
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Locally Differentially Private Graph Clustering via the Power Iteration Method

Abstract
We propose a locally differentially private graph
clustering algorithm. Previous works have ex-
plored this problem, including approaches that
apply spectral clustering to graphs generated via
the randomized response algorithm. However,
these methods only achieve accurate results when
the privacy budget is in Ω(log n), which is unsuit-
able for many practical applications. In response,
we present an interactive algorithm based on the
power iteration method. Given that the noise in-
troduced by the largest eigenvector constant can
be significant, we incorporate a technique to elim-
inate this constant. As a result, our algorithm
attains local differential privacy with a constant
privacy budget when the graph is well-clustered
and has a minimum degree of Ω̃(

√
n). In contrast,

while randomized response has been shown to pro-
duce accurate results under the same minimum
degree condition, it is limited to graphs generated
from the stochastic block model. We perform ex-
periments to demonstrate that our method outper-
forms spectral clustering applied to randomized
response results.

1. Introduction
As the adoption of artificial intelligence expands, ensuring
the protection of user privacy has become a critical priority.
Various techniques have been proposed to tackle privacy
concerns, with differential privacy emerging as a leading
approach. Differential privacy, introduced in (Dwork, 2008),
quantifies the privacy leakage of a system using a param-
eter known as the privacy budget. The core idea involves
introducing noise to users’ data to obscure individual infor-
mation while still enabling meaningful statistical analysis.
The challenge of designing algorithms that can draw accu-
rate insights from this noisy data has garnered significant
attention from researchers (Zhu et al., 2017), as it is essential
to balance privacy protection with the utility of the resulting
analysis.

. AUTHORERR: Missing \icmlcorrespondingauthor.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In this work, we focus on a specific variant of differen-
tial privacy known as local differential privacy (LDP) (Ka-
siviswanathan et al., 2011). Unlike traditional differential
privacy, which allows data collection before noise is added,
LDP requires users to anonymize their data directly on their
local devices before transmitting it to a central server. This
approach ensures that sensitive information remains pro-
tected during transmission, as the data is already corrupted
at the source. LDP has been adopted by several major com-
panies (Erlingsson et al., 2014; Apple’s Differential Privacy
Team, 2017) in their services to safeguard user privacy while
still enabling data analysis at scale.

We focus on developing LDP algorithms for social networks,
where users are represented as nodes and their relationships
as edges. Since these connections are considered sensitive,
they are protected using privacy notions such as edge LDP
(Qin et al., 2017) or node LDP (Ye et al., 2020). However,
with some exceptions like (Zhang et al., 2020), node LDP is
generally too stringent, making it difficult to release useful
information in most applications. As a result, the majority
of research in LDP has centered around the more practical
edge LDP framework (Imola et al., 2021).

To protect user’s information, one widely used technique is
randomized response, also known as edge flipping (Warner,
1965; Mangat, 1994; Wang et al., 2016). In this method,
before a user sends a bit vector which encodes their list of
friends to a central server, each bit in the vector is flipped
with a certain probability. The server aggregates the obfus-
cated adjacency vector to construct an obfuscated version of
the graph. Although it is possible to compute various graph
statistics from this obfuscated data, the accuracy of these
statistics is often reduced. Algorithms designed specifically
to publish particular statistics tend to offer more precise and
insightful results about the graph (Imola et al., 2021; 2022).

Graph clustering illustrates how analyzing a graph obfus-
cated by randomized response can lead to inaccurate results.
Let n be the number of nodes in the input graph. In (Hehir
et al., 2022), the authors demonstrated that spectral cluster-
ing (Ng et al., 2001) can yield accurate results with a privacy
budget in O(1), provided the input graphs are generated
from stochastic block models and have an average degree of
Θ(
√
n) (Holland et al., 1983). For general graphs, (Mukher-

jee & Suppakitpaisarn, 2023) showed that applying spectral
clustering to randomized response data only yields accurate

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Locally Differentially Private Graph Clustering via the Power Iteration Method

results when the privacy budget ϵ ∈ Ω(log n), which is too
large for many real-world applications. Furthermore, even
for dense graphs, when ϵ ∈ o(log n), the authors identified
a class of graphs for which clustering results are inaccurate.

Although numerous algorithms have been proposed for clus-
tering under differential privacy (Ji et al., 2020; Mohamed
et al., 2022; Chen et al., 2023; Imola et al., 2023; Epasto
et al., 2024; He et al., 2024), relatively few have been de-
veloped specifically for publishing clustering results under
edge LDP. Aside from the work mentioned in the previous
paragraph, the only other algorithm we are aware of targets
node LDP rather than edge LDP (Fu et al., 2023).

1.1. Our Contributions

In this work, we aim to develop a dedicated algorithm for
graph clustering under the edge LDP framework. Rather
than using non-interactive methods like the randomized
response algorithm, we propose an interactive approach,
which has been shown to achieve better performance for
many edge LDP tasks (Henzinger et al., 2024; Hillebrand
et al., 2024).

Specifically, we draw inspiration from the work in (Betzer
et al., 2024), where the authors employ multi-round interac-
tive algorithms to compute iterative matrix multiplications
for Katz centrality. Since spectral clustering can also be
derived through iterative matrix multiplication using the
Power Iteration Clustering (PIC) algorithm (Lin & Cohen,
2010; Boutsidis et al., 2015), we propose extending this
approach to calculate clusters via the PIC algorithm under
the edge LDP framework.

Unfortunately, calculating the PIC algorithm under the edge
LDP framework is not straightforward. While the goal is
to compute the second eigenvector through the iterative
process, the largest component of the result is the first eigen-
vector. In a non-private setting, the first eigenvector, being
a uniform vector, does not interfere with the calculation of
the PIC algorithm. However, when protecting users’ sensi-
tive information under edge LDP, noise must be added at
a magnitude comparable to the largest terms. This causes
the noise to dominate the result, especially as the number of
iterations increases, leading to a significant loss in accuracy.

We propose a technique to eliminate the largest con-
stant term, enabling the development of an algorithm that
achieves accurate results with a constant privacy budget
when the minimum degree of the input graph is Ω̃(

√
n).

Recall that randomized response is proven to yield accu-
rate results for graphs generated by the stochastic block
model when the minimum degree is Ω̃(

√
n). Our algorithm,

however, provides precise results under the same minimum
degree condition but applies to general graphs, not limited to
those generated by the model. This extends the applicability

of our clustering algorithm to a wider range of input graphs.

Our algorithm is computationally efficient. It requires
O(log n) interactions between users and the central server,
with each node having a computational complexity of O(n)
per iteration. The central server also has a computational
complexity of O(n) per iteration. Consequently, the to-
tal computation time of our algorithm is O(n log n). Ad-
ditionally, the communication cost for each user is also
O(n log n).

Compared to the spectral clustering algorithm applied to the
randomized response results (Hehir et al., 2022; Mukherjee
& Suppakitpaisarn, 2023), our iterative method is signifi-
cantly more memory-efficient. In the previous approach,
the server requires Θ(n2) bits of memory to store the ran-
domized response results (Imola et al., 2022; Hillebrand
et al., 2023). In contrast, our algorithm reduces the memory
requirement to Θ(n) for both the server and the users. This
improvement enables our method to handle graphs with a
large number of nodes, which would be infeasible to process
using the earlier algorithm.

We validate our algorithm through experiments on graphs
generated using the stochastic block model (Holland et al.,
1983) and the Reddit graph (Hamilton et al., 2017). Com-
pared to applying the spectral clustering algorithm to the
randomized response results (Hehir et al., 2022), our algo-
rithm produces clustering results that are closer to those of
the original spectral clustering algorithm in almost all cases.
Notably, there are instances where the previous algorithm
yields random outcomes, while our algorithm consistently
produces results identical to the original spectral clustering.

2. Preliminaries
2.1. Notation

Throughout this paper, we consider a graph G = (V,E)
with n vertices. Let S ⊆ V represent a subset of vertices,
and S denote its complement V \ S.

Let S and S′ be two disjoint subsets of V (meaning S∩S′ =
∅). We denote by eG(S, S

′) the number of edges in G that
have one endpoint in S and the other in S′. For each subset
S ⊆ V , let VolG(S) denote the number of edges with both
endpoints in S. We refer to VolG(S) as the volume of S.

For S, S′ ⊆ V , the quantity dvol(S, S
′) is defined

as min(VolG(S△S′) + VolG(S△S′),VolG(S△S′) +
VolG(S△S′)). Since S△S′ = S△S′, this simplifies to
dvol(S, S

′) = min
(
2VolG(S△S′), 2VolG(S△S′)

)
. Two

cuts (S, S) and (S′, S′) are considered similar if dvol(S, S
′)

is small. We also define the normalized discrepancy as

dnorm(S, S
′) =

dvol(S, S
′)

VolG(V)
. (1)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Locally Differentially Private Graph Clustering via the Power Iteration Method

Given that dvol(S, S′) ≤ VolG(V), normalization ensures
that 0 ≤ dnorm(S, S

′) ≤ 1. When S is fixed and nodes
are randomly assigned to S′ with uniform probability,
dnorm(S, S

′) tends to be close to 1.

Any real symmetric n× n matrix A has n real eigenvalues.
We denote the i-th smallest eigenvalue of A as λi(A), so that
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). The eigenvector corre-
sponding to λi(A) is denoted by vi(A) = [νi,1, . . . , νi,n]

⊺.

For each i ∈ [1, n], let ai = [ai,1, . . . , ai,n]
⊺ represent the

adjacency list of user vi, where ai,j = 1 signifies the exis-
tence of an edge between vi and vj (i.e., (vi, vj) ∈ E), and
ai,j = 0 indicates no edge. The degree of node vi, denoted
by di, reflects the number of edges connected to vi. In the
context of a locally differentially private algorithm, it is as-
sumed that each user vi is aware only of their own adjacency
vector ai, which contains sensitive personal information.

2.2. Edge Local Differential Privacy

We define two adjacency lists, a and a′, as neighboring
if they differ by exactly one bit, meaning that one can be
transformed into the other by either adding or removing a
single edge connected to node vi. The concept of edge local
differential privacy is formalized as follows:

Definition 2.1 (ϵ-Edge LDP Query). Let ϵ > 0. A ran-
domized queryR is said to satisfy ϵ-edge local differential
privacy (ϵ-edge LDP) if, for any pair of neighboring ad-
jacency lists a and a′, and any possible outcome set S,
P [R(a) ∈ S] ≤ eϵP [R(a′) ∈ S].

Definition 2.2 (ϵ-edge LDP Algorithm (Qin et al., 2017)).
An algorithm A is said to be ϵ-edge LDP if, for any user
vi, and any sequence of queriesR1, . . . ,Rκ posed to user
vi, where each queryRj satisfies ϵj-edge local differential
privacy (for 1 ≤ j ≤ κ), the total privacy loss is bounded
by ϵ1 + · · ·+ ϵκ ≤ ϵ.

If an algorithm A is ϵ-edge LDP, it is also said to have
a privacy budget of ϵ. Next, we introduce a query that
satisfies ϵ-edge LDP which designed to estimate a real-
valued statistic based on the adjacency vector.

Definition 2.3 (Edge Local Laplacian Query (Hillebrand
et al., 2023)). Let f : {0, 1}n → R be a function defined
on adjacency lists, and let a ∼ a′ represent neighboring
adjacency lists. The global sensitivity of f , denoted as ∆f ,
is defined as: ∆f = maxa∼a′ |f(a)− f(a′)|.

For any ϵ > 0, a query that returns f(a) + Lap(∆f/ϵ) is
ϵ-edge LDP. Here, Lap(b) refers to noise sampled from the
Laplace distribution with scale parameter b.

2.3. Spectral Clustering

For a given graph G, the primary objective of clustering
techniques is to identify a cut (S, S) such that the number

of edges crossing between S and S, denoted by eG(S, S), is
minimized, while most of the edges are concentrated within
S or S. To avoid trivial cuts (such as when S contains
only a single vertex), it is common to define the conduc-
tance, ϕG(S) = eG(S, S)/min{VolG(S),VolG(S)}, and
seek cuts that minimize ϕG(S) (Shi & Malik, 2000). The
conductance of the graph, denoted by ϕ(G), is given by
ϕ(G) = min∅⊊S⊊V ϕG(S). Unless otherwise stated, we
use S∗ to denote the subset that achieves the minimum
normalized cut, where ϕG(S

∗) = ϕ(G).

Let B = (bi,j)1≤i,j≤n be the transition-probability matrix
of a random walk on G, given by bi,i = 0 for all i and
bi,j = ai,j/di for all i ̸= j. We have that −1 ≤ λi(B) ≤ 1
for all i, λ1(B) = 1, and v1(B) = [1√

n
, 1√

n
, . . . , 1√

n
]⊺.

Observe that when I is the identity matrix, the matrix I−B
is referred to as the random walk normalized Laplacian
matrix (Von Luxburg, 2007). The eigenvectors of I −B are
identical to those of B. More specifically, it is known that,
for all i, vi(I −B) = vn−i(B).

The spectral clustering algorithm (Shi & Malik, 2000) com-
putes the eigenvector v2(B) = [ν1, . . . , νn]

⊺, and then
produces the cut S′ = {vi : νi > 0} as the clustering
result. Since ϕG(S

′) ≤ 2
√
ϕG(S∗) (Alon, 1986), it is

established that the cut produced by the spectral cluster-
ing algorithm achieves a low conductance. Additionally,
according to (Peng et al., 2015), we have dvol(S

′, S∗) =

O
(

ϕ(G)
λ3(B) ·VolG(V)

)
, indicating that S′ closely approxi-

mates S∗ in a graph that is well-clustered.

The normalized Laplacian matrix L = (ℓi,j)1≤i,j≤n, de-
fined by ℓi,j = −ai,j/

√
di · dj for i ̸= j and ℓi,i = 1, is

commonly used in spectral clustering algorithms that aim to
minimize the conductance. However, in this work, we opt
for the random walk normalized Laplacian matrix, as calcu-
lating spectral clustering under the normalized Laplacian is
more complex in the edge LDP setting. Notably, when the
desired number of clusters is two, the results of spectral clus-
tering using the random walk normalized Laplacian matrix
are at least as good as those obtained with the normalized
Laplacian matrix (Von Luxburg, 2007).

2.4. Power Iteration Clustering

While spectral clustering can produce a cut with a small cut-
ratio, it requires computing the eigenvector v2(B), which
can be computationally expensive. To address this, the
power iteration clustering algorithm (Lin & Cohen, 2010)
offers a more efficient method for estimating the eigenvector,
significantly reducing the computation time.

Let x be a vector of length n where each element is in-
dependently drawn from a Gaussian distribution. It is
known that x can be expressed as c1λ1(B)v1(B) + · · · +

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Locally Differentially Private Graph Clustering via the Power Iteration Method

cnλn(B)vn(B), where c1, . . . , cn are independent random
variables also drawn from a Gaussian distribution. There-
fore, for a sufficiently large T , applying BT to x gives:

BTx = c1λ1(B)Tv1(B) + · · ·+ cnλn(B)Tvn(B)

= c1 ·
[

1√
n
, 1√

n
, . . . , 1√

n

]⊺
+ c2λ2(B)Tv2(B)

+ · · ·+ cnλn(B)Tvn(B). (2)

When λ3(B)≪ λ2(B), the term BTx is approximately:

BTx ≈ c1

[
1√
n
, 1√

n
, . . . , 1√

n

]⊺
+ c2λ2(B)Tv2(B), (3)

meaning the order of elements in BTx closely mirrors that
of v2(B). Therefore, clustering can be performed using
BTx instead of v2(B), yielding results similar to those
from the spectral clustering algorithm.

2.5. Assumptions

We assume that the input graph has the following properties:
(1) The minimum degree is at least 2

√
n log4 n,

(2) There exists a constant g such that for all i ≥ 3, λi(B)+

1 ≤ λ2(B)+1
g ,

(3) There exists δ ≈ 1 and γ < 1 such that the components
of v2(B) satisfies

∣∣∣{i : |νi| ≥ γ√
n

}∣∣∣ ≥ δ · n, and
(4) The number of nodes n is larger than a constant C.

Assumption (1) The first assumption is essential for any
graph clustering algorithm under edge LDP with a constant
privacy budget. Protecting the connections of low-degree
nodes requires adding so much noise that their contributions
are obscured, resulting in unstable clustering outcomes for
these nodes.

Assumption (2) The second assumption is a standard pre-
requisite for iterative spectral clustering algorithms, such
as the one presented in (Boutsidis et al., 2015). This as-
sumption ensures the convergence of the iterative process.
A comprehensive technical explanation supporting this as-
sumption is provided in (Boutsidis et al., 2015).

Assumption (3) We demonstrate in Appendix A that the
third assumption holds when the graph is well-clustered and
most nodes have a degree cluster close to the average degree
of the cluster to which they belong.

Specifically, for a node i in cluster A ⊆ V , we show
in Proposition A.1 that the value of νi exceeds

√
σ·c
4 ·√

di

n·d(A)−2
√

ϕ(G)
1−λ3(B) , where d(A) represents the average

degree of nodes in cluster A, and c, σ ∈ R satisfy the con-
dition that at least c|A| nodes in cluster A have degrees not
less than σ · d(A). If the graph is well-clustered, the term√

ϕ(G)
1−λ3(B) becomes small and can be neglected (Mukherjee

& Suppakitpaisarn, 2023). Consequently, we conclude that
when di ≥ σd(A) and there are at least c|A| nodes satisfy-
ing this condition, it follows that νi ≥ σc

4 ·
1√
n

. Moreover, if
σ and c are constants, there exist at least c|A| nodes i such
that νi = Ω

(
1√
n

)
.

We observe that the graphs generated by the stochastic block
model have this property. In addition to our mathematical
proof in the appendix, it is empirically demonstrated in
(Abbe et al., 2020) that most of the values in the eigenvectors
is in Θ(1/

√
n). Additionally, (Balakrishnan et al., 2011)

shows that this assumption can be satisfied when B is a
node similarity matrix with certain additional properties.

Assumption (4) The final assumption is a common re-
quirement for most differentially private algorithms. A large
user base typically allows the added noise, introduced to
protect sensitive information, to average out in the results.

3. Our Algorithm
We describe our algorithm in Algorithm 1. One can notice
that we almost have x(t) = B ·x(t−1) and x(T) = BT ·x(0)

by the calculation at Lines 6 - 7. The only five differences
are as follows:

Difference 1: Addition of Laplace Noise We add
Laplace noise in Line 6 to protect users’ information. Later,
we show in Section 4.2 that this noise satisfies the condi-
tions of the edge-local Laplacian query (Definition 2.3).
Furthermore, in Section 4.3, we demonstrate that when the
minimum degree is sufficiently large, the magnitude of the
Laplacian noise becomes negligible compared to other terms
in the calculation in Line 6.

Difference 2: Minimum Degree Estimation When B is
the normalized random walk Laplacian matrix, calculating
B · x(t−1) does not require knowing the degrees of other
nodes. This property simplifies computations within the
edge LDP setting and is the main reason we select the nor-
malized random walk Laplacian matrix over the normalized
Laplacian matrix in our clustering algorithm.

On the other hands, to bound the sensitivity, which deter-
mines the scale of the Laplace noise in Line 6, we need a
lower bound on the minimum degree of the graph G. This
bound is computed in Line 2 of the algorithm, using de-
gree estimates obtained in Line 1 of the mechanism. In
Appendix C, We will show that the estimate in Line 2 over-
estimates the minimum degree with probability not larger
than 1

n2 when ζ = 1
n . If the estimate exceeds the actual

minimum degree, we add edges in Line 3 to ensure that the
modified graph meets the estimated minimum degree. In
Appendix C, we further show that the variable δ exceeds

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Locally Differentially Private Graph Clustering via the Power Iteration Method

Algorithm 1 Private Power Iteration Clustering
Input: Graph G = (V,E) where V = {v1, . . . , vn} and

its adjacency matrix is A = (ai,j)1≤i,j≤n, privacy
budget ϵ, number of iterations T = 2 logn

log g , clipping
factor c, and parameter ζ = 1

n
Output: A cut of G denoted by S ⊂ V

1 [User i] Compute the degree of vi, denoted by di. Broadcast
d̃i ← di + Lap(10/ϵ) to all users and the server.

2 [Server] Calculate δ ← mini d̃i − 10
ϵ log n

2ζ . Broadcast δ
to all users.

3 [User i] If di < δ, randomly select j such that ai,j = 0,
then set ai,j = 1 and increment di by one. Repeat this
process until di ≥ δ.

4 [Server] Initiate the vector x(0) = [x
(0)
1 , . . . , x

(0)
n]⊺ where

x
(0)
i is chosen from the Gaussian distribution with expected

value 0 and standard deviation 1. Broadcast the vector x(0)

to all users.
5 for t = 1, . . . , T do

6 [User i] Calculate w(t)
i = 1

2x
(t−1)
i + 1

2

∑
j ai,j

x
(t−1)
j

di
−

1
n

∑
j x

(t−1)
j + Lap

(
5·T
9·ϵ maxj

|x(t−1)
j |
δ

)
.

7 [User i] Let U = c· 5·T9·ϵ maxj
|x(t−1)

j |
δ , also let x(t)

i = U

if w(t)
i > U , x(t)

i = −U if w(t)
i < −U , and x

(t)
i =

w
(t)
i otherwise. Calculate and send x

(t)
i to the server.

8 [Server] Aggregate the values x(t)
i into a vector x(t) =

[x
(t)
1 , . . . , x

(t)
n]⊺, and broadcast this information to all

users.
9 [Server] Return S ← {vi : x(T)

i > 0}.

√
n log4 n with probability at least 1− 1

n .

Difference 3: Replacing the Random Walk with a Lazy
Random Walk Recall that all eigenvalues of the matrix
B lie between 1 and −1. In certain networks, such as bi-
partite graphs, λn(B) can be close to −1. This causes
the final term in Equation (2) to oscillate, preventing the
calculation of BTx from converging. To address this, we
propose replacing B with W = 1

2I+
1
2B. Note that for all i,

vi(W) = vi(B) and λi(W) = 1
2λi(B)+ 1

2 . Consequently,
for all i, 0 ≤ λi(W) ≤ 1. By the second assumption in
Section 2.5, which is λi(W) ≤ λ2(W)

g for all i ≥ 3, we
can have the approximation (3) even when some λi(B) are
negative. This modification leads to the first two terms of
the calculation in Line 6.

Difference 4: Elimination of the Leading Eigenvec-
tor Recall Equation (2). Since λ2(W) < 1, the term
α2λ2(W)Tv2(W) diminishes compared to the leading
term as T increases. On the other hand, the size of the

Laplace noise added depends on the largest element of
x(t−1), which is determined by the leading term. Hence,
for larger T , the noise magnitude dominates over the term
α2λ2(W)Tv2(W). This causes x(T) to deviate signifi-
cantly from v2(W), reducing the accuracy of the results.

To address this, we introduce the matrix W̃ =
(w̃i,j)1≤i,j≤n, where w̃i,j = wi,j − 1/n for all i, j. We
show in Appendix B that for all i ≥ 1, λi(W̃) = λi+1(W)
and vn(W̃) = v1(W). Additionally, vn(W̃) = v1(W) =
[1√

n
, 1√

n
, . . . , 1√

n
]⊺ and λn(W̃) = 0.

With this update, the leading term α1 · [1√
n
, 1√

n
, . . . , 1√

n
]⊺

from (2) is eliminated. The term α2λ2(W̃)Tv2(W̃) now be-
comes the leading term, and we can ensure that the Laplace
noise (the fourth term of Line 6 in Algorithm 1) is substan-
tially smaller than the new leading term. The subtraction of
the third term in the calculation at Line 6 reflects the update
from W to W̃ .

Difference 5: Clipping At Line 6 of the algorithm, we
apply a standard clipping method commonly used in various
LDP studies, such as (Imola et al., 2022) and (Betzer et al.,
2024). We notice from the proof of Lemma D.6 that when
the clipping factor c satisfies c ≥ log n · log g, it holds
with high probability that −U ≤ w

(t)
i ≤ U for all i and t.

Consequently, the clipping has no impact on our theoretical
results. However, in our experiments, we observed that
Algorithm 1 achieves optimal performance when c is set to
5, which is smaller than log n · log g.

4. Properties of Our Algorithm
4.1. Efficiency

Computation Time The primary computational bottle-
neck of Algorithm 1 occurs in Line 6. In this step, the
per-node computational complexity for each iteration is
O(n). To achieve accurate results, the required number of
iterations T is given by 2 logn

log g = Θ(log n), leading to an
overall computational complexity of O(n log n) per node.
In contrast, the central server has minimal computational
demands. Its responsibilities are limited to generating the
initial vector, receiving calculation results, and distributing
them to all users.

Communication Cost While each user uploads only one
real number x(t)

i to the server at each iteration, they must
download the entire vector x(t) in Line 8 of the algorithm.
This results in a total communication cost of O(n log n) for
each user.

Memory Consumption During iteration t, the central
server and all users only need to store two vectors: x(t−1)

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Locally Differentially Private Graph Clustering via the Power Iteration Method

and x(t). As a result, the memory consumption for all parties
is O(n). This is a significant improvement compared to the
randomized response method. Even for sparse input graphs,
the randomized response mechanism flips each relationship
with a constant probability, leading to a graph with Ω(n2)
edges. Storing such a graph, with Ω(n2) edges, requires
a prohibitive amount of memory on the server, making it
infeasible to design an LDP algorithm for large input graphs
(Imola et al., 2022). In contrast, our approach requires
only O(n) memory, enabling our algorithms to handle input
graphs with millions of nodes efficiently.

4.2. Privacy

The following theorem discuss our algorithm’s privacy.

Theorem 4.1. Algorithm 1 is ϵ-edge LDP.

Proof. We perform T + 1 edge-local Laplacian queries to
all users: one at Line 1 and T queries at Line 6. At Line
1, the degree di has a sensitivity of one. Since the Laplace
noise is set to 10/ϵ, the privacy budget for the publication
at Line 1 is ϵ/10.

When any ai,j is changed, the value of x(t)
i calculated at

Line 6 changes by at most 1
2 maxj

|x(t−1)
j |
dj

. Therefore, the

sensitivity of the publication at Line 6 is 1
2 maxj

|x(t−1)
j |
dj

≤
1
2 maxj

|x(t−1)
j |
δ . The privacy budget for each publication at

Line 6 is 9
10 ·

ϵ
T . Since there are T publications at Line 6, the

total privacy budget of Algorithm 1 is ϵ
10+T · 910 ·

ϵ
T = ϵ.

4.3. Precision

In this section, we analyze the precision of Algorithm 1.
In particular, we demonstrate that the algorithm’s results
closely resemble those of the spectral clustering algorithm.
We provide an outline of our proof sketch here, with the full
proof details available in Appendix D.

In Algorithm 1, at iteration t we compute the vector x(t) =

[x
(t)
1 , . . . , x

(t)
n]⊺. The output of the algorithm is Salg =

{vi | x(T)
i > 0}, where T = 2 logn

log g .

Let vj(W̃) = [vj,1, . . . , vj,n]
⊺ be the j’th eigenvector

of W̃ , and let c1, . . . , cn ∈ R be coefficients such that
x(0) =

∑n
j=1 cjvj(W̃). Additionally, for all t, sup-

pose the noise added during iteration t of the algorithm
is y(t), and that e(t)1 , . . . , e

(t)
n ∈ R are coefficients such

that y(t) =
∑n

j=1 e
(t)
j vj(W̃). In Lemma D.1, we show

that x
(T)
i =

∑n
j=1 c̃jvj,i, where c̃j is given by c̃j =

cjλj(W̃)T +
∑T

t=1 e
(t)
j λj(W̃)T−t.

In Lemma D.6, we show that the noise generated at Line 6 of
the algorithm has a small scale. Specifically, we demonstrate

that the noise scale, given by 5T
9ϵ maxj

|x(t−1)
j |
δ , is negligible

compared to the magnitude of x(t). Consequently, the noise
term y(t) does not dominate the calculation. This empha-
sizes the significance of removing the leading eigenvector
and establishing a lower bound for the minimum degree δ.

Due to the lemma, the term
∑T

t=1 e
(t)
j λj(W̃)T−t is neg-

ligible compared to cjλj(W̃)T , and we have c̃i ≈
ciλi(W̃)T . Consequently, x(T)

i ≈
∑n

j=1 cjλj(W̃)T vj,i.
Using techniques from (Boutsidis et al., 2015), we
show that x

(T)
i ≈ c1λ1(W̃)T v1,i when λj(W̃) ≤

λ1(W̃)
g for all j ≥ 2. Specifically, in Theo-

rem D.7, we demonstrate that
∣∣∣c1λ1(W̃)T v1,i

∣∣∣ >∣∣∣∑T
t=1 e

T
1 λ1(W̃)T−tv1,i +

∑n
j=2 c̃jvj,i

∣∣∣ with probability

at least 0.95 − o(1). The term c1λ1(W̃)T v1,i dominates
and determines the sign of x(T)

i .

Since λ1(W̃)T is positive, we conclude that when c1v1,i >

0, x(t)
i > 0 with high probability. Recall that the outcome of

the spectral clustering algorithm is Sorig = {vi : v1,i > 0}.
Thus, when c1 > 0, the result Salg closely resembles Sorig

with high probability. Conversely, when c1 < 0, the result
Salg is similar to V \ Sorig with high probability. Therefore,
our algorithm is likely to produce a small dvol(Salg, Sorig).
In conclusion, the results are comparable to those obtained
from the spectral clustering algorithm.

5. Experimental Results
Evaluation Method For all experiments, we use the nor-
malized discrepancy dnorm, as defined in (1), to assess pre-
cision. Remember that when the normalized discrepancy
is small, the outcome closely resembles that of the original
spectral clustering algorithm, indicating a high-quality clus-
tering result. The reported values represent the average of
10 experiments, which we consider sufficient, as the vari-
ance in precision across each set of experiments is typically
small.

Input Graphs We conduct most of our experiments on
graphs generated using the stochastic block model (SBM)
(Holland et al., 1983). This model is chosen because it
ensures that the generated graphs are well-clustered and
consist of exactly two clusters. Furthermore, SBM has been
widely employed in prior studies to analyze spectral cluster-
ing under local differential privacy (Hehir et al., 2022). In
this model, the set of n nodes is divided into two clusters
of sizes n1 and n2, where n1 + n2 = n. Two nodes within
the same cluster are connected with probability p, while
nodes from different clusters are connected with probability
q. While in most cases p≫ q, this paper also considers the
scenario where q > p.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Locally Differentially Private Graph Clustering via the Power Iteration Method

Parameters Unless otherwise specified, we set n =
10, 000, n1 = n2 = 5, 000, p = 0.3, q = 0.2, the clip-
ping factor c = 10, and the privacy budget ϵ = 1.

The value of n is chosen to be 10, 000 due to the memory
requirements of the benchmark algorithm, randomized re-
sponse, which requires Ω(n2) bits to store the entire graph
for spectral clustering calculations. We believe that graphs
of this size are sufficient to effectively demonstrate the em-
pirical properties of our algorithm. Given the constraints
of our local computational environment, handling larger
graphs is not feasible. We select p = 0.3 and q = 0.2
because these values are close enough to highlight the pre-
cision of our algorithm in distinguishing clusters. We set
the clipping factor c = 10, as it is the integer closest to
log n log g for well-clustered graphs generated using the
stochastic block model. Recall that, when c = log n log g,
the clipping is applied only with small probability. The
privacy budget is set to ϵ = 1 as it is a standard value com-
monly used in experiments of other local differential privacy
algorithms (Hillebrand et al., 2023).

Benchmark To the best of our knowledge, only one graph
clustering algorithm under local differential privacy has
been explored in the literature. This algorithm employs
the spectral clustering method on graph processed using
randomized response (Hehir et al., 2022). Therefore, we
select this algorithm as the benchmark for our study.

(a) Comparison across different
privacy budget

(b) Comparison across different
graph sizes

(c) Comparison across different
graph density when ϵ = 1

(d) Comparison across different
graph density when ϵ = 1.5

Figure 1. Comparison of the normalized discrepancy between our
algorithm and the randomized response-based algorithm on the
graphs generated from the stochastic block model. The results
shown in Figures 1(c) and 1(d) represent the differences in the
normalized discrepancies between the two algorithms.

Comparison across Different Privacy Budget As illus-
trated in Figure 1(a), our algorithm consistently outperforms
the benchmark algorithm across all privacy budget values
(ϵ). The improvement is especially notable in the range
0.8 ≤ ϵ ≤ 2, where the benchmark algorithm yields nearly
random results, with a normalized discrepancy close to 1,
while our algorithm produces results almost identical to the
non-private spectral clustering.

Comparison across Different Graph Size Figure 1(b)
presents a comparison with the benchmark algorithm across
varying numbers of nodes (n). From the figure, we observe
that while our algorithm performs poorly for small n, it
achieves results identical to non-private spectral clustering
when n becomes sufficiently large. This aligns with our
theoretical findings, which indicate that the noise introduced
by our algorithm becomes negligible as the input graph size
increases.

The plot also reveals that the randomized response-based
algorithm performs well only when the input graph size is
small. This observation aligns with the theoretical findings
of previous work (Mukherjee & Suppakitpaisarn, 2023),
which state that the required privacy budget must exceed
Θ(log n). Consequently, larger values of n demand a higher
privacy budget in the prior approach. In summary, our algo-
rithm demonstrates greater precision for larger n, whereas
the previous method performs better on very small graphs.

It is worth noting that, for the plot in Figure 1(b) alone, we
conducted the experiment on Google Colaboratory. This
was necessary because our local computing environment
lacked the storage capacity for the randomized response
results for graphs of that size. However, we have verified
that the precision results remain consistent across different
computational environments.

Comparison across Different Edge Density In Fig-
ures 1(c) and 1(d), we explore the impact of graph density
by varying the probabilities p and q. The experiments are
conducted for all pairs (p, q) ∈ {0.05, 0.1, . . . , 0.95}2 and
for ϵ ∈ {1, 1.5}. Due to the large number of experiments,
the graph size is reduced to 1000 for this analysis. The
results show that when p > 0.35, our algorithm consis-
tently outperforms the randomized response-based method,
achieving a smaller normalized discrepancy in these cases.

When p ≤ 0.35, there are instances where our algorithm
performs worse than the benchmark algorithm. This occurs
because the estimated minimum degree, δ, is relatively small
in these cases, resulting in a larger amount of noise added
in Algorithm 1. While we have theoretically shown that
our algorithm can produce results comparable to original
spectral clustering when δ ≥

√
n log4 n (where n is the

number of nodes), this analysis is valid only for large n and

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Locally Differentially Private Graph Clustering via the Power Iteration Method

does not extend to cases where n = 1000. On the other
hand, as shown in (Mohamed et al., 2022), the randomized
response-based algorithm performs well when q ≤ p and p
is small. Consequently, in these scenarios, the randomized
response method outperforms our algorithm.

We observe that when q > p, the results of both algorithms
deviate from those of the original spectral clustering algo-
rithm. This outcome arises because the input graphs are not
well-clustered, leading to poor performance from both the
original spectral clustering method and the two algorithms
in these cases.

Computation Time Although our algorithm is designed
to be executed in a distributed manner in practice, we were
unable to afford the necessary computation units for han-
dling 10,000 nodes in this experiment. As a result, all
computations were performed on our server, making the
computation environment different from practical scenarios.
Consequently, a direct comparison of the computation times
between our algorithm and the benchmark algorithm is not
feasible. However, even with all computations performed
on the server, the computation time for graphs with 20,000
nodes is less than 10 seconds for both algorithms, and for
graphs with 1,000,000 nodes, our algorithm completes in
under 1 minute. Therefore, we consider computation time
to be a manageable factor for both algorithms.

Results on Reddit Graph We also conduct an experiment
on the real graph called Reddit graph (Hamilton et al., 2017).
We chose this graph because it is one of the largest publicly
available social networks and features a clear cluster struc-
ture. To ensure that the noise added in our algorithm is
not too large, we calculate a 100-core and 500-core decom-
position of the graph before giving it as an input of both
algorithms. The 100-core decomposition result contains
154,525 nodes and 108,024,958 edges, while the 500-core
decomposition result contains 44,586 nodes, 54,984,204
edges.

We were unable to run the randomized response algorithm
on this large network, even with the A100 GPU (40GB of
GPU RAM) and 83.5GB of system RAM. As a result, we
could not directly compare our algorithm with the previous
one. Since the Reddit graph contains more than two clusters,
we observed that λ3(B)+ 1 is very close to λ2(B)+ 1, and
the value of g (defined in Section 2.5) must be set as low
as 0.005. Consequently, the number of iterations required
by the algorithm, calculated as 2 log n/ log g, increases sig-
nificantly to approximately 14,000. Given that the noise
size is dependent on the number of iterations, this large
iteration count renders the noise size unmanageable. To
address this, we limited the number of iterations to 50 for
this experiment.

(a) 100-core decomposition (b) 500-core decomposition

Figure 2. The normalized discrepancies of our algorithm for the
graph extracted from the Reddit graph

Our results for these graphs are presented in Figure 2. For
graphs generated using the SBM, we observe that when an
algorithm fails to classify the graph in a particular setting,
the normalized discrepancy exceeds 0.99. In contrast, our
normalized discrepancy remains below 0.99 when the pri-
vacy budget is at least 4 for the 100-core decomposition
and at least 1 for the 500-core decomposition. This demon-
strates that our algorithm can produce meaningful clustering
results under these conditions.

While the normalized discrepancy rapidly converges to 0 in
graphs generated by the model, it does not converge to 0 in
Figure 2. We attribute this to the Reddit graph containing
more than two clusters, which results in a significant number
of nodes vi with small |νi| (as discussed in Assumption 3
in Section 2.5). Consequently, our algorithm is unable to
classify these nodes correctly.

Further Experiments In Appendix E, we present exper-
iments to validate the positive impact of the differences
discussed in Section 3.

6. Conclusion and Future Work
In this paper, we propose a locally differentially private al-
gorithm for graph clustering that is theoretically proven to
work on general graphs. Unlike most prior works, which
focus on non-interactive algorithms based on randomized
response, we introduce an interactive algorithm leveraging
power iterative clustering. Our approach demonstrates both
theoretical and experimental improvements over previous
methods. By this work, we believe that interactive algo-
rithms have the potential to become a key tool for addressing
graph problems under local differential privacy.

Although our algorithm is applicable to sparse graphs, our
theoretical guarantees currently hold only for dense graphs.
Extending the theory to sparse graphs requires an additional
condition: for any eigenvector vi = [vi,1, . . . , vi,n]

⊺, the
ratio maxj,j′

vi,j
vi,j′

must be small. This property, known as
delocalization, has been studied in several works, such as
(Rudelson & Vershynin, 2016). We plan to investigate the
potential of incorporating this property into our analysis.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Locally Differentially Private Graph Clustering via the Power Iteration Method

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbe, E., Fan, J., Wang, K., and Zhong, Y. Entrywise eigen-

vector analysis of random matrices with low expected
rank. Annals of Statistics, 48(3):1452, 2020.

Alon, N. Eigenvalues and expanders. Combinatorica, 6(2):
83–96, 1986.

Apple’s Differential Privacy Team. Learning with privacy
at scale. Apple Machine Learning Research, 2017.

Balakrishnan, S., Xu, M., Krishnamurthy, A., and Singh,
A. Noise thresholds for spectral clustering. Advances in
Neural Information Processing Systems, 24, 2011.

Betzer, L., Suppakitpaisarn, V., and Hillebrand, Q. Pub-
lishing number of walks and Katz centrality under local
differential privacy. In UAI 2024, 2024.

Boutsidis, C., Kambadur, P., and Gittens, A. Spectral clus-
tering via the power method - provably. In ICML 2015,
pp. 40–48, 2015.

Chen, H., Cohen-Addad, V., d’Orsi, T., Epasto, A., Imola,
J., Steurer, D., and Tiegel, S. Private estimation algo-
rithms for stochastic block models and mixture models.
Advances in Neural Information Processing Systems, 36:
68134–68183, 2023.

Dwork, C. Differential privacy: A survey of results. In
TAMC 2008, pp. 1–19, 2008.

Epasto, A., Liu, Q. C., Mukherjee, T., and Zhou, F. The
power of graph sparsification in the continual release
model. arXiv preprint arXiv:2407.17619, 2024.

Erlingsson, U., Pihur, V., and Korolova, A. RAPPOR:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In SIGSAC 2014, pp. 1054–1067, 2014.

Fu, N., Ni, W., Zhang, S., Hou, L., and Zhang, D. GC-
NLDP: A graph clustering algorithm with local differen-
tial privacy. Computers & Security, 124:102967, 2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

He, W., Fichtenberger, H., and Peng, P. A differentially
private clustering algorithm for well-clustered graphs. In
ICLR 2024, 2024.

Hehir, J., Slavkovic, A., and Niu, X. Consistent spectral
clustering of network block models under local differen-
tial privacy. Journal of Privacy and Confidentiality, 12
(2), 2022.

Henzinger, M., Sricharan, A., and Zhu, L. Tighter bounds
for local differentially private core decomposition and
densest subgraph. arXiv preprint arXiv:2402.18020,
2024.

Hillebrand, Q., Suppakitpaisarn, V., and Shibuya, T. Unbi-
ased locally private estimator for polynomials of laplacian
variables. In SIGKDD 2023, pp. 741–751, 2023.

Hillebrand, Q., Suppakitpaisarn, V., and Shibuya, T. Cycle
counting under local differential privacy for degeneracy-
bounded graphs. arXiv preprint arXiv:2409.16688, 2024.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137,
1983.

Imola, J., Murakami, T., and Chaudhuri, K. Locally differ-
entially private analysis of graph statistics. In USENIX
Security 2021, pp. 983–1000, 2021.

Imola, J., Murakami, T., and Chaudhuri, K. Communication-
efficient triangle counting under local differential privacy.
In USENIX Security 2022, pp. 537–554, 2022.

Imola, J., Epasto, A., Mahdian, M., Cohen-Addad, V., and
Mirrokni, V. Differentially private hierarchical clustering
with provable approximation guarantees. In ICML 2023,
pp. 14353–14375, 2023.

Ji, T., Luo, C., Guo, Y., Wang, Q., Yu, L., and Li, P. Commu-
nity detection in online social networks: A differentially
private and parsimonious approach. IEEE Transactions
on Computational Social Systems, 7(1):151–163, 2020.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. What can we learn privately?
SIAM Journal on Computing, 40(3):793–826, 2011.

Li, J. and Tkocz, T. Tail bounds for sums of independent
two-sided exponential random variables. In High Dimen-
sional Probability IX: The Ethereal Volume, pp. 143–154.
Springer, 2023.

Lin, F. and Cohen, W. W. Power iteration clustering. In
ICML 2010, pp. 655–662, 2010.

Mangat, N. S. An improved randomized response strat-
egy. Journal of the Royal Statistical Society: Series B
(Methodological), 56(1):93–95, 1994.

Mohamed, M. S., Nguyen, D., Vullikanti, A., and Tandon, R.
Differentially private community detection for stochastic
block models. In ICML 2022, pp. 15858–15894, 2022.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Locally Differentially Private Graph Clustering via the Power Iteration Method

Mohar, B. Isoperimetric numbers of graphs. Journal of
Combinatorial Theory, Series B, 47(3):274–291, 1989.

Mukherjee, S. and Suppakitpaisarn, V. Robustness for spec-
tral clustering of general graphs under local differential
privacy. arXiv preprint arXiv:2309.06867, 2023.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. NIPS 2001, 14, 2001.

Peng, R., Sun, H., and Zanetti, L. Partitioning well-clustered
graphs: Spectral clustering works! In COLT 2015, pp.
1423–1455, 2015.

Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren,
K. Generating synthetic decentralized social graphs with
local differential privacy. In CCS 2017, pp. 425–438,
2017.

Rudelson, M. and Vershynin, R. No-gaps delocalization
for general random matrices. Geometric and Functional
Analysis, 26(6):1716–1776, 2016.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17:395–416, 2007.

Wang, Y., Wu, X., and Hu, D. Using randomized response
for differential privacy preserving data collection. In
EDBT/ICDT Workshops, 2016.

Warner, S. L. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60(309):63–69, 1965.

Ye, Q., Hu, H., Au, M. H., Meng, X., and Xiao, X. To-
wards locally differentially private generic graph metric
estimation. In ICDE 2020, pp. 1922–1925, 2020.

Zhang, H., Latif, S., Bassily, R., and Rountev, A.
Differentially-private control-flow node coverage for soft-
ware usage analysis. In USENIX Security 2020, 2020.

Zhu, T., Li, G., Zhou, W., and Philip, S. Y. Differentially
private data publishing and analysis: A survey. IEEE
Transactions on Knowledge and Data Engineering, 29
(8):1619–1638, 2017.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Locally Differentially Private Graph Clustering via the Power Iteration Method

A. Eigenvector Components
In this section, we analyze the Laplacian matrix of the graph G, defined as L = I −B. For each i, let λi(L) = 1− λi(B).
It follows that λi(L) is an eigenvalue of L, and the eigenvalues are ordered as λ1(L) ≤ · · · ≤ λn(L). Moreover, the
eigenvector vi(B) associated with λi(B) is also an eigenvector of L corresponding to λi(L). For simplicity, throughout
this section, we denote λi(L) by λi and vi(B) by vi = [vi,1, . . . , vi,n]

⊺.

Proposition A.1. Assume that

(i) Let V (G) = A ⊔ B be a bipartition of G with v2,j ≥ 0 for vj ∈ A, v2,j ≤ 0 for vj ∈ B. Then, the cut (A,B) has
conductance ϕ satisfying ϕ/λ3 ≤ 0.12.

(ii) Let ϵ and c be a constant. For a subset S ⊆ V and vertex vj ∈ S, let us call vj to be (ϵ, S)-average if dj ≥ ϵd(S),
where d(S) = Vol(S)/|S| is the average degree of the vertices in S. Let Aϵ and Bϵ denote the set of (ϵ, A)-average nodes
of A and (ϵ, B)-average nodes of B, respectively. Assume that |Aϵ| ≥ c|A| and |Bϵ| ≥ c|B|.

Then,

|v2,j | ≥


ϵ1/2c
4 ·

√
dj

nd(A) − 2
√

ϕ
λ3
, v ∈ A

ϵ1/2c
4 ·

√
dj

nd(B) − 2
√

ϕ
λ3
, v ∈ B

(4)

Consequently, for vj ∈ Aϵ ∪Bϵ, which is at least c fraction of the vertices of G, we have

|v2,j | ≥
ϵc

4
· 1√

n
− 2

√
ϕ

λ3
. (5)

Proof. Let us define the normalized indicator variables

gA(j) =

{
d
1/2
j

Vol(A)1/2
, vj ∈ A

0, vj ∈ B
and gB(j) =

{
0, vj ∈ A

d
1/2
j

Vol(B)1/2
, vj ∈ B

.

Let the vector gA = [gA(1), . . . , gA(n)]
⊺, gB = [gB(1), . . . , gB(n)]

⊺, and, for any vector v, the Rayleign quotient of
v = [x1, . . . , xn]

⊺, denoted by R(v), is v⊺Lv
v⊺v . We show the following regarding the Rayleigh quotients RL(gA) and

RL(gB).

Claim A.2. ϕ ≥ max{RL(gA),RL(gB)}.

Proof of Claim A.2. Observe that the Rayleigh quotient of L satisfies,

RL(v) =
v⊺Lv

v⊺v
= 1−

∑n
i=1

∑n
j=1

aij

di
xixj∑n

i=1 x
2
i

= 1−

∑
{i,j}∈E

(
1
di

+ 1
dj

)
xixj∑n

i=1 x
2
i

. (6)

Since ∥gA∥2 = 1, we have

RL(gA) = 1−
∑

{i,j}∈E

(
1

di
+

1

dj

)
gA(i)gA(j) = 1−

∑
{i,j}∈E(A)

(
1

di
+

1

dj

)
·
√
didj

Vol(A)

≤ 1−
∑

{i,j}∈E(A)

2

Vol(A)
=

Vol(A)− 2e(A)

Vol(A)

=
e(A,B)

Vol(A)
≤ ϕ.

Similarly, we haveRL(gB) ≤ ϕ, completing the proof of Claim A.2. ■

For the rest of the proof, let us denote t := ϕ/λ3. Recall that v1 = [1/
√
n, . . . , 1/

√
n]⊺. We will make use of the following

lemmas from the structure theorem (Theorem 3.1) of (Peng et al., 2015), but with a different notation and error estimates.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Locally Differentially Private Graph Clustering via the Power Iteration Method

Lemma A.3. Let ĝA, ĝB be the projections of gA, gB onto the space spanned by the first two eigenvectors {v1,v2} of L.
Then,

max{∥ĝA − gA∥2, ∥ĝB − gB∥2} ≤ t. (7)

Proof of Lemma A.3. Let v3, . . . ,vn be normalized eigenvectors of λ3, . . . , λn of L. Say gA = α1v1 + · · · + αnvn

and gB = β1v1 + · · · + βnvn are representations of gA and gB in the L-eigenbasis. Clearly ĝA = α1v1 + α2v2 and
ĝB = β1v1 + β2v2. Then, note that as v⊺

i vj = 0 for every i ̸= j,

RL(gA) =

n∑
i=1

αiv
⊺
i · L ·

n∑
i=1

αivi =

n∑
i=1

α2
iv

⊺
i Lvi =

n∑
i=1

α2
iλi.

But λ1 = 0, leading us to RL(gA) ≥ α2
2λ2 + (α2

3 + · · · + α2
n)λ3 = α2

2λ2 + ∥ĝA − gA∥2λ3 ≥ ∥ĝA − gA∥2λ3. Thus,
∥ĝA − gA∥2 ≤ RL(gA)/λ3 ≤ ϕ/λ3 by Claim A.2. The proof for ∥ĝB − gB∥2 is exactly analogous. ■

One of the main ideas used in (Peng et al., 2015) is that if ĝA and ĝB are independent, then Span({v1,v2}) =
Span({ĝA, ĝB}), implying that v1 and v2 can be written as linear combinations of the projected indicator vectors ĝA
and ĝB , say v2 = η1ĝA + η2ĝB , implying that ∥v2 − η1gA − η2gB∥ is small.

Let us now continue with the argument.

Claim A.4. ĝA and ĝB are linearly independent.

Proof of Claim A.4. By Lemma A.3, we have ∥ĝA∥2 ≥ 1− t and ∥ĝB∥2 ≥ 1− t. On the other hand,

|⟨ĝA, ĝB⟩| = |⟨ĝA − gA + gA, ĝB − gB + gB⟩|
≤ |⟨ĝA − gA, ĝB − gB⟩|+ |⟨gA, ĝB − gB⟩|+ |⟨ĝA − gA, gB⟩|
≤ ∥ĝA − gA∥∥ĝB − gB∥+ ∥ĝA − gA∥+ ∥ĝB − gB∥
≤ t+ 2

√
t.

(8)

Since t ≤ 0.12 < 1
2 (2 −

√
3), we have t + 2

√
t < 1 − t, implying |⟨ĝA, ĝB⟩| < ∥ĝA∥∥ĝB∥. As this implies a strict

inequality in the Cauchy-Schwarz inequality, we have ĝA ∦ ĝB . ■

As discussed earlier, Claim A.4 implies that there exist η1, η2 ∈ R such that v2 = η1ĝA+η2ĝB . Suppose v′
2 = η1gA+η2gB ,

and η = ∥v′
2∥ =

√
η21 + η22 . Note that, using (8),

1 = ∥v2∥2 ≥ η21∥ĝA∥2 + η22∥ĝB∥2 − 2|η1η2⟨ĝA, ĝB⟩|
≥ η21(1− t) + η22(1− t)− (η21 + η22)(t+ 2

√
t)

= η2(1− 2t− 2
√
t).

Moreover, since t ≤ 0.12, we have

η2 ≤ 1

1− 2t− 2
√
t
< 16. (9)

Moreover, by the triangle inequality and Cauchy-Schwarz inequality,

∥v2 − v′
2∥2 = ∥η1(ĝA − gA) + η2(ĝB − gB)∥2

≤
(
|η1|
√
t+ |η2|

√
t
)2

≤ 2tη2

(10)

Therefore, we have that

2η⟨v2,
1
ηv

′
2⟩ = 2⟨v2,v

′
2⟩ = ∥v2∥2 + ∥v′

2∥2 − ∥v2 − v′
2∥2 ≥ 1 + η2 − 2tη2,

leading us to
⟨v2,

1
ηv

′
2⟩ ≥

1+η2

2η − ηt ≥ 1− ηt. (11)

Basically, this means that v2 is closely aligned with the normalized vector 1
ηv

′
2. We now show a lemma that relates the

components of two such vectors.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Locally Differentially Private Graph Clustering via the Power Iteration Method

Lemma A.5. Let v = [u1, . . . , un]
⊺ be a unit eigenvector of L and v′ = [u′

1, . . . , u
′
n]

⊺ be any unit vector with ⟨v,v′⟩ ≥
1− ϵ2 for some ϵ > 0. Then, for each 1 ≤ j ≤ n, we have

|u′
j | ≤ |uj |+ ϵ.

Proof of Lemma A.5. Let {v, z1, . . . zn−1} be a orthonormal basis of eigenvectors of L, and, for all i, let zi =

[zi,1, . . . , zi,n]
⊺. Since v′ = ⟨v,v′⟩ · v +

∑n−1
i=1 ⟨v′, zi⟩ · zi, this implies that for any 1 ≤ j ≤ n,

|u′
j | ≤ |⟨v,v′⟩||uj |+

n−1∑
i=1

|⟨v′, zi⟩||zi,j |

≤ |uj |+

(
n−1∑
i=1

⟨v′, zi⟩2
)1/2(n−1∑

i=1

z2i,j

)1/2

≤ |uj |+ ϵ,

where the last step follows from the fact that
∑n−1

i=1 ⟨v′, zi⟩2 + ⟨v′,v⟩2 = ∥v′∥2 = 1, and
∑n−1

i=1 z2i,j + u2
j = 1. ■

Hence, by virtue of Lemma A.5, (9) and (11), we obtain

|v2,j | ≥
1

η
|v′2,j | −

√
ηt =

1

η
|η1gA(j) + η2gB(j)| −

√
ηt =


|η1|
η ·

d
1/2
j

Vol(A)1/2
−
√
ηt, vj ∈ A

|η2|
η ·

d
1/2
j

Vol(B)1/2
−
√
ηt, vj ∈ B

(12)

Finally, we need to show that min{|η1|, |η2|} ≥ ϵ1/2c. For this part of the proof, we shall use the assumption (ii) of our
proposition.

Claim A.6. |η1| ≥ c ·
(

ϵ|A|
n

)1/2
and |η2| ≥ c ·

(
ϵ|B|
n

)1/2
.

Proof of Claim A.6. Recall from the proof of Lemma A.3 that ĝA = α1v1 +α2v2 and ĝB = β1v1 + β2v2. These equations,
along with v2 = η1ĝA + η2ĝB , allow us to solve exactly for η1 and η2 as,

η1 =
β1

α2β1 − α1β2
and η2 =

−α1

α2β1 − α1β2
.

First, we note that |α2β1 − α1β2| ≤ (α2
1 + α2

2)
1/2(β2

1 + β2
2)

1/2 ≤ ∥gA∥∥gB∥ = 1, so it suffices to lower bound |α1| and
|β1|. We have that:

|α1| = |⟨gA,v1⟩| =
1√
n

∑
vj∈A

d
1/2
j

Vol(A)1/2
≥ 1√

n

∑
vj∈Aϵ

d
1/2
j

(|A|d(A))1/2

≥ 1√
n
· |Aϵ| ·

(
ϵ

|A|

)1/2

≥ c ·
(
ϵ|A|
n

)1/2

.

By a similar argument, we have |β1| ≥ c ·
(

ϵ|B|
n

)1/2
, finishing the proof of Claim A.6. ■

Claim A.6, (12) and η ≤ 4 leads us to, for vj ∈ A,

|v2,j | ≥
c

4
· ϵ

1/2|A|1/2

n1/2
·

d
1/2
j

Vol(A)1/2
− 2
√
t =

cϵ1/2

4
·

√
dj

nd(A)
− 2
√
t,

which proves the inequality (4) for vj ∈ A. The argument for vj ∈ B is analogous.

Finally, the inequality (5) directly follows (4) via the definitions of Aϵ and Bϵ.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Locally Differentially Private Graph Clustering via the Power Iteration Method

B. Elimination of the Leading Eigenvector
The following proposition shows that the third term in the calculation at Line 6 of Algorithm 1 eliminates the leading
eigenvector of W . Consequently, the leading eigenvector of W̃ becomes the second eigenvector of W .

Proposition B.1. Let W = 1
2 (I+D−1A) be the lazy random walk matrix for a graph on n vertices. Let J = (ji,j)1≤i,j≤n be

a matrix such that ji,j = 1 for all i, j. Define W̃ = W− 1
nJ . Then, for all i ≥ 1, λi(W̃) = λi+1(W) and vn(W̃) = v1(W).

Additionally, vn(W̃) = v1(W) = [1√
n
, . . . , 1√

n
]⊺ and λn(W̃) = 0.

Proof. Recall that v1(W) =
[

1√
n
, . . . , 1√

n

]⊺
and λ1(W) = 1. We have:

W̃ · v1(W) = W · v1(W)− 1

n
Jv1(W) = v1(W)−

[
1√
n
, . . . ,

1√
n

]⊺
= 0.

Therefore, the vector
[

1√
n
, . . . , 1√

n

]⊺
is an eigenvector of W̃ with eigenvalue 0. Since 0 is the minimum eigenvalue of W̃ ,

it follows that vn(W̃) = v1(W) and λn(W̃) = 0.

Next, let us consider vi(W) for i ≥ 2. Since, vi(W) ⊥ v1(W), we obtain that the sum of all elements in vi(W) is zero.
Thus,

W̃vi(W) = Wvi(W)− 1

n
Jvi(W) = λi(W)vi(W).

This implies that, for all i ≥ 2, vi(W) is also an eigenvector of W̃ with the same eigenvalue. Consequently, as the largest
eigenvalue of W becomes the smallest eigenvalue of W̃ , we have λi−1(W̃) = λi(W) and vi−1(W̃) = vi(W).

C. Minimum Degree Estimation
We will now demonstrate that the value of δ computed in Line 2 of Algorithm 1 has a low probability of overestimating the
minimum degree of the input graph. This implies that, with large probability, we do not need to modify the input graph in
Line 3 of the algorithm.

Proposition C.1. With probability at least 1− ζ, we have δ < mini di.

Proof. We have δ > mini di only if there is d̃i such that d̃i − 10
ϵ log n

2ζ > di. This implies that the value sampled from the
Laplace distribution at Line 1, denoted by li is larger than 10

ϵ log n
2ζ . By the property of the Laplace distribution, for all i,

we have that:

Pr

[
li >

10

ϵ
log

n

2ζ

]
=

1

2
exp

(
−10

ϵ
log

n

2ζ
/
10

ϵ

)
= ζ/n.

Then, by the union bound, the probability that there is an index i such that li > 10
ϵ log n

2ζ is not greater than ζ.

Suppose that ζ = 1
n . In the next proposition, we shown that δ ≥

√
n log4 n with large probability.

Proposition C.2. Pr[δ <
√
n log4 n] ≤ 1

2n .

Proof. In Line 2 of Algorithm 1, Laplacian noise with a scale of 10
ϵ is added. It follows that d̃i < di − 20

ϵ log n if the noise
added to di is less than − 20

ϵ . This event occurs with probability

1

2
exp

(
−20/ϵ · log n

10/ϵ

)
=

1

2n2
.

Using the union bound, we have:

Pr

[
min
i

d̃i < min
i

di −
20

ϵ
log n

]
≤ Pr

[
d̃i < di −

20

ϵ
log n for some i

]
≤ 1

2n
.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Locally Differentially Private Graph Clustering via the Power Iteration Method

Given that δ = mini d̃i − 10
ϵ log n

2ζ , and under the assumption in Section 2.5 that the minimum degree of the network is at
least 2

√
n log4 n, we can bound:

Pr
[
δ <
√
n log4 n

]
≤ Pr

[
δ < min

i
di −

20

ϵ
log n− 10

ϵ
log

n

2ζ

]
≤ 1

2n
,

for sufficiently large n.

D. Size of Laplace Noise
In this section, we analyze the effect of adding the Laplace noise at Line 6 of the algorithm. Let the noise added by the
node i at the iteration t is y(t)i . Define the vector y(t) as [y(t)1 , . . . , y

(t)
n]⊺. Also, for all i, t, let e(t)i be a real number such that

y(t) = e
(t)
1 v1(W̃) + · · ·+ e

(t)
n vn(W̃).

Let the initial vector denoted by x(0) = c1v1(W̃) + · · ·+ cnvn(W̃), and the final vector is denoted by x(T). We obtain the
following lemma by the notation.

Lemma D.1. Let c̃1, . . . , c̃n be numbers such that x(T) = c̃1v1(W̃) + · · ·+ c̃nvn(W̃). We obtain that c̃i = ciλi(W̃)T +

e
(1)
i λi(W̃)T−1 + · · ·+ e

(T)
i .

Proof. To prove the statement, let c(t)i = ciλi(W̃)t + e
(1)
i λi(W̃)t−1 + · · ·+ e

(t)
i . We proceed by induction on t to show

that, for all t ≥ 0, x(t) = c
(t)
1 v1(W̃) + · · · + c

(t)
n vn(W̃). When t = 0, c(0)i = ci, so the statement holds directly by the

definition of the notation. Assume the statement is true for t − 1; that is, x(t−1) = c
(t−1)
1 v1(W̃) + · · · + c

(t−1)
n vn(W̃).

Then, for x(t), we have
x(t) = W̃ · x(t−1) + y(t).

Expanding this using the induction hypothesis gives

x(t) = (c
(t−1)
1 λ1(W̃) + e

(t)
1)v1(W̃) + · · ·+ (c(t−1)

n λn(W̃) + e(t)n)vn(W̃).

Thus, we obtain x(t) = c
(t)
1 v1(W̃) + · · ·+ c

(t)
n vn(W̃), completing the induction.

From now, let vi(W̃) = [vi,1, . . . , vi,n]
⊺. We will now calculate the size of each variable. Recall from Line 4 of Algorithm

1 that x(0)
i is sampled from the Gaussian distribution with expected value 0 and standard deviation 1.

Lemma D.2. For each i, the variable ci is a normal random variable with mean 0 and standard deviation 1. Furthermore,
for i ̸= j, ci is independent to cj .

Proof. Since, for all i, the eigenvector vi(W̃) is a unit vector and ci = ⟨x(0),vi(W̃)⟩, we have that ci =
∑

j vi,jx
(0)
j .

Because ci is a linear combination of normal random variables, ci is a normal random variable. Furthermore,

E[ci] = vi,1E[x(0)
1] + · · ·+ vi,nE[x(0)

n] = 0,

and
Var(ci) = v2i,1Var[x

(0)
1] + · · ·+ v2i,nVar[x

(0)
n] = v2i,1 + · · · v2i,n = 1.

Since vi(W̃) is orthogonal to vj(W̃) for i ̸= j, the coefficients ci and cj , which are the dot products of x(0) with vi(W̃)

and vj(W̃) respectively, are independent of each other.

Next, we give analyze the variables e
(t)
i . We observe that, although the random variable is a linear combination of the

Laplace variables y(t)j , it is not itself Laplace-distributed.

Lemma D.3. For all t and i, we have E[e(t)i] = 0. Furthermore, for all t and all i ̸= j, Cov(e(t)i , e
(t)
j) = 0.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Locally Differentially Private Graph Clustering via the Power Iteration Method

Proof. According to Line 6 of Algorithm 1, for all t and i ̸= j, the variables y(t)i and y
(t)
j are independent, with E(y(t)i) =

E(y(t)j) = 0 and Var(y
(t)
i) = Var(y

(t)
j). The variable e(t)i is defined as the dot product between vi(W̃) and y(t). Specifically,

if vi(W̃) = [vi,1, . . . , vi,n]
⊺, then e

(t)
i =

∑
j vi,jy

(t)
j . Consequently, E(e(t)i) =

∑
j vi,jE[y

(t)
j] = 0.

Next, for i ̸= j, we examine the covariance between e
(t)
i and e

(t)
j , denoted as Cov(e(t)i , e

(t)
j). Since E(e(t)i) = E(e(t)j) = 0,

{y(t)1 , . . . , y
(t)
n } are independent with mean 0, and vi is orthogonal to vj , we have:

Cov(e
(t)
i , e

(t)
j) = E

∑
i′,j′

vi,i′y
(t)
i′ vj,j′y

(t)
j′

 =
∑
i′,j′

vi,i′vj,j′E[y(t)i′ y
(t)
j′] =

∑
k

vi,kvj,kE[(y(t)k)2] = E[(y(t)1)2] ·
∑
k

vi,kvj,k

= 0.

Let Ct represent the scale of the Laplace noise in Line 6 during the t-th iteration of Algorithm 1. By definition, Var(y(t)i) =

2C2
t for every i. The variance of e(t)i is discussed in the following lemma. Our proof draws on ideas from the paper (Li &

Tkocz, 2023).

Lemma D.4. For all i and t, the variance of e(t)i is 2 · C2
t . Furthermore, Pr[e(t)i ≥

√
2Ct log n] ≤ e

n .

Proof. Based on the argument in the proof of Lemma D.3, we have e
(t)
i =

∑
j vi,jy

(t)
j . Consequently, Var(e(t)i) =∑

j v
2
i,jVar(y

(t)
j) for all i and t. Since y

(t)
j is a Laplace variable with scale Ct and each vi(W̃) is a unit vector, it follows

that Var(e(t)j) = 2 · C2
t .

Using the Chernoff bound and the moment generating function of the Laplacian distribution, we obtain that

Pr[e
(t)
i ≥

√
2Ct log n] ≤ e− logn · E

[
exp

(∑
j vi,jy

(t)
j√

2Ct

)]
=

1

n

∏
j

E

[
exp

(
vi,jy

(t)
j√

2Ct

)]

=
1

n

∏
j

E
[
exp

(
vi,j√
2
· Lap (0, 1)

)]
=

1

n

∏
j

1

1− 1
2v

2
i,j

≤ 1

n
exp

∑
j

v2i,j =
e

n
.

Let h be a positive integer. We discuss the property of the vector W̃hy(t) := [γ
(h,t)
1 , . . . , γ

(h,t)
n]⊺ in the next lemma.

Lemma D.5. For all i, h, t, the probability that |γ(h,t)
i | ≥ 3

√
2 · λ1(W̃)h · Ct · log n is at most 2e/n3.

Proof. From the definition of γ
(h,t)
i and the argument in Lemma D.1, we find that γ(h,t)

i =
∑

j λj(W̃)h · vj,i · e(t)j .

According to Lemma D.3, Cov(e(t)j , e
(t)
j′) = 0 for j ̸= j′. Therefore, by Lemma D.4,

Var(γ
(h,t)
i) =

∑
j

λj(W̃)2h · v2j,i ·Var(e
(t)
j) = 2C2

t ·
∑
j

λj(W̃)2h · v2j,i ≤ 2C2
t · λ1(W̃)2h ·

∑
j

v2j,i = 2C2
t · λ1(W̃)2h.

Since e
(t)
j is a linear combination of Laplace variables, γ(h,t)

i is also a linear combination of the Laplace variable y
(t)
j . Let

a1, . . . , an be real numbers such that γ(h,t)
i =

∑
j ajy

(t)
j . We obtain that Var(γ(h,t)

i) = 2 · C2
t

∑
j a

2
j ≤ 2C2

t · λ1(W̃)2h,

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Locally Differentially Private Graph Clustering via the Power Iteration Method

and
∑

j a
2
j ≤ λ1(W̃)2h. Using the Chernoff bound, we obtain that

Pr[γ
(h,t)
i ≥ 3

√
2 · λ1(W̃)h · Ct · log n] ≤ e−3 logn · E

[
exp

(
γ
(h,t)
i√

2 · λ1(W̃)h · Ct

)]

≤ 1

n3
E
[
exp

(∑
j aj · Lap(0, 1)√
2 · λ1(W̃)h

)]
=

1

n3

∏
j

1

1− a2j
2λ1(W̃)2h

≤ 1

n3
exp

 1

2λ1(W̃)2h

∑
j

a2j

 ≤ 1

n3
exp(1).

The lemma statement follows from the fact that the probability distribution of γh,t is symmetric about 0.

In the next lemma, we analyze the size of the noise added in the algorithm. Recall that the variable δ is the noisy minimum
degree published at Line 2 of Algorithm 1. In Proposition C.2, we show that δ ≥

√
n log4 n with probability at least 1− 1

n .
We denote the event that δ ≥

√
n log4 n by Eδ .

Lemma D.6. Recall that Ct is the scale of the noise added at Line 6 of Algorithm 1. Then,

Pr

[
Ct ≤

10

9ϵ
· λ1(W̃)t−1

√
n log2 n

for all 1 ≤ t ≤ T | Eδ

]
≥ 1− 8eT 2

n2
.

Proof. Since x
(0)
i is drawn from a Gaussian distribution with mean 0 and standard deviation 1, it follows from the

properties of a normal random variable that Pr[|x(0)
i | ≥ log n · log g] ≤ 1

n3 . By applying the union bound, we then have
Pr[maxi |x(0)

i | ≥ log n · log g] ≤ 1
n2 .

We will prove this lemma by induction on the number of iterations t. For t = 1, recall from Line 6 of the algorithm that the

noise y
(t)
i is drawn from a Laplace distribution with scale parameter 5·T

9·ϵ ·
maxi |x(t−1)

i |
δ , where ϵ is the privacy budget and

δ is the minimum degree of the input graph. In the event Eδ, the variable δ ≥
√
n log4 n. Recall that we set T = 2 logn

log g

in our algorithm. Consequently, the noise scale in the first iteration is larger than 10
9ϵ

logn
log g ·

logn·log g√
n log4 n

= 10
9ϵ·

√
n log2 n

with
probability not larger than 1/n2 when n is large enough.

Next, assume that, in the event Eδ, with probability not smaller than 1 − 2e·(2t−2)2

n2 , for all t′ < t, the noise (de-

noted by y
(t′)
i) is sampled from a Laplace distribution with a scale no more than 10

9ϵ ·
λ1(W̃)t

′−1

√
n log2 n

. From our previous

calculations, it follows that x(t) = W̃ tx(0) + W̃ t−1y(1) + · · · + y(t). Let W̃ tx(0) = [x
(t)
1 , . . . , x

(t)
n]⊺ and, for all

t′ ≤ t, W̃ t−t′y(t′) = [y
(t,t′)
1 , . . . , y

(t,t′)
n]⊺. The value of maxi |x(t−1)

i |, which decides the noise scale of y(t), is equal to

maxi

∣∣∣∣x(t−1)
i +

t−1∑
t′=1

y
(t−1,t′)
i

∣∣∣∣.
Let us first consider the vector [x(t−1)

1 , . . . , x
(t−1)
n]⊺. Recall that vi(W̃) = [vi,1, . . . , vi,n]

⊺. By the notation, we have
x
(t−1)
i =

∑
j λj(W̃)t−1vj,icj .

Since, by Lemma D.2, cj and cj′ are independent for j ̸= j′, we obtain:

E[x(t−1)
i] =

∑
j

λj(W̃)t−1vj,i · E[cj] = 0,

Var[x
(t−1)
i] =

∑
j

λj(W̃)2t−2v2j,iVar[cj] ≤ λ1(W̃)2t−2Var

∑
j

vj,icj

 = λ1(W̃)2t−2Var
[
x
(0)
i

]
= λ1(W̃)2t−2.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Locally Differentially Private Graph Clustering via the Power Iteration Method

Also, since x
(t−1)
i is a linear combination of the normal random variable cj , we can conclude that x(t−1)

i is also normal. By

the property of the normal variable, we have Pr
[
|x(t−1)

i | ≥ 1
2 log n · log g · λ1(W̃)t−1

]
≤ 1

n3 for all i. By the union bound,

Pr
[
maxi |x(t−1)

i | ≥ 1
2 log n · log g · λ1(W̃)t−1

]
≤ 1

n2 .

Let us reconsider the variable γ
(h,t)
i from Lemma D.5. Note that y(t−1,t′)

i = γ(t−t′−1,t′). Let E denote the event that

Ct′ ≤ 10
9ϵ ·

λt′−1
1 (W̃)√
n log2 n

for all t′ < t. In the event E and Eδ , Lemma D.5 implies that, for all i, t, t′,

∣∣∣y(t−1,t′)
i

∣∣∣ ≥ 3
√
2 · λt−t′−1

1 (W̃) · 10
9ϵ
· λ

t′−1
1 (W̃)
√
n log2 n

=
30
√
2

9ϵ
· λ

t−2
1 (W̃)
√
n log2 n

with probability at most 2e
n3 .

By applying the union bound, we deduce that for all t, t′,

max
i
|y(t−1,t′)

i | ≥ 30
√
2

9ϵ
· λ

t−2
1 (W̃)
√
n log2 n

with probability at most 2e
n2 . By Lemma 4.4 of (Mohar, 1989), we have that λ2(B) ≥ 0 and λ1(W̃) ≥ 1

2 . When n is
sufficiently large, it follows that, for all t, t′,

max
i
|y(t−1,t′)

i | ≥ λt−1
1 (W̃) log g

4 log n
≥ 30

√
2

9ϵ

λt−2
1 (W̃)
√
n log2 n

with probability at most 2e
n2 . We finally obtain

Pr

 ∑
t′≤t−1

max
i
|y(t−1,t′)

i | ≥ 1

2
· λt−1

1 (W̃) | E , Eδ

 ≤ 2et

n2
.

Because, for all i and t, the variables x(t−1)
i do not depends on the scale of the Laplacian noise and the event E , we obtain

that:

Pr
[
max

i

∣∣∣x(t−1)
i

∣∣∣ ≥ log n · log g · λ1(W̃)t−1 | E , Eδ
]

= Pr

max
i

∣∣∣∣∣∣x(t−1)
i +

∑
t′≤t−1

y
(t−1,t′)
i

∣∣∣∣∣∣ ≥ log n · log g · λ1(W̃)t−1 | E , Eδ


≤ Pr

max
i

∣∣∣x(t−1)
i

∣∣∣+ ∑
t′≤t−1

max
i

∣∣∣y(t−1,t′)
i

∣∣∣ ≥ log n · log g · λ1(W̃)t−1 | E , Eδ


≤ Pr

[
max

i

∣∣∣x(t−1)
i

∣∣∣ ≥ 1

2
log n · log g · λ1(W̃)t−1

]
+ Pr

 ∑
t′≤t−1

max
i

∣∣∣y(t−1,t′)
i

∣∣∣ ≥ 1

2
λ1(W̃)t−1 | E , Eδ


≤ (2et+ 1)

n2
.

In the event E and Eδ, maxi |x(t−1)
i | ≥ log n · log g · λ1(W̃)t−1 with probability at most 2et+1

n2 . In the event of E and Eδ,

the noise scale at the iteration t, denoted by Ct, is at most 10
9ϵ

2 logn
log g

logn·log g·λ1(W̃)t−1

√
n log4 n

= 10
9ϵ ·

λ1(W̃)t−1

√
n log2 n

with probability at

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Locally Differentially Private Graph Clustering via the Power Iteration Method

least 1− 2et+1
n2 . As a result,

Pr

[
Ct ≥

10

9ϵ
· λ1(W̃)t−1

√
n log2 n

or Ē | Eδ

]
≤ Pr

[
Ct ≥

10

9ϵ
· λ1(W̃)t−1

√
n log2 n

and E | Eδ

]
+ Pr[Ē | Eδ]

≤ Pr

[
Ct ≥

10

9ϵ
· λ1(W̃)t−1

√
n log2 n

| E , Eδ

]
+

2e(2t− 2)2

n2

≤ 2et+ 1

n2
+

2e(2t− 2)2

n2
≤ 2e(2t)2

n2
.

This completes the induction step. We can conclude that, for all t ∈ {1, . . . , T}, Ct′ ≤ 10
9ϵ ·

λ1(W̃)t
′−1

√
n log2 n

for all t′ ≤ t with

probability at least 1− 2e(2t)2

n2 when δ ≥
√
n log4 n.

We will leverage the previous lemma to demonstrate that the outcome of Algorithm 1 closely aligns with the results
obtained through spectral clustering. Recall Lemma D.1 that the final vector x(T)

i =
∑n

j=1 c̃jvj,i when c̃j = cjλj(W̃)T +∑T
t=1 e

(t)
j λj(W̃)T−t.

Theorem D.7. For any node i such that |v1,i| ≥ γ√
n

. For large enough n, we obtain that

Pr

∣∣∣c1λ1(W̃)T v1,i

∣∣∣ >
∣∣∣∣∣∣

T∑
t=1

eT1 λ1(W̃)T−tv1,i +

n∑
j=2

c̃jvj,i

∣∣∣∣∣∣
 ≥ 0.95− o(1).

Proof. We first obtain that

Pr

∣∣∣c1λ1(W̃)T v1,i

∣∣∣ >
∣∣∣∣∣∣

T∑
t=1

eT1 λ1(W̃)T−tv1,i +

n∑
j=2

c̃jvj,i

∣∣∣∣∣∣


≥ Pr

∣∣∣c1λ1(W̃)T v1,i

∣∣∣ > ∣∣∣∣∣
T∑

t=1

eT1 λ1(W̃)T−tv1,i

∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=2

c̃jvj,i

∣∣∣∣∣∣


≥ Pr

|v1,i|(|c1λ1(W̃)T | −

∣∣∣∣∣
T∑

t=1

e
(t)
1 λ1(W̃)T−t

∣∣∣∣∣
)

>

∣∣∣∣∣∣
n∑

j=2

cjvj,iλj(W̃)T

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=2

T∑
t=1

e
(t)
j λj(W̃)T−tvj,i

∣∣∣∣∣∣
 .

Recall from Lemma D.2 that ci is a normal random variable with mean 0 and standard deviation 1. We obtain that:

Pr

[∣∣∣c1λ1(W̃)T
∣∣∣ ≥ λ1(W̃)T

16

]
> 0.95. (13)

Recall from Lemma D.4 that Pr
[
e
(t)
1 ≥

√
2Ct log n

]
≤ e

n . Let E be the event that maxt Ct ≤ 10
9ϵ ·

λ1(W̃)t−1

√
n log2 n

and Eδ be the

event that δ ≥
√
n log4 n. We obtain that Pr

[
e
(t)
1 ≥ 10

√
2

9ϵ
λ1(W̃)t−1

√
n logn

|E , Eδ
]
≤ e

n . Denote
∑T

t=1 e
(t)
j λ1(W̃)T−t by η. By

the union bound,

Pr

[
η ≥ λ1(W̃)T

32
|E

]
≤ Pr

[
η ≥ 10

√
2 · T
9ϵ

λ1(W̃)T−1

√
n log n

|E

]
≤ eT

n
,

for sufficiently large n. Recall the event Eδ, which is the event when δ ≥
√
n log4 n. By Lemma D.6, we know that

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Locally Differentially Private Graph Clustering via the Power Iteration Method

Pr[E | Eδ] ≥ 1− 8eT 2

n2 . Also, by Proposition C.2, we know that Pr[Ēδ] ≤ 1
2n . As a result, when n is large enough,

Pr

[
η ≥ λ1(W̃)T

32

]
≤ Pr

[
η ≥ λ1(W̃)T

32
and E and Eδ

]
+ Pr[Ē and Eδ] + Pr[Ēδ]

≤ Pr

[
η ≥ λ1(W̃)T

32
| E , Eδ

]
+ Pr[Ē | Eδ] +

1

2n
= o(1).

Since the distribution of η is symmetric around 0, we have that

Pr

[
|η| ≥ λ1(W̃)T

32

]
= o(1). (14)

By combining (13) and (14) and using the fact that |v1,i| ≥ γ√
n

, we obtain that:

Pr

[
|v1,i|

(
|c1λ1(W̃)T | − |η|

)
≥ γλ1(W̃)T

32
√
n

]
> 0.95− o(1) (15)

By the assumption that λ2(W̃) ≤ λ1(W̃)
g , we have that

∣∣∣∑n
j=2 cjvj,iλj(W̃)T

∣∣∣ ≤ ∣∣∣λ1(W̃)T

gT ·
∑n

j=2 cj

∣∣∣. Since∑n
j=2 cjvj,iλj(W̃)T is a normal random variable with mean 0 and standard deviation at most

√
n·λ1(W̃)T

gT , we have
the following.

Pr

∣∣∣∣∣∣
n∑

j=2

cjvj,iλj(W̃)T

∣∣∣∣∣∣ ≥
√
n log n · λ1(W̃)T

gT

 <
1

n2
.

When T = 2 logn
log g and n is large enough, we obtain that

√
n logn
gT < γ

65
√
n

. Hence,

Pr

∣∣∣∣∣∣
n∑

j=2

cjvj,iλj(W̃)T

∣∣∣∣∣∣ ≥ γ · λ1(W̃)T

65
√
n

 <
1

n2
. (16)

Consider the summation
∑n

j=2

∑T
t=1 e

(t)
j λj(W̃)T−tvj,i. Denote the summation as βt. By Lemma D.3, we know that

E[e(t)j] = 0 for all j, t. As a result, E[βt] = E
[∑n

j=2 e
(t)
j λj(W̃)T−tvj,i

]
= 0 for all t. Furthermore, by λj(W̃) ≤ λ1(W̃)

g

for all j ≥ 2,

Var [βt] ≤
n∑

j=2

λj(W̃)2T−2tv2j,iVar(e
(t)
j)

≤
n∑

j=1

λ1(W̃)2T−2t

g2T−2t
v2j,iVar(e

(t)
j)

=
λ1(W̃)2T−2t

g2T−2t
Var

∑
j

vj,ie
(t)
j


=

λ1(W̃)2T−2t

g2T−2t
Var

[
y
(t)
i

]
= 2

λ1(W̃)2T−2t

g2T−2t
C2

t . (17)

We observe that both e
(t)
j and βt =

∑n
j=2 e

(t)
j λj(W̃)T−tvj,i can be written as linear combinations of y

(t)
1 , . . . , y

(t)
n .

Let b(t)1 , . . . , b
(t)
n ∈ R be such that βt =

∑n
j=1 b

(t)
j y

(t)
j . By (17), Var [βt] = 2

∑n
j=1 b

2
jC

2
t ≤ 2λ1(W̃)2T−2t

g2T−2t C2
t and

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Locally Differentially Private Graph Clustering via the Power Iteration Method∑n
j=1 b

2
j ≤

λ1(W̃)2T−2t

g2T−2t . Using the Chernoff bound and the moment generating function of the Laplacian distribution, we
obtain that

Pr

[
βt ≥

√
2 log n · λ

T−t
1 (W̃)

gT−t
· Ct

]
≤ e− logn · E

exp
 βt
√
2 · λ

T−t
1 (W̃)

gT−t · Ct


≤ 1

n
E

exp
∑j bjLap(0, 1)
√
2 · λ

T−t
1 (W̃)

gT−t


=

1

n

∏
j

1

1− b2j/
(
2 · λ

2T−2t
1 (W̃)

g2T−2t

)
≤ 1

n
exp

 g2T−2t

λ2T−2t
1 (W̃)

∑
j

b2j

 ≤ e

n
.

Let E be the event that maxt Ct ≤ 10
9ϵ ·

λ1(W̃)t−1

√
n log2 n

. For large n such that log n ≥ 650
√
2

9ϵ · g
g−1 ·

1
γ ,

Pr

[
βt ≥

γλ1(W̃)T

65 · g
g−1

√
ngT−t

| E

]
≤ Pr

[
βt ≥

10
√
2

9ϵ
· λT−1

1 (W̃)

log n
√
ngT−t

| E

]
≤ e

n
.

Recall that Eδ is the event such that δ ≥
√
n log4 n. By Lemma D.6, we know that Pr[E | Eδ] = 1 − 8eT 2

n2 , and, by
Proposition C.2, we know that Pr[Ēδ] ≤ 1

2n . As a result, when n is large enough,

Pr

[
βt ≥

γλ1(W̃)T

65 · g
g−1

√
ngT−t

]
≤ Pr

[
βt ≥

γλ1(W̃)T

65 · g
g−1

√
ngT−t

and E and Eδ

]
+ Pr[Ē and Eδ] + Pr[Eδ]

≤ Pr

[
βt ≥

γλ1(W̃)T

65 · g
g−1

√
ngT−t

| E

]
+ Pr

[
Ē | Eδ

]
+

1

2n
= O

(
1

n

)
.

By the union bound and by
∑T

t=1
1

gT−t = 1
gT

∑T
t=1 g

t = 1
gT

gT+1−1
g−1 = gn2−1

gn2−n2 ≤ g
g−1 , we obtain that

Pr

[
T∑

t=1

βt ≥
γλ1(W̃)T

65
√
n

]
≤ Pr

[
T∑

t=1

βt ≥
T∑

t=1

γλ1(W̃)T

65 · g
g−1 ·

√
ngT−t

]
= O

(
log n

n

)
.

As
∑T

t=1 βt is a linear combination of Laplacian random variable, we know that the distribution of the summation is
symmetric around 0. Hence,

Pr

∣∣∣∣∣∣
n∑

j=2

T∑
t=1

e
(t)
j λj(W̃)T−tvj,i

∣∣∣∣∣∣ ≥ γλ1(W̃)T

65
√
n

 = o(1). (18)

We then obtain the lemma statement by combining (15) with inequalities (16) and (18).

E. Further Experiments
In this appendix, we present additional experimental results, specifically demonstrating that each modification introduced in
Algorithm 1 contributes to improved precision.

E.1. Results of using the lazy random walk matrix in the iterative spectral clustering (Difference 3)

In this subsection, we analyze the effect of performing power iteration with the lazy random walk matrix Wα = αI + (1−
α)D−1A instead of the usual random walk matrix D−1A used during PIC (Lin & Cohen, 2010; Boutsidis et al., 2015).

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Locally Differentially Private Graph Clustering via the Power Iteration Method

Figure 3. Power iteration on BSBM(1000, 1000, 1000, 1000, 0.5, 0.2) for lazy random walk matrices Wα with α ∈ {0, 0.1, . . . , 0.9}.

We start with an n-dimensional standard normal variable x(0), and iteratively obtain x(t) = Wα · x(t−1) − 1
n

∑
i x

(t−1)
i .

This is equivalent to the PIC algorithm with k = 2 initial vectors.

For bipartite graphs, the random walk matrix W0 = D−1A has −1 as an eigenvalue. Thus, for bipartite 2-clustered graphs,
the performance of PIC is not good unless more initial vectors are selected. We demonstrate this by introducing a Bipartite
Stochastic Block Model graph with two clusters, defined as follows. Given integers ai, bi and probabilities p and q, a graph
G ∼ BSBM(a1, a2, b1, b2, p, q) has node set A1 ⊔ A2 ⊔ B1 ⊔ B2 with |Ai| = ai and |Bi| = bi, such that every pair of
nodes between Ai and Bi is added with probability p, and Ai and Bj are added with probability q. This graph is bipartite
with independent sets A1 ∪A2 and B1 ∪B2, and when p≫ q, admits a clear cluster structure given by the node clusters
A1 ∪B1 and A2 ∪B2.

Figure 3 shows that for certain BSBM’s, the produced clusters by iteratively multiplying Wα always have discrepancy close
to 1 when α is close to 0. On the other hand, when α ≈ 1, the procedure is too slow to converge since Wα ≈ I . Therefore,
selecting a lazy factor of α = 1

2 seems to be a natural choice in general when no additional information about the input
graph is available.

E.2. Result of leading eigenvector elimination (Difference 4)

Figure 4. (Left): Heatmap of average dnorm(NonElim)− dnorm(Ours) over 20 SBMs with n1 = n2 = 1000, with varying probabilities
p, q ∈ {0.05, 0.1, . . . , 0.95}, and privacy budget ϵ = 2.0. (Right): Discrepancy with increasing ϵ for 20 SBMs with p = 0.3, q = 0.2.

Now, we perform an experiment to investigate the effect of elimination of the leading eigenvalue of the lazy random walk
matrix, which is a procedure changing the matrix W to the matrix W̃ described in Difference 4 of Section 3. For this
experiment, we select ε = 2.0 and generate 20 SBM’s of cluster sizes 1000 for pairs of probabilities (p, q).

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Locally Differentially Private Graph Clustering via the Power Iteration Method

We present our results in Figure 4. The figure illustrates that our algorithm, without the leading vector elimination (referred
to as NonElim), consistently fails to recover the original clusters. Although not depicted in the graph, we observed that the
NonElim algorithm fails to successfully identify the clusters even when the privacy budget ϵ is set as high as 20. In contrast,
our proposed method successfully identifies these clusters with minimal discrepancy.

23

