Locally Differentially Private Graph Clustering via the Power Iteration Method

Abstract

We propose a locally differentially private graph
clustering algorithm. Previous works have ex-
plored this problem, including approaches that
apply spectral clustering to graphs generated via
the randomized response algorithm. However,
these methods only achieve accurate results when
the privacy budget is in Q(log n), which is unsuit-
able for many practical applications. In response,
we present an interactive algorithm based on the
power iteration method. Given that the noise in-
troduced by the largest eigenvector constant can
be significant, we incorporate a technique to elim-
inate this constant. As a result, our algorithm
attains local differential privacy with a constant
privacy budget when the graph is well-clustered
and has a minimum degree of (/). In contrast,
while randomized response has been shown to pro-
duce accurate results under the same minimum
degree condition, it is limited to graphs generated
from the stochastic block model. We perform ex-
periments to demonstrate that our method outper-
forms spectral clustering applied to randomized
response results.

1. Introduction

As the adoption of artificial intelligence expands, ensuring
the protection of user privacy has become a critical priority.
Various techniques have been proposed to tackle privacy
concerns, with differential privacy emerging as a leading
approach. Differential privacy, introduced in (Dwork, 2008),
quantifies the privacy leakage of a system using a param-
eter known as the privacy budget. The core idea involves
introducing noise to users’ data to obscure individual infor-
mation while still enabling meaningful statistical analysis.
The challenge of designing algorithms that can draw accu-
rate insights from this noisy data has garnered significant
attention from researchers (Zhu et al., 2017), as it is essential
to balance privacy protection with the utility of the resulting
analysis.

. AUTHORERR: Missing \icmlcorrespondingauthor.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In this work, we focus on a specific variant of differen-
tial privacy known as local differential privacy (LDP) (Ka-
siviswanathan et al., 2011). Unlike traditional differential
privacy, which allows data collection before noise is added,
LDP requires users to anonymize their data directly on their
local devices before transmitting it to a central server. This
approach ensures that sensitive information remains pro-
tected during transmission, as the data is already corrupted
at the source. LDP has been adopted by several major com-
panies (Erlingsson et al., 2014; Apple’s Differential Privacy
Team, 2017) in their services to safeguard user privacy while
still enabling data analysis at scale.

We focus on developing LDP algorithms for social networks,
where users are represented as nodes and their relationships
as edges. Since these connections are considered sensitive,
they are protected using privacy notions such as edge LDP
(Qin et al., 2017) or node LDP (Ye et al., 2020). However,
with some exceptions like (Zhang et al., 2020), node LDP is
generally too stringent, making it difficult to release useful
information in most applications. As a result, the majority
of research in LDP has centered around the more practical
edge LDP framework (Imola et al., 2021).

To protect user’s information, one widely used technique is
randomized response, also known as edge flipping (Warner,
1965; Mangat, 1994; Wang et al., 2016). In this method,
before a user sends a bit vector which encodes their list of
friends to a central server, each bit in the vector is flipped
with a certain probability. The server aggregates the obfus-
cated adjacency vector to construct an obfuscated version of
the graph. Although it is possible to compute various graph
statistics from this obfuscated data, the accuracy of these
statistics is often reduced. Algorithms designed specifically
to publish particular statistics tend to offer more precise and
insightful results about the graph (Imola et al., 2021; 2022).

Graph clustering illustrates how analyzing a graph obfus-
cated by randomized response can lead to inaccurate results.
Let n be the number of nodes in the input graph. In (Hehir
et al., 2022), the authors demonstrated that spectral cluster-
ing (Ng et al., 2001) can yield accurate results with a privacy
budget in O(1), provided the input graphs are generated
from stochastic block models and have an average degree of
©(y/n) (Holland et al., 1983). For general graphs, (Mukher-
jee & Suppakitpaisarn, 2023) showed that applying spectral
clustering to randomized response data only yields accurate



Locally Differentially Private Graph Clustering via the Power Iteration Method

results when the privacy budget € € Q(logn), which is too
large for many real-world applications. Furthermore, even
for dense graphs, when € € o(log n), the authors identified
a class of graphs for which clustering results are inaccurate.

Although numerous algorithms have been proposed for clus-
tering under differential privacy (Ji et al., 2020; Mohamed
et al., 2022; Chen et al., 2023; Imola et al., 2023; Epasto
et al., 2024; He et al., 2024), relatively few have been de-
veloped specifically for publishing clustering results under
edge LDP. Aside from the work mentioned in the previous
paragraph, the only other algorithm we are aware of targets
node LDP rather than edge LDP (Fu et al., 2023).

1.1. Our Contributions

In this work, we aim to develop a dedicated algorithm for
graph clustering under the edge LDP framework. Rather
than using non-interactive methods like the randomized
response algorithm, we propose an interactive approach,
which has been shown to achieve better performance for
many edge LDP tasks (Henzinger et al., 2024; Hillebrand
et al., 2024).

Specifically, we draw inspiration from the work in (Betzer
et al., 2024), where the authors employ multi-round interac-
tive algorithms to compute iterative matrix multiplications
for Katz centrality. Since spectral clustering can also be
derived through iterative matrix multiplication using the
Power Iteration Clustering (PIC) algorithm (Lin & Cohen,
2010; Boutsidis et al., 2015), we propose extending this
approach to calculate clusters via the PIC algorithm under
the edge LDP framework.

Unfortunately, calculating the PIC algorithm under the edge
LDP framework is not straightforward. While the goal is
to compute the second eigenvector through the iterative
process, the largest component of the result is the first eigen-
vector. In a non-private setting, the first eigenvector, being
a uniform vector, does not interfere with the calculation of
the PIC algorithm. However, when protecting users’ sensi-
tive information under edge LDP, noise must be added at
a magnitude comparable to the largest terms. This causes
the noise to dominate the result, especially as the number of
iterations increases, leading to a significant loss in accuracy.

We propose a technique to eliminate the largest con-
stant term, enabling the development of an algorithm that
achieves accurate results with a constant privacy budget
when the minimum degree of the input graph is Q(y/n).
Recall that randomized response is proven to yield accu-
rate results for graphs generated by the stochastic block
model when the minimum degree is (/7). Our algorithm,
however, provides precise results under the same minimum
degree condition but applies to general graphs, not limited to
those generated by the model. This extends the applicability

of our clustering algorithm to a wider range of input graphs.

Our algorithm is computationally efficient. It requires
O(log n) interactions between users and the central server,
with each node having a computational complexity of O(n)
per iteration. The central server also has a computational
complexity of O(n) per iteration. Consequently, the to-
tal computation time of our algorithm is O(nlogn). Ad-
ditionally, the communication cost for each user is also
O(nlogn).

Compared to the spectral clustering algorithm applied to the
randomized response results (Hehir et al., 2022; Mukherjee
& Suppakitpaisarn, 2023), our iterative method is signifi-
cantly more memory-efficient. In the previous approach,
the server requires ©(n?) bits of memory to store the ran-
domized response results (Imola et al., 2022; Hillebrand
et al., 2023). In contrast, our algorithm reduces the memory
requirement to ©(n) for both the server and the users. This
improvement enables our method to handle graphs with a
large number of nodes, which would be infeasible to process
using the earlier algorithm.

We validate our algorithm through experiments on graphs
generated using the stochastic block model (Holland et al.,
1983) and the Reddit graph (Hamilton et al., 2017). Com-
pared to applying the spectral clustering algorithm to the
randomized response results (Hehir et al., 2022), our algo-
rithm produces clustering results that are closer to those of
the original spectral clustering algorithm in almost all cases.
Notably, there are instances where the previous algorithm
yields random outcomes, while our algorithm consistently
produces results identical to the original spectral clustering.

2. Preliminaries
2.1. Notation

Throughout this paper, we consider a graph G = (V| E)
within vertices. Let S C V represent a subset of vertices,
and S denote its complement V' \ S.

Let S and S’ be two disjoint subsets of V' (meaning SN.S’ =
). We denote by e(.S, S’) the number of edges in G that
have one endpoint in .S and the other in S’. For each subset
S C V,let Volg(S) denote the number of edges with both
endpoints in .S. We refer to Volg(.S) as the volume of S.

For 5,8 C V, the quantity d,,(S5,S’) is defined
as min(Volg(SAS’) + Volg(SAS), Volg(SAS") +
Volg(SAS")). Since SAS” = SAS’, this simplifies to
dvol(S,5”) = min (2Volg(SAS'), 2Volg(SAS")). Two
cuts (S, S) and (S’, S”) are considered similar if dyo (S, S”)
is small. We also define the normalized discrepancy as

dvol(Sa S/)

N —
dnorm<S7S ) - VOlg(V) .

ey
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Given that dy01(5, S") < Volg(V'), normalization ensures
that 0 < dporm (9, 5’) < 1. When S is fixed and nodes
are randomly assigned to S’ with uniform probability,
dnorm (S, S”) tends to be close to 1.

Any real symmetric n X n matrix A has n real eigenvalues.
We denote the i-th smallest eigenvalue of A as \;(A), so that
A1(A) > Aa(A) > -+ > A\, (A). The eigenvector corre-
sponding to A\;(A) is denoted by v;(A) = [v;1,...,Vin]T.

Foreachi € [1,n], let a; = [a;1,. .., a;n]T represent the
adjacency list of user v;, where a; ; = 1 signifies the exis-
tence of an edge between v; and v; (i.e., (vi, Uj) € F), and
a;; = 0 indicates no edge. The degree of node v;, denoted
by d;, reflects the number of edges connected to v;. In the
context of a locally differentially private algorithm, it is as-
sumed that each user v; is aware only of their own adjacency
vector a;, which contains sensitive personal information.

2.2. Edge Local Differential Privacy

We define two adjacency lists, a and a’, as neighboring
if they differ by exactly one bit, meaning that one can be
transformed into the other by either adding or removing a
single edge connected to node v;. The concept of edge local
differential privacy is formalized as follows:

Definition 2.1 (e-Edge LDP Query). Let e > 0. A ran-
domized query R is said to satisfy e-edge local differential
privacy (e-edge LDP) if, for any pair of neighboring ad-
jacency lists a and o/, and any possible outcome set S,
P[R(a) € S] < eP[R(a') € 5].

Definition 2.2 (e-edge LDP Algorithm (Qin et al., 2017)).
An algorithm A is said to be e-edge LDP if, for any user
v;, and any sequence of queries R, ..., R, posed to user
v;, where each query R ; satisfies €;-edge local differential
privacy (for 1 < j < k), the total privacy loss is bounded
byer+ +en < e

If an algorithm A is e-edge LDP, it is also said to have
a privacy budget of e. Next, we introduce a query that
satisfies e-edge LDP which designed to estimate a real-
valued statistic based on the adjacency vector.

Definition 2.3 (Edge Local Laplacian Query (Hillebrand
et al., 2023)). Let f : {0,1}" — R be a function defined
on adjacency lists, and let a ~ a’ represent neighboring
adjacency lists. The global sensitivity of f, denoted as A,
is defined as: Ay = max,~a | f(a) — f(a')].

For any € > 0, a query that returns f(a) + Lap(Ay/e) is
e-edge LDP. Here, Lap(b) refers to noise sampled from the
Laplace distribution with scale parameter b.

2.3. Spectral Clustering

For a given graph G, the primary objective of clustering
techniques is to identify a cut (.9, S) such that the number

of edges crossing between S and S, denoted by e (S, S), is
minimized, while most of the edges are concentrated within
S or S. To avoid trivial cuts (such as when S contains
only a single vertex), it is common to define the conduc-
tance, ¢ (S) = eq(S,S)/ min{Volg(S), Volg(S)}, and
seek cuts that minimize ¢ (S) (Shi & Malik, 2000). The
conductance of the graph, denoted by ¢(G), is given by
#(G) = mingcscy ¢a(S). Unless otherwise stated, we
use S* to denote the subset that achieves the minimum
normalized cut, where ¢ (S*) = ¢(G).

Let B = (b;,j)1<i,j<n be the transition-probability matrix
of a random walk on G, given by b; ; = 0 for all ¢ and
b; ; = a; ;/d; for all i # j. We have that —1 < \;(B) <1

for all i, A\;(B) = 1, and v1(B) = [%, Ty =T

Observe that when I is the identity matrix, the matrix I — B
is referred to as the random walk normalized Laplacian
matrix (Von Luxburg, 2007). The eigenvectors of I — B are

identical to those of B. More specifically, it is known that,
forall i, v;(I — B) = v,,—;(B).

The spectral clustering algorithm (Shi & Malik, 2000) com-
putes the eigenvector vo(B) = [v1,...,,]T, and then
produces the cut S" = {v; : v; > 0} as the clustering
result. Since ¢ (S’) < 2/¢pa(S*) (Alon, 1986), it is
established that the cut produced by the spectral cluster-
ing algorithm achieves a low conductance. Additionally,
according to (Peng et al., 2015), we have dy,(S’, S*) =

0] ( ;1 ((GB)) . VOlg(V)), indicating that S’ closely approxi-

mates S* in a graph that is well-clustered.

The normalized Laplacian matrix L = (¢; j)1<;,j<n, de-
fined by ¢; ; = —a; j/+/di-d; fori # jand ¢;; = 1, is
commonly used in spectral clustering algorithms that aim to
minimize the conductance. However, in this work, we opt
for the random walk normalized Laplacian matrix, as calcu-
lating spectral clustering under the normalized Laplacian is
more complex in the edge LDP setting. Notably, when the
desired number of clusters is two, the results of spectral clus-
tering using the random walk normalized Laplacian matrix
are at least as good as those obtained with the normalized
Laplacian matrix (Von Luxburg, 2007).

2.4. Power Iteration Clustering

While spectral clustering can produce a cut with a small cut-
ratio, it requires computing the eigenvector vo(B), which
can be computationally expensive. To address this, the
power iteration clustering algorithm (Lin & Cohen, 2010)
offers a more efficient method for estimating the eigenvector,
significantly reducing the computation time.

Let x be a vector of length n where each element is in-
dependently drawn from a Gaussian distribution. It is
known that x can be expressed as ¢; A1 (B)vy(B) + -+ +
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cnAn(B)v,(B), where ¢q, . . ., ¢, are independent random
variables also drawn from a Gaussian distribution. There-
fore, for a sufficiently large T', applying B to x gives:

BTx = cl)\l(B)Tvl(B) 44 cn)\n(B)Tv”(B)

.
= a[dd k] enB) va(B)
+ 4 A (B) Vi (B). ()

When \3(B) < \o(B), the term BTx is approximately:

T

BTX%CI [ﬁ7%77ﬁ:| +C2)\2(B)TV2(B)5 (3)
meaning the order of elements in B”'x closely mirrors that
of vo(B). Therefore, clustering can be performed using
BTx instead of vo(B), yielding results similar to those
from the spectral clustering algorithm.

2.5. Assumptions

We assume that the input graph has the following properties:
(1) The minimum degree is at least 2,/ log4 n,

(2) There exists a constant g such that for all ¢ > 3, \;(B) +
1< A2(B)+1

3) Theriga exists  ~ 1 and v < 1 such that the components
of vo(DB) satisfies Hz sy > ﬁ}‘ > -n,and

(4) The number of nodes 7 is larger than a constant C.

Assumption (1) The first assumption is essential for any
graph clustering algorithm under edge LDP with a constant
privacy budget. Protecting the connections of low-degree
nodes requires adding so much noise that their contributions
are obscured, resulting in unstable clustering outcomes for
these nodes.

Assumption (2) The second assumption is a standard pre-
requisite for iterative spectral clustering algorithms, such
as the one presented in (Boutsidis et al., 2015). This as-
sumption ensures the convergence of the iterative process.
A comprehensive technical explanation supporting this as-
sumption is provided in (Boutsidis et al., 2015).

Assumption (3) We demonstrate in Appendix A that the
third assumption holds when the graph is well-clustered and
most nodes have a degree cluster close to the average degree
of the cluster to which they belong.

Specifically, for a node ¢ in cluster A C V, we show

in Proposition A.l that the value of v; exceeds @ .

\/ n»gf )~ 2\/ 1_¢/\(3G()B) , where d(A) represents the average
degree of nodes in cluster A, and ¢, o € R satisfy the con-
dition that at least ¢| A| nodes in cluster A have degrees not
less than o - d(A). If the graph is well-clustered, the term

#(G)
1-X3(B)

becomes small and can be neglected (Mukherjee

& Suppakitpaisarn, 2023). Consequently, we conclude that
when d; > od(A) and there are at least c|A| nodes satisfy-
ing this condition, it follows that v; > "f . % Moreover, if
o and c are constants, there exist at least ¢|A| nodes ¢ such

that v; = Q (ﬁ)

We observe that the graphs generated by the stochastic block
model have this property. In addition to our mathematical
proof in the appendix, it is empirically demonstrated in
(Abbe et al., 2020) that most of the values in the eigenvectors
is in ©(1/4/n). Additionally, (Balakrishnan et al., 2011)
shows that this assumption can be satisfied when B is a
node similarity matrix with certain additional properties.

Assumption (4) The final assumption is a common re-
quirement for most differentially private algorithms. A large
user base typically allows the added noise, introduced to
protect sensitive information, to average out in the results.

3. Our Algorithm

We describe our algorithm in Algorithm 1. One can notice
that we almost have x() = B.x(=1 and x(T) = BT .x(0)
by the calculation at Lines 6 - 7. The only five differences
are as follows:

Difference 1: Addition of Laplace Noise We add
Laplace noise in Line 6 to protect users’ information. Later,
we show in Section 4.2 that this noise satisfies the condi-
tions of the edge-local Laplacian query (Definition 2.3).
Furthermore, in Section 4.3, we demonstrate that when the
minimum degree is sufficiently large, the magnitude of the
Laplacian noise becomes negligible compared to other terms
in the calculation in Line 6.

Difference 2: Minimum Degree Estimation When B is
the normalized random walk Laplacian matrix, calculating
B - x*=1 does not require knowing the degrees of other
nodes. This property simplifies computations within the
edge LDP setting and is the main reason we select the nor-
malized random walk Laplacian matrix over the normalized
Laplacian matrix in our clustering algorithm.

On the other hands, to bound the sensitivity, which deter-
mines the scale of the Laplace noise in Line 6, we need a
lower bound on the minimum degree of the graph G. This
bound is computed in Line 2 of the algorithm, using de-
gree estimates obtained in Line 1 of the mechanism. In
Appendix C, We will show that the estimate in Line 2 over-
estimates the minimum degree with probability not larger
than % when ( = % If the estimate exceeds the actual
minimum degree, we add edges in Line 3 to ensure that the
modified graph meets the estimated minimum degree. In
Appendix C, we further show that the variable § exceeds
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Algorithm 1 Private Power Iteration Clustering
Input: Graph G = (V, E) where V = {vy,...,v,} and
its adjacency matrix is A = (a; j)1<i j<n. privacy

budget ¢, number of iterations T= 212?9", clipping

factor c, and parameter ( =
Output: A cut of G denoted by S C v
[User i] Compute the degree of v;, denoted by d;. Broadcast

d; < d; + Lap(10/e) to all users and the server.

[Server] Calculate § < min; d; — 10 log 57 3¢ Broadcast §
to all users.

[User i] If d; < ¢, randomly select j such that a; ; = 0,
then set a; ; = 1 and increment d; by one. Repeat this
process until d; > 6.

0 0
R

[Server] Initiate the vector x(?) = T where

x§0> is chosen from the Gaussian distribution with expected
value 0 and standard deviation 1. Broadcast the vector x(?)
to all users.

fort=1,...,Tdo
[User 7] Calculate wgt) :% Et Vil Z i, =
(t 1
DM m(t Y+ Lap (Tmaxa' 5 ) :

(t—1)
[Useri]LetU = c ﬂmaxj 2 -’6 l,also let a:l(-t) =U

9-e
) >U:c Uifw(t)< Uandxt:

otherwise. Calculate and send x( ) to the server.
) .

(’f 1)

d;

if w,
()

[Server] Aggregate the values x;”’ into a vector x®) =

[xg) 51)]
L users.

[Server] Return S <+ {v; : x

T, and broadcast this information to all

) 0}.

Vn log* n with probability at least 1 — %

Difference 3: Replacing the Random Walk with a Lazy
Random Walk Recall that all eigenvalues of the matrix
B lie between 1 and —1. In certain networks, such as bi-
partite graphs, A, (B) can be close to —1. This causes
the final term in Equation (2) to oscillate, preventing the
calculation of B”x from converging To address this, we
propose replacing B with W = 11 +3 L B. Note that for all 7,
vi(W) = v;(B) and \;(W) = %/\ (B) + 3. Consequently,
forall i, 0 < \;(W) < 1. By the second assumption in
Section 2.5, which is (W) < 2208) forall i > 3, we
can have the approximation (3) even when some \;(B) are
negative. This modification leads to the first two terms of
the calculation in Line 6.

Difference 4: Elimination of the Leading Eigenvec-
tor Recall Equation (2). Since A2(W) < 1, the term
Ao (W)Tvo(W) diminishes compared to the leading
term as T increases. On the other hand, the size of the

Laplace noise added depends on the largest element of
x(t=1) which is determined by the leading term. Hence,
for larger T, the noise magnitude dominates over the term
oo (W)Tvo(W). This causes x(7) to deviate signifi-
cantly from vo (W), reducing the accuracy of the results.

To address this, we introduce the matrix W o=
(Wi j)1<i,j<n, Where @; ; = w;; — 1/n for all 4,7. We
show in Appendix B that for all i > 1, \;(W) = X\i11 (W)
and v,, (W) = v{(W). Additionally, vo(W) =vi (W) =

[f \},...7 f] and A, (W) = 0.
With this update, the leading term o - [ﬁ, Ty |7
from (2) is eliminated. The term o Ao (W) T vo (W) now be-

comes the leading term, and we can ensure that the Laplace
noise (the fourth term of Line 6 in Algorithm 1) is substan-
tially smaller than the new leading term. The subtraction of
the third term in the calculation at Line 6 reflects the update
from W to WW.

Difference 5: Clipping At Line 6 of the algorithm, we
apply a standard clipping method commonly used in various
LDP studies, such as (Imola et al., 2022) and (Betzer et al.,
2024). We notice from the proof of Lemma D.6 that when
the clipping factor c satisfies ¢ > logn - log g, it holds
with high probability that —U < wgt) < U for all ¢ and ¢.
Consequently, the clipping has no impact on our theoretical
results. However, in our experiments, we observed that
Algorithm 1 achieves optimal performance when c is set to
5, which is smaller than logn - log g.

4. Properties of Our Algorithm
4.1. Efficiency

Computation Time The primary computational bottle-
neck of Algorithm 1 occurs in Line 6. In this step, the
per-node computational complexity for each iteration is
O(n). To achieve accurate results, the required number of
iterations T is given by Q}ziz = O(logn), leading to an
overall computational complexity of O(nlogn) per node.
In contrast, the central server has minimal computational
demands. Its responsibilities are limited to generating the
initial vector, receiving calculation results, and distributing
them to all users.

Communication Cost

real number xl(-t) to the server at each iteration, they must

download the entire vector x(*) in Line 8 of the algorithm.
This results in a total communication cost of O(nlogn) for
each user.

While each user uploads only one

Memory Consumption During iteration ¢, the central
server and all users only need to store two vectors: x(*~1)
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and x(®). As aresult, the memory consumption for all parties
is O(n). This is a significant improvement compared to the
randomized response method. Even for sparse input graphs,
the randomized response mechanism flips each relationship
with a constant probability, leading to a graph with (n?)
edges. Storing such a graph, with Q(n?) edges, requires
a prohibitive amount of memory on the server, making it
infeasible to design an LDP algorithm for large input graphs
(Imola et al., 2022). In contrast, our approach requires
only O(n) memory, enabling our algorithms to handle input
graphs with millions of nodes efficiently.

4.2. Privacy

The following theorem discuss our algorithm’s privacy.
Theorem 4.1. Algorithm 1 is e-edge LDP.

Proof. We perform T' 4 1 edge-local Laplacian queries to
all users: one at Line 1 and 7" queries at Line 6. At Line
1, the degree d; has a sensitivity of one. Since the Laplace
noise is set to 10/, the privacy budget for the publication
at Line 1 is €/10.

When any a; ; is changed, the value of mgt) calculated at
o™

—— Therefore, the
J

Line 6 changes by at most % max;

(t—1)
‘J’j | <
d; —

sensitivity of the publication at Line 6 is % max;

t-1)
% max; I 5 | . The privacy budget for each publication at
Line 6is % - 4. Since there are T publications at Line 6, the

total privacy budget of Algorithm 1is {5+7" 5% =e. [

4.3. Precision

In this section, we analyze the precision of Algorithm 1.
In particular, we demonstrate that the algorithm’s results
closely resemble those of the spectral clustering algorithm.
We provide an outline of our proof sketch here, with the full
proof details available in Appendix D.

In Algorithm 1, at iteration ¢ we compute the vector x(*) =

[argt), Ll )]T. The output of the algorithm is Sa, =

{vi | 2" > 0}, where T = 2lo&n,

Let v;(W) = [vj1,...,v;,]7 be the j’th eigenvector
of W, and let cq, ... Cn € R be coefficients such that
x(0 = Z;'L=1 ¢;v;(W). Additionally, for all ¢, sup-
pose the noise added during iteration ¢ of the algorithm

is y®), and that egt), .. ,egf) € R are coefficients such

that y® = ", eEt)vj(W). In Lemma D.1, we show
that 2\ = > j=1Cjvji, where ¢; is given by ¢; =
e ()T + 3 e ()T,

In Lemma D.6, we show that the noise generated at Line 6 of
the algorithm has a small scale. Specifically, we demonstrate

t—1

that the noise scale, given by % max; =) 5 il , is negligible
compared to the magnitude of x(*). Consequently, the noise
term y*) does not dominate the calculation. This empha-
sizes the significance of removing the leading eigenvector
and establishing a lower bound for the minimum degree §.

Due to the lemma, the term Zthl e;t))\j(W)T*t is neg-
ligible compared to c;\;(W)T, and we have ¢ =
cihi(W)T. Consequently, xET) R Z?:l (W) T, 4.
Using techniques from (Boutsidis et al., 2015), we
show that xET) ~ aM(W)Tv,; when \;(W) <
MWD o all j = 2. in Theo-
Cl)\l(W)TULi
T T _ n ~
Sim e (W) oy + ijz CjVj,i
at least 0.95 — o(1). The term c; Ay (W) v, ; dominates

(1)

)

Specifically,

rem D.7, we demonstrate that >

with probability

and determines the sign of x

Since A1 (W)T is positive, we conclude that when c;v; ; >

0, xgt) > 0 with high probability. Recall that the outcome of
the spectral clustering algorithm is Soig = {v; : v1; > 0}.
Thus, when ¢; > 0, the result Sy, closely resembles Soyig
with high probability. Conversely, when ¢; < 0, the result
Salg is similar to V' \ Soyiz With high probability. Therefore,
our algorithm is likely to produce a small dyo1(Salg, Sorig)-
In conclusion, the results are comparable to those obtained
from the spectral clustering algorithm.

5. Experimental Results

Evaluation Method For all experiments, we use the nor-
malized discrepancy dy,o;m, as defined in (1), to assess pre-
cision. Remember that when the normalized discrepancy
is small, the outcome closely resembles that of the original
spectral clustering algorithm, indicating a high-quality clus-
tering result. The reported values represent the average of
10 experiments, which we consider sufficient, as the vari-
ance in precision across each set of experiments is typically
small.

Input Graphs We conduct most of our experiments on
graphs generated using the stochastic block model (SBM)
(Holland et al., 1983). This model is chosen because it
ensures that the generated graphs are well-clustered and
consist of exactly two clusters. Furthermore, SBM has been
widely employed in prior studies to analyze spectral cluster-
ing under local differential privacy (Hehir et al., 2022). In
this model, the set of n nodes is divided into two clusters
of sizes n1 and ny, where ny + no = n. Two nodes within
the same cluster are connected with probability p, while
nodes from different clusters are connected with probability
q. While in most cases p > ¢, this paper also considers the
scenario where ¢ > p.
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Parameters Unless otherwise specified, we set n =
10,000, n; = ny = 5,000, p = 0.3, ¢ = 0.2, the clip-
ping factor ¢ = 10, and the privacy budget e = 1.

The value of n is chosen to be 10, 000 due to the memory
requirements of the benchmark algorithm, randomized re-
sponse, which requires ©(n?) bits to store the entire graph
for spectral clustering calculations. We believe that graphs
of this size are sufficient to effectively demonstrate the em-
pirical properties of our algorithm. Given the constraints
of our local computational environment, handling larger
graphs is not feasible. We select p = 0.3 and ¢ = 0.2
because these values are close enough to highlight the pre-
cision of our algorithm in distinguishing clusters. We set
the clipping factor ¢ = 10, as it is the integer closest to
lognlog g for well-clustered graphs generated using the
stochastic block model. Recall that, when ¢ = lognlog g,
the clipping is applied only with small probability. The
privacy budget is set to e = 1 as it is a standard value com-
monly used in experiments of other local differential privacy
algorithms (Hillebrand et al., 2023).

Benchmark To the best of our knowledge, only one graph
clustering algorithm under local differential privacy has
been explored in the literature. This algorithm employs
the spectral clustering method on graph processed using
randomized response (Hehir et al., 2022). Therefore, we
select this algorithm as the benchmark for our study.
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Figure 1. Comparison of the normalized discrepancy between our
algorithm and the randomized response-based algorithm on the
graphs generated from the stochastic block model. The results
shown in Figures 1(c) and 1(d) represent the differences in the
normalized discrepancies between the two algorithms.

Comparison across Different Privacy Budget As illus-
trated in Figure 1(a), our algorithm consistently outperforms
the benchmark algorithm across all privacy budget values
(e). The improvement is especially notable in the range
0.8 < € < 2, where the benchmark algorithm yields nearly
random results, with a normalized discrepancy close to 1,
while our algorithm produces results almost identical to the
non-private spectral clustering.

Comparison across Different Graph Size Figure 1(b)
presents a comparison with the benchmark algorithm across
varying numbers of nodes (n). From the figure, we observe
that while our algorithm performs poorly for small n, it
achieves results identical to non-private spectral clustering
when n becomes sufficiently large. This aligns with our
theoretical findings, which indicate that the noise introduced
by our algorithm becomes negligible as the input graph size
increases.

The plot also reveals that the randomized response-based
algorithm performs well only when the input graph size is
small. This observation aligns with the theoretical findings
of previous work (Mukherjee & Suppakitpaisarn, 2023),
which state that the required privacy budget must exceed
©(log n). Consequently, larger values of n demand a higher
privacy budget in the prior approach. In summary, our algo-
rithm demonstrates greater precision for larger n, whereas
the previous method performs better on very small graphs.

It is worth noting that, for the plot in Figure 1(b) alone, we
conducted the experiment on Google Colaboratory. This
was necessary because our local computing environment
lacked the storage capacity for the randomized response
results for graphs of that size. However, we have verified
that the precision results remain consistent across different
computational environments.

Comparison across Different Edge Density In Fig-
ures 1(c) and 1(d), we explore the impact of graph density
by varying the probabilities p and q. The experiments are
conducted for all pairs (p, q) € {0.05,0.1,...,0.95}2 and
for ¢ € {1,1.5}. Due to the large number of experiments,
the graph size is reduced to 1000 for this analysis. The
results show that when p > 0.35, our algorithm consis-
tently outperforms the randomized response-based method,
achieving a smaller normalized discrepancy in these cases.

When p < 0.35, there are instances where our algorithm
performs worse than the benchmark algorithm. This occurs
because the estimated minimum degree, J, is relatively small
in these cases, resulting in a larger amount of noise added
in Algorithm 1. While we have theoretically shown that
our algorithm can produce results comparable to original
spectral clustering when § > \/ﬁlog4 n (where n is the
number of nodes), this analysis is valid only for large n and
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does not extend to cases where n = 1000. On the other
hand, as shown in (Mohamed et al., 2022), the randomized
response-based algorithm performs well when ¢ < p and p
is small. Consequently, in these scenarios, the randomized
response method outperforms our algorithm.

We observe that when ¢ > p, the results of both algorithms
deviate from those of the original spectral clustering algo-
rithm. This outcome arises because the input graphs are not
well-clustered, leading to poor performance from both the
original spectral clustering method and the two algorithms
in these cases.

Computation Time Although our algorithm is designed
to be executed in a distributed manner in practice, we were
unable to afford the necessary computation units for han-
dling 10,000 nodes in this experiment. As a result, all
computations were performed on our server, making the
computation environment different from practical scenarios.
Consequently, a direct comparison of the computation times
between our algorithm and the benchmark algorithm is not
feasible. However, even with all computations performed
on the server, the computation time for graphs with 20,000
nodes is less than 10 seconds for both algorithms, and for
graphs with 1,000,000 nodes, our algorithm completes in
under 1 minute. Therefore, we consider computation time
to be a manageable factor for both algorithms.

Results on Reddit Graph We also conduct an experiment
on the real graph called Reddit graph (Hamilton et al., 2017).
We chose this graph because it is one of the largest publicly
available social networks and features a clear cluster struc-
ture. To ensure that the noise added in our algorithm is
not too large, we calculate a 100-core and 500-core decom-
position of the graph before giving it as an input of both
algorithms. The 100-core decomposition result contains
154,525 nodes and 108,024,958 edges, while the 500-core
decomposition result contains 44,586 nodes, 54,984,204
edges.

We were unable to run the randomized response algorithm
on this large network, even with the A100 GPU (40GB of
GPU RAM) and 83.5GB of system RAM. As a result, we
could not directly compare our algorithm with the previous
one. Since the Reddit graph contains more than two clusters,
we observed that A3(B) + 1 is very close to A2 (B) + 1, and
the value of g (defined in Section 2.5) must be set as low
as 0.005. Consequently, the number of iterations required
by the algorithm, calculated as 2log n/ log g, increases sig-
nificantly to approximately 14,000. Given that the noise
size is dependent on the number of iterations, this large
iteration count renders the noise size unmanageable. To
address this, we limited the number of iterations to 50 for
this experiment.
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Figure 2. The normalized discrepancies of our algorithm for the
graph extracted from the Reddit graph

Our results for these graphs are presented in Figure 2. For
graphs generated using the SBM, we observe that when an
algorithm fails to classify the graph in a particular setting,
the normalized discrepancy exceeds 0.99. In contrast, our
normalized discrepancy remains below 0.99 when the pri-
vacy budget is at least 4 for the 100-core decomposition
and at least 1 for the 500-core decomposition. This demon-
strates that our algorithm can produce meaningful clustering
results under these conditions.

While the normalized discrepancy rapidly converges to 0 in
graphs generated by the model, it does not converge to 0 in
Figure 2. We attribute this to the Reddit graph containing
more than two clusters, which results in a significant number
of nodes v; with small |v;| (as discussed in Assumption 3
in Section 2.5). Consequently, our algorithm is unable to
classify these nodes correctly.

Further Experiments In Appendix E, we present exper-
iments to validate the positive impact of the differences
discussed in Section 3.

6. Conclusion and Future Work

In this paper, we propose a locally differentially private al-
gorithm for graph clustering that is theoretically proven to
work on general graphs. Unlike most prior works, which
focus on non-interactive algorithms based on randomized
response, we introduce an interactive algorithm leveraging
power iterative clustering. Our approach demonstrates both
theoretical and experimental improvements over previous
methods. By this work, we believe that interactive algo-
rithms have the potential to become a key tool for addressing
graph problems under local differential privacy.

Although our algorithm is applicable to sparse graphs, our
theoretical guarantees currently hold only for dense graphs.
Extending the theory to sparse graphs requires an additional
condition: for any eigenvector v; = [v;1,...,0;,]T, the
ratio max; ;- - must be small. This property, known as

Vi 4!

delocalization, has been studied in several works, such as
(Rudelson & Vershynin, 2016). We plan to investigate the
potential of incorporating this property into our analysis.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Eigenvector Components

In this section, we analyze the Laplacian matrix of the graph G, defined as L = I — B. For each 4, let \;(L) = 1 — X\;(B).
It follows that \;(L) is an eigenvalue of L, and the eigenvalues are ordered as A;(L) < --- < A, (L). Moreover, the
eigenvector v;(B) associated with A;(B) is also an eigenvector of L corresponding to A;(L). For simplicity, throughout
this section, we denote \;(L) by \; and v;(B) by v; = [v;1,...,0;0]T.

Proposition A.1. Assume that

(i) Let V(G) = AU B be a bipartition of G with vaj > 0 for v; € A, va; < 0 for v; € B. Then, the cut (A, B) has
conductance ¢ satisfying ¢/s < 0.12.

(ii) Let € and c be a constant. For a subset S C V and vertex vj € S, let us call v; to be (¢, S)-average if d; > ed(S),
where d(S) = Vol(S)/|S] is the average degree of the vertices in S. Let A, and B, denote the set of (e, A)-average nodes
of A and (e, B)-average nodes of B, respectively. Assume that |A.| > c|A| and |B¢| > ¢|B).

Then,
(172, d; 9 ) A
"\ mad) ~ 4\ UE
o2l >4 ) Gl e )

1/2 d.: ¢
T\ nam ~ 2\ vEDB

Consequently, for v; € Ac U B, which is at least ¢ fraction of the vertices of G, we have

¢

ec 1
> = —= =24/ —. 5
|U27.7| =4 \/ﬁ )\3 ( )
Proof. Let us define the normalized indicator variables
ai/? 0, v, € A
94(5) = { VoA U €A and gp(j) = { wr

0, v; €B Voi(gyzr Vi €B

Let the vector g4 = [ga(1),...,94(n)]7, g5 = [g5(1),...,gp(n)]T, and, for any vector v, the Rayleign quotient of

v = [21,...,2,]T, denoted by R(v), is ¥:2¥. We show the following regarding the Rayleigh quotients R, (g4) and
Rer(gp)-

Claim A.2. ¢ > max{R(g4),Rr(9B)}

Proof of Claim A.2. Observe that the Rayleigh quotient of L satisfies,

N 1, 1
vTLv PIYD D > {ij}eE (di + dj) Ti%j
7?/L(V) = =1- n 2 =1- n 2 . (6)
vTv D1 T D1 T

Since ||gal|? = 1, we have

Rilga)=1— (;—l—dlj)gA(i)gA(j):l— 3 (1-+d1j>'voil(ijjj

{i.j}eE {i,7}eE(A)

2 Vol(A4) —2¢(4)
<1- % _
{i.j}€E(A) Vol(4) Vol(A)
e(A, B)

= Vou(d) = ¢

Similarly, we have R, (g5) < ¢, completing the proof of Claim A.2. |

For the rest of the proof, let us denote ¢ := ¢/A3. Recall that vi = [1/4/n, ..., 1/y/n|T. We will make use of the following
lemmas from the structure theorem (Theorem 3.1) of (Peng et al., 2015), but with a different notation and error estimates.
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Lemma A.3. Let G4, B be the projections of ga, g onto the space spanned by the first two eigenvectors {v1,va} of L.
Then,
max{||ga — gall®, 195 — 5[} < t. 7

Proof of Lemma A.3. Let vs,...,v, be normalized eigenvectors of As,..., A\, of L. Say g4 = a1vi + -+ + a,Vy,
and gg = f1v1 + -+ - + B, Vv, are representations of g4 and gp in the L-eigenbasis. Clearly g4 = a1vi + aova and
Gp = P1v1 + P2va. Then, note that as v] v; = 0 for every i # j,

n n n n
— T _ 2., T _ 2
RL(gA)_ZaiVi 'L'Zaivi—zaivi LVi—ZO%-)\i.
=1 =1 =1 =1

But \; = 0, leading us to R(ga) > a3Xe + (a3 + -+ a2)As = a3 + [|ga — 9all*As > [|ga — gal*As. Thus,
lga — gall> < RL(ga)/As < ¢/A3 by Claim A.2. The proof for ||gs — gpl||? is exactly analogous. [ |

One of the main ideas used in (Peng et al., 2015) is that if g4 and gp are independent, then Span({vi,vs}) =
Span({ga, gp}), implying that v; and v, can be written as linear combinations of the projected indicator vectors §
and §p, say vo = 111G + n20p, implying that ||[ve — 7194 — 12g5]| is small.

Let us now continue with the argument.

Claim A4. §4 and gp are linearly independent.

Proof of Claim A.4. By Lemma A.3, we have ||§a]|> > 1 — t and ||§5||> > 1 — t. On the other hand,

(94, 38)| = 1{Ga — 94 + 94,98 — 9B + gB)]
<{ga — 94,98 — 9B)| + (94,98 — 9B)| + [{ga — 94, 9B)|
<94 — g9alllgs — gl + 194 — gall + llgB — 95/l
<t+2Vt

®

Since t < 0.12 < 1(2 — V/3), we have ¢ + 2/t < 1 — t, implying (g4, d5)| < [|§all|gs|. As this implies a strict
inequality in the Cauchy-Schwarz inequality, we have g4 }f 5. |

As discussed earlier, Claim A.4 implies that there exist 71,72 € R such that vo = 11§4 + 17295 Suppose v = 1194 +1298,
and n = ||v5]| = \/n? + n3. Note that, using (8),
1= [lv2|l* = n?l|gall® + u311951* — 2lmn2(3a. g5)]
> i (1—t) +n3(1—t) = (5 +m3)(t +2V)
=7?(1 -2t — 2V/1).

Moreover, since ¢ < 0.12, we have
2

< — < 16. 9
=TTy 2Vt 2
Moreover, by the triangle inequality and Cauchy-Schwarz inequality,
[ve = v4|I> = Im(ga — g9a) + n2(38 — g8)|1?
2
< (I VE+ I vE) (10)
< 2t772
Therefore, we have that
20(va, 1 Vo) = 2(va,vh) = [[va|® + [V5]* = [[va = v5[* > 1+ — 2t
leading us to
2
(v, vh) > S —nt > 1 —nt. (11)

Basically, this means that v is closely aligned with the normalized vector %V’Q We now show a lemma that relates the
components of two such vectors.
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Lemma A.5. Let v = [uy,...,u,|T be a unit eigenvector of L and v’ = [u}, ..., u, |7 be any unit vector with (v,v') >
1—¢€2 for some € > 0. Then, for each 1 < j < n, we have

] < Juy | +e.

Proof of Lemma A.5. Let {v,zy,...2,_1} be a orthonormal basis of eigenvectors of L, and, for all i, let z; =

[2i1y -+ s 2in]T. Since v/ = (v,v') - v + Z;:ll(v’, Z;) - 7;, this implies that for any 1 < j < n,
n—1
| < [V, V)| + Y 1V 2a) |24
i=1
n—1 /2 s, 1/2
<hols (Swar) ()
i=1 i1
< lujl +e,
where the last step follows from the fact that -7 ' (v/, z;)% + (v/,v)? = ||v/|*> = 1, and 37~} 2 +ul =1 [ ]

Hence, by virtue of Lemma A.5, (9) and (11), we obtain

1/2

[m1] d;
1 1 ] ] e = —Vnt, v; €A
V2l 2 lea sl = Vit = Jlmgall) + gl = Vit =4 " Vel (12)

n Vol(jB)l/Q - \/"ﬁa vj € B

Finally, we need to show that min{|ny|, |72} > €!/2c. For this part of the proof, we shall use the assumption (ii) of our
proposition.

1/2 1/2
Claim A.6. || > ¢- (%) and |n2| > c- (%) :

Proof of Claim A.6. Recall from the proof of Lemma A.3 that g4 = a3v1 + asve and gg = 1V + [S2va. These equations,
along with vo = 114 + 12§, allow us to solve exactly for ; and 79 as,

B1 -

=——andnpyy = ————.
n a1 — aq P2 12 o1 — o1 B2

First, we note that |a281 — a1 82| < (o +a3)"2(87 + 65)'/? < |lgalllgs = 1, so it suffices to lower bound |a| and
|51]- We have that:
d1/2

d)/?
|OZ1| - |<gA7V1 f Z VOI

1 J
Vi, Z _(lAfd(A))t/2

> ol (|A|)1/2

>c- | — .
n

1/2
By a similar argument, we have |3;| > ¢ - (@) , finishing the proof of Claim A.6. ]

| \/

Claim A.6, (12) and 1 < 4 leads us to, for v; € A,

1/21 411/2 d1/2
"U27j|ZE'€ A= QJfL.

I _ o/t
4 ple VI(A)1/2 nd(A) Vi,

which proves the inequality (4) for v; € A. The argument for v; € B is analogous.

Finally, the inequality (5) directly follows (4) via the definitions of A, and B..
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B. Elimination of the Leading Eigenvector

The following proposition shows that the third term in the calculation at Line 6 of Algorithm 1 eliminates the leading
eigenvector of W. Consequently, the leading eigenvector of W becomes the second eigenvector of W.

Proposition B.1. Ler W = %(I—i—D’lA) be the lazy random walk matrix for a graph on n vertices. Let J = (j; j)1<i,j<n be
a matrix such that j; ; = 1 for all i, j. Define W=Ww-— %J. Then, foralli > 1, Ai(VT/) = XNit1 (W) and vn(W) =vi(W).

Additionally, v,(W) = vi(W) = [, ..., =T and Xy (W) = 0.
T

Proof. Recall that v (W) = {ﬁ, e ﬁ} and \; (W) = 1. We have:

W vy (W) W - vy (W) Ly (W) (W) ! L 0

Y = -V —=Jv =v —|—,...,—=| =0.
1 1 LoV 1 NI
T ~ -

Therefore, the vector [ﬁ, cee ﬁ} is an eigenvector of W with eigenvalue 0. Since O is the minimum eigenvalue of W,

it follows that v,, (W) = v (W) and \,,(W) = 0.
Next, let us consider v; (W) for ¢ > 2. Since, v;(W) L v1 (W), we obtain that the sum of all elements in v;(WW) is zero.
Thus,

TWva (W) = W (W) — %Jvi(W) = N (W) (W),

This implies that, for all i > 2, v;(W) is also an eigenvector of W with the same eigenvalue. Consequently, as the largest
eigenvalue of W becomes the smallest eigenvalue of W, we have \;_1 (W) = \;(W) and v;,_1 (W) = v, (). O

C. Minimum Degree Estimation

We will now demonstrate that the value of § computed in Line 2 of Algorithm 1 has a low probability of overestimating the
minimum degree of the input graph. This implies that, with large probability, we do not need to modify the input graph in
Line 3 of the algorithm.

Proposition C.1. With probability at least 1 — (, we have § < min; d;.

Proof. We have 6 > min, d; only if there is (L such that J,- - ITO log Q”—C > d;. This implies that the value sampled from the

10

Laplace distribution at Line 1, denoted by |; is larger than

we have that:

log & By the property of the Laplace distribution, for all 4,

10 n 1 10 n 10
P |1 — 1 — = = — 1 /) = .
r{ >~ og%} 2exp( ; 0g2< e) ¢/n
Then, by the union bound, the probability that there is an index ¢ such that |; > % log % is not greater than (. O

Suppose that ( = % In the next proposition, we shown that § > \/n log* n with large probability.

Proposition C.2. Pr[§ < /nlog’n] < 5-.
Proof. In Line 2 of Algorithm 1, Laplacian noise with a scale of % is added. It follows that d; < d; — 2—60 log n if the noise
added to d; is less than _2?0' This event occurs with probability

1 (_20/6-10gn> 1

2 P 10/€

2n2’

Using the union bound, we have:

| -

~ 2 ~ 2
Pr m_indl-<m_indl-—010gn] <Pr {di<di—olognf0rsomei <
[ 7 € €

14
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Given that § = min; d; — % log %, and under the assumption in Section 2.5 that the minimum degree of the network is at

least 24/n log4 n, we can bound:

20 10 1
Pr[§ < v/nlog*n] < Pr 5<mindi——1ogn——log£ < =,
i € € 2¢ 2n
for sufficiently large n. O

D. Size of Laplace Noise

In this section, we analyze the effect of adding the Laplace noise at Line 6 of the algorithm. Let the noise added by the

node ¢ at the iteration ¢ is yft). Define the vector y(*) as [yy), . ,yff)]T. Also, for all 4, ¢, let ez(-t) be a real number such that

y® =Dy (W) + - + ePDv, ().

Let the initial vector denoted by x(¥) = ¢;v; (W) 4+ + cnvn(W), and the final vector is denoted by x(7). We obtain the
following lemma by the notation.

Lemma D.1. Let ¢, . .., &, be numbers such that x'T) = ¢ v (W) 4 --- + 6nvn(W). We obtain that ¢; = ci)\i(VNV)T +
DN ()T 4 g el

Proof. To prove the statement, let cl(-t) = e N(W)E + egl))\i(W)t_l +--+ egt). We proceed by induction on ¢ to show
that, for all ¢ > 0, x®) = cgt)vl(W) 4+ 4 cg)vn(VNV). When t = 0, cl(-o) = ¢;, so the statement holds directly by the
definition of the notation. Assume the statement is true for ¢ — 1; that is, x(*~1) = cgtfl)vl(W) + o+ cgfl)vn(W).
Then, for x(*), we have

X1 = T x4y,

Expanding this using the induction hypothesis gives

x = (TN ) + )i (W) + -+ (LTIA () + ) v (W),

Thus, we obtain x(*) = cgt)vl(VNV) +-+ cg)vn(VNV), completing the induction. O
From now, let VZ(W) = [vi1,...,0;n]T. We will now calculate the size of each variable. Recall from Line 4 of Algorithm

1 that xl(p) is sampled from the Gaussian distribution with expected value 0 and standard deviation 1.

Lemma D.2. For each 1, the variable c; is a normal random variable with mean 0 and standard deviation 1. Furthermore,
fori # j, c; is independent to c;.

Proof. Since, for all 4, the eigenvector v;(1) is a unit vector and ¢; = (x(*), v;(T)), we have that ¢; = 3. j vi7jx§0).
Because c¢; is a linear combination of normal random variables, ¢; is a normal random variable. Furthermore,

Elci] = vi 1 E[2{”] + - + 0; n,E[2©] = 0,

and
Var(¢;) = vzl\/ar[mgo)] +- 4 UﬁnVar[x%O)] = Ui2,1 + - vin =1.

Since v; (W) is orthogonal to v; (W) for i # j, the coefficients ¢; and c;, which are the dot products of x(©) with v; (1)
and v (W) respectively, are independent of each other. O

Next, we give analyze the variables egt). We observe that, although the random variable is a linear combination of the

Laplace variables yj(t), it is not itself Laplace-distributed.

Lemma D.3. For all t and i, we have E[e(-t)} = 0. Furthermore, for all t and all i # j, Cov(e(-t) e(-t)) =0.

) ]
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Proof. According to Line 6 of Algorithm 1, for all ¢ and i # j, the variables y( ) and y( ) are independent, with ]E(y,ft) ) =

E( J( )) = 0 and Var(y, (¢ )) Var(y; (¢ )) The Varlable e( ) is defined as the dot product between VZ(W) and y®). Specifically,

if vi(W) = [vi1,...,vin]T, then e =2 va] . Consequently, ( ) > Vi [ ] 0.

Next, for 7 # j, we examine the covariance between eg ) and e( 2 , denoted as Cov(e E ), Et)) Since E(e (t)) = ]E(eg.t)) =0,

{yit), cey ygf)} are independent with mean 0, and v; is orthogonal to v;, we have:

COV( Et)v Ef) Z (% 1’y1/ Uj J y] Z V4,41 V5, j/E y@(/ )yj(t) Z vi,kvj,kE[(y](:))ﬂ (t) Z Vi, kVj,k
k

=0.

O

Let C} represent the scale of the Laplace noise in Line 6 during the ¢-th iteration of Algorithm 1. By definition, Var(yl(t)) =
2C? for every 4. The variance of egt)

Tkocz, 2023).
Lemma D.4. For all i and t, the variance of ez(-t) is2- C’f. Furthermore, Pr[egt) > /20, logn] <

is discussed in the following lemma. Our proof draws on ideas from the paper (Li &

Proof. Based on the argument in the proof of Lemma D.3, we have e Z Vi yj . Consequently, Var(el(.t)) =

>V JVar( ) for all ¢ and ¢. Since y( Jisa Laplace variable with scale C; and each v;(W) is a unit vector, it follows

that Var(e (t)) =2.C2.

Using the Chernoff bound and the moment generating function of the Laplacian distribution, we obtain that
(®) (®)
Zj Vi,jY; 1 Vi Y
exp| == )| =—]||E|e s
P < V2C, n 1;[ P V2C,
1 i
=— HE {exp <v . Lap (0, 1))}
n- 2
1 1
n H 112
J

Pr[ez(-t) > /20, logn] < e"logn [

2 Vi

1 9 e
- €XP E Vig =
J

IN

h,t h,t
")

Let h be a positive integer. We discuss the property of the vector Wy (*) := T in the next lemma.

e 77
Lemma D.5. For all i, h,t, the probability that |’yi(h’t)| > 3v2- M (W) - C, -logn is at most 2 /n>.

Proof. From the definition of fy(h’ ) and the argument in Lemma D.1, we find that ’y(h = Zj Aj (W)h S U egt).
According to Lemma D.3, Cov(e; ) el )) = 0 for j # j'. Therefore, by Lemma D.4,

Var(y Z)\ Var(el!) =202 - ZA P2, <202 (W) 02 = 202 A (W)

J

®

Since e; (h.t)

is a linear combination of Laplace variables, ;" is also a linear combination of the Laplace variable y§t). Let

a1,...,an be real numbers such that 4" = >, ajyj(t) We obtain that Var(y\"") = 2. 2 >;a7 <207 A1 (W)2h,

K3
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7(h 0
e 3

< %E [exp (Z\j/; i?ﬁgil) )]

and )~ a3 <\ (W)?". Using the Chernoff bound, we obtain that

AN

° |
w
3
QR
3

-E

Prly"" > 3v2- M\ (W)" - C; - logn]

1- 2>\1({%/)2’1
1 1 9 1
< EGXP sz:aj < Eexp(l)
The lemma statement follows from the fact that the probability distribution of -y, ; is symmetric about 0. O

In the next lemma, we analyze the size of the noise added in the algorithm. Recall that the variable J is the noisy minimum
degree published at Line 2 of Algorithm 1. In Proposition C.2, we show that § > /n log* n with probability at least 1 — %
We denote the event that § > /n log® n by E&s.

Lemma D.6. Recall that C; is the scale of the noise added at Line 6 of Algorithm 1. Then,

10 M\ (W 8eT?
Pr|Cy < —- 1( )" foralll<t<T|€5 >1-— 62 .

9¢ /nlog’n

(0)

Proof. Since x; ’ is drawn from a Gaussian distribution with mean 0 and standard deviation 1, it follows from the

properties of a normal random variable that Pr[|x§0)| > logn - log g] < 5. By applying the union bound, we then have
Pr[max; |a: | >logn -logyg] <

= n2
We will prove this lemma by induction on the number of iterations ¢. For ¢ = 1, recall from Line 6 of the algorithm that the
() Y

T max; |ZL’

noise g, is drawn from a Laplace distribution with scale parameter - ——5t——, where ¢ is the privacy budget and
0 is the minimum degree of the input graph. In the event &, the varlable 6 > /nlog* n. Recall that we set T = 2112§ Z
in our algorithm. Consequently, the noise scale in the first iteration is larger than 101087 . lognlogg _ 10 with

9¢ logg /nlogin 9e-/nlog? n
probability not larger than 1/n? when n is large enough.

e (2t 2)2

Next, assume that, in the event &, with probability not smaller than 1 — , for all ¢ < ¢, the noise (de-

—1
noted by y ) is sampled from a Laplace distribution with a scale no more than @ : %. From our previous

calculations, it follows that x(©) = Wx(©® 4 Wt=1y® 4 ... 4 yO  Let Wix® = [x{" ... x{]7 and, for all

t<t, Wity = [y?’t/)7 e ,yﬁf’t/)]T. The value of max; |x§t_1) |, which decides the noise scale of y(*), is equal to
(t-1) | 2 -1t)
max; |X; + >y, .
t=1
Let us first con51der the vector [x; =0 . ,xg_l)]T. Recall that v;(W) = [v;1,...,v;,]T. By the notation, we have

(t V= Z A (W )t Vj,iCj-

Since, by Lemma D.2, ¢; and ¢, are independent for j = j’, we obtain:

Z)‘ UJZ' [cj]:Ov

E[X(-til)]

Var[xgt_l)] = Z)\ W)2=2y2 ;i Var[c;] < M (W)H2Var Zvjyicj
J

(W) 2Var 2] = 3 (7)2 2,
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(t=1)

Also, since x; (t-1)

is a linear combination of the normal random variable c;, we can conclude that x; is also normal. By

the property of the normal variable, we have Pr {|x§t71)| > % logn -logg - A\ (W)t_l] < n—lg, for all . By the union bound,
Pr |max; |X§t71)\ > Llogn-logg- Al(VT/)t—l} < 4.

Let us reconsider the variable *yi(h’t) from Lemma D.5. Note that ygt_l’t/)

t/71 ~
Cp < 12 \} (ZV) for all ¢’ < t. In the event £ and &5, Lemma D.5 implies that, for all 4, ¢, ¢/,
nlog®n

= 4(t=t"=1t) et & denote the event that

10 ATN(W) _30v2 AW
9¢ nlog’n 9  /nlog’n

YOl = Ve

with probability at most 2§

By applying the union bound, we deduce that for all ¢, ¢/,

_ P t—2 /17,
max [y~ > 30v2 A (V;/)
i 9  /nlog”n

with probability at most 25. By Lemma 4.4 of (Mohar, 1989), we have that A»(B) > 0 and M(W) > 1. When n is
sufficiently large, it follows that, for all ¢, ¢/,

_ny, L AT 30v/2 A2
max|y§t 11t)| > 21 (W) g9 o > V2 w )
i 4logn 9¢ \/nlog®n
with probability at most 7272 We finally obtain
t—1,¢/ 1 < 2et
Pr| Y maxly ™|z o AT W) 6.6 < 5

t'<t—1

Because, for all ¢ and ¢, the variables xZ(-tfl) do not depends on the scale of the Laplacian noise and the event £, we obtain
that:

Pr [max‘ ‘>logn logg- M(W): 1| €, Es

= Pr |max xZ(-tfl) + Z ygtfl’t/) >logn-logg- M (W)L | &, Es
t<t—1

Z max‘ (t-1,t") >

t<t—1

IA

(W)t €&

Pr | max |x
3

1 1 ~
v T = o) €6

-2

IN

Pr [max‘ )‘ > —logn-logg- A (W) _1} + Pr Z max

t'<t—1

(2et+1)

< 2

n

In the event £ and &, max; |x | >logn-logg- A\ (W )t ! with probability at most 267'15—;1 In the event of £ and &,
10 2logn logn-logg- )\1(W) _ 10 . /\1(W)t71

9¢ logg vnlogtn 9¢  /nlog?n

the noise scale at the iteration ¢, denoted by Cy, is at most with probability at

18
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least 1 — % As a result,

t—1 1 ¢-1 -
Pr Ct > LO >‘1( ) or& | 86 S Pr Ct 2 £ Al( ) and £ | 55 +Pr[5 | 56]
9 nlog®n 9¢ /nlog®n
1 =1 2e(2t — 2)2
< Pr CtZ£ >\1( ) |5755 +e(t72)
9¢ /nlog’n n

92 2
2et + 1 n 2e(2t — 2) < 2e(2t) .

- n2 2 2

n n

This completes the induction step. We can conclude that, forall ¢t € {1,...,T}, Cy < 12 )‘%V}L)g for all ' < t with

probability at least 1 — 2651#;)2 when 6 > \/nlog? n. O

We will leverage the previous lemma to demonstrate that the outcome of Algorithm 1 closely aligns with the results
obtained through spectral clustering. Recall Lemma D.1 that the final vector xET) =>"_  ¢vjiwhené; = ciA;(W)T +

j=1
ZT e (t) A (W )T t
t
Theorem D.7. For any node i such that |vy ;| > f For large enough n, we obtain that

Pr Cl)\l ’U1 i Z el )\1 Ul,i + Z cjvjil | = 0.95 — 0(1).
j=2
Proof. We first obtain that
[ B T B n
Pr ‘Cl>\1 (W)T’Ul}i > Ze{/\l (W)T_tULZ‘ + Zéjvj,i
i t—1 =2
[ B T B n
> Pr ‘Cl>\1 (W)TULZ‘ > Ze{)\l (W)T_tULZ‘ + Zéjvj,i
=1 =2

n

t) > chvj’i)\j( T+ Zegt))\j ’UJﬂ‘
=2

j=21t=1

Y

T
Pr |’l)1’2‘| <|01A1 Zel )\1

Recall from Lemma D.2 that ¢; is a normal random variable with mean 0 and standard deviation 1. We obtain that:

. M (W)
Pr ‘cl)\l(W)T) > 1(16)] > 0.95. (13)
Recall from Lemma D.4 that Pr (t) > 1/2C, logn| < £. Let & be the event that max, C; < 2 Al(W)t; and &s be the
n’ 9¢  /nlogZn
event that § > /nlog* n. We obtain that Pr {egt) > 9‘[ fml/o)g’ nl €, E ] . Denote thl e; )Al(W)T*t by 1. By
the union bound,
M ()T 10v/2-T A (W)T-1 el
P >——— || <P gl <
K 32 €] =Prn= 9¢ \flogn| ~—n’

for sufficiently large n. Recall the event &, which is the event when § > \/ﬁlog4 n. By Lemma D.6, we know that
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Pri€|&]>1— ngz . Also, by Proposition C.2, we know that Pr[&s] < 5-. As aresult, when n is large enough,

T T
Pr [772)\1(32/)] < Pr nz%andé’and&; + Pr[€ and &) + Pr[&5]
< Pr >M\55 +Pr[5|€]+i— (1)
> n= 39 y &6 ) 2n_0 .

Since the distribution of 7 is symmetric around 0, we have that

Py [m > Al(g)ﬂ —o(1). (14)

By combining (13) and (14) and using the fact that vy ;| > , we obtain that:

Pr [|v1,i| (|clx\1(VN[/)T‘ _ Inl) > W] > 0.95 — o(1) (15)

By the assumption that \o(W) < ’\1(gW), we have that ‘Z;’:Q cjvj’i)\j(VNV)T) < /\l(gﬂ-z;ﬁ ¢j|. Since

~ iNT
Z;;Q cjv;iAj(W)T is a normal random variable with mean 0 and standard deviation at most \/ﬁ”\;#, we have
the following.

flogn A (W)T 1
Z CjVj 4\ ST < )
When T = 2120% and n is large enough, we obtain that ﬁglgg” <& \F
- inT 7 A (W)T 1
Consider the summation 2?22 Zthl eg‘t))\j(W)T’tvjyi Denote the summation as 3;. By Lemma D.3, we know that
E[egt)] =0 forall j,t. Asaresult, E[3;] = E [Z;’L:Q egt))\J(W)T tv; ;| = 0 for all t. Furthermore, by \; (W) < Al(gw)
forall 7 > 2,

Var [3;] < Z)\ W) =22 ;i Var(e (t))

A ()27 =28
< Z 2T 2t U i Var(e (t))
=9
)\I(W)2T72t
= 792T_2t Var Zvﬂe()
J
A 2T -2t
= 1(g2T) 5 var [yz(t)}
Ay (TW)2T—2t
_ 2(92T)_2t03. (7)
We observe that both e§t> and 3; = Z;L 9 jt))\ (W)T~tv; ; can be written as linear combinations of y%t), R yr(f).

Let b{",...,bY) € Rbesuch that 5, = 37, b\ 4. By (17), Var[8] = 2327, b2C? < 2%03 and
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T7\2T —2t
Z;L 1 b? < %. Using the Chernoff bound and the moment generating function of the Laplacian distribution, we

obtain that

M)
g7

Pr |8, > V2logn - yon

N
®
|
)
('S}
3
&=
I
»
ol

IN
S|
=
@
”
ol

%H bz/( IAZT ”(W))

2T 2t

g2Tf2t ) e
T arm as . ~ b y < .
)\%T*Qt (W) ; J - n

IN
\
ie)

F\t—1
Let £ be the event that max; C; < 9 RESULS

650v2 . g 1
8¢ * JwiogZy - For large n such that log n > =2 L

g—1

YA (W)
65 Ly /ng

10v2 A7)

e
P gl < —
g 9¢ logn\/ﬁgT—t | ] ~n

By >

Jsnfss

Recall that & is the event such that § > vn log4 n. By Lemma D.6, we know that Pr[€ | &] = 1 — 8:‘52, and, by
Proposition C.2, we know that Pr[&s] < ﬁ As aresult, when n is large enough,

YA ()T Y\ ()T .
Pr|p> ——F—F—| < Pr|fi>———*—=—and€& and & | + Pr|€ and &;| + Pr[&s
"T65- /g "T65 /g™ | I+ Prifs]
A (W)T . 1 1
< P >~ 7 _|£& Pr(€|€& —=0(-).
= T /Bt = 65 - ggl\/ﬁngt | + Pr [ ‘ 5] + m n
By the union bound and by Zthl # = q% Zthl gt = (%T ng+_11_1 = g-‘i{;_nlz <G —4-, we obtain that

7)\1 YA (W) _ logn

As Zthl B¢ is a linear combination of Laplacian random variable, we know that the distribution of the summation is
symmetric around 0. Hence,

n T IiNT
)y (Ti/\T—t YA (W)
ZZ@- )\J(W) Vj,i > = 0(1). (18)
o J 65/n
We then obtain the lemma statement by combining (15) with inequalities (16) and (18). O]

E. Further Experiments

In this appendix, we present additional experimental results, specifically demonstrating that each modification introduced in
Algorithm 1 contributes to improved precision.

E.1. Results of using the lazy random walk matrix in the iterative spectral clustering (Difference 3)

In this subsection, we analyze the effect of performing power iteration with the lazy random walk matrix W, = ol + (1 —
a)D_lA instead of the usual random walk matrix D~ A used during PIC (Lin & Cohen, 2010; Boutsidis et al., 2015).
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Figure 3. Power iteration on BSBM (1000, 1000, 1000, 1000, 0.5, 0.2) for lazy random walk matrices W, with « € {0,0.1,...,0.9}.

We start with an n-dimensional standard normal variable x(*), and iteratively obtain x() = W, - x(t=1) — % > thq).
This is equivalent to the PIC algorithm with & = 2 initial vectors.

For bipartite graphs, the random walk matrix Wy = D~ A has —1 as an eigenvalue. Thus, for bipartite 2-clustered graphs,
the performance of PIC is not good unless more initial vectors are selected. We demonstrate this by introducing a Bipartite
Stochastic Block Model graph with two clusters, defined as follows. Given integers a;, b; and probabilities p and g, a graph
G ~ BSBM(aq, as, by, b2, p,q) has node set Ay Ll A U By U By with |A;| = a; and |B;| = b;, such that every pair of
nodes between A; and B; is added with probability p, and A; and B; are added with probability ¢. This graph is bipartite
with independent sets A; U A5 and By U By, and when p >> ¢, admits a clear cluster structure given by the node clusters
Al @] Bl and A2 @] BQ.

Figure 3 shows that for certain BSBM’s, the produced clusters by iteratively multiplying W, always have discrepancy close
to 1 when « is close to 0. On the other hand, when o = 1, the procedure is too slow to converge since W, ~ I. Therefore,
selecting a lazy factor of a = % seems to be a natural choice in general when no additional information about the input
graph is available.

E.2. Result of leading eigenvector elimination (Difference 4)

dor(NonElim) — dyoruy(Ours)

. 0.8
Imprecise - 08

0.6

- 06

0.4

Normalized discrepancies

- 04 0.2

- 03

- 02 0.0 05 10 15 2.0 25 3.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 P

Figure 4. (Left): Heatmap of average dnorm (NonElim) — dnorm (Ours) over 20 SBMs with n; = ny = 1000, with varying probabilities
p,q € {0.05,0.1,...,0.95}, and privacy budget e = 2.0. (Right): Discrepancy with increasing e for 20 SBMs with p = 0.3,¢ = 0.2.

Now, we perform an experiment to investigate the effect of elimination of the leading eigenvalue of the lazy random walk
matrix, which is a procedure changing the matrix W to the matrix W described in Difference 4 of Section 3. For this
experiment, we select ¢ = 2.0 and generate 20 SBM’s of cluster sizes 1000 for pairs of probabilities (p, q).
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We present our results in Figure 4. The figure illustrates that our algorithm, without the leading vector elimination (referred
to as NonElim), consistently fails to recover the original clusters. Although not depicted in the graph, we observed that the
NonElim algorithm fails to successfully identify the clusters even when the privacy budget € is set as high as 20. In contrast,
our proposed method successfully identifies these clusters with minimal discrepancy.
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