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Abstract

Hamilton’s equations of motion form a fundamental framework in various branches of
physics, including astronomy, quantum mechanics, particle physics, and climate science.
Classical numerical solvers are typically employed to compute the time evolution of these
systems. However, when the system spans multiple spatial and temporal scales numer-
ical errors can accumulate, leading to reduced accuracy. To address the challenges of
evolving such systems over long timescales, we propose SympFlow, a novel neural network-
based symplectic integrator, which is the composition of a sequence of exact flow maps of
parametrised time-dependent Hamiltonian functions. This architecture allows for a back-
ward error analysis: we can identify an underlying Hamiltonian function of the architecture
and use it to define a Hamiltonian matching objective function, which we use for training.
In numerical experiments, we show that SympFlow exhibits promising results, with qualita-
tive energy conservation behaviour similar to that of time-stepping symplectic integrators.

Keywords: Hamiltonian systems, backward error analysis, physics-informed machine
learning, scientific machine learning.

1. Introduction

In this work, we will study the use of neural networks to integrate Hamiltonian systems,
which were first defined in the context of classical mechanics and which have since found
many applications in physics (Arnold, 1978). More specifically, when we speak of Hamil-
tonian systems, we are considering ordinary differential equations (ODEs) of the following
form for a state variable x ∈ R2d and Hamiltonian function H : R2d → R:

dx

dt
= J∇H(x), with J =

(
0 idd

− idd 0

)
. (1)

Typically, the state variable is partitioned into a position q ∈ Rd and momentum p ∈ Rd.
Under standard (non-restrictive) assumptions onH (Arnold, 1991), the corresponding initial
value problem has a unique solution for any initial condition and initial time, which can be
used to define the corresponding flow map ϕH : R×R2d → R2d by

d

dt
ϕH,t(x) = J∇H(ϕH,t(x)) and ϕH,0(x) = x. (2)

Since the exact flow map in eq. (2) is generally not accessible, it is necessary to make a
“satisfactory” approximation to such an exact flow map. Depending on the context, this
can have different meanings, but for Hamiltonian systems, there are important structural
properties that can provide guidance: the flow map is symplectic, meaning that the Jacobian
matrix DϕH,t(x) satisfies the identity [DϕH,t(x)]

⊤J[DϕH,t(x)] = J, and the Hamiltonian H
is conserved, i.e. H(ϕH,t(x)) = H(x). Symplecticity also implies that volumes in phase
space are preserved. When numerically approximating the flow map, it is desirable to take
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these structural properties into account, and doing so has led to the celebrated field of
geometric numerical integration (Hairer et al., 2006).

The neural network architecture that we propose takes inspiration from the methods
of geometric numerical integration to define a time-dependent symplectic neural network
architecture, SympFlow, that can be used to approximate Hamiltonian flow maps. There are
similarities between SympFlow and previous works on symplectic neural networks (Jin et al.,
2020; Burby et al., 2021), but SympFlow differs from these approaches by incorporating a
time dependence which allows an underlying Hamiltonian to be identified.

In this work, we study SympFlow from the perspective of physics-informed machine
learning (Karniadakis et al., 2021): we design an unsupervised learning approach for ap-
proximating Hamiltonian flow maps. It is in principle also possible to go in the other
direction, fitting the approximate flow map to trajectories, and extracting the underlying
Hamiltonian to discover a physical model, a task which has previously been studied in the
scientific machine learning literature (Bertalan et al., 2019; Greydanus et al., 2019).

2. Methodology

2.1. The SympFlow architecture

Fundamentally, SympFlow is defined by iterated composition of exact flow maps of time-
dependent Hamiltonians, each of which depends either on position or momentum, but not
both. Given an arbitrary C2 function Vp : R×Rd → R, we can consider the map

ϕp,t((q, p)) =

(
q

p− (∇qVp(t, q)−∇qVp(0, q))

)
, (3)

which is the flow map (starting from time 0) corresponding to the HamiltonianHp,t((q, p)) =
V̇p(t, q), where V̇p stands for d

dtVp and the subscript p indicates that the Hamiltonian de-
pends on position, but not momentum. Similarly, for a C2 function Vm : R×Rd → R, we
can consider the map

ϕm,t((q, p)) =

(
q + (∇pVm(t, p)−∇pVm(0, p))

p

)
, (4)

which is the flow map (starting from time 0) corresponding to the HamiltonianHm,t((q, p)) =
V̇m(t, p). As above, the subscript m indicates that the Hamiltonian depends on momen-
tum but not position. Although the Hamiltonians above take a very particular form, they
naturally arise when applying splitting integration methods to separable Hamiltonians. By
parametrising Vp and Vm as multi-layer perceptrons (MLPs), say, and composing such steps,
we get a time-dependent symplectic map, the parameters of which can be optimised to fit
data or, more generally, minimise an objective function.

2.2. The Hamiltonian of the SympFlow architecture

As we will see in Proposition 1, we can find a time-dependent Hamiltonian function corre-
sponding to the SympFlow architecture. This allows us to essentially perform a backward
error analysis: while SympFlow does not generally solve the true ODE under considera-
tion, it solves a time-dependent Hamiltonian ODE, the Hamiltonian of which we can give
an expression for. We can apply the following result for this purpose:
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Proposition 1 (Proposition 1.4.D from Polterovich (2001)) Let H1, H2 : R×R2d →
R be continuously differentiable functions, and ϕH1

t ,t
, ϕH2

t ,t
: R2d → R2d the exact flows

(starting from time 0) of the Hamiltonian systems they define. Then, the map ψt =
ϕH2

t ,t
◦ ϕH1

t ,t
: R2d → R2d is the exact flow of the time-dependent Hamiltonian system

defined by the Hamiltonian function

H3
t (x) = H2

t (x) +H1
t

(
ϕ−1
H2

t ,t
(x)

)
.

As a result, given an overall SympFlow of the following form (with ϕim,t taking the form of
eq. (4) for some V i

m and ϕip,t taking the form of eq. (3) for some V i
p)

ψ̄t = ϕLm,t ◦ ϕLp,t ◦ . . . ◦ ϕ1m,t ◦ ϕ1p,t, (5)

we can associate the SympFlow with a time-dependent Hamiltonian. To denote this Hamil-
tonian, we introduce the operator H sending a SympFlow into one of its generating Hamil-
tonian functions (all of which differ just by a constant), so one has H(ψ̄) : R×R2d → R.

To assemble such a function, we can group the pairs of alternated momentum and
position flows, finding the Hamiltonian associated with ϕim,t ◦ ϕip,t, which is H i

t((q, p)) =

V̇ i
m(t, p)+V̇

i
p(t, q−(∇pV

i
m(t, p)−∇pV

i
m(0, p))). The Hamiltonian H(ψ̄) can then be expressed

iteratively, aggregating from last layer to first as

HL:i
t (x) = H

L:(i+1)
t (x) +H i

t

(
ϕ−1

H
L:(i+1)
t ,t

(x)

)
, i = 1, . . . , L− 1,

where HL:L
t = HL

t , and

ϕ−1
HL:i

t ,t
=

(
ϕ
H

L:(i+1)
t ,t

◦ ϕHi
t ,t

)−1
= ϕ−1

Hi
t ,t

◦ ϕ−1

H
L:(i+1)
t ,t

.

The Hamiltonian of the network H(ψ̄) then corresponds to HL:1
t .

2.3. Training SympFlow: Flow learning with Hamiltonian matching

The natural task to use the SympFlow architecture for is to approximate the flow map
of a Hamiltonian system as in eq. (1). We will assume the existence of a compact subset
Ω ⊂ R2d which is forward invariant, meaning that ϕH,t(Ω) ⊆ Ω for every t ≥ 0.

To train SympFlow, we consider a loss function composed of two terms. The first is
the usual physics-informed (PI) loss function (Raissi et al., 2019), based on the residual of
eq. (2),

L1(ψ̄) =
1

N

N∑
i=1

∥∥∥ d

dt
ψ̄ti(x

i
0)− J∇H(ψ̄ti(x

i
0))

∥∥∥2
2
,

where xi0 ∈ Ω and ti ∈ [0,∆t] for every i = 1, . . . , N . Unlike classical numerical integrators,
∆t can be chosen to be large. Using the analysis in the previous section, it is also possible
to extract the underlying Hamiltonian of a given instance of SympFlow. This gives rise
to a natural training objective, which we call the Hamiltonian matching loss and which
constitutes the second term in our loss, defined as

L2(ψ̄) =
1

M

M∑
i=1

(
H(ψ̄)(ti, x

i)−H(xi)
)2
,
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where xi ∈ Ω and ti ∈ [0,∆t] for every i = 1, . . . , N . The loss function we optimise over the
space of SympFlows, is then L = L1 +L2, and we use PyTorch (Paszke et al., 2019) to get
its gradient for use in the Adam optimiser (Kingma and Ba, 2017).

Given a trained SympFlow network, representing a function ψ̄ : [0,∆t]×R2d → R2d, we
can apply it to longer time horizons as follows: extend ψ̄ to [0,+∞) via ψ : [0,+∞)×R2d →
R2d defined as

ψt(x0) := ψ̄t−∆t⌊t/∆t⌋ ◦
(
ψ̄∆t

)⌊t/∆t⌋
(x0), (6)

which can be considered an approximation of ϕH,t(x0) for every t ≥ 0.

3. Experiments

We consider two Hamiltonian systems: the harmonic oscillator, with H(q, p) = (q2 + p2)/2,
and the Hénon-Heiles system, with H(q1, q2, p1, p2) = (p21+p

2
2)/2+(q21+q

2
2)/2+q

2
1q2−q32/3.

The Hénon-Heiles system is notable for exhibiting chaos. We train SympFlow and a compa-
rable MLP (using only physics-informed loss), on an interval with ∆t = 1. We also compare
to an adaptive integrator, ODE45, as implemented in SciPy (with the default tolerances)
(Virtanen et al., 2020). More results are shown in appendix A, but note in particular the
good long-time energy behaviour of SympFlow, compared to the other methods:
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Figure 1: A comparison of the long-time energy conservation of SympFlow and an uncon-
strained neural flow map approximator on the Hénon-Heiles system.

4. Conclusions and discussion

We have given a demonstration of the SympFlow architecture and its application to inte-
grating Hamiltonian systems. As shown in our experiments in section 3, SympFlow exhibits
good long-time conservation of energy, as is common for classical time-stepping symplectic
numerical integrators as well. There is a large body of theoretical research on such proper-
ties for time-stepping integrators, which may be leveraged in future research to theoretically
support the behaviour that we have observed for SympFlow. The setting of Hamiltonian
systems is not as restrictive as it may appear at a first glance: we have only considered
ODEs here, but extensions are possible to PDEs (Bridges and Reich, 2006), and even to
non-conservative systems Galley (2013); Galley et al. (2014); Tsang et al. (2015). Studying
such extensions in more detail is a promising avenue for future research.
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Appendix A. Additional experimental results

A.1. Harmonic oscillator
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Figure 2: A trajectory of the harmonic oscillator predicted by SympFlow and ODE45.
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Figure 3: A comparison of the long-time energy conservation of SympFlow and an uncon-
strained neural flow map approximator on the harmonic oscillator.
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A.2. Hénon-Heiles system
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Figure 4: A trajectory of the Hénon-Heiles system predicted by SympFlow and ODE45.
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