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ABSTRACT

In this work, we propose to tackle the problem of domain generalization in the con-
text of insufficient samples. Instead of extracting latent feature embeddings based
on deterministic models, we propose to learn a domain-invariant representation
based on the probabilistic framework by mapping each data point into probabilistic
embeddings. Specifically, we first extend empirical maximum mean discrepancy
(MMD) to a novel probabilistic MMD that can measure the discrepancy between
mixture distributions (i.e., source domains) consisted of a serial of latent distri-
butions rather than latent points. Moreover, instead of imposing the contrastive
semantic alignment (CSA) loss based on pairs of latent points, a novel probabilistic
CSA loss encourages positive probabilistic embedding pairs to be closer while
pulling other negative ones apart. Benefiting from the learned representation cap-
tured by probabilistic models, our proposed method can marriage the measurement
on the distribution over distributions (i.e., the global perspective alignment) and
the distribution-based contrastive semantic alignment (i.e., the local perspective
alignment). Extensive experimental results on three challenging medical datasets
show the effectiveness of our proposed method in the context of insufficient data
compared with state-of-the-art baseline methods.

1 INTRODUCTION

Nowadays, we have witnessed a lot of successes via imposing machine learning techniques in a
variety of tasks related to computer vision and natural language processing, such as face recognition
Li et al. (2022b), object detection Zaidi et al. (2022), and speech recognition Mridha et al. (2022).
Despite many achievements so far, the widely-adopted assumption for most existing methods, i.e.,
it is identically and independently distributed between training and testing data, may not always
hold in actual applications Zhou et al. (2022); Liu et al. (2022). In the real-world scenario, it is
quite common that the distribution between training and testing data may be different, owing to
sophisticated environments. For example, resulting from the differences of device vendor and staining
method, acquired histopathological images of breast cancer from different healthcare centers exist
significant domain gaps (a.k.a., domain shift, see Figure 1 for more details), which may lead to
the catastrophic deterioration of the performance Qi et al. (2020). To address this issue, domain
generalization (DG) is developed to learn a model from multiple related yet different domains (a.k.a.,
source domains) that is able to generalize well on unseen testing domain (a.k.a., target domain).

Recently, researchers proposed quite a few domain generalization approaches, such as data augmenta-
tion with randomization Yue et al. (2019), data generalization with stylization Verma et al. (2019);
Zhou et al. (2021), meta learning Li et al. (2018a); Kim et al. (2021)-based training schemes, among
which representation learning-based methods are one of the most popular ones. These representation
learning-based methods Balaji et al. (2019) aim to learn domain-invariant feature representation.
To be specific, if the discrepancy between source domains in feature space can be minimized, the
model is expected to be better generalize well on unseen target domain, owning to learned domain-
invariant and transferable feature representation Ben-David et al. (2006). For instance, an classical
contrastive semantic alignment (CSA) loss proposed by (Motiian et al., 2017) was to encourage
positive sample pairs (with same label) from different domains closer while pulling other negative
pairs (with different labels) apart. (Dou et al., 2019) introduced the CSA loss which jointly considers
local class alignment loss (for point-wise domain alignment) and global class alignment loss (for
distribution-wise alignment).
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Figure 1: Histopathological image examples of breast cancer tissue from three different healthcare
institutes, including NKI with 626 images, IHC with 645 images, and VGH with 1324 images. There
are two different tissue types, including epithelium and stroma. Obvious domain gaps (e.g., the
density of tissue and the staining color) can be observed.

Despite the progress being achieved so far, it should be noted that a reliable contrastive semantic
loss with point-wise (or local) perspective usually requires sufficient samples on source domains
such that diverse sample-to-sample pairs can be constructed Sohn (2016); Khosla et al. (2020). For
example, (Khosla et al., 2020) proposed a supervised contrastive semantic loss with a considerable
volume of batch size on large-scale datasets such that decent performance can be guaranteed. (Yao
et al., 2022) also emphasized the importance of the number of sample-to-sample pairs influenced
by data sizes for contrastive-based loss on DG problem. Meanwhile, in the eye of distribution-wise
(or global) alignment between domains Dou et al. (2019), a consistent distribution measurement
(e.g., Kullback–Leibler (KL) divergence) theoretically relies on sufficient samples for the distribution
estimation as discussed by (Bu et al., 2018). However, these sufficient samples from multiple source
domains may not always be available and accessible, especially for the medical imaging data, due
to potential ethic, privacy and proprietorship risks. It is therefore necessary to develop reliable
and effective contrastive semantic alignments with local and global perspectives in the context of
insufficient samples (a.k.a., small-data scenario) from source domains, in order to achieve better
domain-invariant representations.

In this paper, we propose to learn domain-invariant representation from multiple source domains
to tackle the domain generalization problem in the context of insufficient samples. Instead of ex-
tracting latent embeddings (i.e., latent points) based on deterministic models (e.g., convolutional
neural networks, CNNs), we propose to leverage a probabilistic framework endowed by variational
Bayesian inference to map each data point into probabilistic embeddings (i.e., the latent distribution)
for domain generalization. Specifically, by following the domain-invariant learning from global
(distribution-wise) perspective, we propose to extend empirical maximum mean discrepancy (MMD)
to a novel probabilistic MMD (P-MMD) that can empirically measure the discrepancy between mix-
ture distributions (a.k.a., distributions over distributions), consisted of a serial of latent distributions
rather than latent points. From a local perspective, instead of imposing the CSA loss based on pairs
of latent points, a novel probabilistic contrastive semantic alignment (P-CSA) loss with kernel mean
embedding is proposed to encourage positive probabilistic embedding pairs closer while pulling other
negative ones apart. Extensive experimental results on three challenging medical imaging classi-
fication tasks, including epithelium stroma classification on insufficient histopathological images,
imbalanced-class based skin lesion classification, and spinal cord gray matter segmentation, show
that our proposed method can achieve better cross-domain performance in the context of insufficient
data compared with state-of-the-art baseline methods.

2 RELATED WORKS

2.1 DOMAIN GENERALIZATION AND ITS APPLICATION IN MEDICAL IMAGE CLASSIFICATION

Existing DG methods can be generally categorized into three different streams, namely data aug-
mentation/generation Yue et al. (2019); Graves (2011); Zhou et al. (2021), meta-learning Li et al.
(2018a); Kim et al. (2021) and feature representation learning Li et al. (2018b); Gong et al. (2019);
Xiao et al. (2021). Among these methods, feature representation learning, which aims to explore
invariant feature information that can be shared across domains, demonstrates to be a widely adopted
method for the problem of DG. For feature representation learning-based DG method, Li et al.
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(2018b) proposed to conduct multi-domain alignment in latent space via a multi-domain MMD
distance. Gong et al. (2019) leveraged adversarial training to eliminate the domain discrepancy such
that domain-invariant representation can be learned in a manifold space. Due to the varieties of
imaging protocol (e.g., the choice of image solution for MRI image), device vendors (e.g., Philips
or Siemens CT scanners), and patient populations (the race and age group), the acquired imaging
data from different medical sites may exist significant domain shift problem Liu et al. (2021). Dou
et al. (2019) proposed a meta-learning framework to perform local and global semantic alignment
for medical image classification. Similar design is also adopted by Li et al. (2022a) for tissue image
classification. Qi et al. (2020) utilized the curriculum learning scheme to transfer the knowledge for
histopathological images classification. Li et al. (2020a) combined the data augmentation and domain
alignment to achieve decent performance on multiple medical data classification tasks. However,
these methods may not focus on learning domain-invariant representation on insufficient samples
from source domains. This scenario may widely encounter in clinical environments because 1) The
cost of annotated data by experienced professionals are typically prohibitive, leading to the lack
of samples in size and diversity Yoon et al. (2019). 2) For rare diseases (e.g., glioblastoma and
lymphoma), the size of data is usually small Lee et al. (2022). 3) medical imaging data are strictly
insufficient in most cases due to potential ethic and privacy-preserving concerns Li et al. (2020b).

2.2 PROBABILISTIC NEURAL NETWORKS

Compared with deterministic models, probabilistic neural networks turns to learn a distribution over
model parameters, which can integrate the uncertainty in predictive modeling Kingma et al. (2015);
Gal & Ghahramani (2016). When the data is insufficient, probabilistic models usually can achieve
better generalized performance due to its probabilistic property (as an implicit regularization) Blundell
et al. (2015). In the context of insufficient samples, Bayesian neural network Neal (2012) (BNN) with
variational inference, a representative probabilistic model, not only can improve predictive accuracy
as a classifier Wilson & Izmailov (2020), but also can build up the quality of low-dimensional
embeddings of insufficient data Mallick et al. (2021), which is a crucial motivation for this paper.
Meanwhile, modern analytical approximation techniques (e.g., Variational inference Blei et al. (2017),
empirical Bayes Krishnan et al. (2020)) can efficiently infer the posterior distribution of model
parameters with stochastic gradient descent method, which can integrate BNN with deterministic
DNN conveniently.

In Xiao et al. (2021), the authors proposed to consider the uncertainty of a generalizable model
based on BNN, where the distances of positive probabilistic embedding pairs and class distribution
are minimized via KL measure. Despite the effectiveness, the dissimilar pairs (i.e., negative pairs)
are ignored, which may not benefit feature representation learning. Moreover, they only focused
on sample similarity while the distribution information is ignored. Instead, our proposed method
comprehensively considers both positive and negative probabilistic embedding pairs via a novel
distribution-based contrastive semantic loss.

3 METHOD

3.1 PRELIMINARY

Assume that there are K domains from different collected environments. The samples in each
domain can be represented as Xl = {xl1 , · · · ,xlnl

}, where l ∈ N+ : {1, · · · ,K}, xli ∈ Rd×1

denotes a sample with the d dimension vector in the l-th domain. nl is the total number of samples
in the l-th domain. The corresponding labels of samples in each domain can be denoted as Yl =
{yl1 , · · · ,ylnl

}, where yli ∈ Rm×1 is the form of one-hot encoding with m classes in total. For
the setting of domain generalization, the source domain data represented as {XS

l ,Y
S
l }Kl=1, can be

available in the training phase only, whereas the target domain data, denoted by XT , are only seen in
test phase.

Here, we provide a framework that can learn better domain-invariant representation when there is
insufficient source domain data. The probabilistic neural network is imposed to enable high-quality
and powerful feature representation in the context of insufficient samples. To effectively perform
global perspective alignment, a novel probabilistic MMD is proposed to empirically measure the
discrepancy between distributions over distributions based on reproducing kernel Hilbert space. We
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also propose a probabilistic contrastive semantic alignment to adapt probabilistic embeddings with
local perspective. The details of our proposed method are discussed as below.

3.2 PROBABILISTIC EMBEDDING OF INSUFFICIENT DATA

Compared with deterministic models, the probabilistic models can learn a distribution over model
weights, which has shown a better capacity to represent latent embeddings Mallick et al. (2021)
under insufficient sample scenario, which is a key motivation for this work. Here, Bayesian neural
network (BNN) Blei et al. (2017) is utilized to extract the low-dimensional embeddings from high-
dimensional inputs. By feeding the inputs into BNN with parameter W ∼ p(W) , the samples
Xl = {xl1 , · · · ,xlnl

} of each domain can be represented by a set of probabilistic embeddings
(i.e., latent distributions), i.e., p(Z|Xl) = {p(z|xl1 ,W), · · · , p(z|xlnl

,W)} where W ∼ p(W) is
sampled stochastically. The variational inference is used to approximate the posterior distribution of
W with the evidence lower bound (ELBO) (more details can be found in appendix). By using Monte
Carlo (MC) estimators with T stochastic sampling operations from the W, the predictive distribution
of each p(z|x) can be unbiased approximation. The number of MC samples and the corresponding
issue of computational efficiency is discussed in A.6.

3.3 DISTRIBUTION ALIGNMENT VIA PROBABILISTIC MAXIMUM MEAN DISCREPANCY

In this section, we introduce an approach to learning domain-invariant representation from a global
perspective by minimizing the discrepancy among domains. Among various distribution distance
metrics, Maximum Mean Discrepancy (MMD) is widely adopted Long et al. (2017); Li et al. (2018b)
which aims to measure the distance between two probability distributions in a non-parametric manner.
Specifically, assume that latent embeddings Zl={zl1 , · · · , zlnl

} and Zt={zt1 , · · · , ztnt
} are drawn

from two unknown distributions Pl and Pt. The probability measure P can be mapped into a
reproducing kernel Hilbert space (RKHS) H as a element by setting,

µP := Ez∼P[ϕ(z)] =

∫
Z
k(z, ·)dP = Ez∼P[k(z, ·)], (1)

where a reproducing kernel k : X × X → R and corresponding feature map ϕ : X → H are defined.
Let the kernel k is characteristic such that the map µ : P → µP is injective. In this case the MMD
can be defined as the distance ∥µPl

− µPk
∥H in H between mean embeddings and it can be used as a

measure of distance between the distributions Pl and Pt Borgwardt et al. (2006); Gretton et al. (2012).
The explicit computation of MMD can be derived by unbiased empirical estimation of mean map
Gretton et al. (2012), i.e.,

MMD(Pl,Pt)
2 = ∥µPl − µPt∥

2
H =

∥∥∥∥∥ 1

nl

nl∑
i=1

ϕ (zli)−
1

nt

nt∑
j=1

ϕ
(
ztj

)∥∥∥∥∥
2

H

. (2)

The idea of using MMD for domain generalization has been explored in several works (e.g., Li et al.
(2018b); Hu et al. (2020)).

In the probabilistic framework, instead of the individual latent embeddings zl1,..., we have latent
probabilistic embeddings Πl1 := p(z|xl1 ,W), . . .. For a source domain Dl, we have the associated
distribution over distributions Pl = {Πl1 , · · · ,Πlnl

}. For this scenario, we propose to extend the
existing point-based empirical MMD estimate to a distribution-based empirical probability MMD
(P-MMD) estimate. P-MMD utilizes empirical estimation by kernels on distributions to measure the
discrepancy between mixture distributions Pl and Pt under the probabilistic framework.

Specifically, we first represent latent probabilistic embeddings as elements in RKHS Hk using the
kernel k, that we call a level-1 kernel in the sequel, e.g., µΠl1 := Ez∼Πl1

[ϕ(z)] = Ez∼Πl1
[k(z, ·)],

which is an analogous way to the Eq. (1). The kernel mean embedding µΠl1
can be regarded as a

new feature map for a variety of tasks Yoshikawa et al. (2014). Here, to enable non-linear learning
on distributions, we introduce level-2 kernel K Muandet et al. (2012). Consider a level-1 kernel κ on
H and its reproducing kernel Hilbert space (RKHS) Hκ. Define K as

K(Πli ,Πtj ) = κ(µΠli
, µΠtj

) = ⟨ψ(µΠli
), ψ(µΠtj

)⟩Hκ , (3)

where K and its explicit form on kernel mean embeddings κ are p.d. kernels Berlinet & Thomas-
Agnan (2011). We define the probabilistic MMD (P-MMD) empirical estimation method using the
level-2 kernel K:
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P-MMD(Pl,Pt)
2 = ∥ 1

nl

nl∑
i=1

ψ(µΠli
)− 1

nt

nt∑
j=1

ψ(µΠtj
)∥2Hκ

=
1

n2
l

nl∑
i=1

nl∑
i′=1

K(Πli ,Πl′i
) +

1

n2
t

nt∑
j=1

nt∑
j′=1

K(Πtj ,Πt′j
)

− 2

nlnt

nl∑
i=1

nt∑
j=1

K(Πli ,Πtj ). (4)

In this work the level-1 and level-2 kernels, k and K, are both Gaussian RBF kernel due to its
impressive performance on a limited amount of distribution data Muandet et al. (2012). Namely, K
can be represented as

KGau(Πli ,Πtj ) = κ(µΠli
, µΠtj

) = exp

(
−λ
2
∥µΠli

− µΠtj
∥2Hκ

)
= exp

(
−λ
2
(⟨µΠli

, µΠli
⟩Hκ)− 2⟨µΠli

, µΠtj
⟩Hκ + ⟨µΠtj

, µΠtj
⟩Hκ)

)
= exp(−λ

2
(
1

m2
l

ml∑
i=1

ml∑
i′=1

k(zli , zl′i)−
2

mlmt

ml∑
i=1

mt∑
j=1

k(zli , ztj ))

+
1

m2
t

mt∑
j=1

mt∑
j′=1

k(ztj , zt′j ), (5)

where ml and mt are determined by sampling times T . The kernel mean embedding using the level-1
kernel k creates distributions µ(P1), . . . , µ(PN ) represented by the samples {µΠl1

, . . . , µΠln
} for

l = 1, . . . , N respectively in the RKHS Hk. The underlying strategy of P-MMD is to apply the
classic MMD to these distributions (with respect to the kernel κ) . To access the effect that the
minimization of P-MMD has on the original latent probability distributions across different domains
we recall the following:

Theorem 1 (Muandet et al. (2012)). Let P1, . . . ,PN be probability distributions and P̂ :=
1
N

∑N
i=1 Pi. Then the distributional variance given by 1

N

∑
∥µPi−µP̂∥ is 0 iff P1 = P2 = . . . = PN .

Corollary 1 (Li et al. (2018b)). The upper bound of the distributional variance can be written as
1

K2

∑
1≤i,j≤K

MMD(Pi,Pj)
2.

In our setting Theorem 1 and Corollary 1 along with the fact that k is a characteristic kernel imply
the following
Corollary 2. 1

K2

∑
1≤i,j≤K P-MMD(Pi,Pj)

2 = 0 iff all moments of latent distributions Πl associ-
ated to points of domain Dl for l = 1, . . . , N are distributed identically across domains.

Following Corollary 2 we define the following loss function:

Lglobal =
1

K2

∑
1≤i,j≤K

P-MMD(Pi,Pj)
2. (6)

Corollary 2 implies that as 6 tends to 0 so does the distance between the distributions of means,
variances and higher moments of the distributions Πl associated to points of different domains.
Remark. In the ablation study (see Appendix), we compare the P-MMD approach to simply taking
the mean (i.e., first moment) of latent probabilistic embeddings Πl i.e. taking Πl → mΠl

= Ex∼Πl[x],
and then minimizing the associated ”vanilla” MMD. Although this scheme is more computational-
efficient over our proposed method, it throws away most information about high-level statistics
as discussed by (Muandet et al., 2017). We verify empirically that our approach leads to better
performance across the domains. The visualized computation of P-MMD is shown in Figure 2.

Although we focus on the scenario of insufficient samples, the computational consumption from Eq.
(4) and Eq. (5) may be still prohibitive as the calculation of MMD distance between distributions can
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Figure 2: A visualized computational process for probabilistic MMD (P-MMD) on two source
domains. The same color for each sample in different domains denotes the same label.

scale at least quadratically with the increasing of sample size (especially for image segmentation task),
i.e., O(n2) in a domain. Here, by following the linear statistic theory of MMD, the unbiased estimate
can be derived by drawing pairs from two domains with replacement, i.e., P-MMD(Pl,Pt)

2 ≈
2
nl

∑ 2
nl
i=1

[
K(Πl2i ,Πl′2i+1

) +K(Πt2i ,Πt′2i+1
)−K(Πl2i ,Πt2i+1

)−K(Πl2i+1
,Πt2i)

]
, where as-

suming nl = nt for simplicity. (Borgwardt et al., 2006) gives proofs about the unbiased property of
the linear statistic of MMD and shows that statistic power does not be sacrificed too much.

3.4 PROBABILISTIC CONTRASTIVE SEMANTIC ALIGNMENT

To learn domain-invariant representation from local perspective, a popular idea is to encourage
positive pairs with same label closer while pulling other negative ones with different labels apart
Motiian et al. (2017); Dou et al. (2019). These methods usually measure the Euclidean distance
between samples in the embedding space. However, this scheme may not satisfy our probabilistic
framework due to its probabilistic embeddings. To this end, we propose a probabilistic contrastive
semantic alignment (P-CSA) loss that can utilize the empirical MMD to measure the discrepancy
between probabilistic embeddings. The proposed P-CAS loss Llocal consists of two components,
including the positive probabilistic contrastive loss and negative probabilistic contrastive loss. The
former aims to minimize the distance between intra-class distributions from different domains, i.e.,

Lpos
local =

1

2
MMD(Πn,Πq)

2 =
1

2

∥∥∥∥∥ 1

T

T∑
i=1

ϕ (MΘ(zni))−
1

T

T∑
j=1

ϕ
(
MΘ(zqj )

)∥∥∥∥∥
2

H

, s.t.yn = yq, (7)

where MΘ(·) denotes the embedding network of metric learning, which will contribute to learn the
distance between features better Dou et al. (2019). Then, by introducing a distance margin ξ (can
guarantee a appropriate repulsion range), the negative probabilistic contrastive loss is denoted by

Lneg
local =

1

2
max[0, ξ −MMD(Πn,Πq)

2]

=
1

2
max[0, ξ −

∥∥∥∥∥ 1

T

T∑
i=1

ϕ (MΘ(zni))−
1

T

T∑
j=1

ϕ
(
MΘ(zqj )

)∥∥∥∥∥
2

H

], s.t.yn ̸= yq. (8)

Model Training. Our proposed framework consists of three modules, a BNN-based probabilistic
extractor Qϕ, a BNN-based classifier Cω, and a metric network MΘ(·). For the Qϕ, we only add a
Bayesian layer with ReLU layer on the bottom of a pretrained deterministic model (e.g., ResNet18
by removing fully-connected layers) by following (Xiao et al., 2021). For the Cω, a Bayesian layer
is also introduced to adapt the classification on insufficient sample better. The structure of MΘ is
the same as (Dou et al., 2019). The images X = {xli} conduct T stochastic forward passes on
the Qϕ and Cω by MC sampling to obtain probabilistic predicts {ŷjli}

T
j=1, where the outputs (i.e.,

probabilistic embeddings) of Qϕ serve as the inputs for the calculations of Lglobal and Llocal. The
final predicts {ŷjli} are the expectation of {ŷjli}

T
j=1. The total objectives can be summarized as below,

Ltotal =
∑
l,i

Lc(ŷli , yli)+KL[qθ(Qϕ)∥p(Qϕ)]+KL[qθ(Cω)∥p(Cω)]+β1Llocal+β2Lglobal, (9)

where Lc(ŷli , yli) is the cross-entropy loss with ground-truth yli and its estimation ŷli . The second
and third terms aim to learn a variational distribution qθ(·) to approximate the Bayesian posterior
distribution on the weights, while minimizing the KL divergence with its prior distribution p(·). The
first three terms refer to variational Bayesian inference with ELBO Blei et al. (2017).
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Table 1: Domain generalization results on the skin lesion classification task. The average value and
standard deviation are reported by running each method with five times. Each column denotes a
cross-domain task. For example, in the second column, we use DMF dataset denotes as the target
domain and the remaining datasets as the source domains.

Method DMF D7P MSK PH2 SON UDA AVG
DeepAll 0.2492 ±0.0127 0.5680±0.0181 0.6674±0.0083 0.8000±0.0167 0.8613±0.0296 0.6264±0.0312 0.6287
MASF Dou et al. (2019) 0.2692±0.0146 0.5678±0.0361 0.6815±0.0122 0.7833±0.0101 0.9204±0.0227 0.6538±0.0196 0.6460
LDDG Li et al. (2020a) 0.2793±0.0244 0.6007±0.0187 0.6967±0.0211 0.8167±0.0209 0.9272±0.0117 0.6978±0.0182 0.6697
SWAD Cha et al. (2021) 0.3582 ±0.0234 0.5491 ±0.0231 0.6842 ±0.0156 0.9167 ±0.0121 0.9824 ±0.0012 0.7240 ±0.0251 0.7024
BDIL Xiao et al. (2021) 0.2985±0.0452 0.6204±0.0212 0.7059±0.0145 0.8967±0.0096 0.9860±0.0198 0.7219±0.0284 0.7049
DNA Chu et al. (2022) 0.3532 ±0.0133 0.5581 ±0.0178 0.7120 ±0.0194 0.9333 ±0.0045 0.9851 ±0.0032 0.7314 ±0.0141 0.7122
DSU Li et al. (2022c) 0.3830 ±0.0267 0.5739 ±0.0147 0.6935 ±0.0165 0.8833 ±0.0231 0.9841 ±0.0098 0.7201 ±0.0121 0.7063
Ours 0.3781±0.0136 0.6120±0.0115 0.7276 ±0.0201 0.9416±0.0103 0.9889±0.0041 0.7486 ±0.0123 0.7328

Table 2: Experiment results of Epithelium Stroma Classification in Histopathological Images. Each
column denotes a cross-domain task. For example, in the second column, we use IHC dataset denotes
as the target domain and the remaining datasets as the source domains.

Method IHC NKI VGH Average (%)
DeepAll 73.29 ±0.13 70.60 ±0.15 79.56 ±0.11 74.48
MASF Dou et al. (2019) 80.45±0.10 76.10±0.11 84.44±0.12 80.33
SWAD Cha et al. (2021) 79.74±0.15 74.84±0.13 84.29±0.12 79.62
BDIL Xiao et al. (2021) 85.56±0.12 71.89±0.14 85.90±0.18 81.05
DNA Chu et al. (2022) 83.93±0.18 73.94±0.15 85.57±0.17 81.14
DSU Li et al. (2022c) 81.56±0.14 72.47±0.12 83.94±0.16 79.32
Ours (in this paper) 88.82±0.09 76.71±0.10 86.92±0.14 84.06

4 EXPERIMENTS AND ANALYSES

4.1 SKIN LESION CLASSIFICATION

Here, we first perform the skin lesion classification task to explore the generalization performance
of our proposed method. 7 public skin lesion datasets 1 are utilized, including HAM10000, UDA,
SON, DMF, MSK, D7P, and PH2. There are seven classes of skin lesions. The challenges of this task
refer to two aspects. 1) The diversity of samples: The lesion locations (e.g., on the leg and the thigh),
patients’ characteristics (e.g., the skin age and complexion) and the imaging vendors are different
among domains, significant domain shifts thus can not be ignored. 2) Insufficient samples: The
acquired data not only are restricted by the total number of samples in some domains (e.g., UDA and
PH2 have only 601 and 200 samples, respectively) but also suffer from the limitation of inter-class
imbalance (e.g., SON dataset only has a class of lesion). We follow experimental settings in (Li et al.,
2020a), where each dataset is randomly split into 50% training set, 30% test set, and 20% validate
set, respectively. The pretrained ResNet18 network is used as the backbone for all methods.

Results. Some competitive domain generalization approaches are introduced for comparison, includ-
ing MASF Dou et al. (2019), BDIL Xiao et al. (2021), LDDG Li et al. (2020a) SWAD Cha et al.
(2021), DNA Chu et al. (2022), and DSU Li et al. (2022c). ”DeepAll” denotes the model that is
trained directly without any domain generalization strategy in all subsequent tasks. We turn their
hyperparameters in a wide range. Note that our proposed method, DSU, DNA and BDIL are based
on SWAD framework. The accuracy results of each cross-domain task are shown in Table 1. One
has some observations as following. First, all methods achieve consistent improvements compared
over DeepAll model. Second, we observe that MASF and LDDG with deterministic models may not
explicitly adapt to the scenario of insufficient samples. In contrast, our proposed method and other
baseline methods impose respective schemes to relieve the impact of insufficient samples, which
leads to obvious improvements. Benefiting from probabilistic framework as an implicit regularization,
our proposed method and BDIL can learn a distribution over weights, which can handle insufficient
samples flexibly. However, it can be observed that additional invariant classifier learning on BDIL
may cause negative effects (see the results on DMF) on challenging data, which may be reasonable as
the explicit alignment on the classifier with high error probability can lead to negative transfer (take
more uncertainty). The lack of explicit domain-invariant representations for DNA and DSU may be
difficult to address significant domain shifts compared with our proposed method.

1https://challenge.isic-archive.com/landing/2018/47/
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Table 3: The average results of spinal cord GM segmentation on 4 domain generalization tasks.

Method DeepAll MASF
Dou et al. (2019)

LDGG
Li et al. (2020a)

KDGG
Wang et al. (2021)

DSU
Li et al. (2022c) Ours

DSC ↑ 0.7425 0.7710 0.7881 0.7886 0.7921 0.7957
CC ↑ -11.4 23.52 34.86 33.43 34.65 35.76
JI ↑ 0.6160 0.6502 0.6667 0.6667 0.6775 0.6828

TPR ↑ 0.7667 0.7803 0.8058 0.8075 0.8225 0.8260
ASD ↓ 0.5265 0.5505 0.4076 0.3553 0.4362 0.3356

(a) (b)

Figure 3: The loss curve of iteration on skin le-
sion and epothelial-stromal classficaiton tasks. (a)
Global alignment loss (b) Local alignment loss.

Table 4: Ablation study on each component of
our proposed method for spinal cord gray matter
segmentation task (where ”site2” is as the target
domain). The model on the first row denotes the
basic Unet model.

Backbone
(Unet)

Bayesian
Layers

Local
Alignment

Global
Alignment

Bayesian
Classifier DSC CC JI TPR ASD

" % - - % 0.7223 26.21 0.5789 0.8109 0.0992
" " - - % 0.7934 47.19 0.6595 0.8133 0.0692
" " - - " 0.8268 57.52 0.7067 0.8156 0.0501
" " " % " 0.8364 60.72 0.7195 0.8267 0.0486
" " % " " 0.8371 60.57 0.7217 0.8152 0.0510
" " " " " 0.8485 63.78 0.7389 0.8401 0.0401

4.2 EPITHELIUM STROMA CLASSIFICATION

The epithelium-stroma ratio can reflect the prognostic status of the tumor, especially for the breast
cancer. A key step, therefore, is to recognize which tissues are epithelial or stromal in histopatho-
logical images. The obvious domain gaps can be observed from Figure 1. Meanwhile, it is much
difficult to collect massive number of histopathological images from different sites due to the privacy.
Here, three histopathological image datasets 2 collected from different medical institutes are used for
comparison, where the NKI and VGH datasets only have 671 and 615 images, respectively. We follow
the research in Qi et al. (2020) to extract epithelial or stromal patches from histopathological images,
in order to balance the number of images among datasets. Then, IHC, NKI, and VGH datasets have
1342, 1230, and 1376 patches, respectively, which is still insufficient for training. We utilize the
DomainBed benchmark Gulrajani & Lopez-Paz (2020) for fair comparison, where each dataset in
source domain is randomly split into 80% training set, 20% validate set. The testing is on overall
target domain. The pretrained ResNet18 is adopted by all methods as backbone.

Results. We compare our proposed method with recent DG models, including MASF, SWAD, BDIL,
DNA, and DUS. By turning the hyperparameter of baseline methods in a wide range, the classification
accuracy on each target domain (the remaining is as the source domain) is reported in Table 2. Some
observations can be summarized as following. First, we observe that the type of weight averaging
method (e.g., SWAD and DNA) is effective for this challenging out-of-domain task. However, due
to the lack of explicit domain alignment, the obvious domain shifts may not be fully addressed via
weighted ensemble learning, leading to the limitation of the performance. Second, BDIL not only
adopts two-level alignments on feature extractor and classifier, but also obtains further improvements
by probabilistic framework. However, one can observe that BDIL has a similar performance drop
(in the skin lesion classification) on the challenging task (i.e., the NKI task). The best performance
achieved by our proposed method thus shows the effectiveness of our proposed method. DSU has the
poorest performance among all baseline methods, which may be reasonable as the straightforward
domain randomization in feature space may not be powerful for eliminating obvious domain shifts.

4.3 SPINAL CORD GRAY MATTER SEGMENTATION

The spinal cord Gray Matter (GM) segmentation Challenge Dataset 3 is used here, where the acquired
magnetic resonance imaging (MRI) data are collected from four healthcare centers, and acquisition
manufactures and imaging protocols are variable. The challenges of insufficient sample are from
two aspects. 1) The number of slices in some sites is relatively small (e.g., site1 and site2 have only
30 and 113 slices). 2) The number of target pixels is small, as GM area is only a very small area in
overall slice. We follow the training protocols used in Li et al. (2020a) for all methods.

2http://fimm.webmicroscope.net/supplements/epistroma
3http://niftyweb.cs.ucl.ac.uk/challenge/index.php
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Table 5: Experiment results of PACS multi-domain classification task based on ResNet50. Each
column denotes a cross-domain task. For example, in the third column, we use Art dataset denotes as
the target domain and the remaining datasets as the source domains.

Method Reference Art Cartoon Photo Sketch Average (%)
RSC Huang et al. (2020) ECCV 2020 78.9 76.9 94.1 76.8 81.7
L2A-OT Zhou et al. (2020) ECCV 2020 83.3 78.2 96.2 73.6 82.8
MatchDG Mahajan et al. (2021) ICML 2020 81.2 80.4 96.8 77.2 83.9
pAdaIN Nuriel et al. (2021) CVPR 2021 81.7 76.6 96.3 75.1 82.5
MixStyle Zhou et al. (2021) ICLR 2021 86.8 79.0 96.6 78.5 85.2
SagNet Nam et al. (2021) CVPR 2021 87.4 80.7 97.1 80.0 86.3
SWAD Cha et al. (2021) NeurIPS 2021 89.3 83.4 97.3 82.5 88.1
DNA Chu et al. (2022) ICML 2022 89.8 83.4 97.7 82.6 88.4
Bayesian - 89.4 83.5 97.3 82.3 88.1
Ours - 90.2 85.2 98.7 83.6 89.4

Results. Here, four domain generalization approaches are utilized for comparison, including MASF,
LDDG Li et al. (2020a), KDDG Wang et al. (2021), and DSU. To qualitatively evaluate the segmenta-
tion results, 5 complementary metrics are introduced from statistical and distance-based perspectives,
respectively. The average results on four domain generalization tasks are illustrated in Table 3. The
detailed evaluation results for each domain can be found in Appendix. First, the performance of
segmentation results among all methods achieve improvements with an obvious margin compared
with DeepAll. Second, suffering from insufficient samples in some domains, LDDG and KDDG with
deterministic models may not model these uncertainties explicitly. In contrast, our proposed method
and DSU can generally obtained the best and second best results.
4.4 ADDITIONAL RESULTS

Ablation study on each component of our proposed method. We are interested in the effectiveness
of each component of our proposed method. The results can be shown in Table 4. First, we observe
that better performance can be achieved by introducing probabilistic layer compared with the results
that using Unet, which reflects the superiority of probabilistic models. Secondly, we observe that
by either introducing local or global alignment for domain-invariant information learning, better
performance can be achieved compared with the results of only using probabilistic layer, which
shows the effectiveness of introduced probabilistic feature regularization term. Last but not the least,
by imposing the domain-invariant learning with both local and global views, the performances are
further improved, which justifies the effectiveness of our proposed method by jointly considering
local and global alignment.

Effectiveness of domain-invariant loss. We are also interested in impacts of domain-invariant losses
on different tasks. The results can be shown in Figure 3. As we can observe, for the skin lesion (on
DMF) and epithelium-stroma (on IHC) classification tasks, the loss curves with iterations reflect the
global discrepancy converges faster than local discrepancy, while the more challenging cross-domain
task converges more slowly on global alignment.

Results on DG Benchmark. While our proposed method is designed for the context of insufficient
data, it can also be applied to the setting of conventional DG problem generalization. Here, we
introduce three DG benchmarks, namely PACS, OfficeHome and VLCS, for further comparison.
Compared with some large-scale benchmarks (e.g., DomainNet and Wilds), these two datasets are
more appropriate to explore the effectiveness of different DG models under the scenario of insufficient
samples. We report the results on PACS in Table 5. We compare our proposed method with some state-
of-the-art DG methods. To be fair, all methods adopt a same backbone, i.e., the pretrained ResNet50.
”Bayesian” model does not have any alignment compared with our model. As we can see, our proposed
method outperforms recent methods, such as DNA and SWAD. Specifically, our proposed method
surpasses the gradient operation-based method (e.g., RSC). Although data generation methods (e.g.,
MixStyle) can effectively tackle the insufficient sample problem via additional generative samples,
the lack of effective domain-invariant learning may hamper the improvement of the performance.

5 CONCLUSION

In this work, we address the domain generalization problem in the context of insufficient data from
source domains. Benefiting from the learned representation captured by probabilistic models, our
proposed method can marriage the measurement on the distribution over distributions by level-2
kernel and probabilistic contrastive semantic alignment. Extensive experiments on challenging
medical image tasks indicate the effectiveness of our proposed method.
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A APPENDIX

A.1 DETAILS OF BAYESIAN NEURAL NETWORK

For our proposed method, the Bayesian layer refers to the probabilistic extractor Qϕ and the proba-
bilistic classifier Cω . Here, a simple and convenient PyTorch library, namely BayesianTorch Krishnan
et al. (2022), is utilized to construct the Bayesian neural network. The log evidence lower bound
(ELBO) cost function, i.e.,

L :=

∫
qθlog(y|x,w)dw −KL[qθ(w)|p(w)], (10)

can be calculated automatically. By using BayesianTorch, arbitrary deterministic models can be
converted into the Bayesian layers easily. In this paper, mean-field variational inference (MFVI)
Graves (2011) is adopted, where the parameters of the model are characterized by fully factorized
Gaussian distribution endowed by variational parameters µ and σ, i.e.,

qθ(w) := N (w|µ, σ). (11)

By using stochastic gradient descent method with ELBO cost, the variational distribution qθ(w) as
the approximation of the posterior distribution, and corresponding parameters (µ and σ) and can be
learned conveniently.

For the settings of Bayesian layer, we follow the model priors with empirical Bayes using DNN
(MOPED) method for the parameter settings of weights prior, each weight is sampled from the
Gaussian distribution independently Krishnan et al. (2020),

w ∼ N (wDNN, δ|wDNN|), (12)

where wDNN denotes the mean of prior distribution from the maximum likelihood estimates of
weights from deterministic deep neural network. δ, a hyperparameter, is set to the initial perturbation
factor for the percentage of the pretrained deterministic weight values. The variational layer is
modeled using reparameterization trick. The MOPED can realize better training convergence for
complex models Krishnan et al. (2020), which is beneficial to our proposed method. In this paper, we
follow the setting in (Krishnan et al., 2020) to set the initial perturbation factor δ for the weight to 0.1.

A.2 EXPERIMENTAL DETAILS OF SKIN LESION CLASSIFICATION

Dataset Details. There are seven classes of skin lesions, including melanoma (mel), melanocytic
nevus (nv), dermato broma (df ), basal cell carcinoma (bcc) benign keratosis (bkl), vascular lesion
(vasc), and actinic keratosis (akiec). The 7 public skin lesion datasets suffer from an insufficient data
problem from some (certain) source domains. For example, the PH2 and UDA datasets only have
200 and 601 skin lesion images, respectively. The number of images for each domain can be found
in Table 9. More details of datasets can be found in Yoon et al. (2019). For inputs, all images are
resized into 224× 224 for all methods.

Implementation Details. The pretrained ResNet18 is introduced as the backbone for all methods.
For our proposed method, the structure of Bayesian layer in probabilistic extractor Qϕ is a fully-
connected based Bayesian neural network with 512× 512. Note that the DSU, BDIL, DNA, and our
proposed method are constructed based on SWAD framework. The hyperparameters of SWAD follow
default settings Cha et al. (2021). The DSU can be regarded as the uncertainty version of SWAD with
ResNet18. The structure of Bayesian layer in probabilistic classifier Cω is also a fully-connected
based Bayesian neural network with 512 × 7. The construction of Cω is the same as that of Tϕ.
Due to the class imbalance problem, the focal loss Lin et al. (2017) as the classification objective is
introduced for all methods.

During training, our proposed method is optimized by Adam optimizer with 5× 10−5 learning rate.
The training steps are 2000. For each step, we randomly sample from each training source domain
with 32 samples to construct the mini-batch. To evaluate the testing set, the training process is stopped
according to the validation loss computed by SWAD on the validation set. The hyperparameters are
also selected in a wide range on the validation set. For the probabilistic MMD, level-1 and leve-2
kernels are the Gaussian RBF kernels by following (Muandet et al., 2012). The kernel bandwidth
is empirically set to 1 for all kernels. For the probabilistic CSA loss, the distance margin ξ is set
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Table 6: Domain generalization results on gray matter segmentation task. For the DSC, CC, TPR,
and JI, the higher the better. For the ASD, the lower the better.

(a) DeepAll

source target DSC CC JI TPR ASD

2,3,4 1 0.8560 65.34 0.7520 0.8746 0.0809
1,3,4 2 0.7323 26.21 0.5789 0.8109 0.0992
1,2,4 3 0.5041 -209 0.3504 0.4926 1.8661
1,2,3 4 0.8775 71.92 0.7827 0.8888 0.0599

Average 0.7425 -11.4 0.6160 0.7667 0.5265

(b) KDDG

source target DSC CC JI TPR ASD

2,3,4 1 0.8745 70.75 0.7795 0.8949 0.0539
1,3,4 2 0.8229 56.71 0.6997 0.8226 0.0490
1,2,4 3 0.5676 -63.1 0.3866 0.5904 1.2805
1,2,3 4 0.8894 75.06 0.8011 0.9222 0.0377

Average 0.7886 34.86 0.6667 0.8075 0.3553

(c) MASF

source target DSC CC JI TPR ASD

2,3,4 1 0.8502 64.22 0.7415 0.8903 0.2274
1,3,4 2 0.8115 53.04 0.6844 0.8161 0.0826
1,2,4 3 0.5285 -99.3 0.3665 0.5155 1.8554
1,2,3 4 0.8938 76.14 0.8083 0.8991 0.0366

Average 0.7710 23.52 0.6502 0.7803 0.5505

(d) LDDG

source target DSC CC JI TPR ASD

2,3,4 1 0.8708 69.29 0.7753 0.8978 0.0411
1,3,4 2 0.8364 60.58 0.7199 0.8485 0.0416
1,2,4 3 0.5543 -71.6 0.3889 0.5923 1.5187
1,2,3 4 0.8910 75.46 0.8039 0.8844 0.0289

Average 0.7881 33.43 0.6720 0.8058 0.4076

(e) DSU

source target DSC CC JI TPR ASD

2,3,4 1 0.8739 70.32 0.7794 0.9210 0.0793
1,3,4 2 0.8474 63.58 0.7367 0.8502 0.0494
1,2,4 3 0.5574 -70.4 0.3923 0.6097 1.5049
1,2,3 4 0.8897 75.10 0.8018 0.9225 0.0415

Average 0.7921 34.65 0.6775 0.8225 0.4362

(f) Ours

source target DSC CC JI TPR ASD

2,3,4 1 0.8786 71.57 0.7873 0.9293 0.0422
1,3,4 2 0.8485 63.78 0.7389 0.8401 0.0401
1,2,4 3 0.5634 -68.0 0.3992 0.6103 1.2239
1,2,3 4 0.8921 75.69 0.8058 0.9245 0.0362

Average 0.7957 35.76 0.6828 0.8260 0.3356

to 1. For the Llocal and the Lglobal, the β1 and β2 are 0.1 and 0.7, respectively. By balancing the
performance and computational efficiency, T , the number of Monte Carlo sampling in each Bayesian
layer, is 10.

A.3 EXPERIMENTAL DETAILS OF EPITHELIUM STROMA CLASSIFICATION

Dataset Details. There are two types of basic tissues, i.e., the epithelium and the stroma. Due to the
differences of the scanner, the staining type, and the population, the color of the background and the
morphological structure among different histopathological image datasets are diverse. The number of
images for each domain can be found in Table 9. The extract epithelial or stromal patches are resized
into 224× 224.

Implementation Details. The pretrained ResNet18 is utilized as the backbone for all methods. The
basic model framework and corresponding parameters for our proposed method are similar with the
settings mentioned in A.2. The DSU, BDIL, DNA, and our proposed method are constructed based
on SWAD framework with DomainBed benchmark. The classification objective is the cross-entropy
loss with softmax function.

During training, our proposed method is optimized by Adam optimizer with 5× 10−5 learning rate.
The training steps are 4000. The holdout fraction rate for DomainBed is set to 0.2 for all methods
such that the hyperparameters can be selected in a wide range on the validation set. The β1 and β2
are 0.1 and 0.7 for the Llocal and the Lglobal, respectively. Other hyperparameters are the same as the
settings mentioned in A.2.

A.4 EXPERIMENTAL DETAILS OF SPINAL CORD GRAY MATTER SEGMENTATION

Dataset Details. The spinal cord gray matter (GM) segmentation is an emergent task that can be
utilized to predict disability (as a biomarker) via evaluating the atrophy of GM area. The acquired
magnetic resonance imaging (MRI) data are collected from four healthcare centers (including ”site1”,
”site2”,”site3”, and ”site4”), where acquisition manufacturers (including Philips Achieva, Siemens
Trio, and Siemens Skyra) and imaging protocols (lead to the difference in the resolution of the voxel)
are variable. The number of images for each domain can be found in Table 9. By following (Li et al.,
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Table 7: Out-of-domain accuracies (%) on OfficeHome based on ResNet50.

Algorithm Art Clipart Product Real Avg

Mixstyle Zhou et al. (2021) 51.1 53.2 68.2 69.2 60.4
RSC Huang et al. (2020) 60.7 51.4 74.8 75.1 65.5
DANN Ganin et al. (2016) 59.9 53.0 73.6 76.9 65.9
GroupDRO Sagawa et al. (2019) 60.4 52.7 75.0 76.0 66.0
MTL Blanchard et al. (2021) 61.5 52.4 74.9 76.8 66.4
VREx Krueger et al. (2021) 60.7 53.0 75.3 76.6 66.4
MLDG Balaji et al. (2018) 61.5 53.2 75.0 77.5 66.8
SagNet Qian et al. (2021) 63.4 54.8 75.8 78.3 68.1
CORAL Sun & Saenko (2016) 65.3 54.4 76.5 78.4 68.7
SWAD Cha et al. (2021) 66.1 57.7 78.4 80.2 70.6
DNA Chu et al. (2022) 67.7 57.7 78.9 80.5 71.2
Bayesian 67.0 58.0 79.3 80.4 71.2
Ours 68.2 58.9 80.2 80.7 72.0

Table 8:
::::::::::::
Out-of-domain

::::::::
accuracies

::::
(%)

::
on VLCS

::::
based

::
on

::::::::
ResNet50.

::::::::
Algorithm

:
C

:
L

:
S

:
V

::
Avg

:::::::
Mixstyle

:::::::::::::
Zhou et al. (2021)

:::
98.3

: :::
64.8

: :::
72.1

: :::
74.3

: :::
77.4

:

::::
RSC

::::::::::::::
Huang et al. (2020)

:::
97.9

: :::
62.5

: :::
72.3

: :::
75.6

: :::
77.1

:

:::::
DANN

:::::::::::::::
Ganin et al. (2016)

:::
99.0

:::
65.1

: :::
73.1

: :::
77.2

: :::
78.6

:

:::::::::
GroupDRO

:::::::::::::::
Sagawa et al. (2019)

:::
97.3

: :::
63.4

: :::
69.5

: :::
76.7

: :::
76.7

:

::::
MTL

:::::::::::::::::
Blanchard et al. (2021)

:::
97.8

: :::
64.3

: :::
71.5

: :::
75.3

: :::
77.2

:

:::::
VREx

::::::::::::::::
Krueger et al. (2021)

:::
98.4

: :::
64.4

: :::
74.1

: :::
76.2

: :::
78.3

:

:::::
MLDG

:::::::::::::::
Balaji et al. (2018)

:::
97.4

: :::
65.2

:::
71.0

: :::
75.3

: :::
77.2

:

:::::
SagNet

::::::::::::::
Qian et al. (2021)

:::
97.9

: :::
64.5

: :::
71.4

: :::
77.5

: :::
77.8

:

::::::
CORAL

:::::::::::::::::
Sun & Saenko (2016)

:::
98.3

: :::
66.1

:::
73.4

: :::
77.5

: :::
78.8

:

:::::
SWAD

:::::::::::::
Cha et al. (2021)

:::
98.8

: :::
63.3

: :::
75.3

: :::
79.2

: ::::
79.1

::::
DNA

:::::::::::::
Chu et al. (2022)

:::
98.8

: :::
63.6

: :::
74.1

: :::
79.5

: :::
79.0

:

::::
Ours

:::
98.9

: :::
63.4

: :::
75.8

:::
79.8

::::
79.5

2018b), the 3D MRI data are split into 2D slices in axial view. Then, these obtained 2D slices are
centered cropped to 160× 160 and randomly cropped to 144× 144 for training.

Implementation Details. The 2D-Unet Ronneberger et al. (2015) is leveraged as the backbone for all
methods. For our proposed method, probabilistic extractor Qϕ is constructed by two Bayesian-based
1× 1 convolutional layers. The input and output channels in the first convolutional layer are both
64. After a ReLU layer, the input and output channels in the second convolutional laye are 64 and 1,
respectively. The BayesianTorch can enable to convert ordinary convolutional layer into Bayesian
convolutional neural network easily. The Bayesian neural network adopts MFVI to approximate the
posterior distribution of weights. The parameters of Bayesian layer are the same as aforementioned
settings. The structure of Bayesian layer in probabilistic classifier Cω is a Bayesian-based 1 × 1
convolutional layers. The input and output channels are 64 and 1, respectively. The construction
of Cω is the same as that of Tϕ. Here, all methods adopt a two-stage scheme for coarse-to-fine
segmentation, as used in (Li et al., 2020a). Specifically, we first conduct preliminary segmentation to
obtain the spinal cord area from the original 2D slice. Then, we perform elaborative segmentation on
obtained spinal cord results to derive gray matter results.

Here, the settings of most hyperparameters follow (Li et al., 2020a), where the Adam optimizer is
utilized with learning rate as 1 × 10−4, weight decay as 1 × 10−8. We randomly select 8 slices
from each source domain to construct the mini-batch. All models are trained with 200 epochs,
where the learning rate will be decreased each 80 epochs with a factor of 10. Other hyperparameters
such as kernel function, kernel bandwidth and distance margin are similar with the settings in skin
lesion classification and epithelium-stroma classification. The segmentation can be regarded as the
pixel-level classification. For the Llocal and Lglobal, we follow (Motiian et al., 2017) to randomly
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Table 9:
:::
The

::::::
details

::
of

:::::::
adopted

:::::::
datasets

::::
Task

::::::::
Datasets

:::::::::
(Domains)

::::
and

::::::::::::::
Corresponding

::::
Size

:::::::
Number

::
of
::::::
Class

::::
Skin

::::::
Lesion

::::::::::::
Classification :::::::::::

HAM:10015;
::::::::::
DMF:1212;

::::::::::::::::::
D7P:1926;MSK:3551;

:::::::::
UDA:601;

::::::::
PH2:200;

:::::::::
SON:9251

:

:
7

::::::::::
Epithelium

:::::::
Stroma

:::::::::::
Classification

:::::
NKI:

::::
671;

:::::::::
IHC:1376;

:::::
VGH:

:::
615

:
2

:::::
Spnal

:::::
Cord

::::
GM

:::::::::::::
Segementation

:::::
site1:

:::
30;

:::::
site2:

::::
113;

:::::
site3:

::::
246;

:::::
site4:

:::
122

:
2
:::::::::::
(pixel-level)

:::::
PACS

::::
Art:

:::::
2048;

::::::::::::
Cartoon:2344;

:::::::::::
Photo:1670;

::::::::::
Sketch:3929

:
7

::::::::::
OfficeHome ::

A
::::
total

::
of

::::::
around

:::::
15500

:::::::
images

::
for

::
4
:::::::
domains

:

::::
(Art,

::::::
Clipart,

::::::::
Product,

:::
and

::::
Real

::::
with

::::::
around

:::::
3897

:::
per

:::::::
domain)

::
65

:

:::::
VLCS ::::::::

VOC2007
::::
(V):

:::::
3376;

::::::::
LabelMe

:::
(L):

:::::
2656;

::::::::::::::
SUN09(S):3282;

:::::::::
Caltech101

::::
(C):

:::::
1415

:
5

sample some positive and negative pairs from two domains such that the computational efficiency can
be improved significantly. Here, we randomly sample 400 positive and negative pixel pairs from two
domains in a mini-batch for the computation of Llocal, respective. By leveraging selected pixels of a
domain in Llocal, we further utilize these pixels to calculate the Lglobal, which may induce a more
accurate measurement owing to the balanced class distribution, as well as reducing computational
cost. For the Llocal and Lglobal, the β1 and the β2 are set to 0.01 and 0.001.

Result Analysis. Dice Similarity Coefficient (DSC), Jaccard Index (JI), and Conformity Coefficient
(CC) are used to measure the accuracy of obtained segmentation results. Besides, True Positive
Rate (TPR) and Average Surface Distance (ASD) are introduced as complementary evaluations
from statistical and distance-based perspectives. The experimental results are shown in Table 6 in
details. As we can see, our proposed method can achieve best or second-best performance in all
task. For average results, our proposed method and DSU roughly achieve the best and second-best
performance, especially in the DSC, JI, and TPR, which may be reasonable. Specifically, DSU
introduce the multivariate Gaussian distribution of feature statistics for the uncertainty of the feature.
Our proposed method not only can model the uncertainty by the introduction of Bayesian neural
network, but also can learn distribution-based domain-invariant representations in latent feature space.

A.5 EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS ON BENCHMARKS

Besides PACS benchmark dataset, we further validate the effectiveness of our proposed method on
two popular benchmark datasets, including OfficeHome (has 15588 samples with 65 classes from
four domains) and VLCS (has 10729 samples with 5 classes from four domains). The number of
images for each domain can be found in Table 9. We adopt pretrained ResNet50 as the backbone for
all benchmarks. The structure of the overall framework is similar with the model mentioned in lesion
skin classification. Our proposed method as well as baseline methods are all based on DomainBed,
where the holdout fraction (the proportion of validation set) rate for DomainBed is set to 0.2 for
all methods. A domain is the target domain and the remaining domains are the source domain for
training. The testing is on the overall data of a target domain.

Here, our proposed method is optimized by Adam optimizer with learning rate as 5×10−5. The batch
size for each source domain is 32. The training steps are set to 20000 for PACS and OfficeHome, and
2000 for VLCS. By following the SWAD framework, the training process will be stopped for our
proposed method when the validation loss increases significantly. The hyperparameters are selected
in a wide range on the validation set. For the Llocal and Lglobal, the β1 and the β2 are set to 0.1 and 1
for all benchmark datasets. Other hyperparameters such as kernel function, kernel bandwidth and
distance margin are similar with the settings mentioned before.

The experimental results on OfficeHome and VLCS can be shown in Table 7 and Table 8. As we
can see, our proposed method achieves better performance compared with state-of-the-art methods,
such as SWAD and DNA. Compared with domain-invariant based approaches (e.g., DANN), our
proposed method has a significant improvement due to the introduction of probabilistic framework.
Meanwhile, the model, namely ”Bayesian” on Table 7 can be regarded as a probabilistic version of
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Figure 4: The performance of our proposed model on the NKI task of Epithelium Stroma classification
with different Monte Carlo samples T .

(a)

(b)

Figure 5: The performance comparison between mean embedding method and kernel mean embed-
ding method with different Monte Carlo samples T . For each sub-figure, we use only one alignment
operation. (a) Local alignment. Mean Embedding: The mean embedding operation with Euclidean
distance is utilized between probabilistic embedding pairs. Kernel Mean Embedding: The kernel
mean embedding with MMD distance is utilized between probabilistic embedding pairs. (b) Global
alignment. Mean Embedding: The mean embedding operation with MMD distance is utilized
between domains (as distributions). Kernel Mean Embedding: The kernel mean embedding with
P-MMD distance is utilized between domains (as distributions over distributions).

SWAD via replacing deterministic layers with Bayesian layers. Interestingly, compared with SWAD,
a significant improvement can be obtained by Bayesian model (which does not have any alignment
compared with our model), which shows the effectiveness of probabilistic framework on insufficient
data. Our proposed method also outperforms the data augmentation-based approach (e.g., Mixstyle).

A.6 ADDITIONAL ANALYSIS

First, it is much important to balance the number of Monte Carlos samples and the computational
efficiency. On the one hand, the property of probabilistic embeddings can be affected by the Monte
Carlos sampling. On the other hand, too many Monte Carlos samples may suffer from the heavy
computational cost. (Xiao et al., 2021) suggested that the distributional property and computational
cost are both acceptable for the computation of the KL divergence when the number of Monte Carlos
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samples is chosen appropriately, the practical performance for our proposed method need to be
explored. We conduct the experiments on the NKI task of Epithelium-Stromal classification with
different Monte Carlo samples T .

The results are shown in Figure 4. As we can see, if the number of Monte Carlo samples is too small,
it is difficult to capture the property of distribution for probabilistic embeddings. As the increase of T ,
there is an obvious improvement for our proposed method. Interestingly, the performance is gradually
saturated. As a result, by balancing the number of Monte Carlos samples and the computational
efficiency, the number of Monte Carlos samples T in each Bayesian layer is set to 10.

Kernel Mean Embedding (level-2 kernel) v.s. Mean Embedding. Second, we explore the effect
of different schemes for probabilistic embeddings. A straightforward method is first to represent
probabilistic embeddings with the expectation (i.e., first moment), which is called as the Mean
Embedding. Then, a probabilistic embedding can be regarded as a latent point, and the MMD can be
leveraged to measure the discrepancy between distributions consisted of latent points.

For the mean embedding-based Lglobal, the computational process of this scheme for MMD distance
can be formulated as

MMD(Pl,Pt)
2 = ∥ 1

nl

nl∑
i=1

φ(E[Πli ])−
1

nt

nt∑
j=1

φ(E[Πtj ])∥2H. (13)

The Eq. (13) can be further constructed a global alignment loss Lglobal. For the local alignment loss
Llocal, the Euclidean distance can be used to compute the distance between latent points, which is
similar with original CAS loss in (Motiian et al., 2017). For the positive pairs with the same label,
the mean embedding-based positive contrastive loss Lpos

local can be represented as

Lpos
local =

1

2

∥∥∥∥∥∥ 1

T

T∑
i=1

E [MΘ(zni)])−
1

T

T∑
j=1

E
[
MΘ(zqj )]

)∥∥∥∥∥∥
2

2

, s.t.yn = yq, (14)

where MΘ(·) denotes the embedding network of metric learning. For the negative pairs with the
different labels, the negative contrastive loss is denoted by

Lneg
local =

1

2
max[0, ξ −

∥∥∥∥∥∥ 1

T

T∑
i=1

E [MΘ(zni
)])− 1

T

T∑
j=1

E
[
MΘ(zqj )]

)∥∥∥∥∥∥
2

2

], s.t.yn ̸= yq. (15)

As a result, a mean embedding-based contrastive loss with the view of local alignment can be
calculated as

Llocal = Lpos
local + Lneg

local. (16)

Instead, we can observe from Figure 2 that our proposed method induces a level-2 kernel-based
MMD with empirical estimation for probabilistic embeddings. Specifically, our proposed scheme
can preserve higher moments of a probabilistic embedding via nonlinear level-1 kernel (see the
fourth component in Figure 2). Moreover, by introducing a level-2 kernel, the similarities between
probabilistic embeddings also can be measured based on their own moment information (see the
last component in Figure 2). Benefiting from these virtues, the proposed probabilistic MMD can
accurately capture the discrepancy between mixture distributions via an extended empirical MMD
fashion.

Here, we validate the effectiveness of different schemes on the NKI task of Epithelium Stroma
classification in each aligned view. The experimental settings are similar for different methods.
The experimental results can be found in Figure 5. As we can see, our proposed method achieves
consistent improvements in each alignment method with different Monte Carlo samples, which may
be reasonable as the kernel mean representation can preserve many statistical components due to
the injective property. Second, when the number of MC samples is 10, we can observe an obvious
margin in global alignment, which refers to the computation between mixture distributions. .

:

Finally, we are also interested in the performance of the proposed method under challenging small
data scenarios compared with baseline methods. As a result, we conduct two kinds of experiments
with different conditions on skin lesion classification, including a fixed number of samples per class
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Table 10:
:::::
Fixed

::::::
number

::
of

:::::::
samples

:::
per

:::::
class

::
in

::::
each

::::::
source

:::::::
domain.

:::::::
Number

::
of

:::::::
sample

:::
per

::::
class

:::
for

:::::
each

::::::
source

:::::::
domain

:::::::
DeepAll

::::
DSU

:::::
BDIL

::::
DNA

::
?

::::
Ours

::
40

::::::
0.5399 ±0.0156

::::: ::::::
0.6145 ±0.0175

:::: ::::::
0.5897 ±0.0029

:::: ::::::
0.5412 ±0.0143

:::: ::::::
0.6368 ±0.0074

::::

::
30

::::::
0.5309 ±0.0201

:::: ::::::
0.5458 ±0.0184

:::: ::::::
0.5762 ±0.0101

:::: ::::::
0.5132 ±0.0229

:::: ::::::
0.6138 ±0.0291

::::

::
20

::::::
0.5044 ±0.0129

:::: ::::::
0.5243 ±0.0143

:::: ::::::
0.5573 ±0.0011

:::: ::::::
0.5048 ±0.0087

:::: ::::::
0.6037 ±0.0121

::::

Table 11:
::::
Fixed

:::::::
fraction

::
of

:::::::
samples

::
in

::::
each

::::::
source

:::::::
domain.

:

:::::::
Fraction

::
of

:::::::
sample

:::
for

::::
each

::::::
source

:::::::
domain

DeepAll DSU BDIL DNA Ours

:::::
100%

::::::
0.6674 ±0.0312

:::: ::::::
0.6935 ±0.0121

:::: ::::::
0.7059 ±0.0284

:::: ::::::
0.7121 ±0.0141

:::: ::::::
0.7276 ±0.0123

::::

::::
80%

::::::
0.6614 ±0.0123

:::: ::::::
0.6717 ±0.0029

:::: :::::
0.6625

:
±0.092

::: ::::::
0.6591 ±0.0022

:::: ::::::
0.6975 ±0.0036

::::

::::
60%

::::::
0.6249 ±0.0122

:::: ::::::
0.6299 ±0.0114

:::: ::::::
0.6468 ±0.0106

:::: ::::::
0.6149 ±0.0112

:::: ::::::
0.6641 ±0.0114

::::

::::
40%

::::::
0.5911 ±0.0215

:::: ::::::
0.6188 ±0.0541

:::: ::::::
0.6491 ±0.0171

:::: ::::::
0.6065 ±0.0111

:::: ::::::
0.6579 ±0.0057

::::

in each source domain and a fixed fraction of samples in each source domain. We choose MSK
dataset as the target domain and the remaining domains as the source domains.

Fixed number of samples per class in each source domain. Specifically, we randomly draw T
samples from each class in a source domain to represent this domain for training. Here, we set T to
20,30, and 40, respectively, in different experiments. The experimental settings are the same as the
descriptions in A.2, except for the training steps as 600.

The results can be found in Table 10. As we can see, our proposed method achieved the best
performance among all settings compared with all baseline methods. Meanwhile, it seems that the
Bayesian-based DG approaches (e.g., our proposed method and BIDL) have better performance
compared with other methods, which is reasonable as the BNN can be adaptive to the small data
scenario well. Especially, our proposed method has around 5% improvements compared with the
second-best method when T is set to smaller, i.e., 20.

Fixed fraction of samples in each source domain. Specifically, we randomly draw C% samples
from the training samples of each source domain to represent this domain for training. For example,
D7P dataset has 963 training samples originally. The total number of samples for this domain is
40% × 963 = 385 for training when C is set to 40%. Here, we set C to 40%, 60%, and 80%,
respectively, as separately different experiments. Note that C can not be set too small (as the number
of samples in some classes of some domains is very limited.), otherwise the batch size can not be
uniform. We can observe this kind of setting is challenging as the total number of samples for each
domain is gradually small. The results can be found in Table 11. We can observe from Table 11 that
our proposed method also achieves a relatively stable and better performance compared with baseline
methods, as the decrease of fraction of samples in each source domain.

A.7 DISCUSSIONS

In this paper, the definition of small data is based on a specific task, including the difficulty of
prediction, the quality of on-hand images, the number of source domains, and so on. Small data
scenarios may be a relative concept. Specifically, a small data scenario not only can represent the
number of training examples is small among all source domains compared with some large volumes
of datasets but also can reflect the number of training examples is relatively smaller in some (certain)
domains. On the abovementioned conditions, it may be difficult to ensure reliable contrastive semantic
loss with point-wise (or local) alignment and distribution-wise (or global) alignment because both
of them require sufficient samples among source domains. Our proposed method aims to improve
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performance over the abovementioned small data scenarios, which is a significant motivation for this
work.
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