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Abstract 
In this research, we propose a novel, 
neuro-inspired, unsupervised framework for 
constructing large-scale knowledge graphs 
(KGs) from Wikipedia. Unlike current expensive 
LLM-based approaches, our method builds a 
scalable, dynamic KG using entropy-based 
clustering, tree-like reasoning structures, and a 
specialized multi-granular embedding model. 
The foundation of our system is a 
custom-trained text embedding architecture 
that incorporates hierarchical Matryoshka 
representations, entropy-optimized contrastive 
learning, and Kantian Transcendental Category 
grounding. These embeddings provide the 
structured input for an unsupervised KG builder 
that simulates neural processes such as synaptic 
connection formation and pruning. The 
resulting KG will be interpretable, 
computationally efficient, and capable of 
evolving with Wikipedia’s ever-changing 
content. We believe this research will 
significantly contribute to knowledge 
organization within Wikimedia and enable new 
tools for reasoning, querying, and open data 
enrichment. 

Introduction 

The knowledge graphs (KG) are organized ways 
to show information. Such kind of graph-based  

 

Representations make it possible to store and 
get back data with complex relationships and 
hierarchies. Knowledge graphs are excellent for 
providing context, making entities clear, and 
helping with reasoning tasks, especially for 
AI-based applications and chatbots. 

 

Fig. 1: Knowledge Graph representation of entities 
of several types, like individuals, places, and dates. 

The problem this project addresses is the lack of 
cost-effective, scalable methods for constructing 
and maintaining large knowledge graphs from 
Wikipedia. The majority of KG constructors 
currently in use are LLM-based, and despite 
their strength, they are unaffordable when used 
on millions of articles. Moreover, they often lack 
transparency in how knowledge is structured 
and inferred, limiting their use in contexts 
where auditability and explainability are 
essential, such as Wikimedia’s ecosystem. 
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This gap is critical. Wikipedia holds vast 
unstructured knowledge, but Wikidata only 
represents a fraction of this information. 
Bridging this gap through scalable KG 
construction can 

- Enable intelligent assistants and bots to access 
structured knowledge.​
- Support advanced semantic search across 
Wikipedia.​
- Automatically enrich Wikidata with verified 
facts.​
- Provide a foundation for open-domain 
reasoning engines. 

Our research question is: How can we build a 
computationally efficient, interpretable, and 
dynamically evolving knowledge graph of 
Wikipedia using unsupervised, neuro-inspired 
learning and customized embedding strategies? 

Date: We propose a full 24-month timeline 
(starting at July 1, 2025, and ending at June 30, 
2027) to comprehensively address the research 
goals and ensure high-quality, scalable 
outcomes. The project is divided into two major 
phases: 
 
Year 1 (July 2025 – June 2026): Specialized 
Embedding Model Development. 
During this phase, we will focus on designing 
and training a BERT-based text embedding 
model tailored specifically for Wikipedia and 
knowledge graph construction. The process 
includes integrating granular knowledge  
representations, transcendental category 
context, entropy-based fine-tuning, and 
contrastive learning. Extensive evaluation and 
tuning will be carried out using established 
semantic benchmarks. 
 
Year 2 (July 2026 – June 2027): Neuro-Inspired 
Knowledge Graph Construction. 
In the second year, the trained embeddings will 
be used as input to a fully unsupervised, 

tree-based and entropy-driven graph 
construction engine. We will implement and 
optimize our neuro-inspired reasoning 
framework, build and evaluate the large-scale 
KG, develop visualization and querying tools, 
and prepare the public API and open-source 
toolkit for community adoption. 
 
This extended timeline ensures each research 
component receives focused attention and that 
the resulting system is stable, reproducible, and 
impactful for the Wikimedia ecosystem. 

Related work 
Constructing large-scale knowledge graphs 
from unstructured textual sources, such as 
Wikipedia, is a critical step toward enabling 
advanced knowledge retrieval, semantic search, 
multi-hop question answering, and structured 
data enrichment. While this problem has been 
studied across various paradigms, each method 
involves trade-offs between accuracy, cost, 
interpretability, and scalability. 
 
LLM-Based Knowledge Graph Builders. Large 
Language Models (LLMs) are often used in the 
current state-of-the-art in KG construction to 
directly extract entity-relation triples from text. 
Tools like Neo4j’s LLM Graph Builder [1] are 
capable of generating accurate, richly 
contextualized relationships. However, these 
systems are prohibitively expensive at the scale 
of the full Wikipedia corpus. Each article 
requires multiple model passes to extract 
structured data, leading to​
 
- High inference cost per article, 
- Infeasibility of full-corpus processing, 
- Opaque decision-making and low 
explainability. 
 
Thus, while LLMs are ideal for prototyping or 
small-scale applications, they remain unsuitable 

2 



 

for economically maintaining an up-to-date 
knowledge graph for Wikipedia. 
 
Lazy and Hybrid Pipelines. To address cost 
concerns, hybrid methods such as 
LazyGraphRAG (Microsoft Research) [2] have 
emerged. These systems strategically minimize 
LLM usage by deploying lighter-weight 
operations for most content and reserving LLM 
calls for ambiguous or high-priority content. 
LazyGraphRAG achieves considerable cost 
savings while maintaining respectable 
extraction quality. However, it still inherits some 
weaknesses from LLM-centric designs, 
particularly in terms of reliance on pre-trained 
models and ongoing API costs. Furthermore, its 
hybrid architecture increases pipeline 
complexity and introduces new integration risks 
at scale. 
 
TF-IDF-Based Knowledge Graph Construction. 
Classic statistical approaches such as 
TF-IDF-based KG construction [3] remain 
attractive due to their simplicity, computational 
efficiency, and domain-agnosticism. These 
methods identify key terms and 
co-occurrence-based relationships to bootstrap 
a graph from large corpora. However, they 
suffer from semantic shallowness, failing to 
distinguish between homonyms or subtle 
conceptual overlaps, which limits their 
usefulness for deep knowledge representation. 
 
Agent-Oriented Temporal KG Models. 
Recent research has introduced agent-centric 
knowledge graph systems such as Graphiti [4], 
which supports temporally aware and 
incrementally updated knowledge structures. 
Graphiti excels at modeling state-based 
reasoning, dynamic memory updates, and 
context-aware search, capabilities useful for AI 
agents and enterprise applications. However, 
despite its efficiency in graph updating and 
retrieval, Graphiti still integrates LLMs during 
ingestion stages, making it costly for large-scale, 

continuous updates like those required by 
Wikipedia. 

Our proposed research fills a critical gap in this 
landscape: 

- It does not depend on LLMs for extraction, 
avoiding high costs and black-box reasoning.​
- It goes beyond statistical keyword matching by 
training domain-specific embeddings that 
capture deep semantics and hierarchical 
structures.​
- It innovates on top of brain-inspired models by 
developing a custom, entropy-driven KG 
builder optimized for large-scale dynamic 
knowledge representation.​
- It is fully unsupervised, dynamically 
updatable, and computationally efficient. 

This project introduces a novel architecture for 
constructing large-scale, unsupervised 
knowledge graphs that are both scalable and 
semantically meaningful. By addressing the 
limitations of existing methods in cost, 
interpretability, and adaptability, it aims to set a 
new standard for open-domain knowledge 
representation. While this approach offers 
significant advantages in efficiency and 
transparency, it also presents challenges, such 
as ensuring semantic richness without LLMs 
and managing structural complexity at scale. 
The following section outlines our methodology 
for meeting these challenges. 

Methods 
To address the challenges of constructing a 
dynamic, interpretable, and semantically rich 
large-scale knowledge graph (KG) from 
Wikipedia, we propose a two-step research 
architecture:​
 
1. Designing an entropy-based, tree-structured 
graph builder that incrementally organizes 
Wikipedia knowledge with neural-like behavior. 
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2. Developing enhanced text embeddings 
capable of supporting unsupervised structure 
formation. 

 
This architecture draws inspiration from 
brain-mimetic learning systems, entropy 
optimization, and epistemological grounding to 
construct a system that is both computationally 
efficient and cognitively interpretable. 
 
1. Large-Scale Knowledge Graph 
Construction 
At the core of our KG construction is a custom 
unsupervised clustering and node evolution 
system. Rather than using LLMs for relation 
extraction, we adapt decision-tree-inspired 
methodologies, tailored for text embeddings, to 
incrementally build and evolve the graph. 
 
1.1 Architectural Inspirations and Design 
We draw main ideas and core concepts 
selectively from the following models: 
 
Isolation Forests [5]. Efficient for unsupervised 
anomaly detection, isolation-based heuristics 
are useful in identifying "concept boundaries" in 
vector space, which we adapt for identifying 
when new nodes should be created or existing 
clusters split. 
​
Unsupervised Decision Trees. XAI Clustering [6] 
and Hierarchical Tree Clustering [7] construct 
decision trees without labeled supervision by 
using feature distributions and splitting criteria 
derived from intra-cluster variance or 
interpretability objectives. We adapt their core 
idea of interpretable rule-based cluster 
formation, applying it to high-dimensional text 
embeddings to form hierarchical structures that 
reflect conceptual granularity (e.g., topic → 
subtopic → article section). 
 

Fuzzy Decision Trees [8]. We incorporate fuzzy 
logic principles in early prototypes to handle 
overlapping or ambiguous conceptual clusters. 
 
Online Learning for Decision Trees. Online tree 
learning [9] allows the structure to evolve 
incrementally as new data arrives. We apply this 
methodology to simulate the “live” evolution of 
Wikipedia: as articles are added or updated, our 
system dynamically refines, splits, or merges 
nodes in the KG. The method supports 
scalability and avoids expensive retraining. 
 
Neural Decision Trees [10]. These offer 
hierarchical clustering with differentiable split 
criteria. We do not adopt their full architecture 
but borrow the concept of adapting boundaries 
through online learning, useful in managing 
high-dimensional semantic data. 
 
Brain-inspired Cortical Coding (.BIC) [11]. This 
framework guides the maturation or pruning of 
representational nodes, analogous to synaptic 
plasticity. .BIC inspires our entropy-driven node 
management, where nodes grow, merge, or 
forget based on information utility over time. 

 

 
Fig. 2: Biological neurons (a) and their equivalents 
(b) in the Brain-Inspired Coding system.   
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1.2 Node Structure and Growth Behavior 
Each node in the KG represents a latent concept 
composed of semantically similar Wikipedia 
text segments. Nodes evolve through: 
 
Maturation. Frequently referenced or 
semantically central nodes mature, forming 
stable hubs. 
 
Propagation. Matured nodes can branch to form 
child nodes when semantic variance within 
grows beyond a set entropy threshold. 
 
Pruning. Nodes with low activity or minimal 
connectivity are removed—simulating 
“forgetting” and reducing noise. 
Node connections are formed based on 
similarity, co-occurrence, and entropy 
minimization. The graph topology is maintained 
in a 3D relational format, echoing biological 
synaptic wiring, enabling both semantic 
(type-based) and spatial (contextual) queries. 
 
1.3 Output Format and Tooling 
The resulting knowledge graph will be 
structured for interoperability and scalability, 
with the following characteristics: 
- Typed Nodes: Each node represents a distinct 
entity or concept, categorized into types such as 
Person, Place, Event, Concept, etc. 
- Labeled, Weighted Edges: We label 
relationships between nodes (e.g., is_related_to, 
subclass_of, caused_by) and assign weights 
based on semantic strength or frequency. 
- Export Formats: The full graph will be 
exportable in standard formats including Neo4j, 
RDF, and JSON-LD, supporting integration with 
Wikidata and Linked Open Data tools. 
- Temporal Metadata: Nodes and edges will 
include time-aware annotations (e.g., 
last_updated, source_revision_id) to track 
provenance, support revision monitoring, and 
enable knowledge aging or decay mechanisms. 

 

2. Enhanced Text Embeddings for 
Graph Support 
To ensure that our graph builder works 
efficiently with high-dimensional semantic 
input, we first build a custom BERT-based 
embedding model tailored to the Wikipedia 
domain and graph clustering requirements. 
ModernBERT [12] is the most recent model, 
suggested for fine-tuning cases. 
 
2.1 Motivation 
Many unsupervised tree-based methods struggle 
with high-dimensional input vectors (e.g., 
768–1536 dimensions). Rather than 
overcomplicating the clustering logic, we 
optimize the embedding vectors to be 
- Multi-granular, 
- Entropy-regularized, 
- Domain-specific, 
- Conceptually structured. 
 
2.2 Innovations and Integrations 
Matryoshka Representation Learning [13]. 
We use MRL to encode hierarchical semantic 
levels within a single embedding. This 
technique allows the graph builder to “zoom in” 
or “out” depending on node granularity, which 
supports flexible tree growth and merging. 

 
Fig. 3: Different hierarchical components of 
Matryoshka Embeddings can be used in different 
levels of knowledge graphs.  
 
Domain-Specific Fine-Tuning [14]. Using Google 
Vertex AI’s parameter-efficient embedding 
tuning, we fine-tune embeddings on Wikipedia 
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sections with weak supervision (e.g., article 
categories or linked Wikidata entities) to 
improve clustering fidelity. 
 
Kantian Transcendental Categories [15]. 
Inspired by UPAR [16], we prompt an LLM to 
annotate or guide fine-tuning with Kant’s four 
categories (quantity, quality, relation, modality), 
giving our embeddings an a priori conceptual 
scaffolding that generalizes well across 
domains. This idea may work synergistically 
with MRL embeddings and provide contextual 
metadata to their granular levels.  

 
Fig. 4: Extracting Kantian context for texts using 
LLMs. 
 
Entropy-Enriched Embeddings. MinEnt [17] 
applies an auxiliary entropy minimization loss 
during training to force more decisive 
representations. This technique may support 
more stable clustering and meaningful splits in 
the KG construction step. 
 
Contrastive Learning Enhancements. 
Contrastive learning trains embeddings to pull 
semantically similar texts closer and push 
dissimilar ones apart, improving their 
clustering and retrieval quality. We can borrow 
ideas from GTE [18] for multi-stage 
unsupervised/supervised training, 
LLM-Synthetic Contrast [19] for generating 
pseudo-positive/negative pairs for Wikipedia 
segments without manual labels, and E5 [20] for 
mining Wikipedia hyperlinks and section 
co-occurrence as weak supervision to construct 

training pairs for large-scale contrastive 
pre-training. 

2.3 Embedding Output Features 

The final embedding model is designed to 
produce multi-resolution Matryoshka vectors, 
enabling flexible representation across different 
levels of semantic granularity. It is fine-tuned 
specifically on Wikipedia content to capture 
domain-specific semantics and contextual 
nuances unique to encyclopedic text. 
Additionally, the model integrates Kantian 
transcendental structure, allowing it to support 
reasoning-aware categorization inspired by 
foundational concepts in epistemology. To 
enhance clarity and robustness, the embeddings 
are both entropy-regularized and 
contrastive-hardened, ensuring semantic 
distinctiveness and reduced noise. The output 
can be extracted at varying levels (entity-level, 
sentence-level, paragraph-level, and 
article-level), providing adaptable input for 
downstream graph construction and analysis. 

3. Data and Experimental Design 

3.1 Data Collection 

Our primary data source will be a curated dump 
of the English Wikipedia, comprising 
approximately 5 million articles. Each article 
will be segmented into structured components 
such as sections, infoboxes, and references to 
capture both narrative and factual content. For 
development and evaluation purposes, we will 
first work with a benchmark subset of around 
50,000 high-activity articles. This subset will 
allow us to prototype the embedding and graph 
construction pipelines efficiently before scaling 
to the full corpus. 
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3.2 Experimental Setup 

Our experiments will follow the two-stage 
process outlined in the Methods section: (1) 
embedding model training and (2) unsupervised 
knowledge graph construction. The primary 
focus will be algorithmic development and 
generative data processing, carried out using 
high-performance hardware on-premise. We 
deliberately avoid using cloud infrastructure 
due to the large volume of data involved, which 
could lead to substantial and unsustainable 
costs over time. 

 

Phase​  Tools Tasks 

Embedding 
Training 

PyTorch + 
Hugging Face 
+ Vertex AI 

Fine-tune 
BERT with 
custom 
objectives 

Graph 
Construction 

Custom 
Python 
modules + 
Neo4j + 
NumPy 

Online 
clustering, 
node 
evolution 

Evaluation FAISS, MTEB, 
BEIR, graph 
stats 

Benchmark 
retrieval and 
clustering 
quality 

Table 1: Some of the proposed experiments for our 
methodology. We may add more experiments during 
the project. 

The experimental infrastructure includes two 
H200 GPUs (or equivalent) to support 
embedding fine-tuning and LLM-based 
pseudo-label generation, as well as a 
high-memory compute node (≥ 256 GB RAM) 
dedicated to processing and maintaining the 
evolving knowledge graph. We will also utilize 
scalable object storage to manage article 
dumps and persist large graph outputs. 

The software stack includes Python, PyTorch, 
Hugging Face Transformers, Neo4j for graph 
storage and querying, and FAISS for similarity 
search. We will optionally utilize Google Cloud 
Vertex AI for embedding tuning during 
early-stage development. All components of the 
pipeline will be containerized using Docker to 
ensure reproducibility and portability across 
different systems. 

Expected output 
Our project will deliver several tangible and 
impactful outputs for both the Wikimedia 
ecosystem and the broader research 
community: 
1. Public Embedding Model. 
Audience: Wikimedia developers, researchers 
Benefit: A reusable, domain-specific text 
embedding model optimized for semantic 
structure, tailored to Wikipedia content and 
knowledge graph use cases. 
 
2. Wikipedia-Scale Knowledge Graph. 
Audience: Wikidata maintainers, research 
communities, automated agents 
Benefit: A scalable and interpretable graph of 
millions of facts, entities, and concepts 
extracted from Wikipedia in a cost-efficient and 
explainable manner. 
 
3. Open-Source KG Builder. 
Audience: AI/ML and NLP researchers 
Benefit: A low-cost alternative to LLM-based 
knowledge graph extraction pipelines, based on 
unsupervised decision trees and entropy-driven 
node evolution. 
 
4. Demo Dashboard. 
Audience: Wikimedia editors 
Benefit: An interactive tool to visualize, query, 
and explore the knowledge graph, supporting 
editorial tasks such as fact-checking, linking, 
and content expansion. 
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5. Research Publications. 
Audience: Communities in NLP, Knowledge 
Graph Construction (KGC), and 
Human–Computer Interaction (HCI) 
Benefit: Contributions to the theory and 
practice of domain-specific embeddings, 
contrastive training, and large-scale 
unsupervised graph learning. 
 
6. PhD Dissertation Output. 
Audience: Academic reviewers, AI research 
community 
Benefit: This project constitutes the core of a 
computer science PhD thesis by Mustafa 
Abdullah Hakkoz, contributing to the academic 
understanding of neuro-inspired unsupervised 
knowledge modeling. 
 
Additionally, we will produce documentation, 
reproducible code, and cost-comparison 
benchmarks showing up to 10x–100x savings 
over traditional LLM-based KG builders, 
validating the practical advantages of our 
approach. 

Risks 
Several challenges may arise throughout the 
execution of this project, given its reliance on 
advanced embedding techniques and 
unsupervised graph modeling at scale. 
 
One key risk is that the embedding model may 
underperform, either due to suboptimal 
hyperparameters or insufficient semantic 
separation in the training data. To mitigate this, 
we will apply iterative tuning, expand the 
training dataset with additional Wikipedia 
content, and fall back to well-established 
open-source models if needed. 
 
Another potential issue is that tree-based graph 
builders may struggle with high-dimensional 
embedding vectors, especially when dealing 
with subtle semantic differences. To address 

this, we will employ multi-resolution 
(Matryoshka) embeddings, consider 
dimensionality reduction techniques, and 
reinforce node separability using hybrid 
contrastive learning strategies. 
 
The evolving nature of Wikipedia introduces the 
risk of domain drift, where newly added or 
updated content diverges from patterns learned 
during model training. We plan to integrate 
temporal context vectors and periodic 
re-embedding of updated content to help the 
graph adapt and stay current with editorial 
changes. 
 
Lastly, scaling the graph builder to the entire 
Wikipedia corpus poses significant 
computational demands. We will mitigate these 
issues by developing the system incrementally, 
starting with smaller benchmark subsets, 
processing data in batches, and validating the 
architecture’s efficiency before scaling up to 
full-scale runs. 

Community impact plan 
This project offers a transformative contribution 
to the Wikimedia ecosystem by introducing a 
scalable, interpretable, and cost-effective 
approach to constructing a Wikipedia-scale 
knowledge graph (KG). Unlike traditional 
LLM-based systems, which are computationally 
expensive and opaque, our neuro-inspired, 
unsupervised framework enables the creation of 
verifiable and dynamic knowledge structures 
aligned with Wikimedia’s core principles of 
transparency, openness, and adaptability. 
 
Each node and relationship in the KG is 
generated through explainable rules based on 
entropy-driven clustering and semantic 
coherence, providing clear justification for 
connections between concepts. This design 
supports Wikimedia’s goal of maintaining 
auditable and trustworthy knowledge. 
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The outputs of this project map directly to many 
Wikimedia use cases. To maximize real-world 
adoption and community engagement, we are 
implementing a focused community impact 
strategy: 
 
1. The Wikipedia-scale KG can enhance 
Wikidata through structured suggestions for 
entity relationships, subclass hierarchies, and 
temporal data. 
 
2. We will integrate the KG outputs into 
Wikidata ingestion workflows, allowing both 
bots and human editors to semi-automatically 
enhance structured data coverage. 
 
3. The public domain-specific embedding 
model enables Wikimedia developers and tool 
builders to perform semantic similarity search, 
entity linking, and fact retrieval more 
effectively. 
 
4. The open-source KG builder offers a 
reusable, low-cost alternative for creating and 
updating knowledge graphs across multiple 
Wikimedia projects. 
 
5. A visual dashboard allows editors to explore 
entity neighborhoods, uncover related topics, 
identify semantic gaps, validate page 
relationships, and support more cohesive and 
richly interlinked article development. 
 
6. We will host online workshops tailored for 
Wikimedia volunteers, editors, and developers 
to introduce KG-assisted editing, graph 
querying, and embedding-based 
recommendations. 
 
7. The project will also generate a computer 
science PhD dissertation along with two 
research papers, advancing academic research 
on knowledge representation, embeddings, and 
unsupervised learning at web scale. 

 
8. All code, models, and documentation will be 
released under permissive open-source 
licenses (MIT and CC BY-SA), allowing for 
transparent reuse, auditing, and long-term 
maintenance. 
 
By bridging state-of-the-art unsupervised 
learning with practical Wikimedia needs, this 
project not only contributes technically but also 
empowers the global Wikimedia community 
with new tools for structuring, curating, and 
expanding the world’s largest collaborative 
knowledge base. 

Evaluation 
We will evaluate the success of this project 
based on four core criteria: embedding quality, 
graph coverage and structure, computational 
efficiency, and Wikimedia utility. Embedding 
performance will be measured using standard 
benchmarks such as MTEB and BEIR, while 
ablation studies will help isolate the impact of 
specific design choices. The quality of the 
knowledge graph will be assessed through its 
coverage of Wikipedia concepts, coherence of 
clustered entities, and its ability to evolve with 
new content. We will compare our system’s cost 
and runtime against LLM-based baselines to 
validate its efficiency and scalability. Finally, 
community impact will be gauged by feedback 
from editors using the graph interface, 
adoption of our open-source tools, and 
integration into Wikimedia workflows. Success 
will be defined by the delivery of a public 
embedding model, a large-scale interpretable 
KG, and clear uptake by the Wikimedia 
community. 

Budget 
Use the Wikimedia Foundation’s budget [21] Our 
total project budget is $150,000 USD, detailed in 
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the Wikimedia Foundation budget template. The 
budget includes 
- Personnel Support: $36,000 for 3 researchers 
over 24 months. 
- Dissemination Activities: $600 for presenting 
at Wikimania and $5,000 for open-access 
publishing. 
- Compute Resources: $108,400 for 2× NVIDIA 
H200 GPUs, a GPU server, and a high-memory 
compute node with 24TB storage. 
 
Why do we purchase hardware instead of 
renting or using cloud services? Building 
Wikipedia-scale knowledge graphs and training 
custom embeddings require intensive GPU 
compute and large storage capacity. Renting 
equivalent cloud infrastructure (e.g., H100/H200 
GPUs with 20+ TB storage) can cost tens of 
thousands of dollars monthly and limits 
long-term access. In contrast, purchasing 
hardware offers unlimited usage, full control 
over performance and data, and sustainability 
for future Wikimedia-aligned research. It also 
ensures reproducibility and avoids recurring 
costs. 
 
Why is hardware pricier in Turkey? While GPU 
prices in the U.S. are already high (e.g., ~$32,000 
per H200), the cost in Turkey increases 
significantly due to a 20% VAT and 8% customs 
tax on imported electronics. Combined with 
currency fluctuations and market markups, 
hardware costs can be 30% above U.S. retail 
prices. Despite this, local purchase remains the 
most practical and transparent option for 
sustained, secure research infrastructure due to 
extended guarantee services. 
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