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ABSTRACT

Weight decay is a broadly used technique for training state-of-the-art deep net-
works, including large language models. Despite its widespread usage, its role
remains poorly understood. In this work, we highlight that the role of weight
decay in modern deep learning is different from its regularization effect studied
in classical learning theory. For overparameterized deep networks, we show how
weight decay modifies the optimization dynamics enhancing the ever-present im-
plicit regularization of SGD via the loss stabilization mechanism. In contrast, for
large language models trained with nearly online SGD, we describe how weight
decay balances the bias-variance tradeoff in stochastic optimization leading to
lower training loss. Moreover, we show that weight decay also prevents sudden
loss divergences for bfloat16 mixed-precision training which is a crucial tool
for LLM training. Overall, we present a unifying perspective from ResNets on
vision tasks to LLMs: weight decay is never useful as an explicit regularizer but
instead changes the training dynamics in a desirable way.

1 INTRODUCTION

Weight decay and ℓ2 regularization are widely studied topics in machine learning. Weight decay
serves to constrain the network capacity (Goodfellow et al., 2016) and acts as a mechanism for
suppressing irrelevant weight components, aligning with the principles of Occam’s razor (Krogh &
Hertz, 1991). It is central in discussions on generalization bounds (Shalev-Shwartz & Ben-David,
2014), albeit a recent empirical study by Jiang et al. (2020) casts doubt on how well norm-based
measures correlate with generalization for deep networks. Weight decay is also known to yield a
regularization of the input-output Jacobian (Zhang et al., 2018) and to alter the training dynamics of
scale-invariant networks by changing the effective learning rate (Van Laarhoven, 2017).

Why revisiting weight decay now? Weight decay is widely used for training most state-of-the-
art deep networks such as GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), or PALM
(Chowdhery et al., 2022). We argue that despite its widespread usage, its effect is still poorly
understood: in some cases it acts as a regularizer but in some cases as a tool for better optimization.
Although the regularization effect of weight decay is thoroughly studied in classical learning theory,
deep networks are already equipped with strong implicit regularization coming from the parameter
initialization, optimization algorithm, and architecture (Zhang et al., 2016). Moreover, recent years
have brought along new architectures and settings such as transformers (Vaswani et al., 2017) and
nearly one-epoch language modelling (Brown et al., 2020; Hoffmann et al., 2022). All of this makes
it unclear to what extent classical results are applicable to modern deep learning settings.

Contributions. Our work aims to provide a systematic answer to the following question:

Why do we need weight decay in modern deep learning?

Towards this goal, we make the following contributions:
• For overparameterized networks, we provide a unifying view on the mechanism by which weight

decay enhances the implicit regularization effect of the SGD noise. We show that the trajectory
stays close to the trajectory of a process where the trace of the Hessian is regularized. This
analysis unveils the role of learning rate and weight decay on generalization.

• In contrast, for LLMs trained with nearly one-pass SGD, weight decay does not show an im-
portant regularization effect. Instead, we reveal how it modifies the effective learning rate and
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better balances the bias-variance optimization tradeoff leading to lower training loss. We discuss
practical implications related to this tradeoff.

• Moreover, we show that weight decay also prevents sudden loss divergences for bfloat16
mixed-precision training which is a crucial tool for LLM training at scale.

We conclude that weight decay is rarely useful as an explicit regularizer but instead its wide usage
can be attributed to its ability to change the optimization dynamics in a desirable way.

2 RELATED WORK

We discuss the most related works here and provide further comparisons later in the paper.

The concept of employing ℓ2 weight penalty traces back to studies on the stability of solutions for
ill-posed problems (Tikhonov, 1943). It has since been extensively explored in statistics (Foster,
1961; Hoerl, 1962; Hoerl & Kennard, 1970). Krogh & Hertz (1991) present one of the earliest sys-
tematic studies on weight decay tailored for neural networks. Generalization bounds, such as those
by Shalev-Shwartz & Ben-David (2014), suggest that weight decay can be sufficient for general-
ization, although not strictly necessary, e.g., due to the implicit regularization of gradient methods
(Soudry et al., 2018). Zhang et al. (2016) argue that while weight decay improves test accuracy, the
improvement is not substantial (≈ 1-2% on ImageNet), indicating the key role of implicit regulariza-
tion. Loshchilov & Hutter (2019) highlight the distinct effects of weight decay and ℓ2 regularization,
particularly for Adam, suggesting that weight decay leads to superior regularization and simpler hy-
perparameter tuning. For GPT-3 training, Brown et al. (2020) suggest that they include weight decay
to provide a small amount of regularization, although we believe it is not the primary reason as we
discuss in Sec. 4.

Multiple works have focused on weight decay as a tool influencing optimization dynamics.
Van Laarhoven (2017) emphasizes that weight decay’s impact on scale-invariant networks is pri-
marily seen in terms of an effective learning rate. Zhang et al. (2018) propose three mechanisms of
weight decay regularization: (1) increasing the effective learning rate for scale-invariant networks,
although as we discuss, the same holds even for networks without any normalization layers, (2)
approximating the regularization of the input Jacobian for an optimizer inspired by second-order
methods, (3) inducing a specific dampening effect in this optimizer. Li & Arora (2019); Li et al.
(2020) explore the optimization properties of scale-invariant deep networks for which the effective
learning rate can be formally derived. Lewkowycz & Gur-Ari (2020) suggest that the best gener-
alization is achieved with the smallest λWD although it necessitates longer training. Additionally,
Lewkowycz (2021) propose a criterion for detecting when to decay the learning rate based on the
evolution of the weight norm. Lastly, Li et al. (2022a) make the BERT architecture scale-invariant
to enhance training stability and make it more compatible with standard SGD.

The seminal paper of Krizhevsky et al. (2012) that introduced AlexNet suggest that weight decay
serves not only as a regularizer but also reduces the model’s training error, functioning as an opti-
mization tool. In recent work, Hoffmann et al. (2022) briefly observe that weight decay enhances
the training performance of Adam for training LLMs, but only after ≈ 80% of the total iterations.
However, they do not provide an explanation for this behavior, a point we delve into in Sec. 4.

3 WEIGHT DECAY FOR OVERPARAMETERIZED DEEP NETWORKS

In this section, we delve into the influence of weight decay in overparameterized settings, with a
specific focus on image classification tasks. We first examine its impact on training VGG and ResNet
models using SGD on CIFAR-10 and CIFAR-100 datasets. Then, the analysis of a simplified setup
provides foundational insights, elucidating the role of weight decay in broader training scenarios.

Notations and setup. Let (xi, yi)
n
i=1 be the training inputs and labels where xi ∈ D, yi ∈ Rc, and

c is number of classes. Let h : Rp × D → Rc be the hypothesis class of neural network and for
any parameter w ∈ Rp where the function h(w, ·) : D → Rc represents the network predictions.
We assume for this section that the network is overparameterized and capable of achieving perfect

2



Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Epochs

15%

20%

30%

40%

60%

90%

Te
st

 E
rro

r

VGG on CIFAR10
LR = 0.1, WD =0.008
LR = 0.1, WD =0.0
LR = 0.01, WD =0.008
LR = 0.01, WD =0.0

(a)

0 200 400 600 800 1000
Epochs

10%

20%

30%

40%

60%

Resnet on CIFAR10
LR = 0.08, WD =0.0125
LR = 0.08, WD =0.0
LR = 0.001, WD =0.0125
LR = 0.001, WD =0.0

(b)

0 200 400 600 800 1000
Epochs

30%

40%

60%

100%
Resnet on CIFAR100

LR = 0.15, WD =0.01
LR = 0.15, WD =0.0
LR = 0.001, WD =0.01
LR = 0.001, WD =0.0

(c)

Figure 1: Training with and w/o weight decay. We report the test error for VGG (1a) and ResNet (1b, 1c)
trained on CIFAR-10/100 with and without weight decay and with small and large learning rates. After the first
500 epochs the learning rate is decayed to η = 10−4 for all the curves.

training accuracy. The training loss L and the ℓ2-regularized training loss Lλ are given as:

L(w) :=
1

N

N∑
i=1

ℓ (yi, h(w, xi)) , Lλ(w) := L(w) +
λ

2

∥∥w∥∥2 , (1)

where ℓ(·, ·) : Rc × Rc → R denotes the cross-entropy loss function. With it ∼ U([N ]), the SGD
algorithm on Lλ(w) (here with batch size 1 and with replacement) with a learning rate (LR) η is

wt+1 = wt − η∇wℓ (yit , h(wt, xit))− ηλwt. (2)

Experimental setup. We train VGG (Simonyan & Zisserman, 2014) without BatchNorm and
ResNet (He et al., 2016) models on CIFAR-10/CIFAR-100 using SGD and step-decay (He et al.,
2016) as LR schedule. Moreover, we compare different values of ℓ2-regularization coefficient λ. By
decaying the LR we divide the training into two separate phases: (1) large-LR phase which uses
a large constant LR to exploit the SGD noise, and (2) fine-tuning phase which uses a small LR to
converge to a minimum of the problem.

3.1 DIFFERENT MECHANISMS OF TRAINING WITH WEIGHT DECAY

To understand whether minimizing the regularized objective in Eq. (1) alone ensures optimal gen-
eralization, we compare test errors in Fig. 1 across various settings with large and small LR. The
necessity of a high LR for optimal performance suggests that optimizing the regularized objective
is insufficient to explain the benefits of WD—the regularized objective alone does not guarantee
generalization. This experiment reaffirms the widely acknowledged consensus that implicit regu-
larization induced by the LR is crucial (Keskar et al., 2016; Li et al., 2019; Andriushchenko et al.,
2023). Despite revealing an interplay between weight decay and large initial LR, the understanding
of the corresponding dynamics remains limited. In this section, our goal is to comprehensively un-
derstand these dynamics, particularly to elucidate the distinctions between the yellow and turquoise
curves in Fig. 1 and the resulting differences in their generalization.

Given the regularization of the ℓ2 norm of parameters, it is natural to wonder whether weight de-
cay’s improvement primarily stems from its ability to control the norm of the trained model. The
experiment in Fig. 3a clearly illustrates that distinct training trajectories, while resulting in the same
final ℓ2 norm for parameters, can yield different levels of generalization stating that the ℓ2-norm of
the learned model’s parameters is inconsequential. This observation suggests that once the norm
is constrained by weight decay, the critical factor influencing the model’s generalization is the sub-
sequent choice of LR. Note that predictions can be scale-independent for various reasons (such as
normalization layers or homogeneous activation), making the parameters’ scale inconsequential.

Understanding the impact of WD on the optimization dynamics is crucial for grasping its benefits in
generalization. We start by examining the parameter norm evolution in Fig. 3a. It rapidly decays to
stabilize within a small, approximately constant interval. After the rapid decrease, the optimization
resembles the dynamics of SGD projected onto a sphere with a certain radius. We assert that this
stage is pivotal for training with weight decay and hypothesize the following key mechanism:

Weight decay maintains parameters norm in a small bounded interval. The resulting projected
noise-driven process induces an implicit regularization effect.

The rest of the section is dedicated to empirically confirming this implicit regularization mechanism.
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Figure 2: Training scale-invariant ResNets on the sphere. We train on CIFAR-10 with three different large
LR for the first 100 epochs and decay it to η = 10−4 afterwards. Figure (2a) reports the test error with respect
to different LRs in the first phase showing the existence of an optimal value. Figure (2d) reports the test error
along the iterations. Figures (2c, 2d) report the decreasing trend of the trace of the Hessian and test error after
fine-tuning for 100 epochs with η = 10−4 every 2 epochs.

3.2 WARMUP: OPTIMIZATION ON THE SPHERE WITH SCALE INVARIANCE

In order to isolate the implicit regularization mechanism from the large initial drop of the ℓ2 norm,
we consider a simplified setting. We train scale-invariant networks (Li & Arora, 2019; Li et al., 2020)
with projected SGD on the unitary sphere S(p−1). This setup is advantageous for two reasons: (a) it
streamlines LR selection, significantly reducing experimental complexity, and (b) prior research on
scale-invariant networks (Li & Arora, 2019; Li et al., 2020; Kodryan et al., 2022) facilitates a clear
comparison to our result. The projected SGD update writes as

wt+1 = ΠS(p−1) (wt − η∇wℓ (yit , h(wt, xit))) where ΠS(p−1) : w 7→ w/
∥∥w∥∥

2
. (3)

The training framework still consists of two phases separated by a LR decay. The primary insight
from our experiments on the sphere is depicted in Fig. 2: the test performance achieved in the fine-
tuning phase depends on the LR used in the large-LR phase and, moreover, there is an optimal value.
Our investigation reveals that the key to understand this behavior and the dependence on the LR lies
in the noisy dynamics in the first phase.

The noise driven process. We introduce the key ingredients of SGD noise and subsequently exploit
the properties of their approximations to investigate the implicit regularization effect. Let gt =
∇wL(wt)−∇wℓ (yit , h(wt, xit)) denote the noise in the gradient.

(P1) Under reasonable approximations (details in Prop. 3) the scale of the noise is proportional to
the train cross-entropy loss, i.e., E

[
∥gt∥2

]
∼ L(wt). Hence, a higher training loss implies a

larger noise in the stochastic gradients. The experiments in Fig. 11, 12 show that in the large
LR phase, the training loss remains nearly constant. Based on this observation, we assume
E
[
∥gt∥2

]
≍ σ2

η .
(P2) We empirically observe that the covariance of the noise Σt = E

[
gtg

⊤
t

]
and the Hessian

∇2
wL(wt) have the same shape, see App C.4.

In the case of regression, the shape of the covariance of the stochastic gradients, when the labels
are injected with Gaussian noise, also matches the shape of the Hessian. This crucial observation is
used in several works (Blanc et al., 2020; Li et al., 2021; Damian et al., 2021) to demonstrate the
implicit regularization properties of SGD. Specifically, Damian et al. (2021); Pillaud-Vivien et al.
(2022) show that the SGD trajectory closely tracks the solution of a regularized problem. Leveraging
property (P2), we conjecture that a similar result should hold in our analysis and that the dynamics
of SGD on the sphere for classification tracks closely a regularized process.
Conjecture 1. Consider the algorithm Eq. 3 with w0 initialized from a distribution µ0

(
S(p−1)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and its
functional value. The stochastic process (h(wt, x))t∈N will converge to a stationary distribution
µ∞
η (x) with mean µ̄η(x) for which the following property holds,

µ̄η(x) = h
(
w∗

η, x
)
, where w∗

η := argmin
w∈S(p−1)

L(w) + ησ2
η Tr

(
∇2L(w)

)
. (4)

The important difference in our statement is that, unlike Blanc et al. (2020); Damian et al. (2021),
we do not need to add noise to the labels at each iteration. Instead, the large-LR phase induces a
label noise-like behavior similar to Andriushchenko et al. (2023).
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Mixing in the function space. A simpler conjecture could have been that the iterates (wt)t≥0 mix
towards a solution of the regularized objective w∗

η . However, Li et al. (2020) argues against mixing
in the parameter space, emphasizing the necessity of considering the function space. Hence, our
conjecture is formulated to capture stationarity in function space.

What is the purpose of the fine-tuning phase? Even at stationarity,1 the values of the loss L(wt)
and of Tr

(
∇2L(wt)

)
are still dominated by the noise. This noise obscures any discernible trend

along the trajectory, making it challenging to argue convincingly about convergence to the minimum
of the regularized loss. While Langevin dynamics suggest LR annealing to approach the mean of the
stationary distribution, this technique does not fully resolve the issue. The noise is state-dependent
and decreasing the LR might change the stationary distribution and potentially the regularized ob-
jective. An alternative approach is to project the iterate wt onto a manifold where the loss matches
the value evaluated at the mean. Analyzing the evolution of Tr

(
∇2L

)
at these projected iterates

might reveal evidence of a regularized process. For illustrative image, refer to Fig. 10. This pro-
jection corresponds to the fine-tuning phase and is accomplished with early-stopped gradient flow
(SGD with a small LR).

Interpretation of the conjecture and links to generalization. The empirical observations in Fig. 2
show that when two different LRs ηl (large) and ηs (small) are used in the large-LR phase, models
with different generalization properties are obtained after the fine-tuning phase. Our conjecture
explains this gap as two solutions µ̄ηl

and µ̄ηs
of the regularized problem having different strength

of regularization (ηlσ2
ηl

vs ηsσ2
ηs

). The solution µ̄ηl
benefits from better regularization and therefore

endows better generalization properties. The conjecture further explains the U-shape generalization
curve in Fig. 2a where optimal regularization results in good test performance, and models beyond
that level are over-regularized. The regularization is implicit and is solely due to the noisy dynamics.

Revealing the implicit regularization mechanism. Here, we present additional empirical evidence
that the process (wt)t>0 closely tracks the regularized process. As mentioned earlier, directly mea-
suring the loss L or Tr

(
∇2L

)
at wt fails to reveal any decreasing trend due to noise interference.

Therefore, we utilize the fine-tuning process to exhibit this decreasing trend. During fine-tuning, the
iterate wt is projected to a nearby point, denoted as w̃t, such that L(w̃t) ∼ L(w∗

η). Since their loss
values are similar, we compare Tr

(
∇2L(.)

)
at w∗

η and w̃t. In the experiments detailed in Fig. 2c,
we report Tr

(
∇2L(.)

)
along the fine-tuned iterates w̃t and observe a decreasing trend. The trajec-

tory of the iterates (wt)t≥0 closely follows the trajectory of the fine-tuned iterates (w̃t)t≥0 which
converge to w∗

η . This mechanism elucidates how the trajectory of SGD implicitly biases the model
towards a regularized solution that leads to enhanced generalization properties.

Comparison with the related works. Our focus is to empirically illustrate the implicit regular-
ization phenomenon, and we refrain from attempting to prove this general conjecture, which we
consider a challenging task. We refer to App. C.3 for comparison with further works related to label
noise. Li et al. (2020) also studies the stochastic process that governs the evolution of parameter
directions in scale-invariant networks. Nevertheless, our approach differs in nature as we aim to
provide a qualitative description of the stationary distribution (see App. C.3 for more details).

3.3 A UNIFYING THEME: BEYOND SCALE INVARIANCE AND SPHERICAL OPTIMIZATION

The spherical case studied in the previous subsection paints a clear picture. When isolated from
the evolution of the norm, the stochastic dynamics induced by SGD and large LRs provide better
control over the trace of the Hessian of the model and thus enforce a useful regularization which
translates into good generalization properties. In this section, we demonstrate that a similar picture
holds in the case of standard training with weight decay. We extend the Conjecture 1, to hold beyond
spherical optimization and for networks which are not scale invariant.

Conjecture 2. Consider the algorithm in Eq. 2 with w0 initialized from a distribution µ0

(
R(p)

)
.

For any input x, let wt, h(wt, x) be the random variables that denote the iterate at time t and
its functional value. The stochastic process (h(wt, x))t∈N converges to the stationary distribution

1Assuming the existence of a stationary distribution, the iterates wt are eventually realizations from this
distribution.
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Figure 3: Training standard ResNets with weight decay. We train on CIFAR-10 with λWD = 0.015, three
different large LRs for the first 100 epochs and decay them to η = 10−3 afterwards. The norm in Fig. 3a
converges to the same value after the LR decay while the test error in Fig. 3b is different. Fig. (3c, 3d) report
the decreasing trend of Tr(∇2) and test error after fine-tuning for 100 epochs with η = 10−3 every 2 epochs.

µ∞
η,λ(x) with mean µ̄η,λ(x) for which the following property holds,

µ̄η,λ(x) = h
(
w∗

η,λ, x
)
, where w∗

η,λ := argmin
w∈Rp

Lλ(w) + ησ2
η,λ Tr

(
∇2L(w)

)
. (5)

There are two differences compared to Conjecture 1: (a) the loss term in the regularized objective
is replaced by a ℓ2-regularized loss and (b) most importantly the strength of the regularization ση,λ,
now depends on both the LR and the WD parameter λ. Our experiments in Fig. 3, provide empirical
validation for this conjecture. When trained with different LRs and then fine-tuned, the training
converges to models with different test performances. This difference is primarily attributed to the
varying regularization strengths ση,λ. The model with the largest LR exhibits the smallest Tr(∇2).
When fine-tuning every two epochs along the trajectory as reported in Fig. 3c, the quantity Tr(∇2)
is decreasing closely following a regularized process. A similar trend can be observed in Fig. 3d for
the test performance when fine-tuning along the trajectory. These observations strongly indicate the
benefits of generalization arising from implicit regularization.

Exponential moving average. As discussed in the spherical case, the iterates are noisy realizations
and measuring either L or Tr(∇2L) at the iterates is not informative. However, we can reduce
the noise by averaging and unlike the spherical case it is easy to compute the iterate average in
the unconstrained case.2 Intuitively the average should be close to w∗

η,λ, the experiment in Fig. 3b
confirms this intuition. We consider an exponential moving average (EMA) of the SGD iterates
with parameter β = 0.999 and show that the test error is lower for a large LR (0.1) which enjoy
better regularization. This provides further justification for our conjecture and also highlights the
practical advantage of obtaining the best model by a simple exponential moving average instead of
fine-tuning.

Effective learning rate vs. high training loss. Existing works (Zhang et al., 2018) have explored
the relationship between LR and WD, introducing the concept of effective LR. These works primar-
ily emphasize that training with WD results in a higher effective LR, without clarifying how this
high LR contributes to improved generalization. We address this gap by proposing that a higher LR
leads to an increase in ση,λ, consequently enhancing generalization. We claim that examining the
high training loss, which approximates the scale of ση,λ, offers a more insightful explanation for the
enhanced generalization ability. Analyzing the training curve in Figure 11, the training loss remains
consistently high during training with weight decay, entering a phase termed “loss stabilization,”
by Andriushchenko et al. (2023). We assert that WD contributes to achieving this loss stabilization
phase in classification tasks, leveraging the implicit regularization induced by stochastic dynamics.

On the benefit of normalization. Our conjecture characterizes the mixing distribution but does not
delve into the speed of the mixing process. In our experiments, we observe that normalization plays
a pivotal role in the speed of mixing. Li et al. (2020) observes a similar phenomenon in the case of
scale-invariant networks, specifically the fast equilibrium conjecture, which is addressed by Li et al.
(2022b). We note that this phenomenon persists even when the models are not scale-invariant.

Conclusion. The key quantity ση,λ governs the effective regularization strength. The primary influ-
ence of WD and a large LR lies in maintaining it at an appropriate scale. Alternative methods, such
as injected label noise, dropout, or data augmentation, can also achieve this objective.

2Note that on the sphere, we need to compute the mean on a manifold which is a harder problem
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4 WEIGHT DECAY FOR LARGE LANGUAGE MODELS

In this section, we discuss how weight decay leads to better optimization properties for training
language models: it leads to lower training loss and prevents sudden loss divergences.

Experimental setting. We use the NanoGPT repository (Karpathy, 2023) for training GPT-2 mod-
els (Radford et al., 2019) on OpenWebText. We train a 124M parameter model known as GPT-2-
Small for 50 000 iterations. For most experiments, we reduce the default context length from 1024
to 256 to ensure practicality within an academic budget. Unless mentioned otherwise we train with
AdamW using batch size 256, default LR 0.0006, a short 400-iteration LR warmup, and 10× cosine
LR decay. We keep all other hyperparameters at their default values, see Sec B for more details.
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Figure 4: The generalization gap
stays close to zero throughout train-
ing for different λWD .

Weight decay in LLMs is not regularization. Weight decay is a
common component in training state-of-the-art LLMs like GPT-
3 (Brown et al., 2020), Chinchilla (Hoffmann et al., 2022), and
Llama (Touvron et al., 2023). These works consistently employ
λWD = 0.1, and typically do not penalize LayerNorms, result-
ing in a change to the minimizer but not the minimum value.
While Brown et al. (2020) suggest that weight decay offers ”a
small amount of regularization,” its necessity remains unclear in
the context of one-pass SGD where the population loss is directly
minimized. As shown in Fig. 4, where we plot the generaliza-
tion gap for three training runs, the training and validation losses
remain closely aligned across different weight decay values.

Two mechanisms of weight decay for LLMs. We suggest that
the two most crucial mechanisms of weight decay for LLMs are
as follows: (1) better optimization as observed in Hoffmann et al. (2022), (2) prevention of loss
divergences when using bfloat16. At first glance, adding an extra term to the optimization ob-
jective may seem counter-intuitive when the sole focus is minimizing cross-entropy loss. We offer a
detailed understanding of both mechanisms that stand in contrast to the data-limited setting of Sec. 3,
where optimization speed and training stability are not the primary concerns, unlike generalization.

4.1 UNDERSTANDING THE BENEFIT OF WEIGHT DECAY FOR BETTER OPTIMIZATION

Better optimization is reproducible at a smaller scale. The findings from Hoffmann et al. (2022)
(Fig. A7 therein) indicate that weight decay in AdamW leads to lower training loss (≈ 0.02 lower),
primarily towards the end of training, which also translates in a better downstream performance. We
are able to reproduce this phenomenon at a smaller scale with 124M parameters in Fig. 5 (left): the
final training loss is smaller for λ equal to 0.1 and 0.3 compared to 0. In contrast, weight decay does
not provide benefits when training with constant LRs as shown in Fig. 5 (right) emphasizing the
importance of its interaction with LR decay. Furthermore, we observe a similarity in loss stabiliza-
tion between constant LRs and weight decay. However, this stabilization does not offer utility in this
context where our primary goal is improved optimization. Additionally, performing fine-tuning with
a tiny LR reveals that a higher starting training loss can still be a better starting point in terms of the
final loss. Moreover, in Fig. 15 in the Appendix, we show that decoupled weight decay, as advocated
in Loshchilov & Hutter (2019), is unnecessary: a simple ℓ2 penalty added to the loss achieves the
same effect. Lastly, in Fig. 16, we show that a similar improvement in training loss is also observed
for SGD with momentum suggesting that adaptive LRs are not key for this phenomenon.

Bias-variance tradeoff from stochastic approximation. Stochastic approximation (SA) algo-
rithms’ convergence primarily depends on two factors: the convergence of the bias term and the
variance term (Moulines & Bach, 2011). The bias term influences the rate at which initial condi-
tions are forgotten, while the variance term results from noise in the gradient estimates. Consider
the simple case of SGD with a constant LR η applied to linear models. In this case, the expected
excess risk after t iterations can be bounded as

Excess Risk ≲ (1− ηµ)t
∥∥x0 − x∗

∥∥2 + ησ2,

where σ is a uniform bound on the variance of the noise of gradient estimates, µ a lower bound
on the objective function’s Hessian, x0 the initial point and x∗ the optimum. In the context of SA
with linear models, it is well-established that a larger LR accelerates the contraction of the bias term
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Figure 5: GPT-2-124M on OpenWebText. Left: We reproduce the improvement from weight decay as in
Hoffmann et al. (2022) using 10× cosine LR decay. Performing fine-tuning with a tiny LR reveals that a higher
starting training loss can still be a better starting point in terms of the final loss. Right: In contrast, weight
decay has no beneficial value when training with constant LRs. We see resemblance of loss stabilization which
is, however, not useful in this setting.

but has a detrimental impact on the variance term. With constant LRs, the variance term eventually
becomes dominant. To reduce the variance, various techniques like averaging or LR decay can be
employed. However, with decaying LRs reduce the variance but simultaneously slows down the
convergence of the bias term. In contrast, when employing decaying LRs, the rate of convergence
can be primarily influenced by the bias term.

Effective LR induced by weight decay. Our main hypothesis posits that the use of WD during
the training of LLM results in an increased effective LR by controlling parameter norms, even in
the absence of homogeneity in the training loss. This assertion is grounded in the observed inverse
correlation between the evolution of gradients and parameter norms (see Fig. 17 in the Appendix).
In alignment with results for GD and scale-invariant functions, we show in Sec. D.1 in the Appendix
that WD in combination with Sign GD (utilized as a surrogate for Adam) is equivalent to projected
GD on the sphere, with an effective LR ηeff ∝ ηt/∥wt∥2 (see Fig. 6). Thus, controlling parameter
norms with WD allows implicit changes to the LR schedule.
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Figure 6: The effective LR for the
models reported in Fig. 5.

Understanding the effect of weight decay from the lens of
bias-variance tradeoff. We postulate that the effective dy-
namics induced by weight decay are equivalent to those with-
out weight decay but with a higher LR. Under a constant LR,
at convergence, the loss is eventually dominated by the vari-
ance and scales as O(η). Consequently, since weight decay is
equivalent to a higher LR, the final loss scales as O(ηeff), re-
sulting in higher error rates, as confirmed by Fig. 5. However,
with decaying LRs the picture is different. With a large LR, the
convergence is still primarily influenced by the variance term,
leading to higher loss values in the presence of weight decay.
Conversely, in the phase with smaller LRs, bias contraction
takes precedence in the convergence process, causing weight decay to catch up and perform better at
the end (see Fig. 5, left), thanks to its relatively higher effective LR and improved bias contraction.
To support our hypothesis about effective LRs, in Fig. 19 we consider a run without weight decay
but with a cosine schedule that achieves a slightly higher LR towards the end. This approach aligns
with the convergence pattern observed with weight decay in the final phase, indicating that similar
effects of weight decay can be replicated using a higher LR.

Practical takeaways. According to Sanyal et al. (2023), weight averaging for LLMs is most advan-
tageous when employed with large LRs, underscoring the importance of reducing gradient noise in
LLM training. Thus, weight averaging can serve as a nearly zero-cost proxy of fine-tuning with tiny
LRs providing insight into whether a training run is constrained by the variance term. We show the
result of weight averaging in Fig. 18 in Appendix which can be compared to Fig. 5. Interestingly,
Fig. 18 also illustrates that employing a constant LR in conjunction with weight averaging is nearly
as effective as implementing LR decay.
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Figure 7: GPT-2-124M on OpenWebText with context length 1024. Left: The model trained with a moderate
LR 0.001 diverges for bfloat16 but not for float32; lowering the LR prevents the divergence but leads to
a worse loss. Right: Weight decay prevents divergence for LR= 0.001 and enables bfloat16 training (the
three random seeds are denoted with —, - - -, · · · lines).

4.2 WEIGHT DECAY PREVENTS DIVERGENCES WITH BFLOAT16

Overview. Another crucial effect of weight decay is that it enables stable bfloat16 mixed-
precision training. Using bfloat16 training helps to significantly speed up training and reduce the
GPU memory requirements allowing to train larger models and use larger batches (Kalamkar et al.,
2019). Scao et al. (2022) briefly observed that usage of float16 causes spikes, while bfloat16
is more stable. Although bfloat16 shares the same floating-point exponent size as float32, it
offers lower precision, with only 7 bits for the fraction instead of 23. Interestingly, we observe that
even the presumably more stable bfloat16 can still exhibit late-training spikes that irreparably
harm model performance. We suspect that LLM practitioners may be aware of this phenomenon
qualitatively, but we could not find any systematic reference addressing it.

Experiments. We observe that using a larger context length (e.g., 1024 instead of 256 as previously)
makes the training more susceptible to loss divergences. Therefore, we focus on this configuration
for the experiments shown in Fig. 7. We notice that runs with a moderate LR 0.001 (the default
LR of Adam in PyTorch) without weight decay exhibit late-training divergence for all random
seeds when using bfloat16, in contrast to float32, which remains entirely stable. Importantly,
we observe that the model does not recover after the loss spikes, in contrast with the loss spikes
described in the Edge of Stability phenomenon (Cohen et al., 2021; 2022). We note that one can
prevent divergences by simply lowering the LR, e.g., from 0.001 to 0.0006 (see Fig. 7, left) but this
leads to slower training. Instead, the most effective approach is to use a higher LR of 0.001 with
weight decay, which enables stable bfloat16 training and yields a better final training loss.

Reasons behind the divergences. The significance of weight decay becomes evident when we
consider float16 training, which allows only 5 bits for the exponent. Divergences in such cases
are well-documented, as noted in Karamcheti et al. (2021): when moderately large values exceeding
65 519 are encountered during a forward pass, they are interpreted as infinity. However, the situation
is less straightforward with bfloat16, which has the same exponent size with float32. In this
case, a high-weight norm alone should not pose a problem. However, issues may arise when different
components in the network with varying scales are added together, introducing imprecision. These
divergences might not be entirely surprising, considering that bfloat16 offers limited precision.
For instance, bfloat16(256.0) + bfloat16(1.0) does not yield 257 but rather 256. We
suspect this precision limitation is the primary challenge in bfloat16 runs without weight decay.
It is worth noting that reducing the LR can mitigate these issues but results in slower training.
Nevertheless, it helps in preventing excessive weight growth, as illustrated in Fig. 20.

5 CONCLUSIONS

We find it remarkable that a single hyperparameter can exhibit three distinct effects: providing
regularization when paired with stochastic noise, enhancing optimization of the training loss, and
ensuring stability of low-precision training. Interestingly, previous work has at times misunderstood
or conflated these effects. For instance, while AdamW (Loshchilov & Hutter, 2019) was introduced
as a regularization method, its popularity in the context of LLMs primarily arises from having a
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hyperparameter which is easier to tune in practice. In summary, we conclude that weight decay is
seldom valuable as an explicit regularizer; instead, its widespread adoption can be attributed to its
ability to induce desirable changes in optimization dynamics.
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Appendix

A EMPIRICAL CONFIRMATION OF THE CONJECTURES

A.1 COMPARISON WITH RELATED WORKS

Paper Loss function Algorithm Implicit regularization
Damian et al. (2021) & Squared loss & Label noise GD Trace of HessianLi et al. (2021) CE + label smoothing

Blanc et al. (2020) Squared loss Label noise GD Jacobian norm
Li et al. (2020) Scale-invariant loss SGD -

Andriushchenko et al. (2023) Squared loss SGD with large LR Jacobian norm
Our work Regularized CE SGD with large LR Trace of Hessian

Table 1: Comparison of our work with closely related works on regression and implicit regularization phe-
nomenon induced by noise in the algorithm.

A.2 DISCREPANCY WITH OUR EVALUATION
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Figure 8: ResNets-18 trained on CIFAR-10. We plot Tr(∇2) at points obtained by weight averaging with
different EMA coefficients (0.999 left and 0.95 middle) during the large learning rate phase, together with
Tr(∇2) measured at the current iterates (right). We observe that the ranking between different learning rates
supports our conjecture for the current iterates and EMA 0.95 but not EMA 0.999.

In this section, we address some of the concerns raised by the reviewers. The conjecture is pri-
marily motivated by the theoretical works studying implicit regularization of label noise gradient
descent (LNGD) on the squared loss. From Property P2, we know that the noise co-variance has the
same shape for both SGD and LNGD. This led us to propose that a similar implicit regularization
phenomenon should hold for SGD with large step and weight decay.

Our goal is to show that the iterates of SGD with large step and weight decay (wi)i≥1 stay close to
another process (w̃i)i≥1 which minimizes a regularized objective Lλ + γ(η)R for some regulariz-
ing function R and γ(η) is the strength of regularization. The fine-tuning phase introduced in our
framework confirms this idea. Indeed, across the iterations i, the iterates w̃i’s have comparable loss
Lλ but the regularizer R decreases with i.

We further want to show that the mean of the process (wi)i≥1 converges to a minimizer of the ob-
jective Lλ + γ(η)R. In this part, we acknowledge a discrepancy in our approach. Let (wi,η1

)i≥1

and (wi,η2
)i≥1 be the iterates of SGD with step size η1 and η2. If our conjecture would hold as

formulated, comparing the trace of the Hessian for the iterates of the respective EMAs (w̄i,η1
)i≥1,

(w̄i,η2
)i≥1 should show that R(w̄i,η1

) > R(w̄i,η2
) for η1 < η2 given that we converge to a mini-

mum of Lλ + γ(η)R. However, this is not the case as reported in Figure 8 and the behaviour seems
to depend on the coefficient of averaging, although the trace across the current iterates wi,η1 and
wi,η2 exhibits the predicted trend (see Figure 8, right). It is surprising and in contrast with previous
works, to see that Tr(∇2) for the EMA shows a larger decrease for smaller learning rates. There-
fore, we believe that further investigations are needed to clarify this discrepancy. Moreover, our
preliminary results reveal that the norm of the Jacobian might be a better candidate for R. In the
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discussion below we illustrate the close relation between the norm of the Jacobian and the Trace of
the Hessian.

Link between the trace of Hessian and Jacobian norm. For any loss function l and a parame-
terized model h(w, x) for any input x. Consider the empirical loss L() defined by

L(w) =

N∑
i=1

l (yi, h(w, xi)) .

The Hessian of L is

∇2L(w) =

N∑
i=1

[
∇h(xi;w)

[
∇2

hl(h(xi;w))
]
∇h(xi;w)⊤︸ ︷︷ ︸

Gi(w)

+

K∑
c=1

[∇hl(h(xi;w))]c∇2h(xi;w)︸ ︷︷ ︸
Ei(w)

.

]

Many works (Papyan, 2018; Sagun et al., 2017) demonstrated empirically that the Gi is the dominant
part of the Hessian decomposition and ∇2L(w) ∼ ∑

i Gi.

∇2L(w) ∼
N∑
i=1

[
∇h(xi;w)

[
∇2

hl(h(xi;w))
]
∇h(xi;w)⊤︸ ︷︷ ︸

Gi(w)

]

The Jacobian (J) and its norm is defined as

∥∥J∥∥2
F
=

N∑
i=1

Tr
(
∇h(xi;w)∇h(xi;w)⊤

)
In the case of square loss

∥∥.∥∥2, ∇2
hl = I where I is the identity matrix. Hence,

Tr
(
∇2L(w)

)
∼

∥∥J∥∥2
F
.

The similarity is an exact equality at an interpolating solution since ∇hl(h(xi;w)) = 0. However,
in the case of classification, this is no longer true. In particular, since the trace ∇2

hl might be far
from the identity and depend on the value of the train loss. We believe this fact to be the cause of
the discrepency in our evaluation.

A possible solution. As our work is motivated by the theoretical results on regression where the
Jacobian norm and the trace of the Hessian of loss function have similar behaviour, we initially con-
jectured that the implicit regularization term should be Tr(∇2). However, it is an oversight on our
side as we did not carefully examine this hypothesis to reveal the correct regularizer R. As pointed
out before, our experiments with Tr(∇2) do not provide a complete and consistent picture. Although
they reveal a regularized process in close proximity as illustrated by the fine-tuning; the mean shows
a discrepancy and therefore should be thoroughly evaluated. Our preliminary experiments on

∥∥J∥∥
F

show a consistent behavior. Contrary to the Tr(∇2), the
∥∥J∥∥

F
of the EMA shows the expected

trade-off with the training loss i.e., large learning rate runs have a larger training loss and a smaller
norm of Jacobian (Figure 9b). Furthermore, the fine-tuning still shows a regularized process in close
proximity (Figure 9a). However, since this observation comes from only one setup (architecture and
dataset), we have decided to withdraw the paper and undertake a substantial revision to provide a
more comprehensive result.

B TRAINING DETAILS

CIFAR-10/100 experiments. We train a VGG network without BatchNorm and preactivation
ResNet-18 on CIFAR-10 and ResNet-34 on CIFAR-100 without data augmentations. We use stan-
dard SGD without momentum for all experiments. We note that ℓ2 regularization and weight decay
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Figure 9: Jacobian norm for ResNet-18 on CIFAR-10. Figure 9a shows a decreasing trend for the fine-tuned
iterates and Figure 9b shows the trend for the EMA with the averaging coefficient 0.999.

are exactly the same in this case. We use the standard He initialization (He et al., 2015) for all
parameters. To make ResNets scale-invariant, we follow the approach of Li et al. (2020) consisting
of fixing the last layer, removing the learnable parameters of the normalization layers and adding a
normalization layer in the skip connection. For the experiments in Fig.1, VGG is trained with LR =
0.1 and LR = 0.01 and weight decay parameter is fixed to be either λWD = 0.0 or λWD = 0.008.
The ResNet-18 is trained with LR = 0.08 and LR = 0.001 and λWD = 0.0 or λWD = 0.0125.
The ResNet-34 is trained with LR = 0.15 and LR = 0.001 and weight decay parameter λWD = 0.0
or λWD = 0.01. The total number of epochs is 1000 in all experiments in Fig.1 and all the LR
are decayed at epoch 500 to 0.0001. For the experiments in Fig. 2 we use scale-invariant ResNet-
18 and project the SGD iterates on the unitary sphere. We test the following LRs in the large-LR
phase (0.0001, 0.0005, 0.00075, 0.001, 0.002, 0.003, 0.004, 0.005) to show different generalization
performance. After 100 epochs all the learning rates are decayed to the same value 0.0001. In Fig. 2c
and Fig. 2d we fine-tune every 2 epochs for 100 additional epochs with LR=0.0001. For the exper-
iments in Fig. 3 we test three different LRs (0.1, 0.15, 0, 2) and decay all of them to 0.001 after the
first 100 epochs. To obtain Fig. 3c and Fig. 3d we fine-tune every 2 epochs for 100 additional epochs
with LR=0.001. To compute the trace of the hessian of the model we use the PyHessian library Yao
et al. (2020) and consider a subset of CIFAR-10 containing 5000 points. All the experiments are
conducted for 5 different random seeds.

LLM experiments. We use the NanoGPT repository (Karpathy, 2023) for training GPT-2 models
(Radford et al., 2019) on OpenWebText (Gokaslan et al., 2019). All training documents are con-
catenated in a single stream from which a new batch is sampled with replacement on every iteration
of training. We train a 124M parameter model known as GPT-2-small for 50 000 iterations instead
of the default 600 000 to make grid searches over the learning rate and weight decay parameters
more accessible within an academic budget. We use the context length of 256 in Sec. 4.1 for faster
experiments and 1024 in Sec. 4.2 since we observed that a larger context length is crucial to observe
loss divergences with moderate learning rates (such as 0.001 for Adam). We train with AdamW
(Loshchilov & Hutter, 2019) using batch size 256, default LR 0.0006 (unless mentioned otherwise),
β1 = 0.9, β2 = 0.95, a short 400-iteration LR warmup, and 10× cosine LR decay. For the runs
with SGD with momentum, we use the learning rate 0.3 and momentum parameter 0.9 using the
same LR schedule as for AdamW. We initialize all parameters with the standard deviation equal to
0.02. We keep all other hyperparameters at their default values as in the NanoGPT repository. We
perform all experiments on A100 Nvidia GPUs that support fast bfloat16 training.
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C WEIGHT DECAY FOR OVERPARAMETRIZED DEEP NETWORKS:
ADDITIONAL DETAILS AND FIGURES

C.1 A GRAPHICAL ILLUSTRATION OF THE FINE-TUNING PHASE

Here, we plot an illustrative graphic in Figure 10 to give an idea of what happens during the fine-
tuning phase.

Figure 10: A graphical illustration of the fine-tuning phase.

C.2 SUPPORTING DERIVATIONS

Here we prove that the scale of noise is well approximated by training loss in the case of binary
classification instead of classification in the case of multiple classes. The proof follows the lines
of Wojtowytsch (2021).
Proposition 3. Assume

∥∥w∥∥ ∈ [a, b], for any x ∈ D,
∥∥∇h (w, x)

∥∥ ∈ [m,M ] holds. For n
sufficiently large, there exists constants c1, c2 such that

c1L(w) ≤ E
[∥∥g(w)

∥∥2] ≤ c2L(w)

Proof. The noise in the case when the gradient is computed at (xi, yi) is

g(w) = ℓ
′
(yi, h(w, xi))∇h(w, xi)−

1

n

∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi),

Taking the expectation over uniform sampling over i, we have,

E
∥∥g∥∥2 =

1

n

n∑
i=1

(
ℓ
′
(yi, h(w, xi)

)2 ∥∥∇h(w, xi)
∥∥2 − 1

n2

∥∥∑
i

∇ℓ
′
(yi, h(w, xi))∇h(w, xi)

∥∥2
(6)

Upper bound: Using the self-bounding property of the binary cross entropy, i.e.,
(
ℓ′2

)
≤ l and∥∥∇h (w, x)

∥∥2 ≤ M2.

E
∥∥g∥∥2 ≤ M2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = M2L(w).

Lower bound: Again since the iterates are bound, we can assume there exists a constant c such that(
ℓ′2

)
≥ cl. as the second term in 6 is decreasing with O(n−2), we can assume that the first term is

dominating and relevant and can lower bound the first term as,

E
∥∥g∥∥2 ≥ cm2 1

n

n∑
i=1

ℓ(yi, h(w, xi)) = cm2L(w).

This proves the proposition.
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C.3 COMPARISON WITH THE RELATED WORKS

Our focus is on an empirical illustration of the implicit regularization phenomenon, hence we refrain
from attempting to prove this general conjecture, which we believe is a challenging task. The exist-
ing theoretical works Blanc et al. (2020); Li et al. (2021); Damian et al. (2021) present two major
weaknesses; they are essentially limiting analysis and as such fail at capturing the entire optimiza-
tion trajectory and they primarily target regression tasks. The powerful mathematical framework
for scale-invariant networks developed by Li & Arora (2019); Li et al. (2020) allows them to study
in detail the benefits of normalization and its interplay with weight decay. By means of this frame-
work, they state a fast equilibrium conjecture, which gives qualitative guarantees for the speed of
convergence of the stochastic process to the stationary distribution in function space. They disen-
tangle the evolution of the norm and the direction of the parameters and show how the evolution of
the direction only depends on the intrinsic LR λi = ηλ. However, a qualitative description of the
stationary distribution, its dependence on this intrinsic LR and the relationship with generalization
is missing (Li et al., 2020, Figure 3(d)). We attempt to fill this gap by providing a qualitative depic-
tion of the stationary distribution and its dependence on the intrinsic LR shading some light towards
understanding the relationship with generalization. The work of Kodryan et al. (2022) reports a
similar observation, where the best test loss is achieved at a LR where the loss neither converges nor
diverges but does not provide any explanation.

C.4 ADDITIONAL FIGURES FOR OVERPARAMETERIZED MODELS

In this section, we report additional experimental results related to Section 3 in the main text.

Training curves for VGG and ResNets. In Fig. 11 we report the train cross entropy for VGG and
ResNet18 on CIFAR-10 and ResNet34 trained on CIFAR-100. We can observe how when weight
decay is used in combination with large LR, the train cross entropy stabilizes at some approximately
constant level. In Fig. 12 we report the train cross entropy for scale-invariant ResNet on the sphere
in Fig. 12b and for standard ResNet trained with weight decay and different large LRs in Fig. 12a.
In both cases we can observe different levels of stabilization for the cross entropy depending on the
LR deployed in the large-LR phase.
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Figure 11: Training with and w/o weight decay. We report the train cross entropy for VGG (11a) and ResNet
(11b, 11c) trained on CIFAR-10/100 with and without weight decay and with small and large learning rates.
After the first 500 epochs the learning rate is decayed to η = 10−4 for all the curves.

Connection between SGD covariance and Hessian. Much of the literature related to implicit bias
relies on the assumption that the covariance of the noise of SGD is strictly related to the hessian of the
loss function as discussed in Sec 3. Denoting the Hessian H(w) := ∇2L(w) we can write it as the
so-called Gauss-Newton decomposition (Sagun et al., 2017; Papyan, 2018) H(w) = G(w)+E(w).
To measure the cosine similarity (CS) between w(w) and the covariance Σt we compute

CS = E [cos (H(w)v,Σtv)]

where v is sampled from the Gaussian distribution in Rp and cos(u, v) = ⟨u,v⟩/
∥∥u∥∥∥∥v∥∥. The results

are reported in Fig. 13
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Figure 12: Cross-entropy of standard and scale-invariant ResNets we train on CIFAR-10 with three different
large LR for the first 100 epochs and decay it to η = 10−3 for the standard ResNets with λWD = 0.015 Figure
12a and to η = 10−3 for the scale-invariant ones 12b.

Figure 13: Cosine similarity between hessian and Noise covariance: we compute the cosine similarity
between the hessian and the covariance of the SGD noise for a scale-invariant ResNet after one epoch with
large lr η = 0.005. The results show how the two matrices are correlated and in particular how the SGD noise
covariance is highly correlated with G(w).

D WEIGHT DECAY FOR LARGE LANGUAGE MODELS: ADDITIONAL FIGURES
AND DETAILS

D.1 BIAS-VARIANCE TRADEOFF FOR LLMS AND EFFECTIVE LEARNING RATE

Effective learning rate induced by weight decay. Looking at the trend of the norms, we see that
different trajectories with different regularizations lead to solutions with different norms. Hence we
have a minimizer for the loss at each norm level, hence, the relevant quantity might be the evolution
of direction. Here to approximate Adam and to motivate an adaptive learning algorithm, we use the
sign stochastic gradient.

wt+1 = wt − ηtλtwt − ηt sign(∇ℓt(wt)),

= (1− ηtλt)wt − ηt sign(∇ℓt(wt)),

= (1− ηtλt)
∥∥wt

∥∥[ wt∥∥wt

∥∥ − ηt

(1− ηtλt)
∥∥wt

∥∥ · sign(∇ℓt(wt))

]
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Define w̃ := w/
∥∥w∥∥, using this notation,

w̃t+1 ∝
[
w̃t −

ηt

(1− ηtλt)
∥∥wt

∥∥ · sign(∇ℓt(wt))

]
When sign(∇ℓt(wt)) is solely determined by the direction w̃t, then only the evolution of the direc-
tion matters. This holds
• when the norm is constant across iterations, i.e.,

∥∥wt

∥∥ = c.
• or the function ℓ is scale-invariant or homogeneous, since the following holds

sign(∇ℓt(wt)) = sign(∇ℓt(w̃t)).

Looking at the trend of the gradient norm and the norm of the parameters from 17, we see an
inverse relationship, i.e., the norm of the gradient is higher when the norm is lower. This is
reminiscent of scale invariant networks where ∇ℓ(αx) = 1

α∇ℓ(αx), for any α ̸= 0.
If the evolution of the direction is the only thing that matters, then it is updated with a time-dependent
effective learning rate ηt

(1−ηtλt)
∥∥wt

∥∥ . Figure 6 shows the evolution of this effective LR for various

runs with and without weight decay. Through the lens of this learning rate, we study the impact of
weight decay on convergence of the training loss.

Understanding experimental observations from the lens of bias-variance tradeoff. We hy-
pothesize that the effective dynamics induced by weight decay is equivalent to dynamics without
any weight decay and a higher learning rate.
• Constant learning rate. With a constant learning rate, you will converge to a loss that is even-

tually dominated by variance and is of O(η). Hence as weight decay is equivalent to a higher
learning rate, the final loss which will be of O(ηeff), hence it will be higher and it is confirmed by
the Fig. 5.

• Decaying learning rates. However with decaying learning rates the picture changes quickly,
when the learning rate is large the convergence is still dominated by the variance term, hence the
loss in the case of weight decay is higher due to its higher effective learning rate. However, in
the small learning rate phase, the bias contraction dominates the convergence, and weight decay
quickly catches up and does better again due to its relatively higher effective learning rate and
better bias contraction. This explains the trend in the plot on the left of Fig. 5, both towards the
end of the training and in the fine-tuning.

• Testing this hypothesis. Let’s take a run without decay but the cosine schedule is a bit higher.
It matches the convergence with weight decay in the final phase indicating that similar artifacts
of weight decay can be reproduced using a higher learning rate instead, see Fig. 19. This lends
strength to our hypothesis.

D.2 ADDITIONAL FIGURES FOR THE LLM EXPERIMENTS

We present the following additional figures related to the LLM experiments.

We show the results for models trained weight decay on LayerNorm weights in in Fig. 14. We see
that penalizing all parameters in weight decay (i.e., including the LayerNorm parameters) leads to
the same effect for smaller λWD (like 0.1) but underperforms on larger λWD (like 0.3). Note that
when WD is applied on all weights, this changes the optimal value of the objective. In Fig. 15, we
train models with ℓ2 regularization instead of decoupled weight decay as in AdamW (Loshchilov &
Hutter, 2019). We observe that ℓ2 regularization instead of weight decay leads to the same effect as
decoupled weight decay (Loshchilov & Hutter, 2019). We train models using SGD with momentum
and show the results in Fig. 16. We see that weight decay leads to a similar improvement in training
loss for SGD with momentum as well. We show multiple metrics in Fig. 17 for the models shown in
Fig. 5: gradient variance, gradient norm, and weight norm plots that complement Fig. 6 in the main
part. In Fig. 18, we show results of weight averaging that suggests the suboptimality gap between
runs with different λ is much smaller than what the loss at wt suggests. However, weight averaging
is still less effective than fine-tuning with a tiny LR as in Fig. 5. We show the results of training
with longer LR schedules in Fig. 19. We see that slightly larger length of the cosine LR decay leads
to a similar effect as weight decay, supporting the effective learning rate view on the role of weight
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decay. Note that this experiment is similar to Fig. A1 in Hoffmann et al. (2022). Finally, in Fig. 20,
we show results of models trained context length 1024. We see that the training loss over iterations
for models trained with a range of LR and WD (all are bfloat16). All runs with LR smaller than
0.001 successfully converge but the final training loss is higher than for LR 0.001. In addition, we
observe that lower learning rates prevent the weights from growing too much.
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Figure 14: GPT-2-124M on OpenWebText with weight decay on LayerNorm weights. Penalizing all pa-
rameters in weight decay (i.e., including the LayerNorm parameters) leads to the same effect for smaller λWD

(like 0.1) but underperforms on larger λWD (like 0.3). Note that when WD is applied on all weights, this
changes the optimal value of the objective.
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Figure 15: GPT-2-124M on OpenWebText with ℓ2 regularization. We observe that ℓ2 regularization instead
of weight decay leads to the same effect as decoupled weight decay (Loshchilov & Hutter, 2019).
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Figure 16: GPT-2-124M on OpenWebText trained with SGD with momentum. Weight decay leads to a
similar improvement in training loss for SGD with momentum as well (all other experiments are done with
AdamW).
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Figure 17: Multiple metrics for GPT-2-124M on OpenWebText. Gradient variance, gradient norm, and
weight norm plots that complement Fig. 6 in the main part.

AdamW, 10× cosine LR decay AdamW, constant LR SGD+M, 10× cosine LR decay

10000 20000 30000 40000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 0.1, wt

WD = 0.3, wt

WD = 0.0, wavg
t

WD = 0.1, wavg
t

WD = 0.3, wavg
t

10000 20000 30000 40000 50000
Iteration

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 0.1, wt

WD = 0.3, wt

WD = 0.0, wavg
t

WD = 0.1, wavg
t

WD = 0.3, wavg
t

10000 20000 30000 40000 50000
Iteration

3.4

3.5

3.6

3.7

3.8

Tr
ai

ni
ng

 lo
ss

WD = 0.0, wt

WD = 1 10 5, wt

WD = 3 10 5, wt

WD = 0.0, wavg
t

WD = 1 10 5, wavg
t

WD = 3 10 5, wavg
t

Figure 18: Weight averaging for GPT-2-124M on OpenWebText. Weight averaging (wavg
t ) shows that the

suboptimality gap between runs with different λ is much smaller than what the loss at wt suggests. However,
weight averaging is still less effective than fine-tuning with a tiny LR as in Fig. 5.
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Figure 19: GPT-2-124M on OpenWebText trained with different LR schedules. A slightly larger length of
the cosine LR decay leads to a similar effect as weight decay, supporting the effective learning rate view on the
role of weight decay. Note that this experiment is similar to Fig. A1 in Hoffmann et al. (2022).
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Figure 20: GPT-2-124M on OpenWebText with context length 1024. (Left) The training loss over iterations
for models trained with a range of LR and WD (all are bfloat16). All runs with LR smaller than 0.001
successfully converge but the final training loss is higher than for LR 0.001. (Right) Weight norms for LR in
0.0003, 0.0006, 0.001 for λWD = 0.1 which does not diverge. Lower learning rates prevent the weights from
growing too much.
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