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1 Introduction

With the rapid advancement of Machine Learning (ML) and Artificial Intelligence (AI), data-based
models are quickly becoming an important part of high-profile decision making. For example, ML
and AI models are now being used to make medical diagnoses Ahsan et al. [2022], rapidly screen
documents Lee et al. [2023], Gongane et al. [2022], determine marketing strategies, Stone et al.
[2020], and aid in making parole decisions Wang et al. [2022]. However, in many ways, models
are only as good as the data used to train them. Partially due to the success and ease of ML and AI
models, there have been concerns that the proliferation of accurate-seeming but inaccurate data such
as deepfakes or hallucinations could poison existing sources with lower quality data. The endpoint of
this concerning direction is a phenomenon which has been referred to as “model-collapse" Shumailov
et al. [2024], Gibney [2024], Gerstgrasser et al. [2024]. Model-collapse refers to a cascade where an
AI generates enormous amounts of lower quality synthetic data, which is then used to train a new AI,
which in turn generates even lower quality synthetic data due to being trained on lower quality data,
and so on. With ML and AI models being more important parts of our decision making process than
ever before, it is important to develop new methods to ensure we can get valid statistical inference
even in the presence of synthetic data.

To this end, this paper demonstrates two main innovations to aid in statistical inference using synthetic
data in dynamic contexts. First, using a class of estimators which give valid statistical inference using
synthetic and real data points, even when the operating characteristics of the synthetic data generation
process are unknown, we illustrate how to incorporate our proposed estimators into dynamic linear
models to analyze streaming data. Second, we combined our proposed estimators with Bayesian
optimal experimental design to dynamically determine the optimal ratio of real and synthetic data to
minimize model standard error.

2 Setup

Borrowing the setup from Szpiro et al. [2010], we posit that, at time t, our data is generated from a
process is:

y(t) ∼ N(ϕ(x, t), σ2(x, t)) (1)

where:
ϕ(x, t) = β(t)x+ΦTBϕ(x) (2)

log(σ(x, t)) = γ(t)x+ΨTBσ(x). (3)
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Here Bϕ and Bσ are vectors of B-splines. We shall say that at time point T−1, a group of upstream
researchers fit a deterministic ML function f̂(x) (which we shall refer to as the “upstream model")
that approximates ϕ(x). These researchers are willing to disseminate f̂(x), but do not provide any
information beyond this, including sample size or error rates. This mirrors the way modern AI
models, such as ChatGPT, are shared.

Later, a different group of researchers is interested in using a combination of real outcomes
and upstream-model-generated synthetic outcomes for use in a downstream statistical model. As an
example, this could occur in pragmatic clinical trails where one would like to learn the relationship
between a clinical outcome, Y, and a biomedical covariate, X. However, if Y is expensive or difficult
to collect, then one may use a previously trained prediction model to generate f̂(X) and regress that
along with the collected Ys upon X [Gamerman et al., 2019, Williams et al., 2015].

In our paper, our goal will be to describe the linear relationship β(t), between y and x at
each time step t ∈ [0, ..., T ]. Formally, our goal is to estimate βt|Y t = {Y t

real, Ŷ
t
syn} where

Yt,real = {y1,real..., yt,real} and Ŷt,syn = {f̂(x1,syn)..., f̂(xt,syn)}. A class of estimators which
can give parameter estimates using a combination of real and black-box generated synthetic outcomes
is known as Inference on Predicted Data (IPD) estimators Hoffman et al. [2024a]. Here, we will
use a particular IPD estimator known as Prediction Powered Inference (PPI). In Angelopoulos et al.
[2023], the authors demonstrate that one can estimate a linear regression parameter β (as well as
other convex estimation problems) via a PPI estimator, β̂PPI

β̂PPI = β̂Naive + ∆̂

where β̂Naive is the parameter from linearly regressing f̂(xsyn) on xsyn and ∆̂ is the parameter from
linearly regressing (yreal − f̂(xreal)) on xreal. Angelopoulos et al. [2023] and Angelopoulos et al.
[2024] show that these estimators not only give unbiased estimates but can lead to tighter standard
errors compared to traditional estimators.

2.1 β̂PPI,t Updating Scheme

Here we describe the update scheme for β̂PPI at time point t, which we denote β̂PPI,t. We shall
assume here that Φ and Ψ are known (with full generality in the complete paper). Based on our data
generating equation, we have:

p(βt|Y t) = p(βt|Y t) (4)

= p(βt|yreal,t, ysyn,t,Y t−1) (5)

∝ p(yreal,t, ysyn,t|βt)p(βt|,Y t−1) (6)

= p(yreal,t|βt)p(βt|,Y t−1) ∗ p(ysyn,t|βt)p(βt|,Y t−1). (7)
p(yreal,t|βt) and p(ysyn,t|βt) are easy to sample from as we get them directly from the data generating
equation. To estimate p(βt|Y t−1) in an online fashion using a PPI estimator, we employ the dynamic
structure used in McCormick et al. [2011] and assume that:

βt|Ŷt−1 ∼ N(β̂PPI
t−1 , Σ̂PPI

t−1 ) (8)

∼ N(β̂Naive
t−1 + ∆̂t−1, Σ̂

Naive
t−1 + Σ̂∆,t−1). (9)

This yields a Kalman filter based prediction equation:

βt|Ŷt−1 ∼ N(β̂PPI
t−1 , RPPI

t−1 ) (10)
where:

RPPI
t−1 = Σ̂Naive

t−1 /λNaive + Σ̂∆
t−1/λ

∆

λNaive and λ∆ are fixed forgetting factors and are set to be less than 1. Estimation of the forgetting
factors can be done via a model selection such as was done in McCormick et al. [2011].

To estimate β̂Naive,t and ∆̂t , we can use the fact that they are estimated on separate datasets which
allows us to decompose the posterior into the product of two independent linear regression. Further
improvements to estimating these terms can be done via the approach described in Hofer et al. [2024].

p(β̂PPI
t−1 , ∆̂t−1|Y t−1) = p(β̂Naive

t−1 |Y t−1
syn )p(∆̂t−1|Y t−1

real ). (11)
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2.1.1 Simulation

To demonstrate this updating scheme, we simulated a single iteration of the updating scheme
described above. At time t = 2, we generated 5000 datapoints from the data generating process
with β = 1, x is a standard normal, and Bϕ is a B-spline for x with 3 degrees of freedom using
the bs function from the splines package in R R Core Team [2021] and Φ = [2, 4,−10]. The
upstream prediction model, f̂ was set to be a simple linear regression with intercept. Note that this is
purposefully a misspecified model and thus should not give unbiased estimates of β. At the next time
step, t = 3, 20 real samples and 100 synthetic samples were generated from the data generating
process and a forgetting factor of 0.0001 and 0.001 for λNaive and λ∆ respectively (the choice of
very small values of forgetting factors is due to the large discrepancy between sample sizes and
because in this simulation we are only doing one iteration. In a more realistic example with more
steps, this discrepancy will be smaller and the forgetting factors will be much larger).

Figure 1: 1000 posterior draws from (top): ∆̂, (middle): β̂Naive, and (bottom): the PPI estimator.
The vertical line at β = 3 represents the true value of β. Note that the PPI estimator is the only one
that reasonably contains the true value of β. The slight negative bias in the PPI posterior distribution
can be explained due to the choice of forgetting factor. More comprehensive choice of forgetting
factors via model selection has the potential to ameliorate this issue.

Figure 1 illustrates 1000 posterior draws from ∆̂, β̂Naive and β̂PPI . Because f̂ was trained in the
past and is misspecified, the posterior of β̂Naive is very off, with a mean of 0.76 and standard error of
0.21. On the other hand, β̂PPI is much closer to the true value of 3 with a mean of 2.7 and a standard
error of 0.39, which leads to an overall lower MSE of 2.25 versus 0.491. This underestimation
bias in our final estimator is because our proposed estimator is combining information from the
parameter estimate in the past and the present. In the case of this simulation, at t = 2, β was smaller.
A comprehensive parameter tuning procedure to determine λnaive and λ∆ has the potential to give
even more accurate MSEs for βPPI .

2.2 Sequential Experimental Design for xreal and xsyn

A unique aspect of doing dynamic regression using IPD-based estimators is that one is performing
inference using a combination of synthetic and real data. However, as noted in Hoffman et al. [2024b]
as one diverges (either in time or in predictive accuracy) from the original upstream model, the
optimal ratio of real and synthetic data to minimize the standard error of a PPI estimator changes.
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To account for this, we propose at each time point to employ techniques from Bayesian optimal
experimental design are used to determine the optimal ratio of real to synthetic data.

Specifically, we shall assume that at each time point, the researchers are able to spend their
limited budget Ct in two ways. They can spend it on collecting just x values, each with a cost of csyn
(which we shall refer to as "synthetic data") or spend creal and collect both (x, y) (which we shall
refer to as "real data").

To determine the best ratio of real to synthetic samples, we shall use techniques from Bayesian
optimal experimental design Ryan et al. [2015], Lindley [1956]. A common setup in Bayesian
optimal experimental design is to choose a design that maximizes the expected information gain at
each time point. In our case, the space of our decisions are parameterized by ζt ∈ (0, 1) which is
the fraction of budget, Ct allocated to collecting real (each at cost creal,t with Ct/creal,t samples if
the entire budget was spent on real data) and synthetic samples (each at cost csyn,t with Ct/csyn,t
samples if the entire budget was spent on synthetic data). Following the setup, this yields a compact
expression for estimating the Expected Information Gain (EIG) Rainforth et al. [2018] :

EIG(ζt) = EY t(ζt),β [H(p(β|Y t−1(ζt)))−H(p(β|Y t(ζt)))] (12)

= EY t(ζt),β [log
p(Y t|β)
p(Y t)

]. (13)

And Foster et al. [2019] illustrated that this double integral is well approximated via the nested-Monte
Carlo approach of which each piece is estimable based on the derivations above:

EIG(ζt) ≈
1

N

N∑
i=1

p(Y t
n |βn,0)

1
M

∑M
i=1 p(Y

t
n |βn,m)

, βn,∗ ∼ p(β|Y t−1),Y t
n ∼ p(Y t

n |βn,0)

Choosing, at each t, the sample size ratio ζt which maximizes our estimated EIG allows us to itera-
tively determine which type of sample–cheaper, but less reliable, synthetic data, or more expensive,
but reliable, real data–would be most beneficial. An interesting point to note about this trade-off is
that since, in the PPI estimator, the real samples help better estimate the bias of β while the synthetic
samples help estimate the variance of β, this procedure to balance between real and synthetic samples
using ζt can also be thought of as an iterative bias-variance trade off.

3 Real Data Applications

Finally, to demonstrate the utility of this approach, we will apply this approach to two different
application domains. In the first, we consider the problem of ocean going vessel fuel efficiency
estimation. A major problem for shipping companies is that while many accurate physics-based
models to estimate fuel use exist, due to issues such as wear and tear and barnacle buildup, the
predictions from such models decay in accuracy the longer the ship is out of port Fan et al. [2022].
Thus, we should expect that such models are most useful close to port and progressively less useful
the longer the ship has been out. By treating physics-model predicted efficiency as our synthetic data
and ship-board sensor data as our real data, we can determine the optimal balance of the two to get
the most accurate estimates of total fuel efficiency.

In the second context, we take a sociological problem of public opinion surveying. When
designing such a survey, one must typically make a decision as to whether one would prefer the
more expensive, but more accurate in-person surveys, or the cheaper but more prone to bias internet
surveys Wu et al. [2022]. Inspired by Egami et al. [2023], we will demonstrate the optimal budget
allocation between online and in-person polling to track public opinion on large studies with online
and in-person components such as the American Community survey Bureau [2020].
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