Exploiting Transitivity for Entity Matching

J. Baas!, M. M. Dastani', and A. J. Feelders'

! Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, Netherlands
? {j.baas,m.m.dastani,a.j.feelders}@uu.nl

Abstract. The goal of entity matching in knowledge graphs is to iden-
tify sets of entities that refer to the same real-world object. Methods
for entity matching in knowledge graphs, however, produce a collection
of pairs of entities claimed to be duplicates. This collection may fail to
satisfy transitivity, and hence may fail to represent a valid solution. We
show that an ad-hoc enforcement of transitivity on the set of identified
entity pairs may decrease precision dramatically. We therefore propose a
methodology that starts with a given similarity measure, generates a set
of entity pairs, and applies cluster editing to enforce transitivity, leading
to overall improved performance.

1 Introduction

Many datasets use different identifies to refer to the same real life entities, or may
contain duplicates themselves. Automated methods for identifying and linking
duplicate entities, also known as entity matching, in the knowledge graphs are
necessary. A considerable difficulty with entity matching is that the total number
of possible entity pairs is much larger than the number of actual (duplicate)
entity pairs, also known as the problem of skewness [8, 1]. This extreme skewness
can cause false positive results to overwhelm the true positives, even for highly
accurate classifiers. This has caused many other works to use ranking techniques,
and their associated metrics, to sort the possible entity pairs with some similarity
measure, where duplicate entity pairs are expected to appear on top of the
ranking [6,9, 3, 7]. Other works, such as Saeedi et al. [5], perform blocking in the
first stages to reduce the number of pairs that are evaluated.

The identified set of pairs are generally required to satisfy some structural
properties, in particular transitivity. However, taking the transitive closure of
the entity pairs identified by entity matching techniques may not work as this
may possibly conclude many spurious entity pairs. We propose the application
of cluster editing for entity matching and set up a number of experiments to
evaluate our proposal. We show that compared to an ad-hoc enforcement of
transitive closure on identified pairs, our approach always results fewer distinct
entity pairs (i.e. they have a higher precision) while retaining duplicate entity
pairs (i.e. recall is not lowered). The experiments are performed on semi-synthetic
datasets that are generated by introducing duplicates in an existing dataset in a
controlled manner. This results in a range of different cluster distributions, where
we measure the effects of the number of clusters and different cluster sizes.

2 J. Baas et al.

2 Applying Cluster Editing on Matched Entities

Approach: An overview of our overall method is given in Fig. 1. We start with
an embedding of a set of entities £, some of which may be duplicates, and use
Euclidean distance to measure their proximity (panel A of Fig. 1). Let Ng(7)
denote the index set of the k nearest neighbors of e;. For each entity e;, we make
k candidate pairs (e;, e;), j € Ni(i), thereby addressing skewness by ruling out
the vast majority of pairs. The dotted lines in panel B illustrate the candidate
pairs for k = 1. Moreover, we assume that a (small) subset of these candidate
pairs is labeled by a domain expert (blue lines in panel B). The labeled pairs are
used to train a probabilistic classifier. This classifier is used to determine, for each
candidate pair (e;, e;), the fitted probability p;; that e; and e; are duplicates.
Depending on the features used by the classifier, and its complexity, the fitted
probabilities need not be proportional to the distance between entities.We do
however assume that the features used by the classifier are symmetric so that
Dij = Pji, and therefore we can indeed regard a pair of entities as unordered.
We then use a cut-off value ¢ so that if p;; > 0, then e; and e; are predicted
to be duplicates (panel C). This “raw outcome” of the pairwise classifier may
however violate the transitivity constraint. Obviously, an ad-hoc application of
transitive closure to the links predicted by the classifier never removes any links,
but can only add new links (panel G). This may result many spurious entity
pairs. A more principled method to restore transitivity is to use the cluster
editing technique [2]. Here, we compute a weight w(i, j) = log(%) —log(1%5)
for each pair of entities (e;, €;) within the same connected component (regardless
of whether it is a candidate pair or not), such that w(s, j) is positive if p;; > 0,
and negative otherwise (panel D). If w(i, j) is positive (negative), a link between
i and j is provisionally assumed to be present (absent). The resulting set of links
may however again violate the transitivity constraint. Cluster editing is used to
restore transitivity by adding and/or removing links in such a way that the total
score »_; . w(i, j)x;; is maximized, where z;; = 1 if a link between i and j is
present in the solution, and z;; = 0 otherwise (panels E and F).

__ Entity SetE Candidate Pairs Predicted Links
* M L Sy ®
° . wabeled | (e <—\
) | K ’ ’ + cutoff .
= 4 | Connected Components Transitive Closure
: * . Unlabeled . 4 /\
. Sy
. . . .
A - B : C

Classifier + cutoff

RN
N TIN @

D Positive Weight ™. F G

Create Edge Weights Cluster Editing Edited Result Closure Result

egative Weight

Fig. 1: An overview of the entity matching process.

Entity Matching in Knowledge Graphs 3

Results: Table 1 shows the results of our experiments. We denote the applica-
tion of transitive closure with the subscript T'C' and the application of cluster
editing with the subscript C E. We have created three versions of a semi-synthetic
dataset, denoted D1g, Dos and Dsq. Each version has a different distribution of
cluster sizes, as shown in Fig. 2. For every value of § € (0,1) (in steps of 0.01)
we generate an associated F%-score7 as it is our experience that a low precision
has a larger negative impact (than low recall) on the performance of downstream
systems such as SPARQL engines. The F%—score weights precision twice as heavy
as recall. We average the F1-score for all values of 6 (100 values between 0 and
1) to denote the performance of a given combination of cluster distribution, clas-
sifier and features. We experimented with a range of classifiers, and show the
best performing: logistic regression (LR) and support vector machine (SVM). All
were trained using cosine similarity as the sole feature. Furthermore, we used
just 100 pairs to train each classifier, limiting the burden on the domain expert

as much as possible.

Sample Size

o
3
o

10%

B =%
Lok o
1 2 3 4

Cluster Size

Probability
o
3

o
N
o

o
=}
S}

Fig. 2: Generated probability distributions of entity clusters of size 1 to 4 in the syn-
thetic data. The values of a color sum to one.

g
o
S

linkset size
oW &
precision
o o
o N
8 o

N
o
N
a

o
o
=3

o

0.00 0.25 0.50 0.75
0

(a) Dso, LR - Cosine Similarity (b) Dso, LR - Cosine Similarity

Fig. 3: Left: relative number of pairs predicted vs actual number (red dotted line).
Right: precision for transitive closure (red lines) and edited closure (blue lines).

In all cases we observe that the application of cluster editing improves the
resulting set of duplicates over the application of transitive closure. Furthermore,
the optimal value for 6 is in most cases reduced when cluster editing is applied,
suggesting that a more lenient cutoff can be used, while at the same time improv-
ing performance. Furthermore, Fig. 3a shows how closure of the entity pair set
tend to overestimate the number of duplicate pairs and Fig. 3b shows that the
cluster editing method consistently outperforms transitive closure in precision.

3 Conclusion and Future Work

In practice, entity matching methods are applied and the resulting entity pairs
are used by, e.g., a reasoner in a SPARQL engine, which applies the transitive

4 J. Baas et al.

classifier|dataset|| Orc Ocre ||[Meantc|Meancg||Maxrc|Maxce

Dio 0.43 | 0.51 0.46 0.50 0.69 0.70

LR Das 0.40 | 0.35 0.37 0.41 0.62 0.64

Dso 0.51 | 0.41 0.38 0.44 0.62 0.64

D1o 0.72 | 0.83 0.61 0.64 0.68 0.70

SVM | Das 0.70 | 0.66 0.43 0.51 0.62 0.64

Dso 0.78 | 0.67 0.45 0.54 0.62 0.64

Table 1: A comparison of the mean and maximum F%—scores, and associated value for

0, per classifier and cluster distributions.

closure. This may introduce many spurious links, potentially creating large clus-
ters of unrelated entities. We propose to apply cluster editing to create a set
of links that is closed under transitivityand show that the application of cluster
editing, compared to the transitive closure, always results in a set of duplicates
that contains fewer distinct entity pairs (i.e. they have a higher precision) while
retaining duplicate entity pairs (i.e. recall is not lowered). The NP-Hardness of
cluster editing limits us to solving only relatively small connected components.
There are, however, heuristic methods which enables larger components to be
solved. These heuristic methods can effectively reduce the instance size of the
problem and are fast in case a small number of edits is allowed [4].

References

1. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Social
network data analytics, pp. 243-275. Springer (2011)

2. Bocker, S., Baumbach, J.: Cluster editing. In: Conference on Computability in Eu-
rope. pp. 33—44. Springer (2013)

3. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training embeddings
of knowledge graphs and entity descriptions for cross-lingual entity alignment. arXiv
preprint arXiv:1806.06478 (2018)

4. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., Bocker, S.: Exact
and heuristic algorithms for weighted cluster editing. In: Computational Systems
Bioinformatics: (Volume 6), pp. 391-401. World Scientific (2007)

5. Saeedi, A., Nentwig, M., Peukert, E., Rahm, E.: Scalable matching and clustering
of entities with famer. Complex Systems Informatics and Modeling Quarterly (16),
61-83 (2018)

6. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving
embedding. In: ISWC. pp. 628-644. Springer (2017)

7. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs us-
ing attribute embeddings. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 297-304 (2019)

8. Weiss, G.M.: Mining with rarity: a unifying framework. ACM Sigkdd Explorations
Newsletter 6(1), 7-19 (2004)

9. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge
embeddings. In: IJCAIL vol. 17, pp. 4258-4264 (2017)

