier of the task predicates. We attempt to
estimate the state of an environment designed for sorting
groceries onto different tables as in Example 1. We use a
simulated environment with a robotic arm and semi-realistic
objects from the robosuite framework (Zhu et al. 2022). It
contains 3 tables (wood, black, and white) and 6 grocery
items (milk, bread, lemon, can, cereal, and bottle). Fig. 3
shows different rendering viewpoints of this domain.

The agent can perform “pick” and “place” actions of spe-
cific objects from and onto a specified table. The task is
defined in PDDL (McDermott et al. 1998), a common de-
scription language for task domains, which requires explic-
itly declaring predicates and objects of interest. These are
extracted using an off-the-shelf parser (Micheli and Bit-
Monnot 2022) and fed into the S3E pipeline.

The advantage of running in simulation is easier data
collection. The simulation can run faster than a real-world
equivalent, and constructing a ground-truth state estimator
is simpler with access to privileged simulator information.
We collect pairs of rendered and task states by randomly



Figure 3: Example renderings from our simulated grocery sort-
ing domain.

Figure 4: An example state where it is unclear whether the
object is gripped.

setting the items’ positions on the tables and having the
robotic agent perform random actions that perturb the envi-
ronment, producing a new rendered state. We collect 2,000
data points1 using the procedure described in the “Data Col-
lection” appendix. We have the agent perform the actions
instead of programmatically teleporting the items to achieve
natural-looking states, e.g., items knocked over, some on the
floor, various grip positions, etc. Actions are implemented
imperfectly to achieve these real-world situations.

Each data point is processed through the pipeline de-
picted in Fig. 2. The quality of estimation is determined us-
ing multilabel classification evaluation metrics. We expect
to witness two kinds of failures (see previous section). First,
how the actions are designed sometimes makes it unclear
whether the robot is gripping an object. This is an example of
aleatoric uncertainty relative to the scene and the underlying
task. To overcome this, we run the same experiment on an
alternative dataset wherein we assert a certain robot “home
pose” after picking up and placing an object. The home pose
is the pose of the robot as shown in Fig. 3, where it can
be clearly seen whether or not an object is within the grip-
per jaws. These experiments are denoted with “Pose”. Sec-
ond, because this is a simulated environment and VQA sys-
tems are normally trained on real-world data, we fully expect
low performance on predicates that consider the less realis-
tic items. This will illustrate the uncertainty introduced by

1In our testing, this was a large enough sample for a diverse and
representative dataset.

the limitation of the model’s training distribution. To over-
come this, we prompt the VLM with additional information
about the task and its objects, e.g., “The milk carton is a
clean white rectangular box with a triangular top”. We de-
note these experiments with the “Instruct” label. The exact
instruction prompt used in these experiments is provided in
“Additional Instruction Prompts” in the appendix.

Experiment 2: Real-world Grocery Sorting The pur-
pose of this experiment is to demonstrate the real-world ap-
plicability of our method and to address the VLM’s diffi-
culty dealing with simulated data. Similarly to the previous
experiment, a robot arm must move items between different
sections on a table. The items in the scene are a green mug, a
water bottle, a soda can, and a window cleaner spray bottle.
The table is divided into a white section and a blue section.
A single camera is pointed at the scene. Fig. 1a shows an
image captured in this environment. Like before, the robot
can perform the same pick and place actions, and the task is
defined using PDDL.

Unlike the simulated environment in experiment 1, col-
lecting thousands of data points is unrealistic, and imple-
menting a ground-truth state estimator is not straightfor-
ward. Instead, we have the agent solve a simple rearrange-
ment task and estimate the state at each frame of a cap-
tured video. We then manually check the results for each
frame and measure approximate performance for S3E. We
also separate the middle frames in between actions, de-
noted “Mid-poses”, to measure the performance for frames
in which the agent must choose its next action or determine
that the goal has been achieved. The pick-and-place actions
were implemented to avoid object collisions and occlusions.

Setup
To implement the flow in Fig. 2, we require a LLM for the
translation stage and VQA model for the estimation stage.
We use Large Language model Meta AI (LLaMA) 3 (Tou-
vron et al. 2023) as the translator, and Large Language and
Vision Assistant (LLaVA) (Liu et al. 2023b), specifically the
OneVision (OV) model (Li et al. 2024), as the instruction-
tuned VQA model. We chose these models because they
are leaders in the open-source world, making them freely
available for research, unlike proprietary models. Further-
more, we chose to use OV for its outstanding performance in
VLM benchmarks and because it was trained on 3D data us-
ing multi-viewpoint images. However, we do not use multi-
image inputs as this uses significantly more GPU memory.
This is critical for robotics applications where the agent must
carry its computing power onboard.

We compare three OV model sizes: 0.5B, 7B, and 72B,
where XB denotes the model’s size in billions of parame-
ters. The concrete prompts used to instruct the models to
perform the state estimation can be found in the “Prompts”
appendix. The exact hardware specifications can be found in
the “Hardware Specifications” appendix.

For simulation, we use the MuJoCo physics engine
(Todorov, Erez, and Tassa 2012). The robots in experiments
1 and 2 are the UR5 and UR5e, respectively. Task-defined
actions used for data collection are implemented using priv-



Figure 5: A close-up of 3D assets that our model had diffi-
culty recognizing.
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Figure 6: Compare precision-recall curves for the “robot-
gripping(milk-carton)” predicate.

ileged information (the objects’ locations and dimensions)
to infer the desired grasp poses. Motions between poses are
planned using RRT* (Karaman and Frazzoli 2011).

Results
Experiment 1: Simulated Environment This section
evaluates the S3E state estimators in Experiment 1, treat-
ing them as multilabel classifiers. Since most predicates (ap-
proximately 75%) are false (e.g., when one object is being
gripped, others are not), a baseline accuracy of around 75%
can be achieved by predicting all predicates as false. There-
fore, we focus on the AP (Average Precision) score with mi-
cro and macro averaging as our primary metrics (Sokolova
and Lapalme 2009).

Table 1 presents accuracy and AP scores for different S3E
VLM models. As anticipated, larger models show better per-
formance. The 0.5B model performs poorly, with an AP
score below 50%. The 7B model achieves AP scores rang-
ing from 66% to 77%, while the 72B model scores between
74% and 91%. The ”Pose” modification significantly im-
proves performance across all models, particularly for the
macro average, which emphasizes the gripping predicates:
improvements are approximately 21% for the 0.5B model,
16% for the 7B model, and 12% for the 72B model.

Adding natural language instructions negatively impacts
the 0.5B and 7B models, likely due to confusion from the
additional context. In contrast, the 72B model shows consis-
tent AP performance for micro averages (about a 1% differ-
ence) and substantial macro average gains (approximately
4% without ”Pose” and 9% with it). Combining both en-
hancements (”Instruct + Pose”), the 72B model improves
by approximately 9.5% (micro) and 22% (macro). Similar

Table 1: A comparison of tested S3E VLM instances in ex-
periment 1 (simulated) on accuracy (3 thresholds θ) and AP
scores.

θ = 0.3 θ = 0.5 θ = 0.7 AP (micro) AP (macro)

0.5B 0.78 0.79 0.79 0.37 0.35
7B 0.72 0.85 0.88 0.70 0.66

72B 0.82 0.90 0.89 0.81 0.74
0.5B + Instruct 0.53 0.71 0.76 0.24 0.33

7B + Instruct 0.78 0.85 0.85 0.67 0.63
72B + Instruct 0.87 0.92 0.88 0.80 0.77

0.5B + Pose 0.78 0.78 0.78 0.38 0.42
7B + Pose 0.74 0.87 0.90 0.76 0.77

72B + Pose 0.86 0.93 0.91 0.87 0.83
0.5B + Instruct + Pose 0.53 0.71 0.75 0.24 0.41

7B + Instruct + Pose 0.81 0.86 0.86 0.73 0.73
72B + Instruct + Pose 0.90 0.94 0.91 0.88 0.91

Table 2: A comparison of tested S3E VLM instances in ex-
periment 2 (real-world) on accuracy (3 thresholds θ) and AP
scores.

θ = 0.3 θ = 0.5 θ = 0.7 AP (micro) AP (macro)

0.5B 0.58 0.63 0.67 0.45 0.61
7B 0.78 0.77 0.76 0.79 0.84

72B 0.81 0.81 0.82 0.86 0.91
0.5B Mid-poses 0.56 0.63 0.66 0.46 0.74

7B Mid-poses 0.73 0.77 0.77 0.80 0.85
72B Mid-poses 0.82 0.81 0.81 0.90 0.99

trends are observed in the photorealistic blocksworld do-
main (see the “Object Diversity Experiment with Photore-
alistic Blocksworld” appendix).

Although accuracy alone offers limited insight, examin-
ing it across different thresholds reveals model certainty. The
72B model maintains balanced certainty around the 50%
mark, effectively distinguishing between true and false pred-
icates. In contrast, the 0.5B and 7B models show increased
accuracy at higher thresholds, suggesting they often assign
high probabilities to false values. Setting a higher threshold
for these models may reduce false positives.

Detailed AP scores per predicate (see Fig. 9) highlight
two key observations. First, some objects are more challeng-
ing for the model to identify (Fig. 5). Second, distinguishing
whether an object is gripped can be unclear. For instance,
Fig. 4 shows ambiguity in the robot’s grip on a cereal box.
Fig. 7 shows AP scores for grip-related predicates, with no-
table improvements when task-specific modifications are ap-
plied. However, objects like bread, milk cartons, and soda
cans remain difficult for the model to recognize.

The most notable improvement occurs with the ”Instruct”
modification for the 72B model (see pink bars in Fig. 7).
Instructions negatively impact the 0.5B and 7B models, so
these results are omitted. Fig. 6 compares precision-recall
curves for the 7B and 72B models, showing the value of
natural language instructions for the ”robot-gripping(milk-
carton)” predicate. Further improvements are possible with
predicate-specific instructions (e.g., ”instruct-milk”). How-
ever, even with enhanced instructions, the bread object re-
mains unrecognized, likely due to its unrealistic 3D model
(Fig. 5, top right). This highlights limitations in current
VLMs compared to human perception.
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Figure 7: A comparison of tested S3E VLM instances in experiment 1 on Average Precision (AP) score for all object gripping
predicates with and without task-specific modifications.

Experiment 2: Real-World Robot Similar to Experiment
1, we use the AP score as the primary metric since most
predicates are usually false. With fewer predicates, accuracy
is lower if all are predicted false. Table 2 displays results for
different VLM models. The standalone models (0.5B, 7B,
72B) predict the state at each frame, while ”Mid-poses” indi-
cate predictions between actions. A sample video with anno-
tations is available in the supplementary material (Fig. 1b).

Performance on real-world images is stronger than in
the simulation, reflecting the models’ training data. Im-
provements are notable: 0.5B improves by ∼74.5%, 7B by
∼27.5%, and 72B by ∼22%. ”Mid-poses” show even greater
gains: ∼110.5%, ∼29.5%, and ∼32%, respectively. The
72B model achieves near-perfect estimation (AP >99%) in
”Mid-poses,” though accuracy indicates uncertainty. This
underscores the value of environment-specific descriptions
for reducing ambiguity.

Discussion
Our experiments demonstrate that S3E can approximate
symbolic states with over 90% precision in both real and
simulated tasks. We also see similar results for our additional
experiments that test our method’s adaptability (see “Object
Diversity Experiment with Photorealistic Blocksworld” ap-
pendix). This high accuracy showcases the potential of our
novel pipeline to estimate symbolic states in task planning
environments. By harnessing the VQA model’s semantic un-
derstanding, we bridge the gap between visual inputs and
symbolic state representations.

While S3E struggles with out-of-distribution scenarios,
targeted environment manipulation and task-specific in-
structions help mitigate this issue, particularly in larger mod-
els. Notably, S3E combined with the OV model performs
better in real-world environments than simulated ones, likely
due to the composition of its training data. These findings
highlight both the strengths of our approach and areas for

future refinement in VQA, particularly for state estimation.

Conclusion
In this work, we presented S3E, a general-purpose vision-
based symbolic state estimator using VLMs. S3E offers a
versatile replacement for hand-crafted state estimator func-
tions that are specialized for the individual task. While
our framework was used deterministically, it can easily be
adapted for probabilistic estimations and account for be-
lief state updates in partially observable domains (Kaelbling,
Littman, and Cassandra 1998). We intend to explore this in
future work.

We empirically evaluated S3E coupled with LLaMA 3
and LLaVA OV as a multiclass classifier of task-specific
predicates for robot pick-and-place tasks. We showed that
this combination can achieve over 90% state estimation pre-
cision with no task-specific coding involved. In a simulated
environment, we demonstrated two kinds of uncertainties
brought on by using a VQA model for state estimation. We
showed how to reduce these uncertainties with low-effort
modifications to the environment and natural language in-
structions to the model. In a real-world setting, we showed
that high performance can be achieved without providing
any task-specific information.

While S3E offers a general solution to visual state estima-
tion, it comes with some limitations relative to hand-crafted
state estimators. It requires a visual input setup with full ob-
servability. Furthermore, it requires that all objects be visu-
ally distinguishable. We also perform an exhaustive search
over all grounded predicates, which can become computa-
tionally expensive in more complex environments. Finally,
the task must be defined in descriptive language to gener-
ate high-quality queries for the VQA model. Future work
should address the above limitations, uncertainty detection
(e.g. using confidence scores, discrepancy analysis, or ex-
ternal knowledge integration) and further mitigation (e.g.



Bayesian state estimation, conformal prediction), and im-
prove performance with task-specific information (e.g., us-
ing predicate correlations).
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Instruction-Tuned Models
LLM instruction-tuning is a method for improving a model’s
ability to follow natural language instructions (Wang et al.
2023a; Ouyang et al. 2022). To achieve this, models are fine-
tuned using enhanced datasets of instruction-output pairs.
These datasets often include question-answer pairs, task-
completion examples, dialogue simulations, solved coding
exercises, and more. Training is typically performed using
supervised learning. A reward model is learned through su-
pervised output and the language model is trained to max-
imize reward. To ensure human compatibility, this process
involves human-curated datasets, annotations, and response
rankings (Ouyang et al. 2022), but this is also done using
another LLM for scalability (Wang et al. 2023a).

A cross-breed of VLMs and instruction-tuning yielded
LLaVA (Liu et al. 2023b), a VLM trained to follow natural-
language instructions based on visual input. This allows giv-
ing the model a certain context in which to answer input
questions. We take advantage of this ability to put the agent
into the context of the task planning problem at hand.

Translation Stage Ablation
The goal of this experiment is to emphasize the importance
of the translation stage of S3E (see the “Using Semantics for
State Estimation” section). To do this, we instruct the VLM
to answer “true” or “false” given a predicate and extract the
probability for that predicate as in the S3E estimation stage.
We show this for both experiments defined in the “Empirical
Evaluation” section.

We used the following system prompt for the VLM:
The following is a PDDL domain
{DOMAIN}
Here are the names of all the objects in the current problem,
sorted by their type:
{OBJECTS BY TYPE}
Given a grounded predicate with concrete variables, state
whether the statement is true or false.
Respond only with a ”true” or ”false” response and nothing
else.
where DOMAIN and OBJECTS BY TYPE are as defined in
the “PDDL Predicates Translation” section of the “Prompts”
appendix. Given a grounded predicate, the VLM is prompted
with the predicate followed by its variables, comma sepa-
rated in parentheses (e.g. “on-table(lemon,black-table)”).

The results in Tables 3 and 4 clearly show that the transla-
tion stage improves AP score for all S3E VLM instances for
both macro and micro averaging. This is especially true for
the smaller models (0.5B and 7B), seeing improvements of
over 200% in micro AP and over 50% in macro AP. The vast
improvement in micro AP points to an issue in understand-
ing the most common predicates when the translation stage
is skipped. We conclude that the translation stage is a nec-
essary step to enable the VLM to understand the questions
that each predicate poses and what it means in the scene.

The performance improvement when applying the trans-
lation stage is also visible for the accuracy metric in most
cases. But due to class imbalance, The accuracy for a given
threshold may not be informative by itself. Surprisingly, The
same pattern emerges as in the original experiments. That
is, without translation, the certainty of the model is balanced
around 50% for experiment 1, but a larger confidence thresh-
old is needed for experiment 2.

Object Diversity Experiment with
Photorealistic Blocksworld

The goal of this experiment is to showcase the adaptabil-
ity of S3E in the face of vast object diversity. Here, we use
a photorealistic version of the blocksworld domain (Asai
2018). This domain contains objects that vary in size (small
and large), color (8 different values), material (rubber and
metal), and shape (cube, cylinder, and sphere). Objects can
be on the table or stacked on top of each other. Given a state,
a 3D scene is synthesized and rendered from a single view-
point. Fig. 8 shows example renderings from this domain.

We collected over 7,500 data points in this domain using
the same procedure as in experiment 1 (see the “Data Col-
lection” appendix). Possible actions include moving a block
from the table onto another block, from on top of a block
onto the table, or from on top of one block onto another.
Only blocks with no other blocks stacked on top of them
may be moved. Blocks cannot be stacked on top of cylinder
types. Upon environment reset, a random number of objects
n is chosen between 2 and 10, and then n unique objects
are generated with a random size, color, material, and shape.
This ensures that the dataset contains a diverse set of objects.

As in the main experiments, the class labels are severely
imbalanced as predicates are usually false, making accu-
racy less informative. Additionally, since objects change be-
tween environment resets, many predicates are present only
a few times throughout our collected dataset. Therefore, the
difference between micro and macro averaging is expected
to be much more extreme. Furthermore, macro averaging
gains extra significance since it treats rare and frequent la-
bels equally.

The number of objects in the scene have a significant
effect on the performance of S3E Table 5 compares S3E
performance on the photorealistic blocksworld with varying
limits on the number of objects sampled We see steady AP
improvements that range from ˜61% in the largest model to
over 150% in the smallest model when reducing from a 10
objects limit to a 3 objects limit.

One reason for the big difference in performance between



Table 3: An ablation test of the translation stage for S3E VLM instances in experiment 1 (simulated) on accuracy (3 thresholds
θ) and AP scores. Entries labeled “(no trans)” do not include the translation stage.

θ = 0.3 θ = 0.5 θ = 0.7 AP Score (micro) AP Score (macro)

0.5B 0.78 0.79 0.79 0.37 0.35
0.5B (no trans) 0.79 0.79 0.79 0.18 0.23

7B 0.72 0.85 0.88 0.70 0.66
7B (no trans) 0.57 0.63 0.70 0.26 0.50

72B 0.82 0.90 0.89 0.81 0.74
72B (no trans) 0.81 0.87 0.85 0.73 0.68

0.5B + Pose 0.78 0.78 0.78 0.38 0.43
0.5B (no trans) + Pose 0.78 0.78 0.78 0.19 0.25

7B + Pose 0.74 0.87 0.90 0.76 0.77
7B (no trans) + Pose 0.60 0.64 0.70 0.27 0.59

72B + Pose 0.86 0.93 0.91 0.87 0.83
72B (no trans) + Pose 0.84 0.89 0.87 0.80 0.75

0.5B + Instruct 0.53 0.71 0.76 0.24 0.33
0.5B (no trans) + Instruct 0.71 0.79 0.79 0.17 0.23

7B + Instruct 0.78 0.85 0.85 0.67 0.63
7B (no trans) + Instruct 0.53 0.58 0.61 0.21 0.47

72B + Instruct 0.88 0.92 0.89 0.80 0.78
72B (no trans) + Instruct 0.81 0.87 0.85 0.73 0.68

0.5B + Instruct + Pose 0.53 0.71 0.75 0.24 0.42
0.5B (no trans) + Instruct + Pose 0.71 0.78 0.78 0.18 0.25

7B + Instruct + Pose 0.81 0.86 0.86 0.73 0.73
7B (no trans) + Instruct + Pose 0.54 0.59 0.61 0.22 0.55

72B + Instruct + Pose 0.90 0.94 0.91 0.88 0.91
72B (no trans) + Instruct + Pose 0.84 0.89 0.87 0.80 0.75

object limits is that with more objects it is more likely that
some objects are hard to differentiate. This can be seen in
Table 6 where S3E performance is compared on different
subsets of the dataset while keeping the 10 objects limit. We
observe significant improvements in performance across the
board compared to the full dataset with the 10 objects limit.
Using S3E on a subset of a single material we see over 90%
macro AP for both the 7B and 72B models. The highest im-
provement in performance is seen when disallowing colors
to repeat, showing that color plays an important role in the
model’s ability to understand the scene.

Using additional natural language instructions, we were
able to mitigate this differentiation issue in the 72B model.
We used the following instructions:
You will be asked questions about the state of blocks in a
given image.
A block can be a cube, cylinder, or sphere.
A block is considered on the table if it is not on top of any
other block.

Blocks come in one of two materials, rubber and metal. Rub-
ber blocks have a matte finish while metal objects are glossy
and reflective.
We see an ˜8% improvement for the 10 objects limit and ˜1-
3% improvement for all other sizes. When evaluated using
the different object subsets, the instructed model is able to
push performance even further, with 1-4% improvement,
even though the performance was already relatively high
without instruction. As in experiment 1, additional instruc-
tion only confuses the smaller models.

Data Collection
To collect the data points for our experiments (described in
the “Empirical Evaluation” section), we adhere to the fol-
lowing procedure:

1. Upon reset, the robot is set to the “home” position, and
the groceries are randomly placed upright on one of the
three tables.



Table 4: An ablation test of the translation stage for S3E VLM instances in experiment 2 (real-world) on accuracy (3 thresholds
θ) and AP scores.

θ = 0.3 θ = 0.5 θ = 0.7 AP Score (micro) AP Score (macro)

0.5B 0.58 0.63 0.67 0.46 0.55
0.5B (no trans) 0.47 0.60 0.64 0.40 0.48

7B 0.78 0.77 0.76 0.79 0.81
7B (no trans) 0.44 0.49 0.54 0.36 0.45

72B 0.81 0.81 0.82 0.86 0.89
72B (no trans) 0.66 0.70 0.72 0.78 0.75

0.5B Mid-poses 0.56 0.63 0.66 0.47 0.70
0.5B (no trans) Mid-poses 0.51 0.58 0.66 0.43 0.59

7B Mid-poses 0.73 0.77 0.77 0.80 0.83
7B (no trans) Mid-poses 0.46 0.53 0.56 0.40 0.60

72B Mid-poses 0.82 0.81 0.81 0.90 0.99
72B (no trans) Mid-poses 0.64 0.69 0.73 0.82 0.85

2. An applicable action is chosen and executed by the robot.
3. If the action is completed successfully (target robot con-

figuration achieved), the environment is rendered and
the renderings are saved alongside the ground-truth task
state.

4. If the action fails, a new action is sampled. The environ-
ment is reset after 5 consecutive failed attempts (step 1).

5. A new action is selected for execution (step 2). After
20 successful action executions, the environment is reset
(step 1).

Prompts
PDDL Predicates Translation
To translate PDDL predicates to natural language questions,
we use the following system prompt to instruct the LLM.

The following is a PDDL domain
{DOMAIN}
Here are the names of all the objects in the current problem,
sorted by their type:
{OBJECTS BY TYPE}
Given a grounded predicate with concrete variables, write
a natural language yes-no query whose answer determines
the truth value of the predicate.
Respond only with this natural language query and nothing
else.

The DOMAIN variable is the string description of the
entire domain. In our case, this was the content of the
PDDL domain. The OBJECTS BY TYPE variable is a
comma-separated list of strings of the form:
{OBJECT TYPE NAME} type:
[{OBJECT1 NAME},{OBJECT2 NAME},...]
where the OBJECT TYPE NAME and OBJECTi NAME

variables are the names as they appear in the PDDL domain
file (for the types) and problem file (for the objects).

With this system prompt, the LLM is given a user prompt
of the form:
{PREDICATE}({VARIABLE1},{VARIABLE2},...)
where the PREDICATE is a predicate from the PDDL do-
main file and VARIABLEi are objects from the PDDL prob-
lem file whose types match the predicate’s variables. We do
this for all ground predicates and create a mapping from
predicates to their corresponding natural language query.

VQA Model Prompts
The following is the system prompt used to calibrate the
VQA model for state estimation:
A curious human is asking an artificial intelligence assistant
yes or no questions.
The assistant answers with one of three responses: YES or
NO.
The assistant’s response should not include any additional
text.

To estimate the value of a predicate given an array of im-
ages:

{IMAGE TOKEN}
{IMAGE TOKEN}
...
{PREDICATE NL QUERY}

IMAGE TOKEN is a placeholder that is later replaced by
the image representation of the VQA model, and PREDI-
CATE NL QUERY is the input predicate’s natural language
form obtained from a LLM using the prompts described in
the previous section. The number of image tokens corre-
sponds to the number of input images.



Figure 8: Renderings of random samples from the photorealistic blocksworld domain.

Additional Instruction Prompts
Additional instructions were appended to the end of the
VQA model’s system prompt. In experiment 1 described in
experiment 1, the instructions were as follows:

The user will show you images of a simulated robot and
ask questions about the state of the environment.
The milk carton is a clean white rectangular box with a tri-
angular top.
When the robot is holding the milk carton it looks like there
is a white rectangular object being pinched by the robot’s
gripper.
The red can of soda is a small red cylinder.
When the robot is holding the red can of soda it looks like
there is a small red object that is enveloped by the robot’s
gripper.
The loaf of bread looks like a small brown box.
When the robot is gripping the loaf of bread it looks like
there is a small brown object inside the robot gripper.

Hardware Specifications
We used three kinds of GPU models for our experiments.
The Nvidia GeForce RTX 2080 Ti was our low perfor-
mance GPU, with less than 11GB of memory. The Nvidia
GeForce RTX 3090 was our mid-range performance GPU,
with 24GB of memory. The Nvidia RTX A6000 was our
high performance GPU, with 48GB of memory. The GPUs
were operated using Intel Xeon Platinum 8180 CPUs. The
machines were running Ubuntu 22.04.4 LTS with kernel ver-
sion 5.15.0-119-generic.

We use the 70 Billion parameter LLaMA 3 model for
predicate translation. This is a heavy model that requires 8

GeForce RTX 3090 (24GB). While this is a heavy require-
ment, the translation stage is executed in the preprocessing
stage, and must only run once before running any number of
times using the same translation. The 0.5B and 7B OV mod-
els can both run on a single GeForce RTX 2080 Ti (¡11GB)
and GeForce RTX 3090 (24GB), respectively. The 72B OV
was run with 4 RTX A6000 (48GB).

Per Predicate AP Scores
Fig. 9 shows the AP scores for each predicate in experiment
1 (simulated grocery sorting) individually. The results reveal
which items are less recognized by the used VLM.

Acronyms
AP Average Precision. 7, 8, 11–14, 16–18

CWA Closed World Assumption. 1

LLaMA Large Language model Meta AI. 6, 8, 14
LLaVA Large Language and Vision Assistant. 6, 8, 11
LLM Large Language Model. 2–4, 6, 11, 13

OV OneVision. 6, 8, 14

PDDL Planning Domain Definition Language. 2, 5, 6, 11,
13

S3E Semantic Symbolic State Estimation. 1–8, 11–13, 16–
18

TMP Task and Motion Planning. 2



VLM Vision-Language Model. 1–3, 5–8, 11–14, 16–18
VQA Visual Question Answering. 3–6, 8, 13, 14



Table 5: A comparison of tested S3E VLM instances in photorealistic blocksworld with different limits on the number of
objects. Compared metrics are accuracy (3 thresholds θ) and AP scores.

θ = 0.3 θ = 0.5 θ = 0.7 AP Score (micro) AP Score (macro)

0.5B (≤ 3) 0.72 0.81 0.81 0.44 0.76
0.5B (≤ 5) 0.70 0.84 0.87 0.32 0.60
0.5B (≤ 7) 0.72 0.86 0.89 0.26 0.45

0.5B (≤ 10) 0.74 0.88 0.91 0.20 0.30
0.5B + Instruct (≤ 3) 0.74 0.81 0.81 0.41 0.75
0.5B + Instruct (≤ 5) 0.73 0.85 0.87 0.29 0.59
0.5B + Instruct (≤ 7) 0.74 0.87 0.89 0.22 0.44

0.5B + Instruct (≤ 10) 0.74 0.89 0.91 0.16 0.29
7B (≤ 3) 0.82 0.84 0.85 0.68 0.91
7B (≤ 5) 0.78 0.81 0.83 0.59 0.83
7B (≤ 7) 0.75 0.78 0.82 0.50 0.71

7B (≤ 10) 0.73 0.77 0.81 0.41 0.55
7B + Instruct (≤ 3) 0.85 0.86 0.87 0.73 0.89
7B + Instruct (≤ 5) 0.81 0.84 0.87 0.62 0.80
7B + Instruct (≤ 7) 0.79 0.83 0.86 0.51 0.69

7B + Instruct (≤ 10) 0.77 0.82 0.86 0.41 0.53
72B (≤ 3) 0.92 0.92 0.93 0.88 0.95
72B (≤ 5) 0.87 0.88 0.89 0.78 0.87
72B (≤ 7) 0.84 0.86 0.87 0.68 0.76

72B (≤ 10) 0.81 0.83 0.86 0.56 0.59
72B + Instruct (≤ 3) 0.91 0.92 0.93 0.94 0.96
72B + Instruct (≤ 5) 0.83 0.85 0.87 0.85 0.88
72B + Instruct (≤ 7) 0.78 0.81 0.83 0.76 0.78

72B + Instruct (≤ 10) 0.74 0.77 0.80 0.64 0.64
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Table 6: A comparison of tested S3E VLM instances in
photorealistic blocksworld with different conflicts removed
from the dataset. “rubber only” and “metal only”‘ limit to a
single material, “color conflict” means no 2 shapes have the
same color, and “color-size/color-shape conflict” means ob-
jects may have the same color if they don’t share the same
size/shape. Compared metrics are accuracy (3 thresholds θ)
and AP scores.

θ = 0.3 θ = 0.5 θ = 0.7 AP Score (micro) AP Score (macro)

0.5B (rubber only) 0.58 0.72 0.76 0.38 0.76
0.5B (metal only) 0.71 0.80 0.80 0.40 0.73

0.5B (color conflict) 0.70 0.80 0.80 0.44 0.78
0.5B (color-size conflict) 0.72 0.84 0.86 0.33 0.63

0.5B (color-shape conflict) 0.72 0.86 0.88 0.28 0.56
0.5B + Instruct (rubber only) 0.65 0.75 0.75 0.37 0.74
0.5B + Instruct (metal only) 0.68 0.79 0.80 0.35 0.72

0.5B + Instruct (color conflict) 0.72 0.80 0.79 0.41 0.77
0.5B + Instruct (color-size conflict) 0.75 0.85 0.86 0.29 0.62

0.5B + Instruct (color-shape conflict) 0.74 0.87 0.88 0.24 0.55
7B (rubber only) 0.74 0.77 0.79 0.66 0.95
7B (metal only) 0.78 0.81 0.82 0.68 0.93

7B (color conflict) 0.79 0.80 0.82 0.67 0.94
7B (color-size conflict) 0.77 0.80 0.83 0.59 0.85

7B (color-shape conflict) 0.77 0.80 0.83 0.55 0.83
7B + Instruct (rubber only) 0.77 0.81 0.83 0.71 0.93
7B + Instruct (metal only) 0.83 0.84 0.84 0.73 0.90

7B + Instruct (color conflict) 0.82 0.84 0.85 0.71 0.92
7B + Instruct (color-size conflict) 0.81 0.84 0.86 0.62 0.83

7B + Instruct (color-shape conflict) 0.80 0.84 0.87 0.57 0.81
72B (rubber only) 0.87 0.88 0.89 0.83 0.96
72B (metal only) 0.90 0.91 0.91 0.90 0.95

72B (color conflict) 0.91 0.92 0.92 0.89 0.98
72B (color-size conflict) 0.87 0.88 0.89 0.79 0.90

72B (color-shape conflict) 0.85 0.87 0.88 0.74 0.87
72B + Instruct (rubber only) 0.88 0.89 0.90 0.91 0.97
72B + Instruct (metal only) 0.89 0.91 0.91 0.94 0.96

72B + Instruct (color conflict) 0.91 0.92 0.93 0.94 0.98
72B + Instruct (color-size conflict) 0.83 0.85 0.87 0.86 0.91

72B + Instruct (color-shape conflict) 0.80 0.82 0.85 0.82 0.89


