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ABSTRACT
In this work, we propose a Unified framework of Sequential Search
and Recommendation (UnifiedSSR) for joint learning of user behav-
ior history in both search and recommendation scenarios. Specifi-
cally, we consider user-interacted products in the recommendation
scenario, user-interacted products and user-issued queries in the
search scenario as three distinct types of user behaviors. We pro-
pose a dual-branch network to encode the pair of interacted product
history and issued query history in the search scenario in paral-
lel. This allows for cross-scenario modeling by deactivating the
query branch for the recommendation scenario. Through the pa-
rameter sharing between dual branches, as well as between product
branches in two scenarios, we incorporate cross-view and cross-
scenario associations of user behaviors, providing a comprehensive
understanding of user behavior patterns. To further enhance user
behavior modeling by capturing the underlying dynamic intent, an
Intent-oriented Session Modeling module is designed for inferring
intent-oriented semantic sessions from the contextual information
in behavior sequences. In particular, we consider self-supervised
learning signals from two perspectives for intent-oriented semantic
session locating, which encourages session discrimination within
each behavior sequence and session alignment between dual be-
havior sequences. Extensive experiments on three public datasets
demonstrate that UnifiedSSR consistently outperforms state-of-the-
art methods for both search and recommendation.
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1 INTRODUCTION
On e-commerce platforms, users typically interact with products
in two major scenarios, i.e., search and recommendation. Users can
either interact directly with products listed on the recommenda-
tion page, or issue a query in the search box and then proceed to
interact with products displayed on the search result page. For a
long time, search and recommendation have been regarded as two
separate research scenarios, each becoming increasingly prevalent
in real-world applications. Recommendation engines mine user
preferences from behavior history to suggest personalized prod-
ucts [6, 29], while search engines assist users in finding specific
products based on their queries [18, 21]. A key distinction between
the search and recommendation scenarios lies in the fact that users
provide explicit queries for search, whereas no query is present
for recommendation. Nevertheless, in both scenarios, the goal of
the models is to generate a personalized ranked list of products,
which satisfies the personalized needs of users and alleviates infor-
mation overload. Despite the recent success achieved by studies in
each individual scenario, they still face challenges related to limited
representation capabilities and data sparsity issues [29, 35].

Figure 1 depicts an overview of the connections between the
search and recommendation in an integrated system, where the
user set, product set, and vocabulary are shared. Despite the use of
different techniques in search and recommendation engines, the
two scenarios are closely related, and therefore, learning in one
scenario may potentially benefit the other. In this sense, leveraging
user behavior data from both scenarios to construct a unified model
holds the potential for mutual enhancement in user modeling. The
joint learning of a unified model helps alleviate data sparsity is-
sues while simultaneously improving model performance in both
scenarios, eventually contributing to the overall user satisfaction.

Pioneering studies [31, 33–35] have demonstrated the superiority
of unified models over single-scenario models in both search and
recommendation. However, these methods either simply combine
individual models for the two tasks through a joint loss function
[33, 34], ignoring the correlation of user behaviors in both scenarios,
or they treat user behaviors in the recommendation scenario as
special cases in the search scenario with empty queries [31, 35],
overlooking the inherent differences between user behaviors in
the two scenarios. Different from these approaches, in this work,
we aim to construct a unified model that effectively leverages the
commonalities and differences across user behaviors in both search
and recommendation. To achieve this, the following two challenges
should be considered:

Challenge 1: Cross-scenario and cross-view user behavior
modeling. Users engage in three distinct behavior types across
scenarios: (a) interacting with products in the recommendation sce-
nario, (b) issuing queries and then (c) interacting with products in
the search scenario. In the recommendation scenario, users interact
with products without a clear intent, whereas they interact with
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Figure 1: An overview of the system architecture for the
integrated personalized search and recommendation within
an e-commerce platform, where the user set, product set, and
vocabulary are shared. Note that side information such as
user profiles and product metadata has been excluded for
simplicity.

products driven by a specific intent in the search scenario. Conse-
quently, the product interaction histories in these two scenarios
may exhibit different distributions. Thus, it is important to account
for the commonalities and differences in cross-scenario product in-
teractions to construct a unified model. Furthermore, in the search
scenario, users explicitly express their intent through natural lan-
guage queries, and then selectively interact with products from
search results. The pair of issued query and interacted product can
be regarded as two views on user intent. The issued query provides
more informative insights into user intent but is more difficult to
learn due to its unstructured nature. On the contrary, the inter-
acted product is easier to model but may not always be reliable
due to exposure bias [27]. Hence, it is also crucial to consider the
commonalities and differences in cross-view user behaviors.

Challenge 2: Joint dynamic user intent modeling. Another
significant challenge lies in uncovering the underlying user intent
behind each interaction in a long history sequence. Since user intent
evolves over time, users engage in a series of consecutive behaviors
driven by specific or broad intent, after which that intent may drift
or even abruptly change for various reasons [5]. Discovering and
aggregating semantic sessions resulting from distinct intents is
beneficial for enhancing user intent understanding in user behavior
modeling. However, how to effectively locate the intent-oriented
sessions with variable lengths remains unexplored.

To address the aforementioned challenges, we propose a Unified
framework of Sequential Search and Recommendation (UnifiedSSR)
for joint learning of user behavior history in both search and rec-
ommendation scenarios. First, we propose a dual-branch network
to encode the pair of interacted product history and issued query
history in the search scenario, and deactivate the query branch
to adapt to the recommendation scenario. Through the parame-
ter sharing between dual branches, as well as between product

branches in two scenarios, our unified model effectively shares
information cross-scenario (i.e., search and recommendation sce-
narios) and cross-view (i.e., interacted products and issued queries
in the search scenario), resulting in a comprehensive understanding
of user behavior patterns. Second, in order to enhance user behavior
modeling by leveraging dynamic user intent, an Intent-oriented
Session Modeling module is designed that discovers intent-oriented
semantic sessions based on the contextual information in behavior
sequences. In particular, we utilize two self-supervised learning
signals based on similarity measurements for intent-oriented se-
mantic session discovery: (1) Sessions resulting from different user
intents within each behavior sequence should be distinguished
from each other. Therefore, we facilitate the distinction between
adjacent intent-oriented sessions in each behavior sequence. (2)
When a user interacts with a product after issuing a query, this
pair of interacted product and issued query driven by a common
intent should align with each other. Consequently, we promote the
alignment of the pair of interacted product session and issued query
session guided by the same intent in dual behavior sequences.

Our contributions in this work can be summarized as follows:

• We propose a new Unified framework for Sequential Search
and Recommendation (UnifiedSSR), which employs a dual-
branch architecture with shared parameters to enable the joint
learning of cross-scenario cross-view user behaviors.

• We design an Intent-oriented Session Modeling module to
enhance user behavior modeling by capturing the dynamic
user intent. Particularly, two self-supervised learning signals
are leveraged that encourage intent-oriented session discrim-
ination within each behavior sequence and intent-oriented
session alignment between dual behavior sequences.

• We conduct extensive experiments on three public datasets.
The experimental results demonstrate that UnifiedSSR out-
performs state-of-the-art joint models and scenario-specific
models in both search and recommendation scenarios.

2 RELATEDWORK
Recent years have witnessed significant success of research in each
individual domain of search [3, 8, 18, 19, 21] and recommendation
[6, 20, 29, 30], leading to a substantial amount of outstanding work.
However, to the best of our knowledge, rarely have efforts been ded-
icated to joint modeling of search and recommendation. We broadly
classify these pioneering studies into two categories: search data
enhanced recommender systems [13, 23, 24, 28] and multi-scenario
unified models [31, 33–35]. Search data enhanced recommender
systems treat user behaviors in the search scenario as complemen-
tary information to boost the recommendation performance. For
instance, NRHUB [28] utilized a hierarchical attention-based multi-
view encoder to learn unified representations of users from their
heterogeneous behaviors, including search query behaviors. Query-
SeqRec [13] directly constructed query-aware heterogeneous se-
quences that contain both query interactions and item interactions,
based on which the next interacted item is predicted. IV4Rec [23]
leveraged search queries as instrumental variables to decompose
and reconstruct user and item embeddings in a causal learning man-
ner. SESRec [24] disentangled similar and dissimilar representations
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in both search and recommendation behaviors, achieving compre-
hensive recommendation based on multiple aspects. These models
exploit search data to enhance recommendation performance, ne-
glecting the potential for combining two scenarios to complement
each other and jointly improve the model performance in both
scenarios.

On the other hand, multi-scenario unified models perform joint
learning of search and recommendation to enhance the model
performance in both scenarios. JSR [33] simultaneously trained
two MLP-based models for search and recommendation using a
joint loss function. Experimental results demonstrate that the joint
model substantially outperforms the independently trained models
for each scenario. Afterwards, JSR was extended by incorporating
relevance-based word embedding [32] into the search model and
neural collaborative filtering [12] into the recommendation model
[34]. These models merely combined two scenario-specific models
through a joint loss function, failing to account for the intrinsic cor-
relations between user behaviors in two scenarios. More recently,
USER [31] adopted a hierarchical structure, using Transformer
in three levels to encode heterogeneous sequences consisting of
queries and interacted documents. SRJGraph [35] constructed a
unified graph from both search and recommendation data, where
users and items are heterogeneous nodes and search queries are
incorporated into the user-item interaction edges as attributes. Both
USER and SRJGraph fuse interactions in two scenarios by regarding
user behaviors in the recommendation scenario as special cases in
the search scenario with an empty query. These models effectively
model the commonalities between the two scenarios but overlooked
their distinct characteristics. Instead, we propose a unified frame-
work that effectively leverages the commonalities and differences
in cross-view cross-scenario user behaviors.

3 METHODOLOGY
3.1 Problem Statement
Let U, P, Q denotes the sets of users, products and queries, re-
spectively. For each user 𝑢 ∈ U, interactions with products 𝑝 ∈ P
occur in both search and recommendation scenarios, with each
interaction conveying the user intent and preference. In both sce-
narios, the product sequence in chronological order of user 𝑢 can
be denoted as S𝑝 = {𝑝𝑡 | 𝑡 = 1, 2, . . . ,𝑇 }, where 𝑝𝑡 ∈ P is
the interacted product at timestep 𝑡 . We use S𝑝𝑠 = {𝑝𝑡𝑠 } and
S𝑝𝑟 = {𝑝𝑡𝑟 } to distinguish product sequences in search and rec-
ommendation scenarios, respectively. In the search scenario, we in-
corporate the issued queries through an additional query sequence
S𝑞𝑠 = {𝑞𝑡𝑠 | 𝑡𝑠 = 1, 2, . . . ,𝑇𝑠 +1} for user𝑢, where the query 𝑞𝑡𝑠 ∈ Q
is composed of a series of words {𝑤1,𝑤2, . . . ,𝑤 |𝑞𝑡𝑠 | } from the word
vocabulary V . The product sequence and query sequence are syn-
chronized in timestep, namely, the pair ⟨𝑝𝑡𝑠 , 𝑞𝑡𝑠 ⟩ represents that
user 𝑢 interacts with product 𝑝𝑡𝑠 from the search result page of
issued query 𝑞𝑡𝑠 at timestep 𝑡 . Besides, 𝑞𝑇𝑠+1 is the issued query for
the product search in the next timestep.

Given a user 𝑢 with historical behavior sequences, the unified
model aims to predict whether the user will interact with a product
𝑝 when it is exposed to them in the next timestep, in either the
search or recommendation scenario. Specifically, the model objec-
tives in both scenarios can be holistically formulated as estimating

personalized ranking scores for products by:

𝑦𝑢,𝑝 =

{
𝑓Θ (𝑝𝑇𝑟+1 | 𝑢, 𝑆𝑝𝑟 ), if recommendation,
𝑓Θ (𝑝𝑇𝑠+1 | 𝑢, 𝑆𝑝𝑠 , 𝑆

𝑞
𝑠 ), otherwise.

(1)

𝑓Θ (·) denotes the underlying unified model with parameters Θ, and
𝑦𝑢,𝑝 is the predicted score for product 𝑝 that user 𝑢 is likely to
interact with in the next timestep. The top-𝐾 products ranked by
predicted scores are the final results provided by the model.

3.2 Overall Architecture
The UnifiedSSR framework is illustrated in Figure 2. It consists of
two branches, i.e., product branch and query branch. Two branches
share parameters to transform two types of sequences into a com-
mon latent space, allowing UnifiedSSR to simultaneously learn user
behavior patterns across two views. Due to the overall dual-branch
architecture, the product sequence learning in the recommenda-
tion scenario can be directly achieved by deactivating the query
branch, thereby enabling cross-scenario joint learning of the model.
Overall, the information sharing characteristics of UnifiedSSR are
manifested in two aspects: (1) the shared parameters for representa-
tion learning of product sequences in both scenarios; (2) the shared
parameters for representation learning of the product sequence and
query sequence in the search scenario.

Taking the search data as an example, the Embedding Module
embeds the pair of product sequence and query sequence into dense
representations, followed by a parameter-shared Siamese Encoder
that comprehensively captures the correlations both within and be-
tween dual behavior sequences. Next, an Intent-oriented Session
Modeling is proposed to locate intent-oriented semantic sessions,
obtaining representations of these sessions to enhance sequence
representation matrices. In particular, a self-supervised learning
loss function based on similarity measurements is designed, which
guides the intent-oriented session discovery by encouraging session
discrimination within each sequence and session alignment across
dual sequences. The intent-enhanced sequence representations are
then fed into the final Task-specific Predictor to obtain the pre-
dicted results for different scenarios. The details of UnifiedSSR are
described as follows.

3.3 Embedding Module
In the embedding module, high-dimensional one-hot representa-
tions of users, products and query words are transformed into dense
representations of dimension 𝑑 through embedding matrices M𝑢 ∈
R |U |×𝑑 ,M𝑝 ∈ R | P |×𝑑 ,M𝑤 ∈ R |V |×𝑑 . While a query comprises a
series of words, it is typically short and lacks sequential patterns
[5]. Therefore, the embedding of a query 𝑞 = {𝑤1,𝑤2, . . . ,𝑤 |𝑞 | }
can be effectively obtained by performing mean pooling on word
embeddings as: e𝑞 = Mean(e𝑤1 , e𝑤2 , . . . , e𝑤|𝑞 | ), where e𝑤𝑖 is the
embedding of 𝑖-th word in the query.

Given a product sequence S𝑝 with a length of 𝑇 in either the
search or recommendation scenario, we obtain its sequence embed-
ding matrix as E𝑝 = [e𝑝1 +e

𝑢 ; e𝑝2 +e
𝑢 ; . . . ; e𝑝

𝑇
+e𝑢 ] ∈ R𝑇×𝑑 , where e𝑝𝑡

denotes the embedding of product 𝑝 at timestep 𝑡 , and e𝑢 denotes
the embedding of user 𝑢. Besides, we add positional encodings P to
E𝑝 , i.e., E𝑝 = E𝑝 +P to inject the relative positional information into
the sequence embedding matrix [26]. For the query sequence S𝑞𝑠 of
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(c) Intent-oriented Session Modeling

Figure 2: An overview of the proposed UnifiedSSR framework. (a) presents the architecture of UnifiedSSR with query branch
deactivated for recommendation (left) and with entire dual branches for search (right). The information sharing mechanism
is two-fold: cross-scenario parameter sharing for learning user-interacted products in two scenarios, cross-view parameter
sharing for learning user-interacted products and user-issued queries in the search scenario. (b) illustrates the structure of the
Siamese Encoder layer. (c) demonstrates the complete Intent-oriented Session Modeling in the search scenario.

length (𝑇 + 1), we compute the sequence embedding matrix E𝑞𝑠 in
a similar manner, i.e., E𝑞𝑠 = [e𝑞1 + e𝑢 ; e𝑞2 + e𝑢 ; . . . ; e𝑞

𝑇+1 + e𝑢 ] + P ∈
R(𝑇+1)×𝑑 . For clarity, we denote the embedding matrices of the
product sequence in the recommendation scenario, the product and
query sequences in the search scenario as E𝑝𝑟 , E

𝑝
𝑠 , E

𝑞
𝑠 , respectively.

3.4 Siamese Encoder
In the search scenario, the user-issued query and user-interacted
product at each timestep are different types of behaviors driven
by a common user intent. In order to encode these two behavior
sequences while leveraging their common and unique characteris-
tics, we propose a Siamese Encoder with shared parameters that
takes two sequences as pairs to be encoded in parallel. The Siamese
Encoder encodes correlations both within and between the product
sequence and query sequence in the search scenario, while encodes
correlations within the product sequence in the recommendation
scenario. As such, the Siamese Encoder is capable of learning a
comprehensive representation of sequential user behavior patterns.

Inspired by the encoder layer in the vanilla Transformer [26], the
Siamese Encoder layer is designed to contain three sub-layers, i.e.,
the Multi-head Self-Attention (MSA), Multi-head Cross-Attention
(MCA), and Feed-Forward Network (FFN).

We briefly review the Multi-head Attention (MA) mechanism
with the scaled dot-product attention, which can be described as
follows:

MA(Q,K,V) = Concat( [Attn1; Attn2; · · · ; Attnℎ])W𝑂 ,

Attn𝑖 (QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖 ) = softmax(

(QW𝑄

𝑖
) (KW𝐾

𝑖
)𝑇√︁

𝑑ℎ

) (VW𝑉
𝑖 ) .

(2)
The projection matricesW𝑄

𝑖
∈ R𝑑×𝑑ℎ ,W𝐾

𝑖
∈ R𝑑×𝑑ℎ ,W𝑉

𝑖
∈ R𝑑×𝑑ℎ ,

W𝑂 ∈ R𝑑×𝑑 are learnable parameters, where ℎ is the number of
attention heads, and 𝑑ℎ = 𝑑/ℎ.

In the case of the product branch in the search scenario, the multi-
head self-attention operation focuses on the correlation within the
sequence, which takes the embedding matrix E𝑝𝑠 as the input of
MA, i.e., Q = K = V = E𝑝𝑠 . Then, the multi-head cross-attention is
followed to encode the correlation across two sequences. Specifi-
cally, the multi-head cross-attention take both E𝑝𝑠 and E𝑞𝑠 as input
ofMA, i.e., Q = E𝑝𝑠 , K = V = E𝑞𝑠 .

After encoding the intra- and inter-correlations of sequences, a
position-wise feed-forward network is then applied, consisting of
two linear transformations with a ReLU activation in between.

The Siamese Encoder layer comprehensively encodes the contex-
tual information in dual behavior sequences, producing contextual
representation matrices H𝑝𝑠 and H𝑞𝑠 for the product and query se-
quences, respectively. This can be summarized as follows:

Ĥ𝑝𝑠 = MSA(E𝑝𝑠 , E
𝑝
𝑠 , E

𝑝
𝑠 ), Ĥ

𝑞
𝑠 = MSA(E𝑞𝑠 , E

𝑞
𝑠 , E

𝑞
𝑠 ),

H𝑝𝑠 = FFN(MCA(Ĥ𝑝𝑠 , Ĥ
𝑞
𝑠 , Ĥ

𝑞
𝑠 )),

H𝑞𝑠 = FFN(MCA(Ĥ𝑞𝑠 , Ĥ
𝑝
𝑠 , Ĥ

𝑝
𝑠 )),

(3)

where MSA(·), MCA(·), FFN(·) denote the aforementioned three
sub-layers. Note that we also adopt the residual connection [11],
layer normalization [4], and dropout regularization [25] to enhance
the network structure following [15, 26].

For the recommendation scenario where user-issued queries are
absent, the Siamese Encoder layer can be adapted by deactivating
the query branch. As such, the multi-head cross-attention becomes
equivalent to the multi-head self-attention, and the contextual rep-
resentation matrix of the product sequence is derived as:

Ĥ𝑝𝑟 = MSA(E𝑝𝑟 , E
𝑝
𝑟 , E

𝑝
𝑟 ), H

𝑝
𝑟 = FFN(MCA(Ĥ𝑝𝑟 , Ĥ

𝑝
𝑟 , Ĥ

𝑝
𝑟 )) . (4)

After being encoded by the Siamese Encoder composed of a
stack of 𝐿 identical layers, we obtain the contextual representation
matrices for the product and query sequences in the search sce-
nario, denoted as H𝑝𝑠 and H𝑞𝑠 , and for the product sequence in the
recommendation scenario, represented as H𝑝𝑟 . Here the superscript

4
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(𝐿) indicating the number of Siamese Encoder layers is omitted for
simplicity.

3.5 Intent-oriented Session Modeling
Leveraging the inherent user intent associated with each interac-
tion could potentially improve the user behavior modeling. In most
cases, however, there is no labeled data explicitly revealing the in-
tent for each interaction. Since user intent evolves over time, users
engage in a series of consecutive behaviors driven by one intent, fol-
lowed by another series of consecutive behaviors under a different
intent. Accordingly, we propose an Intent-oriented Session Model-
ing module, which captures user intent by locating and aggregating
intent-oriented semantic sessions based on the contextual infor-
mation in behavior sequences, so as to achieve intent-enhanced
user behavior modeling. In particular, a self-supervised learning
loss based on similarity measurements is designed to guide the
intent-oriented session discovery. In this section, we mainly use the
search scenario as an example to introduce the Intent-oriented Ses-
sion Modeling module, so we omit the subscript 𝑠/𝑟 distinguishing
search and recommendation scenarios to simplify the notation.

3.5.1 Intent-oriented Session Extraction. In the case of the prod-
uct sequence, it is first uniformly divided into 𝑁 non-overlapping
sessions. Let x = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] represent central locations of ses-
sions in the sequence S𝑝 , where 𝑥𝑖 denotes the central location
of the 𝑖-th session. The session location ranges are initialized as
(x − 𝐿

2𝑁 , x +
𝐿
2𝑁 ), thereby the sequence representation matrix can

be sliced into chunks as H𝑝 = [H𝑝s1 ;H
𝑝
s2 ; . . . ;H

𝑝
s𝑁 ]. In order to lo-

cate intent-oriented sessions, we make the session location ranges
learnable, which can be inferred from the contextual representation
matrix of the behavior sequence. In particular, inspired by [7] for
semantic patch learning in vision tasks, we predict offsets Δx of cen-
tral locations and lengths s based on the contextual representation
matrix H𝑝 as follows:

Δx = Tanh(𝑓 (H𝑝 )),
s = ReLU(Tanh(𝑓 (H𝑝 ) + b)),

(5)

where 𝑓 (·) denotes the transformation that deduces the offset and
length from the sequence representation matrix. We implement
the transformation as a concatenation of mean pooling for each
chunked representation matrix, followed by a linear transformation
with a ReLU activation in between, which can be written as:

𝑓 (H𝑝 ) = ReLU(Concat[Mean(H𝑝s1 ); . . . ; Mean(H𝑝s𝑁 )])W. (6)

Accordingly, the 𝑖-th intent-oriented session is updated to be lo-
cated in (𝑥𝑖 +Δ𝑥𝑖 −𝑠𝑖 , 𝑥𝑖 +Δ𝑥𝑖 +𝑠𝑖 ). In this way, we can fully exploit
the context to identify semantic sessions. We use (xleft, xright) to
denote the overall learned session ranges. After locating 𝑁 sessions
in the product sequence, we then aggregate the interaction repre-
sentations within each session, represented as {I𝑝

𝑖
| 1 ≤ 𝑖 ≤ 𝑁 },

where I𝑝
𝑖

= {H𝑝
𝑗
| 𝑥 left
𝑖

≤ 𝑗 < 𝑥
right
𝑖

}. As such, the session rep-
resentation matrix I𝑝 ∈ R𝑁×𝑑 can be derived by applying mean
pooling to its containing interaction representations as follows:

I𝑝 = Concat( [Mean(I𝑝1 ); Mean(I𝑝2 ); . . . ; Mean(I𝑝
𝑁
)]), (7)

where the 𝑖-th row in I𝑝 represents the 𝑖-th intent-oriented session
representation.

The representation of each interaction H𝑝𝑡 is enhanced by inte-
grating intent-oriented session representations as follows:

F𝑝𝑡 = H𝑝𝑡 +
𝑁∑︁
𝑖=1

I𝑝
𝑖
· I[H𝑝𝑡 ∈ I𝑝

𝑖
], (8)

where I[·] is an indicator function that returns 1when the condition
holds, and 0 otherwise.

Analogously, the representation matrix of the query sequence in
the search scenario is also enhanced by aggregating intent-oriented
session representations. Ultimately, we obtain the intent-enhanced
contextual representation matrices F𝑝𝑟 for the product sequence in
the recommendation scenario, F𝑝𝑠 and F𝑞𝑠 for product and query
sequences, respectively.

3.5.2 Self-supervised Intent-oriented Session Discovery. To further
guide the intent-oriented session discovery, we consider two as-
pects of self-supervised signals: (1) Different user intents within a
behavior sequence should lead to distinguishable sessions. There-
fore, we encourage the representations of adjacent intent-oriented
sessions within a sequence to be dissimilar to maintain discrim-
ination. (2) A pair of product session and query session in dual
behavior sequences driven by a common user intent should align
with each other. Hence, we encourage the representations of cor-
responding intent-oriented sessions between two sequences to be
similar to achieve alignment.

Accordingly, given session representation matrices I𝑝 and I𝑞

of product and query sequences in the search scenario, the self-
supervised learning loss is defined as:

L𝑠𝑠𝑙 =
𝑁−1∑︁
𝑖=1

(
Sim(I𝑝

𝑖
, I𝑝
𝑖+1) + Sim(I𝑞

𝑖
, I𝑞
𝑖+1)

)
−

𝑁∑︁
𝑖=1

Sim(I𝑝
𝑖
, I𝑞
𝑖
), (9)

where Sim(·, ·) is the cosine similarity function. In Equation (9),
the first term aims to minimize the similarity between adjacent
semantic sessions to encourage the session discrimination within
each of the two sequences, while the second term is designed to
maximize the similarity between corresponding semantic sessions
in two sequences to encourage the session alignment between two
sequences.

As for the recommendation scenario with solely product in-
teractions, the self-supervised learning loss simplifies to L𝑠𝑠𝑙 =∑𝑁−1
𝑖=1 Sim(I𝑝

𝑖
, I𝑝
𝑖+1), guided by the first signal.

3.6 Task-specific Predictor
After the contextual information encoding and intent-oriented ses-
sion enhancement, we obtain the behavior representations of each
user as f𝑝𝑟 ∈ R𝑑 , f𝑝𝑠 ∈ R𝑑 , f𝑞𝑠 ∈ R𝑑 , corresponding to the last
timestep of the representation matrices F𝑝𝑟 , F

𝑝
𝑠 , F

𝑞
𝑠 of the product

sequence in the recommendation scenario, product and query se-
quences in the search scenario, respectively. For the final prediction,
two task-specific predictors are employed for search and recom-
mendation tasks, respectively.

In the recommendation scenario, we adopt the widely used inner
product [6, 36] to calculate the predicted score of the next interacted
product 𝑝 as follows:

𝑦𝑢,𝑝 = f𝑝𝑟 · e𝑝 , (10)
5
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where e𝑝 is the embedding of product 𝑝 from the product embed-
ding matrix M𝑝 .

Similarly, in the search scenario, we separately calculate the
inner products for a given product 𝑝 with each of the two behavior
representations, which are weighted and summed to derive the
overall predicted score as follows:

𝑦𝑢,𝑝 =

(
𝑤f𝑝𝑠 + (1 −𝑤)f𝑞𝑠

)
· e𝑝 , (11)

where the balancing weight𝑤 is a learnable parameter.

3.7 Model Optimization
We adopt the binary cross-entropy loss [15] to supervise the final
prediction for both tasks as follows:

L𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = −
[
log𝜎 (𝑦𝑢,𝑝 ) +

∑︁
𝑝−∈P𝑛𝑒𝑔

log(1 − 𝜎 (𝑦𝑢,𝑝− ))
]
, (12)

where𝜎 (·) is the sigmoid function,P𝑛𝑒𝑔 denotes the set of randomly
sampled negative products paired with each ground-truth 𝑝 .

The prediction and intent-oriented session discovery objectives
are jointly optimized, forming the overall loss function as follows:

L 𝑗𝑜𝑖𝑛𝑡 = L𝑝𝑟𝑒𝑑𝑖𝑐𝑡 + 𝛼 · L𝑠𝑠𝑙 , (13)

where 𝛼 is a hyper-parameter that controls the weight of self-
supervised learning loss for intent-oriented session discovery.

One of the core ideas behind UnifiedSSR is the integration of
cross-scenario data to train a unified model, capitalizing on the
commonalities and dependencies between search and recommen-
dation scenarios. However, it is essential for the unified model
not only to capture general patterns across scenarios but also to
be tailored to specific tasks, ultimately leading to improved per-
formance and robustness in both tasks. Accordingly, we adopt a
training paradigm that consists of two stages: (1) multi-task joint
pre-training and (2) task-specific fine-tuning. In particular, the entire
framework is initially pretrained by alternately using data from
two scenarios. Subsequently, for each task, the pretrained model is
then finetuned individually using a small amount of task-specific
data. As such, the model not only benefits from comprehensively
training on cross-scenario data but also can be easily adapted to
specific tasks.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. To evaluate the performance of UnifiedSSR in both
search and recommendation scenarios, we conduct experiments
on three publicly available datasets: JDsearch dataset [17], two
subsets of Amazon review dataset [22], which are Clothing Shoes
and Jewelry subset (referred to as Amazon-CL) and Electronics
subset (referred to as Amazon-EL).

JDsearch Dataset: This dataset is a personalized product search
dataset consisting of real user queries and user-product interactions
collected from JD.com, one of themost popular Chinese e-commerce
platforms. The dataset contains products belonging to various cat-
egories, interactions from diverse channels including search and
recommendation, and all data have been anonymized. We extract
the product interactions without corresponding queries from user

Table 1: Statistics of Datasets

JDsearch Amazon-CL Amazon-EL

#Users 131,701 323,714 192,586
#Products 411,566 393,214 180,446
#QueryWords 139,610 209,057 224,652
#Interactions 16,101,041 5,385,648 756,077
#Samples-S 126,179 162,023 96,529
#Samples-R 174,348 162,023 96,529

behavior logs to serve as recommendation data, with the remaining
records treated as search data.

Amazon Review Dataset: This is a well-known dataset in rec-
ommender systems [15, 36], containing product reviews and meta-
data from Amazon.com. It is also the most commonly used public
dataset in product search, featuring simulated queries derived from
product metadata [2, 18]. We equally split the interaction history
of each user into recommendation data and search data. Inspired
by Gysel et al. [10], we use product categories, titles and brands to
generate queries. Additionally, to introduce personalization into
simulated queries, we extract keywords from user reviews based
on TF-IDF, which are combined with product attributes to form the
ultimate queries.

For each dataset, we filter out users and products with fewer
than 10 interactions. The maximum sequence length of search and
recommendation history is set to 100. Longer sequences are divided
into non-overlapping subsequences. For both search and recom-
mendation data, the sequences of each user are chronologically
ordered and divided into subsets for multi-task joint learning and
task-specific learning in an 8:2 ratio. The multi-task joint learning
set is used for model pre-training, while the task-specific learning
set is further split into training, validation, and test sets. In particu-
lar, the most recent interaction is reserved for testing, the second
most recent interaction for validation, and all remaining interac-
tions for training. The statistics of three datasets are summarized
in Table 1.

4.1.2 Baselines. We compare the proposed UnifiedSSR with search
models, recommendation models and joint models, as follows:

Search Models: (1) HEM [2] jointly learns different level em-
beddings of users, queries, products by maximizing the likelihood
of observed user-query-product triplets to perform personalized
product search. (2) ZAM [1] constructs query-dependent user em-
beddings based on an attention mechanism, introducing a zero
vector in the attention operator to achieve differentiated personal-
ization. (3)CAMI [18] builds upon the knowledge graph embedding
method [3], leveraging the category information to disentangle and
aggregate diverse interest embeddings of users.

Recommendation Models: (1) GRU4Rec [14] applies recur-
rent neural networks to model user interacted item sequences for
session-based recommendation. (2) SASRec [15] directly imple-
ments the Transformer [26] encoder stacks with single-head self-
attention mechanism for sequential recommendation. (3) FMLP-
Rec [36] adopts all-MLP architecture derived from Transformer,
where the attention mechanism is replaced with frequency-domain
learnable filters.

JointModels: (1) JSR [33] simultaneously learns twoMLP-based
models for retrieval and recommendation, based on a shared item

6
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set and a joint loss function. (2) JSR-Seq is our extension of JSR,
where the simple MLPs are replaced with our proposed sequential
encoders. Note that the encoders share the same architecture but
have separate parameters. (3) SESRec [24] employs Transformers
to individually encode search and recommendation behaviors of
users, disentangling similar and dissimilar representations between
two behaviors to enhance recommendations. We integrate query
embeddings into the prediction layer to adapt it to the search task.

Considering the two-stage training strategy adopted for our pro-
posed UnifiedSSR, for a fair comparison, the above baselines utilized
all available data for training, including both aforementioned pre-
training and fine-tuning data. We also evaluate the performance
of the proposed model end-to-end trained with task-specific data,
represented as UnifiedSSR-R and UnifiedSSR-S, respectively. Be-
sides, all methods share the same validation and test sets.

4.1.3 Evaluation Metrics. To evaluate the performance on both
search and recommendation, we adopt two widely used evaluation
protocols, Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG). Following the common strategy [24, 36], for each test
sequence, all evaluated models predict the scores of 100 candidate
products and the top-𝐾 products with the highest scores form
the final ranked list. HR@𝐾 measures whether the ground-truth
product is present on the top-𝐾 ranked list, while NDCG@𝐾 further
emphasizes the position of the hit by assigning higher weights to
hits at topper ranks. We set 𝐾 = {5, 10} and report the average
metrics for all samples in the test set.

4.1.4 Implementation Details. We implement the compared meth-
ods following the original settings. The embedding dimension 𝑑 is
set to 32 for Amazon datasets and 64 for the JDsearch dataset, and
the hidden dimension in feed-forward networks is set to twice the
embedding dimension. The number of Siamese Encoder layers 𝐿
and the number of sessions 𝑁 are set to (2, 2) for Amazon datasets
and (3, 4) for the JDsearch dataset. The effects of 𝑑 , 𝐿, 𝑁 are dis-
cussed in Appendix A. The weight 𝛼 assigned to the self-supervised
learning loss is set to 0.1, given the results shown in Section 4.3.1.
Following [26], we train the model using the Adam optimizer [16]
and the warmup-and-decay learning rate schedule. We initialize
model parameters using the Xavier initialization [9]. For all models,
we employ the default configuration of 100 training epochs and the
mini-batch size of 128. Our model is implemented in PyTorch and
publicly available1.

4.2 Performance Comparison
We compare UnifiedSSR with search and joint models in the search
scenario, and with recommendation and joint models in the recom-
mendation scenario. From the performance comparison shown in
Table 2, we have the following observations:
• UnifiedSSR achieves the best performance over all baselines

in both search and recommendation scenarios across three
datasets. This confirms that the proposed UnifiedSSR effec-
tively addresses the challenges of cross-scenario cross-view
user behavior modeling and dynamic user intent discovery,
resulting in enhanced capabilities in both two scenarios.

1(Anonymized) https://anonymous.4open.science/r/UnifiedSSR.
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Figure 3: Performance comparison on Amazon-CL with dif-
ferent settings of self-supervised learning loss weights (𝛼).

• Joint models consistently outperform scenario-specific models
on both scenarios, except that SESRec performs slightly worse
than FMLP-Rec for recommendation on Amazon-EL. This
suggests that joint models have an advantage over scenario-
specific models but require the effective incorporation of in-
herent correlations across scenarios.

• UnifiedSSR-S and UnifiedSSR-R yield competitive performance
in their respective scenarios, highlighting the capacity of the
designed model architecture for single-scenario user behavior
learning. Moreover, UnifiedSSR outperforms UnifiedSSR-S and
UnifiedSSR-R in most cases, demonstrating the significance
of cross-scenario information sharing during multi-task joint
pre-training.

4.3 Study of UnifiedSSR
4.3.1 Impact of Self-Supervised Learning Loss. As introduced in
Section 3.5, the hyper-parameter 𝛼 in Equation (13) controls the
weight of the self-supervised learning loss during training, which
guides the intent-oriented session discovery for user intent un-
derstanding. To explore the influence of 𝛼 on the performance of
UnifiedSSR, we compare the performance of 𝛼 over the range of
[0, 0.5] at intervals of 0.1. From the results on Amazon-CL shown in
Figure 3, we can see that the performance of UnifiedSSR improves
as 𝛼 increases from 0 to 0.1. The performance improvement demon-
strates that guided by the self-supervised learning objective, the
Intent-oriented Session Modeling module effectively locates and
aggregates the intent-oriented semantic sessions, contributing to
the dynamic user intent understanding. Besides, the performance
becomes worse than 𝛼 = 0 when 𝛼 ≥ 0.2 for search and 𝛼 ≥ 0.4
for recommendation. This suggests that excessively focusing on
intent-oriented session modeling may constrain the capacity for
representation learning of user behaviors, leading to a decrease in
performance.

4.3.2 Ablation Study. To investigate how the various designs im-
pact the performance of UnifiedSSR, we conduct an ablation study
considering the following variants: (1) UnifiedSSR w/o FT: The
model solely undergoes multi-task joint pre-training without any
subsequent task-specific fine-tuning. (2) UnifiedSSR w/o CA: The
multi-head cross-attention sub-layer in the Siamese Encoder layer
that encodes the correlation between dual behavior sequences is
removed. (3) UnifiedSSR w/o SE (a): The encoder in two branches
for the search task share the same architecture but have separate
parameters. (4)UnifiedSSR w/o SE (b): The encoder in the product

7

https://anonymous.4open.science/r/UnifiedSSR


813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon. Submission Id: 647

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Performance Comparison with Baseline Methods

JDsearch Amazon-CL Amazon-EL

HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10

Search Scenario

HEM 0.5432 0.7590 0.2781 0.3441 0.5504 0.6448 0.3006 0.3298 0.5354 0.6638 0.2864 0.3259
ZAM 0.5547 0.7664 0.2853 0.3501 0.5866 0.6751 0.3238 0.3510 0.5727 0.6931 0.3080 0.3451
CAMI 0.3911 0.5051 0.2929 0.3299 0.6594 0.7539 0.5274 0.5582 0.7118 0.7992 0.5384 0.5669

JSR 0.8099 0.8543 0.7347 0.7490 0.7506 0.8060 0.6571 0.6752 0.8197 0.8647 0.7309 0.7455
JSR-Seq 0.8586 0.8781 0.8209 0.8270 0.7565 0.7785 0.7023 0.7088 0.8333 0.8529 0.7980 0.8029
SESRec 0.8809 0.9267 0.7865 0.8019 0.7974 0.8455 0.6977 0.7115 0.8875 0.9125 0.8041 0.8111

UnifiedSSR-S 0.9332 0.9510 0.8856 0.8911 0.8435 0.8784 0.7782 0.7898 0.9091 0.9340 0.8557 0.8628
UnifiedSSR 0.9551 0.9723 0.9005 0.9057 0.8582 0.8992 0.7757 0.7894 0.8998 0.9304 0.8286 0.8386

Improv. 8.43% 4.93% 9.69% 9.51% 7.62% 6.35% 11.17% 10.94% 1.39% 1.96% 3.04% 3.39%

Recommendation Scenario

GRU4Rec 0.7514 0.8020 0.6787 0.6949 0.4448 0.5610 0.3194 0.3571 0.4840 0.5840 0.3493 0.3814
SASRec 0.7463 0.8034 0.6585 0.6769 0.4517 0.5526 0.3338 0.3665 0.4973 0.6085 0.3620 0.3983
FMLP-Rec 0.7578 0.8054 0.6935 0.7089 0.4556 0.5802 0.3229 0.3634 0.5268 0.6473 0.3846 0.4236

JSR 0.7699 0.8174 0.7013 0.7162 0.4853 0.6021 0.3636 0.4011 0.5344 0.6561 0.3880 0.4274
JSR-Seq 0.7876 0.8340 0.7156 0.7304 0.5579 0.6655 0.4307 0.4655 0.5577 0.6725 0.4167 0.4543
SESRec 0.7878 0.8361 0.7169 0.7322 0.5013 0.5932 0.3958 0.4252 0.5186 0.6337 0.3831 0.4210

UnifiedSSR-R 0.7828 0.8343 0.7108 0.7272 0.4628 0.5672 0.3471 0.3807 0.5149 0.6439 0.3680 0.4088
UnifiedSSR 0.8482 0.8983 0.7586 0.7749 0.5941 0.7004 0.4608 0.4957 0.6036 0.7184 0.4564 0.4933

Improv. 7.67% 7.44% 5.81% 5.82% 6.48% 5.24% 6.99% 6.49% 8.25% 6.82% 9.54% 8.59%

* The best results are in bold, the second best results are underlined.
* Improv. stands for the performance improvement of UnifiedSSR over the best-performing baseline methods.

Table 3: Performance Comparison on Amazon-CL with Uni-
fiedSSR Variants

Search Recommendation

HR@10 NDCG@10 HR@10 NDCG@10

UnifiedSSR 0.8992 0.7894 0.7004 0.4957

w/o FT 0.8825 0.7654 0.6697 0.4640
w/o CA 0.8920 0.7692 0.7010 0.4913
w/o SE (a) 0.8762 0.7701 0.6900 0.4874
w/o SE (b) 0.8896 0.7782 0.6916 0.4866
w/o ISM (a) 0.8941 0.7800 0.6956 0.4910
w/o ISM (b) 0.8901 0.7697 0.6913 0.4854

branch in two tasks share the same architecture but have separate
parameters. (5) UnifiedSSR w/o ISM (a): Instead of learning to
extract intent-oriented sessions, the sequences are split into 𝑁
sessions based on largest (𝑁 − 1) time intervals. (6) UnifiedSSR
w/o ISM (b): The Intent-oriented Session Modeling module for
intent-oriented session enhancement is removed.

Table 3 illustrates the experimental results comparing UnifiedSSR
and its variants in terms of HR@10 and NDCG@10 on Amazon-CL.
From Table 3, we have the following observations:

• UnifiedSSR w/o FT exhibits a reasonable performance drop in
both scenarios compared to UnifiedSSR, yet it can still achieve
competitive performance with baselines solely through pre-
training. This validates the robust representation capability of
UnifiedSSR based on multi-task joint learning.

• UnifiedSSR w/o CA, w/o SE (a), w/o SE (a) reduce the extent of
information sharing from different perspectives. The perfor-
mance decreases in these variants indicate the importance of
cross-scenario cross-view information sharing for joint learn-
ing of user behaviors in both search and recommendation.

• UnifiedSSR w/o ISM (a) performs better than UnifiedSSR w/o
ISM (b) in both scenarios. The difference between these two
variants is that the former enhances behavior sequence model-
ing with time-interval based sessions while the latter does not
use any session information. UnifiedSSR further outperforms
UnifiedSSR w/o ISM (a), verifying that UnifiedSSR effectively
leverages dynamic user intent through intent-oriented session
modeling, thereby enhancing the model performance in both
scenarios.

5 CONCLUSIONS
In this work, we proposed a unified framework for joint learning
of user behaviors in both search and recommendation scenarios.
Specifically, UnifiedSSR adopted the dual-branch architecture that
encodes the pair of product history and query history in parallel in
the search scenario, and deactivates the query branch to adapt to
the recommendation scenario. UnifiedSSR effectively shared infor-
mation cross-scenario (i.e., search and recommendation scenarios)
and cross-view (i.e., interacted products and issued queries in the
search scenario), while simultaneously modeling the dynamic user
intent through the intent-oriented session discovery guided by two
self-supervised learning signals. Extensive experiments on three
public datasets demonstrated the effectiveness of UnifiedSSR.
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Figure 5: Performance comparison on Amazon-CL w.r.t.
NDCG@10 with different settings of Siamese Encoder layer
numbers (𝐿).

A PARAMETER ANALYSIS
A.1 Impact of Embedding Dimension
We conduct experiments to analyze the impact of the embedding
dimension (i.e., 𝑑) in UnifiedSSR. As an example, in the Amazon-
CL dataset, we vary 𝑑 from 16 to 80 in increments of 16. Figure 4
illustrates the experimental results w.r.t. NDCG@10 on two tasks.
Based on Figure 4, we can observe a significant drop in performance
when 𝑑 = 16 for both tasks, indicating that it is insufficient to
encode the contextual information. As the embedding dimension
increases, the performance first exhibits substantial improvement,
followed by a gradual stabilization and occasional slight declines.
Considering the trade-off between cost and performance, we set
the default 𝑑 = 32 for Amazon datasets and 𝑑 = 64 for the JDsearch
dataset.

A.2 Impact of Siamese Encoder Layer Number
The Siamese Encoder encodes the correlations both within each be-
havior sequence and across dual behavior sequences. The encoded
representations at all positions in both sequences are essentially
projected into a common space, where similar behavior patterns are
close to each other. Here we analyze how the number of Siamese En-
coder layers (i.e.,𝐿) impacts themodel performance in two scenarios.
To achieve this, we conduct experiments with varying settings of 𝐿
ranging from 1 to 4. Figure 5 illustrates the performance compari-
son on Amazon-CL. We observe that the performance consistently
peaks at 𝐿 = 2 on both search and recommendation tasks, followed
by a gradual decline as 𝐿 increases. This decline may be attributed
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Figure 6: Performance comparison on Amazon-CL w.r.t.
NDCG@10 with different settings of session numbers (𝑁 ).

to the overfitting problem. Based on the experimental results, we
set 𝐿 = 2 as the default for Amazon datasets and 𝐿 = 3 for the
JDsearch dataset, where the model performs best.

A.3 Impact of Session Number
The number of sessions 𝑁 plays a crucial role in UnifiedSSR. When
𝑁 is set too large, it becomes challenging to locate semantic ses-
sions with shorter initial lengths. Conversely, if 𝑁 is set too small,
sessions with longer initial lengths are more likely to include inter-
actions with low correlation, thereby introducing unwanted noises.
Therefore, here we investigate how the number of sessions𝑁 affects
the performance of UnifiedSSR. In particular, we vary 𝑁 within
the range [1, 5] and present the results in Figure 6. We can observe
that the model performance steadily improves in the search task
as 𝑁 increases, while the performance reaches its peak at 𝑁 = 2
in the recommendation task. One possible reason for the different
performance trends between the two scenarios is that, without an
explicit query, user intent in the recommendation scenario tends
to be ambiguous, resulting in less distinguishable intent-oriented
sessions, and thus higher values of 𝑁 may unnecessarily capture
semantically meaningless sessions, undermining the performance.
Based on the experimental results, we set default 𝑁 = 2 for Amazon
datasets and 𝑁 = 4 for the JDsearch dataset.
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