
METHODS OF IMPROVING LLM TRAINING STABILITY

ABSTRACT

Training stability of large language models (LLMs) is an important research topic.
Reproducing training instabilities can be costly, so we use a small language model
with 830M parameters and experiment with higher learning rates to force models
to diverge, as in Wortsman et al. (2024). One of the sources of training instability
is the growth of logits in attention layers Dehghani et al. (2023). We extend the
focus of the previous work [Dehghani et al. (2023),Wortsman et al. (2024)] and
look not only at the magnitude of the logits but at all outputs of linear layers in
the Transformer block. We observe that with a high learning rate the L2 norm
of all linear layer outputs grow with each training step and the model diverges.
Specifically we observe that QKV, Proj and FC2 layers have the largest growth
of the output magnitude. This prompts us to explore several options: 1) apply
layer normalization not only after QK layers (as it is done in [Dehghani et al.
(2023), Wortsman et al. (2024)]) but after Proj and FC2 layers too; 2) apply layer
normalization after the QKV layer (and remove pre normalization). 3) apply QK
layer normalization together with softmax capping. We show that with the last
two methods we can increase learning rate by 1.5x (without model divergence)
in comparison to an approach based on QK layer normalization only Dehghani
et al. (2023). Also we observe significant perplexity improvements for all three
methods in comparison to the baseline model.

1 INTRODUCTION

Research of transformer models training stability has gained a lot of attention in recent years
[Chowdhery et al. (2024); Dehghani et al. (2023); Zhang et al. (2022); Touvron et al. (2021); Moly-
bog et al. (2023); Wortsman et al. (2023); Wortsman et al. (2024); Zhai* et al. (2023)]. Multiple
methods are proposed to improve model training stability. In Chowdhery et al. (2024), authors miti-
gate the issue by restarting training from a checkpoint roughly 100 steps before the spike in the loss
started, and skip roughly 200–500 data batches. In Zhang et al. (2022) authors eliminate a subset of
data as they found it increased the risk of instabilities. They also lower gradient clipping from 1.0 to
0.3. Training instability can be addressed by focusing on gradients with an optimizer [Molybog et al.
(2023); Wortsman et al. (2023)]. AdamW-Adafactor is recommended in Wortsman et al. (2023)] to
reduce loss spikes. One of the reasons for training instability is growth of logits in attention layers
[Zhai* et al. (2023); Dehghani et al. (2023)]. So [Henry et al. (2020), Dehghani et al. (2023)] pro-
pose layer normalization after Q and K layers in the transformer block. Touvron et al. (2021) add
learnable feature scaling after each residual block. That improves the training dynamic, allowing
them to train deeper high-capacity image transformers. Another method of improving training sta-
bility is based on σReparam Zhai* et al. (2023), which reparametrize the weights of a linear layer.
Towards the end of LLM training, output logits can diverge from the log probabilities Chowdhery
et al. (2024). So Chowdhery et al. (2024) propose to use additional loss: z loss to encourage the
softmax normalizer to be close to 0. They found it improves the training stability. Weight decay also
can be used to address model training divergence Wortsman et al. (2024).

One of the problems with exploring LLM training stability is the cost and time needed to reproduce
the issue. In Wortsman et al. (2024), the authors propose training a small language model with a
high learning rate to force the model to diverge early and simplify the analysis of training stability.
We use the same approach in this work. As in [Zhai* et al. (2023); Dehghani et al. (2023); Wortsman
et al. (2024)] we are focused on growth of logits in attention layers, but in addition we extend their
work and explore the growth of the outputs of all linear layers in the transformer block.

1



• We extend the previous work Wortsman et al. (2024) and analyze not only the magnitude
of the logits but all outputs of linear layers in the Transformer block. We show that during
divergence the L2 norm of output layers QKV, Proj and FC2 grow more than 2x in com-
parison to a converging model. This prompts us to explore several methods of improving
model training stability: 1) apply layer normalization not only after QK layers (as it is done
in [Dehghani et al. (2023), Wortsman et al. (2024)]) but after Proj and FC2 layers too; 2)
apply layer normalization after the QKV layer (and remove pre normalization); 3) apply
QK layer normalization together with softmax capping.

• We show that two methods 1) layer normalization after QKV layer (without pre normaliza-
tion); 2) combination of QK layer normalization together with softmax capping, allow to
increase learning rate by 1.5x (without model divergence) in comparison to a method based
on QK layer normalization only Dehghani et al. (2023). We also did thorough comparison
of these approaches with multiple baseline methods of improving LLM training stability:
σReparam, soft temp, soft cap, soft clip, LayerScale and QK norm.

• We show significant perplexity improvements (in comparison to the baseline model) with
four methods explored in this paper: 1) QK layer normalization QK 2) apply layer normal-
ization not only after QK layers (as it is done in [Dehghani et al. (2023), Wortsman et al.
(2024)]) but after Proj and FC2 layers too; 3) apply layer normalization after QKV layer
(and remove pre normalization); 4) apply QK layer normalization together with softmax
capping.

2 EXPERIMENTAL SETUP

We train a small version of an LLM with a similar experimental set-up as GPT-2 Radford et al.
(2019) implemented in Megatron Shoeybi et al. (2020). The model has 830M parameters with 24
transformer blocks (topology of a one transformer block is shown on Figure 1.) It has a hidden size
1024 with 16 attention heads. The model is trained on a subset of a 1T token dataset with batch size
512 and sequence length 4096 using 32 H100 GPUs H10. We use an Adam optimizer Kingma &
Ba (2015) with β1 = 0.9, β2 = 0.95 and gradient clipping at global norm 1. For learning rate, we
use a linear schedule for warmup (where number of warmup samples is 122071) and a cosine decay
schedule Loshchilov & Hutter (2017) for the remaining samples. We do not use weight tying of the
embedding and output layer. We use rotary positional embeddings Su et al. (2024). We use a weight
decay of 1e-1 and no dropouts. All linear layers (QKV, Proj, FC1, FC2 on Figure 1) process data
with bfloat16 precision. Weights in the optimizer are kept in float32 precision. Training data is a
mixture of diverse set of public and proprietary datasets. The dataset contains 53 human languages
and 37 programming languages. We use the SentencePiece tokenizer Kudo & Richardson (2018) to
process text data.

One transformer block is shown on Figure 1. It has a Multihead attention module followed by a
Feed Forward block (both have residual connections). The input sequence is processed by layer
normalization(LN) followed by linear layer QKV. It projects features to Q, K and V for self attention
computation in batched matmul (BMM1), Softmax and batched matmul(BMM2) layers. Its output
is projected by linear layer Proj. Feed Forward block has layer normalization followed by fully
connected layer FC1, activation function SquaredReLU So et al. (2021) and fully connected layer
FC2. None of the linear layers (QKV, Proj, FC1 and FC2) have additive bias. We label this model
as bf16 baseline.

3 MODEL DIVERGENCE ANALYSIS

As in Wortsman et al. (2024) we observe that with learning rate increase the probability of model
divergence grows too. For example on Figure 2 we show loss function with learning rate 6e-3 (model
converges, blue curve) and with learning rate 8e-3 (model diverges, black curve).

Transformer block (shown on Figure 1) has several linear layers: QKV, Proj, FC1 and FC2. Linear
layer takes input X, multiplies it with weights W and produces output Y. We use the above diverged
and converged models (their loss functions shown on Figure 2) and plot their statistics depending
on the training step in Table 1. We show how L2 norm of W, X, Y changes with every training step
for QKV, Proj, FC1 and FC2 layers. While we only show statistics from the 2nd Transformer block

2



Figure 1: Transformer Block of bf16 baseline model.

Figure 2: Example of training loss divergence/convergence (depending on training step).

here, the other Transformer blocks in the model had similar results. In Table 1 we see that with an
increase of learning rate, L2 norm of X and Y grow a lot when the model diverges. In Table 2 we
show input gradient explosion in QKV and FC1 layers. Note that the input gradient of FC2 and Proj
layers in the diverged model look similar to the converged one (no gradient explosion, so we do not
present it).

In Table 1 we show that the QKV layer has much higher magnitude output in divergent model in
comparison to the converging one (e.g. L2 norm is more than 3x higher at training step 4000). This
can create an issue with the softmax: its output can become almost one hot encoding, as reported in
[Zhai* et al. (2023); Dehghani et al. (2023); Wortsman et al. (2024)] For demonstration purposes,
let’s generate logits x from uniform distribution in range [-0.5. . . 0.5] and show the output of softmax
on Figure 3 (vertical axis is softmax output value, horizontal axis is an index of vector x, which has
16 values). We see that with increase of magnitude of x, output of softmax nears one hot encoding:
for example if magnitude of x is increased by 10x then almost all values become zero except 5 local
maximas (blue curve on Figure 3). If magnitude of x is increased by 40x then the output of softmax
becomes one hot encoding with only one non zero value (red dashed curve on Figure 3). This kind
of output in the softmax of the transformer can create issues with gradient propagation (as shown on
Table 2) and loss divergence during training (as shown on Figure 2 and also reported in [Dehghani
et al. (2023), Wortsman et al. (2024)].

4 METHODS OF IMPROVING MODEL TRAINING STABILITY

There are multiple options of dealing with Transformer training stability [Chowdhery et al. (2024);
Dehghani et al. (2023); Zhang et al. (2022); Touvron et al. (2021); Molybog et al. (2023); Wortsman
et al. (2023); Wortsman et al. (2024); Zhai* et al. (2023)]. This work is focused on improving
training stability by controlling the magnitude of linear layers outputs, including logits.

4.1 σREPARAM

σReparam Zhai* et al. (2023) is a method to reparameterize the weights of a linear layer with:

Ŵ =
γ

σ(W )
W, (1)

3



Table 1: L2 norm of W, X, Y for QKV, Proj, FC1 and FC2 layers (depending on training iteration)

Layer L2 norm of W L2 norm of X L2 norm of Y

QKV

Proj

FC1

FC2

where σ(W ) ∈ R is the spectral norm of W and γ ∈ R is a learnable parameter, initialized to 1. For
more details please refer to Zhai* et al. (2023). This approach influences the magnitude of the linear
layer weights and successfully prevents entropy collapse in the attention layers, promoting more
stable training. So we apply it on all linear layers of the Transformer block, shown on Figure 1.

4.2 SOFTMAX TEMPERATURE (soft temp)

Simple option of controlling logits magnitude (for improving model training stability with high
learning rate) is to use softmax temperature. For this method transformer block, shown on Figure 1,
computes attention logits and softmax weights as:

logit = 1√
d
(XWQ)((XWK))T , (2)

softmax[β ∗ logit],

where β is is the temperature of the softmax function Hinton et al. (2015); d is query/key dimension,
X is the input, WQ is the query weight matrix, and WK is the key weight matrix; and logit is the
output of block BMM1 on Figure 1. In our experiments we use β = 0.5 and label this approach as
soft temp.

4



Table 2: L2 norm of gradient in QKV and FC1 layers (depending on training iteration).
L2 of QKV gradient L2 of FC1 gradient

Figure 3: Softmax outputs.

4.3 SOFTMAX CAPPING (soft cap)

Another option of controlling magnitude of the logits is softmax capping [Bello et al. (2017), Team
et al. (2024)]. Transformer block, shown on Figure 1 (block Softmax), will use softmax capping as:

capped softmax(logit, capping) = softmax[tanh(logit/capping) ∗ capping], (3)

where capping is attention logit capping coefficient, logit is the output of block BMM1 on Figure 1
and defined by equation 2. Softmax capping can be interpreted as an adaptive method of softmax
temperature control. For example if we apply softmax capping (with capping=10) on uniform dis-
tribution x with magnitude 40 (discussed in section 3 and shown on Figure 3 as red curve), then the
output will be an orange curve (shown on Figure 3). As we can see, softmax capping will make the
output close to the softmax of x with magnitude 10 (blue curve on Figure 3). In our experiments
below, we use capping = 50 and label this approach as soft cap.

4.4 SOFTMAX CLIPPING (soft clip)

In Bondarenko et al. (2023) authors propose to replace softmax function on Figure 1 with the fol-
lowing clipped softmax:

clipped softmax(logit; ζ, γ) = clip[(ζ − γ) · softmax(logit) + γ, 0, 1]

where ζ ≥ 1, γ ≤ 0 are hyper-parameters of the method; logit is the output of block BMM1 on
Figure 1 and defined by equation 2. In this experiment we use ζ=1.03 and γ=-0.03. This approach
can improve model training stability: whenever softmax values are clipped they will not give a
gradient, preventing the outliers from growing further Bondarenko et al. (2023). We label this
method as soft clip.

5



4.5 LAYERSCALE

LayerScale Touvron et al. (2021) adds learnable feature scaling after every residual block. It does a
per-channel multiplication of the vector produced by each residual block, as shown on Figure 4. It is
a method of feature scaling: it does per channel multiplication of features with learnable parameters.
For more details please refer to Touvron et al. (2021).

Figure 4: LayerScale in Transformer block.

4.6 QK LAYER NORMALIZATION (QK norm)

In Dehghani et al. (2023) authors observe divergence training loss due to large values in attention
logits, which leads to (almost on-hot) attention weights in the output of the softmax. To address the
model divergence, [Dehghani et al. (2023), Henry et al. (2020)] propose to use layer normalization
to the queries and keys before the dot-product attention computation, as shown on Figure 5. We
label this method as QK norm.

Figure 5: QK layer normalization in Transformer block.

4.7 COMBINATION OF QK LAYER NORMALIZATION WITH SOFTMAX CAPPING
(QK norm cap)

QK layer normalization (discussed in section 4.6) controls magnitudes of Q and K features before
the dot product (computed in BMM1 block) and softmax. It improves model training stability as
shown in [Henry et al. (2020); Dehghani et al. (2023); Wortsman et al. (2024)]. Softmax capping,
discussed in section 4.3, controls the softmax temperature which also can be helpful for reducing
softmax sensitivity to large magnitude of input logits. So we hypothesize that combination of QK
layer normalization with softmax capping can compliment each other and further improve model
stability. That is why we combine both of these options as follows:

logit = 1√
d

LN(XWQ)(LN(XWK))T ,

capped softmax(logit, capping) = softmax[tanh(logit/capping) ∗ capping],

6



where LN stands for layer normalization, logit is the output of block BMM1 on Figure 5; capping is
described in section 4.3. We label this method as QK norm cap.

4.8 LAYER NORMALIZATION AFTER QKV LAYERS (QKV norm)

In the model with QK layer normalization (discussed in section 4.6) we apply layer normalization
before and after QKV linear layer. Given that we observe magnitude explosion in the output of QKV
layer, we hypothesize that layer normalization after QKV layer should address the issue and there
is no need to apply layer normalization before QKV layer, This approach is shown on Figure 6, we
labeled it as QKV norm. Similar idea was proposed in Menary et al. (2024).

Figure 6: Transformer block with added layer normalization after QKV layer (and removed LN
before QKV).

4.9 LAYER NORMALIZATION AFTER QK, PROJ AND FC2 LAYERS (QK FC norm)

In section 3 we observe that the magnitude of all linear layers of the diverging model is much higher
in comparison to the magnitude of the converging model. Particularly in layers: QKV, Proj and
FC2. It prompts us to apply layer normalization after the QK (as it was done in Dehghani et al.
(2023) and in addition use layer normalization after Proj and FC2 layers as shown on Figure 7. We
label this method as QK FC norm. Gemma2 Team et al. (2024) has similar topology (it applies pre
and post normalization on both attention and feed forward modules), but it does not have QK layer
normalization.

Figure 7: Transformer block with added layer normalization after QKV, FC2 and Proj layers.

5 EXPERIMENTAL RESULTS

As in Wortsman et al. (2024) we consider a model to be more stable if it can be trained with higher
learning rate without divergence. So we train a baseline bf16 model (shown in section 2) and models
presented in section 4, with different learning rates: 6e-3; 8e-3; 20e-3; 40e-3; 60e-3 and 80e-3 (with
the same initialization seed value). In Table 3 we report whether a model converges or diverges

7



Table 3: Models divergence/convergence depending on learning rate.
Method/LR 6e-3 8e-3 20e-3 40e-3 60e-3 80e-3

bf16 baseline ✓ x x x x x
soft temp ✓ ✓ x x x x
soft clip ✓ ✓ x x x x
σReparam ✓ ✓ ✓ x x x
LayerScale ✓ ✓ ✓ x x x

soft cap ✓ ✓ ✓ ✓ x x
QK norm ✓ ✓ ✓ ✓ x x

QK FC norm ✓ ✓ ✓ ✓ x x
QKV norm ✓ ✓ ✓ ✓ ✓ x

QK norm cap ✓ ✓ ✓ ✓ ✓ x

Table 4: Models perplexity with confidence interval ±0.1 at 95% level.
bf16 baseline soft cap QKV norm QK norm cap QK norm QK FC norm

11.19 11.24 10.85 11.00 10.84 10.87

(by checking validation loss function as described in section 3). We label model convergence and
divergence by ’✓’ and ’x’ accordingly.

First we present results of bf16 baseline with baseline methods of improving model training stabil-
ity: σReparam (section 4.1), soft temp (section 4.2), soft cap (section 4.3), soft clip (section 4.4),
LayerScale (section 4.5) and QK norm (section 4.6). In Table 3 we show that soft cap and soft clip
diverge at learning rate 20e-3. The σReparam and LayerScale diverge at learning rate 40e-3. Most
stable baseline models are soft cap and QK norm which diverge at learning 60e-3.

Layer normalization after QK, Proj and FC2 layers in method QK FC norm (presented in sec-
tion 4.9) does not improve model stability in comparison to QK norm and soft cap. Even though
QK FC norm normalizes the outputs of all linear layers, where we observed output magnitude ex-
plosion (discussed in section 3) it makes no difference in comparison to QK norm method. It sug-
gests that the main reason for divergence is in QK layers. This observation is aligned with Dehghani
et al. (2023). That is why in the experiments below we are focused on QKV layer only.

Our results show that QK FC norm method did not improve model training stability (in comparison
to QK norm). Instead, we hypothesize that combining QK norm with a non-layer-norm approach
can improve model stability: these techniques are addressing logits growth at different computation
stages and potentially can complement each other. In this paper we combined QK norm with soft
capping soft cap in QK norm cap model and observe that learning rate can be increased by 1.5x
without model divergence in comparison to the baseline QK norm Dehghani et al. (2023).

We hypothesize that application of two layer norm before and after the QKV layer in QK norm
method (shown in section 4.6) does not bring much value, so we propose to remove layer norm be-
fore QKV layer and add layer norm after QKV as discussed in section 4.8. This approach QKV norm
allows us to increase learning rate by 1.5x (without model divergence) in comparison to a method
based on QK norm.

We select a set of models: soft cap, QKV norm, QK norm cap, QK norm, QK FC norm (which
converge with learning rate 40e-3) and train them on 0.2T tokens with normal learning rate 3.0e-4.
So that we can estimate the impact of model stability improvements on its accuracy (we use per-
plexity as accuracy metric). Perplexity of the models are presented in Table 4. We show that model
with soft cap has no significant perplexity difference with the bf16 baseline model. We observe sig-
nificant perplexity improvements with QKV norm, QK norm cap, QK norm, QK FC norm models
in comparison to the bf16 baseline model.

8



6 CONCLUSION

We did thorough analysis of linear layers in a transformer block (when LLM was diverging) and
demonstrated that input activations and outputs of linear layers of a diverging model have much
higher L2 norms in comparison to a converging one. We also observed that QKV, Proj and FC2
layers have the largest output magnitude. This prompted us to apply layer normalization not only
after QK layers (as it was done in [Dehghani et al. (2023), Wortsman et al. (2024)]) but after Proj and
FC2 layers too in QK FC norm model, however this did not improve model stability in comparison
to QK norm method. This result led us to be focused on QK and QKV layers only. So we proposed
to combine QK norm with soft capping soft cap: these techniques are addressing logits growth at
different stages. We hypothesized that their combination(QK norm cap) can further improve model
stability by complementing each other. We observed that with QK norm cap, learning rate can be
increased by 1.5x (without model divergence) in comparison to a QK norm Dehghani et al. (2023).

We hypothesized that application of two layer norm before and after the QKV layer in QK norm
method (shown in section 4.6) does not bring much value: output of QK layers are already normal-
ized by QK layer norm and there is no need to also normalize the input of QKV layer (as it is done
in section 4.6). So we proposed to remove layer norm before QKV layer and add layer norm after
QKV as discussed in section 4.8. We observed that this approach QKV norm allowed us to increase
learning rate by 1.5x (without model divergence) in comparison to QK norm model.

We estimated perplexity of the most stable models, listed in Table 4 using normal training
mode with learning rate 3e-4. We observed significant perplexity improvements with QKV norm,
QK norm cap, QK norm, QK FC norm models in comparison to the bf16 baseline model.

The methods presented in this work improved model training stability on small language models
(830M parameters) with significant improvements in perplexity. A future focus is testing these
approaches on much larger models with more tokens and getting benchmark results for our new
model architectures.

REFERENCES

Nvidia h100 tensor core gpu. https://www.nvidia.com/en-us/data-center/h100/.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In 5th International Conference on Learning Repre-
sentations, ICLR 2017. OpenReview.net, 2017. URL https://openreview.net/forum?
id=Bk9mxlSFx.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Remov-
ing outliers by helping attention heads do nothing. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
sbusw6LD41.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, et al. Palm: Scaling language modeling with
pathways. J. Mach. Learn. Res., 2024. ISSN 1532-4435. URL https://arxiv.org/abs/
2204.02311.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, et al. Scaling vision transformers to 22
billion parameters. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
7480–7512. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
dehghani23a.html.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers, 2020. URL https://arxiv.org/abs/2010.04245.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

9

https://www.nvidia.com/en-us/data-center/h100/
https://openreview.net/forum?id=Bk9mxlSFx
https://openreview.net/forum?id=Bk9mxlSFx
https://openreview.net/forum?id=sbusw6LD41
https://openreview.net/forum?id=sbusw6LD41
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://proceedings.mlr.press/v202/dehghani23a.html
https://proceedings.mlr.press/v202/dehghani23a.html
https://arxiv.org/abs/2010.04245
https://arxiv.org/abs/1503.02531


Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. Association for
Computational Linguistics, 2018. doi: 10.18653/v1/D18-2012. URL https://arxiv.org/
abs/1808.06226.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=Skq89Scxx.

Stephen Menary, Samuel Kaski, and Andre Freitas. Transformer normalisation layers and the inde-
pendence of semantic subspaces, 2024. URL https://arxiv.org/abs/2406.17837.

Igor Molybog, Peter Albert, Moya Chen, et al. A theory on adam instability in large-scale machine
learning, 2023. URL https://arxiv.org/abs/2304.09871.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https:
//d4mucfpksywv.cloudfront.net/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, et al. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism, 2020. URL https://arxiv.org/abs/
1909.08053.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V
Le. Primer: Searching for efficient transformers for language modeling. In
Advances in Neural Information Processing Systems, volume 34, 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf.

Jianlin Su, Yu Lu, Shengfeng Pan, et al. Roformer: Enhanced transformer with rotary position
embedding. 2024. doi: 10.1016/j.neucom.2023.127063. URL https://arxiv.org/abs/
2104.09864.

Gemma Team, Morgane Riviere, Shreya Pathak, et al. Gemma 2: Improving open language models
at a practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Go-
ing deeper with image transformers. In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 32–42, 2021. doi: 10.1109/ICCV48922.2021.00010. URL https:
//arxiv.org/pdf/2103.17239.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, et al. Stable and low-precision training for
large-scale vision-language models. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=sqqASmpA2R.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, et al. Small-scale proxies for large-scale trans-
former training instabilities. In The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=d8w0pmvXbZ.

Shuangfei Zhai*, Tatiana Likhomanenko*, Etai Littwin*, Dan Busbridge*, Jason Ramapuram*,
Yizhe Zhang, Jiatao Gu, and Josh M. Susskind. Stabilizing transformer training by preventing
attention entropy collapse. In ICML, 2023. URL https://arxiv.org/abs/2303.06296.

Susan Zhang, Stephen Roller, Naman Goyal, et al. Opt: Open pre-trained transformer language
models, 2022. URL https://arxiv.org/abs/2205.01068.

10

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://arxiv.org/abs/2406.17837
https://arxiv.org/abs/2304.09871
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://proceedings.neurips.cc/paper_files/paper/2021/file/2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2408.00118
https://arxiv.org/pdf/2103.17239
https://arxiv.org/pdf/2103.17239
https://openreview.net/forum?id=sqqASmpA2R
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://arxiv.org/abs/2303.06296
https://arxiv.org/abs/2205.01068

	Introduction
	Experimental setup
	Model divergence analysis
	Methods of improving model training stability
	Reparam
	Softmax temperature (soft_temp)
	Softmax capping (soft_cap)
	Softmax clipping (soft_clip)
	LayerScale
	QK layer normalization (QK_norm)
	Combination of QK layer normalization with softmax capping (QK_norm_cap)
	Layer normalization after QKV layers (QKV_norm)
	Layer normalization after QK, Proj and FC2 layers (QK_FC_norm)

	Experimental results
	Conclusion

