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Abstract

A combinatorial intervention, consisting of multi-
ple treatments applied to a single unit with poten-
tially interactive effects, has substantial applica-
tions in fields such as biomedicine, engineering,
and beyond. Given p possible treatments, conduct-
ing all possible 2p combinatorial interventions can
be laborious and quickly becomes infeasible as
p increases. Here we introduce the probabilistic
factorial experimental design, formalized from
how scientists perform lab experiments. In this
framework, the experimenter selects a dosage for
each possible treatment and applies it to a group
of units. Each unit independently receives a ran-
dom combination of treatments, sampled from a
product Bernoulli distribution determined by the
dosages. Additionally, the experimenter can carry
out such experiments over multiple rounds, adapt-
ing the design in an active manner. We address the
optimal experimental design problem within an
intervention model that imposes bounded-degree
interactions between treatments. In the passive
setting, we provide a closed-form solution for
the near-optimal design. Our results prove that
a dosage of 1/2 for each treatment is optimal up
to a factor of 1 + O(ln(n)/n) for estimating any
k-way interaction model, regardless of k, and im-
ply that O

(
kp3k ln(p)

)
observations are required

to accurately estimate this model. For the multi-
round setting, we provide a near-optimal acquisi-
tion function that can be numerically optimized.
We also explore several extensions of the design
problem and finally validate our findings through
simulations.
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1. Introduction
In many domains, it is often of interest to consider the si-
multaneous application of multiple treatments/actions. For
example, in cell biology, perturbing several genes is often
necessary to induce a transition in cell state (Takahashi &
Yamanaka, 2006). While a single treatment is constrained to
a limited range of possible effects, a combinatorial interven-
tion – comprising multiple treatments applied to the same
unit – can result in a much wider array of outcomes. Much
of this potential stems from the interactive effects between
treatments, rather than merely the additive contributions of
each. For example, perturbing paralogs (a pair of genes) can
have a surprisingly larger effect than the sum of perturbing
each gene individually, as one gene may compensate for the
other, and only perturbing both simultaneously will effec-
tively disrupt the pathway (Koonin, 2005). However, these
interactions make the study of combinatorial interventions
considerably more challenging than understanding single
interventions alone, as each set of treatments may exhibit
distinct interactions.

From the design perspective, the problem of testing com-
binatorial interventions to analyze the combined effects of
various treatments is known as a factorial design (Fisher
et al., 1966). Given p possible treatments with large p, it
is often infeasible to conduct all possible 2p combinatorial
interventions, which corresponds to a full factorial design.
To address the scalability challenge, fractional factorial de-
signs are introduced, which test only a subset of possible
combinations. However, selecting this subset is difficult
when prior knowledge is limited. Choosing a suboptimal
subset may lead to a biased understanding of the experimen-
tal landscape. In addition, performing a large and specified
subset of combinatorial interventions can be laborious and
impractical, as each combination must be precisely assem-
bled. In the perturbation example, this involves synthesizing
a unique guide sequence for each combination that targets
the specific genes involved (Rood et al., 2024). However,
when the combination size is large, this becomes infeasible
as a longer guide sequence may lack sufficient penetrance to
effectively enter the targeted cells. To tackle these issues, we
here formalize and study a scalable and unbiased approach
to design factorial experiments.

Inspired by how scientists perform library designs in the
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lab (Yao et al., 2024), we introduce probabilistic factorial
experimental design. In this framework, the experimenter
selects a dosage for each possible treatment and applies
it to a group of units. Each unit independently receives a
random combination of treatments, sampled from a product
Bernoulli distribution determined by the specified dosages.
In the perturbation example mentioned above, this setup for-
malizes a high-multiplicity of infection (MOI) perturbation
experiment (Yao et al., 2024), where multiple perturbations
are applied at various MOI to a plate of cells, and each cell
receives a combination of perturbations randomly. The in-
troduction of a probabilistic design via dosages allow us to
interpolate between an unbiased but expensive full factorial
design and a relatively scalable but restricted fractional fac-
torial design. By adjusting the dosages, we can effectively
scale up a full factorial design by controlling the proportion
of units receiving each combination in a realistic manner.
Crucially, this approach remains unbiased as it does not re-
quire restricting the experiment to a predetermined subset of
treatments. The question is then how to optimally design the
dosages, e.g., in order to efficiently learn the interactions.

Contributions. Our contributions are summarized below.

• We propose and introduce the probabilistic factorial
design, motivated by library design experiments in the
lab (section 3.1). This setup assumes that treatments
are randomly assigned to a group of units according to
a prescribed dosage vector. It provides a scalable and
flexible approach to implement factorial experiments,
which we show to encapsulate both full and fractional
factorial designs as special cases.

• Within this framework, we address the problem of op-
timal experimental design, which involves optimizing
the dosage vectors based on a given objective. Our
main focus is on learning the underlying combinatorial
intervention model using a Boolean function represen-
tation assuming bounded-order interactions.

– In the passive setting (section 4.2), we prove that
assigning a dosage of 1/2 to each treatment is
near-optimal for estimating any k-way interac-
tion model, leading to a sample complexity of
O(kp3k ln(p)).

– In the active setting (section 4.3), we introduce
an acquisition function that can be numerically
optimized and demonstrate that it is also near-
optimal in theory.

• We explore several extensions to the design problem,
including constraints on limited supply, heteroskedas-
tic multi-round noise, and emulation of a target com-
binatorial distribution (section 5). Finally, we validate
our theoretical findings through simulated experiments
(section 6).

2. Related Works
Factorial design. Factorial experimental design has been
extensively studied for its efficacy in evaluating multiple
treatments simultaneously. Classical methods include full
and fractional factorial designs (Fisher et al., 1966), and
have been applied to various applications in biology, agri-
culture, and others (c.f., (Hanrahan & Lu, 2006)). Full fac-
torial design considers all possible treatment combinations,
where each treatment may have multiple levels (Deming &
Morgan, 1993; Lundstedt et al., 1998; Dean & Voss, 1999).
These experiments are sometimes conducted in multiple
blocks, where each block is expected to have a controlled
condition of external factors and contains one replicate of
either all or partial combinations. When the number of total
treatments increases, conducting such experiments quickly
becomes infeasible. In these cases, fractional factorial de-
sign are preferred where a subset of carefully selected treat-
ment combinations are tested (Gunst & Mason, 2009). A
2−m fractional design is one where 2p−m samples are used,
each with a different combination (Box et al., 1978). These
combinations are carefully selected to minimize aliasing.
Aliasing occurs when, for the combinations selected, the
interactions are linearly dependent (Gunst & Mason, 2009;
Mukerjee & Wu, 2007). In a full factorial design, there is
linear independence, so there is no confounding when the
model is fit. In a fractional design, some aliasing will always
occur in a full-degree model; however, methods proposed in
the literature select combinations such that the aliasing of
important effects (i.e. degree-1 terms) does not occur (Gunst
& Mason, 2009). With little prior knowledge, it is common
to assume that low-order effects are more important than
higher-order interactions and select designs to focus on low-
order effects (Cheng, 2016). With a low-degree assumption,
aliasing can be avoided entirely. Fractional designs can be
classified by their resolution (denoted by R), which deter-
mines which interactions can be potentially confounded.
For example, a Resolution V fractional design eliminates
any confounding between lower than degree-3 interactions,
appropriate for degree-2 functions (Montgomery, 2017). Of
particular interest in literature are minimum aberration de-
signs, which minimize the number of degree-l terms aliased
with degree-R − l terms (Fries & Hunter, 1980; Cheng,
2016). However, scalability to high-dimensional problems
remains a challenge, and efficient sampling methods such as
Bayesian optimization are proposed (Mitchell et al., 1995;
Kerr, 2001; Chang & Cheng, 2018).

The probabilistic setting proposed in this paper serves as a
flexible realization of a factorial design that automatically
generates a design resembling either a full factorial or a frac-
tional factorial design, depending on the selected dosages.
We formally discuss this in section 3.1.
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Learning combinatorial interventions. Modeling com-
binatorial interventions is crucial for understanding their
interactions and designing experiments. There are multi-
ple ways to model such interventions, often by imposing
structures that relate different combinations. For example,
the Bliss independence (Bliss, 1939) and Loewe additivity
(Loewe, 1926) models are commonly used to describe addi-
tive systems where no interactions between treatments are
assumed.

An alternative approach is to use a structural causal model
(SCM) and the principal of independent causal mechanisms
(Eberhardt, 2007; Eberhardt & Scheines, 2007). In particu-
lar, this assumes that (1) each single-variable intervention
alters the dependency of that variable on its parent vari-
ables according to the SCM, and (2) a combinatorial in-
tervention modifies each involved variable according to its
respective single-variable intervention and then combines
these changes in a factorized joint distribution. Within this
framework, various types of interventions, including do-,
hard-, and soft-interventions, can be defined (e.g., (Correa
& Bareinboim, 2020; Zhang et al., 2023)). However, simi-
lar to the Bliss independence and Loewe additivity models,
SCM-based approaches cannot capture interactions between
treatments.

To model such interactions, one can use a generalized sur-
face model, which can be instantiated via polynomial func-
tions (Lee, 2010) or Gaussian processes (Shapovalova et al.,
2022). Alternatively, Boolean functions provide another
modeling framework (Agarwal et al., 2023a), where theo-
retical tools such as the Fourier transform can be leveraged
(O’Donnell, 2008). Agarwal et al. has employed this ap-
proach, where sparsity and rank constraints are used to en-
force structural assumptions on combinatorial interactions.
In this paper, we also utilize Boolean functions, where we
demonstrate their close relationship with generalized sur-
face models. We show that interactions can be read-off from
Fourier coefficients, allowing us to formalize assumptions
about the degree of interactions.

3. Setup and Model
In this section, we propose and define the setup of proba-
bilistic factorial experimental design. We then introduce the
outcome model we use to model combinatorial interventions
and discuss its applicability to model interactions.

3.1. Probabilistic Factorial Design Setup

Consider p possible treatments with 2p total combinato-
rial interventions. In a probabilistic factorial experimen-
tal design, the experimenter chooses a vector of dosages,
denoted by d = (d1, . . . , dp) ∈ [0, 1]p, and applies the
treatments at this level to n homogenous units. For sim-

plicity, we consider no interference between units, where
each unit independently receives a combinatorial interven-
tion at random. Denote the intervention associated with unit
m ∈ [n] = {1, . . . , n} by xm ∈ {−1, 1}p, where xm,i = 1
if and only if it receives a combinatorial intervention that
contains treatment i. Here xm is randomly sampled ac-
cording to a product Bernoulli distribution according to d,
where

xm,i =

{
1 with probability di,
−1 with probability 1− di.

(1)

The experimenter can carry out such experiments for T
times, with different dosages d1, · · · ,dT , potentially in a
sequential and adaptive manner. In combinatorial perturba-
tion example in section 1, the dosage vector formalizes the
multiplicity of infection of each considered perturbation.

Note that this setup reduces to traditional two-level factorial
design (Fisher et al., 1966) by choosing d ∈ {0, 1}p. In
particular, for any combinatorial intervention consisting of
treatments in S ⊆ [p], setting di = 1 if i ∈ S or else di = 0
gives rise to all units receiving S. Allowing for continuous
d ∈ [0, 1]p generalizes this setup by enabling the allocation
of units to different combinatorial interventions in a realistic
and effective manner controlled by d.

3.2. Outcome Models for Combinatorial Interventions

Under this setup, we are interested in estimating the average
treatment effect of combinatorial interventions. For unit
m, we observe its treatment assignment xm and outcome
ym ∈ R. We adopt the outcome model proposed by Agarwal
et al. (2023b), where ym corresponds to a noisy observation
of a real-valued Boolean function f : {−1, 1}p → R, i.e.,

ym = f(xm) + ϵm.

Here we assume ϵm is independent among different units
and is normally distributed with mean zero and variance σ2.
This model choice has the flexibility of allowing for interac-
tions between arbitrary sets of treatments, as we illustrate
below.

The class of real-valued Boolean functions admits a repre-
sentation via the Fourier basis

{ϕS(x) =
∏
i∈S

xi | S ⊆ [p]}

by
f(x) =

∑
S⊆[p]

βSϕS(x).

Here βS = 1
2p

∑
y∈{−1,1}p f(y)ϕS(y) (see Appendix A

for details). The Fourier coefficients are interpretable in the
sense that the polynomial instantiation of the generalized
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response surface model (Lee, 2010) can be expressed in this
form, where all the k-way interactions are captured by

{βS | S ⊆ [p], |S| ≤ k}.

In particular, the generalized response surface model can be
written as follows.

Polynomial Instantiation. To capture the nonlinear inter-
actions between treatments, we can model the outcome of
combinatorial intervention x via

f(x) =

p∑
i=1

αi1xi=1 +

p∑
i,j=1

αij1xi=xj=1 + . . . ,

where αS represents the contribution in the final outcome by
the interaction among treatments in S. This model can be
represented via the Fourier representation (see Appendix A
for details), where

βS =
∑
S⊆T

αT

2|T | . (2)

In a bounded-order interaction model, αS = 0 for large
|S|. In particular, if αS = 0 for |S| > k, then βS = 0 for
|S| > k according to Eq. (2). This motivates us to make the
following assumptions on the Fourier coefficients.

Assumption 3.1 (Bounded-order interactions). The out-
come model exhibits bounded-order interactions, i.e., there
exists k = o(p) such that

βS = 0 if |S| > k.

We also assume that β is bounded in L2 norm.

Assumption 3.2. (Boundedness of β) There exists a con-
stant B such that ∥β∥2 ≤ B.

4. Optimal Experimental Design
In this section, we focus on optimal experimental design for
learning the outcome model f . We consider extensions of
these results in section 5. For the objective of learning f ,
we provide near-optimal design strategies for the choice of
dosages d in both passive and adaptive scenarios. We start
by introducing the estimators of f . All formal proofs in this
section are deferred to Appendix B.

4.1. Estimators

Estimating the Fourier coefficients β accurately in turn gives
an accurate estimate of f , as ∥f̂(x)− f(x)∥2 ≤ ∥β̂ − β∥2,
where f̂(x) =

∑
S⊆[p] β̂SϕS(x). Therefore, it suffices to

focus on β̂.

Denote the collected dataset as D = {(xm, ym) | m ∈ [n]}.
Let the design matrix be X ∈ Rn×K with K =

∑k
i=0

(
p
k

)
.

The columns of X corresponds all possible combinations
(including size ≤ 1) with interactions, i.e., S ⊆ [p] with
|S| ≤ k. The m-th row of X corresponds to the Fourier
characteristics of the observed combination xm with

Xm,S = ϕS(xm) =
∏
i∈S

xm,i.

Given that X is randomly drawn according to the dosages
d and its columns are correlated, it is possible that it is
ill-conditioned for a standard linear regression estimator.
Therefore, in order to control the estimation error, we use a
truncated ordinary least squares (OLS) to estimate β:

β̂ =

{
(X⊤X )−1X⊤Y if

∑K
i=1 λi(X⊤X )−1 ≤ B2

σ2 ,

0 otherwise.

Here λ denotes the eigenvalues of X⊤X and Y is the vector
by stacking ym with m ∈ [n]. Note that this results in a null
estimator when the eigenvalues are small. We use this to
demonstrate the key ideas of our analysis in a simpler form
In practice, when X is ill-conditioned, alternative estimators
such as ridge regression can be used, where similar theoreti-
cal results can be derived (see Appendix B for details). The
truncated OLS estimator satisfies the following property,
which we utilize in our analysis.

Lemma 4.1. Given a fixed design matrix X , the truncated
OLS estimator satisfies

min{
K∑
i=1

σ2

λi(X⊤X )
,∥β∥22} ≤

EY

[
∥β̂ − β∥22

]
≤ min{

K∑
i=1

σ2

λi(X⊤X )
, B2}.

(3)

4.2. Passive Setting

In this scenario, the experimenter decides the choice of
the dosages d in a prospective fashion without considering
any data collected in the past. This is in contrast to an
active design, where collected data are utilized to decide the
current design. Note that the first round of any active setting
reduces to the passive scenario, as there is no collected data.

Suppose we have a budget of n units. To select d such
that we can obtain the most accurate estimate of β after
observing these units, it is natural to optimize the following
objective:

ED

[
∥β̂ − β∥22

]
. (4)

We show that this objective has a closed-form near-optimal
solution of d = (1/2, · · · , 1/2), regardless of the order of the
interactions.

Theorem 4.2. For the truncated OLS estimator, d =

(1/2, · · · , 1/2) is optimal up to a factor of 1 + O
(

ln(n)
n

)
4
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with respect to Eq. (4). In addition, the minimizer of Eq. (4)
lies in an l∞−norm ball centered on the half dosage with

radius O
(√

ln(n)
n

)
.

Note that with the half dosage, the probability of observ-
ing any particular combinatorial intervention S ⊆ [p] is
2−p. Therefore in the passive setting, it is always optimal
to evenly administer every treatment so that the observed
combinatorial interventions follow a uniform distribution.

Proof sketch. In Lemma 4.1, we show how to bound the ex-
pectation of the error ∥β̂ − β∥22 with respect to randomness
in the outcome Y . To obtain the optimal dosage for Eq. (4),
we need to additionally take expectation with respect to
the randomness of X , which is where the dosages enter as
the combinatorial interventions x are sampled from Eq. (1).
Note that E[X⊤X ] = n · Σ(d) ∈ RK×K , where

Σ(d)S,S′ =
∏

i∈S∆S′

(2di − 1), (5)

for any S, S′ ⊆ [p] such that |S|, |S′| ≤ k.1

Intuition of the optimality of half dosages. For the standard
OLS estimator, the expected squared error is

σ2
K∑
i=1

1

λi(X⊤X )
.

If we directly swap X⊤X with its expected value, then we
need to minimize

K∑
i=1

1

λi(Σ(d))
.

Note that tr(Σ(d)) = K for all d. Therefore, by the Cauchy-
Schwarz inequality,

∑K
i=1 λi(Σ(d))

−1 is minimized if and
only if λi(Σ(d)) = 1 for all i ∈ [K], which is satisfied
when Σ(d) = IK and d = (1/2, . . . , 1/2).

To formally show that the expected error is optimized with
half dosages, we can use a concentration result for X⊤X
which can be obtained using an ϵ-net argument (Vershynin,
2018) and Hoeffding’s inequality. However, the eigenvalues
of X⊤X enters the error computation through the denomi-
nators, which makes the computation difficult. In particular,
E(
∑K

i=1 λi(X⊤X )−1) cannot be bounded due to explod-
ing terms when λmin(X⊤X ) approaches zero. We resolve
this difficulty by utilizing the bounds in Lemma 4.1. For

1Here ∆ denotes the disjunctive union, i.e., S∆S′ = (S ∪
S′) \ (S ∩ S′).

d = (1/2, . . . , 1/2), we use the upper bound to show that

ED

[
∥β̂ − β∥22

]
≤ Kσ2

n(1− δ)
+

B2 exp

(
K ln 9− nδ2

8K2

)
for any 0 < δ < 1. For d such that maxi |2di − 1| > 0, we
use the lower bound to show that,

ED

[
∥β̂ − β∥22

]
≥
(
1− 2 exp

(
K ln 9− δ2

8K2

))
·

min{ σ2

n(1−maxi |2di − 1|+ δ)
+
σ2(K − 1)

n(1 + δ)
, ∥β∥22},

for any δ > 0. By choosing δ = (2 lnn/n)1/2, we obtain
that d = (1/2, . . . , 1/2) is optimal up to a factor of 1 +

O( ln(n)n ).

As a corollary of the proof for Theorem 4.2, we can show
the error of estimating β decays with a rate of n−1.

Corollary 4.3. With d = (1/2, . . . , 1/2), there is

ED

[
∥β̂ − β∥22

]
≤ 2Kσ2 + 1

n

for n > n0, where n0 = O
(
K3 lnK

)
.

Therefore in order to estimate a k-way interaction model
correctly, O(K3 ln(K)) = O

(
kp3k ln(p)

)
samples suffice.

4.3. Active Setting

In this setting, the experimenter decides the choice of the
dosages d sequentially in multiple rounds, where the ob-
servations from previous rounds can be used to inform the
choice of dosage. Note that as discussed in Section 4.2, the
first round of the active setting degenerates to the passive
setting, where the optimal choice is d = (1/2, . . . , 1/2).

Consider round T > 1. Denote Dt as the collected data and
let Xt be the design matrix obtained by Dt at round t ≤ T .
The goal is to minimize the following objective

EDT

[
∥β̂ − β∥22 | D1 ∪ . . .DT

]
. (6)

In this scenario, we can not obtain a closed form solution
as the optimal choice of d depends on pre-collected D1 ∪
. . .DT−1, which can be arbitrary. However, we show it is
possible to derive a near-optimal objective that can be easily
computed and numerically optimized.

Theorem 4.4. The following choice of dosage:

dT = argmin
d∈[0,1]p

K∑
i=1

1

λi

(
Σ(d) + 1

n

∑T−1
t=1 X⊤

t Xt

) (7)
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Algorithm 1 Active probabilistic factorial experimental de-
sign.

1: Initialize X⊤X = 0M×M .
2: for t = 1 to T do
3: if t = 1 then
4: set d = (1/2, . . . , 1/2);
5: else
6: set dt = argmin

d∈[0,1]p

∑K
i=1

1

λi(Σ(d)+ 1
n

∑t−1
i=1 X⊤

i Xi)
.

7: end if
8: Gather n observations according to Eq. (1) and form

design matrix Xt.
9: Update X⊤X← X⊤X+ 1

nX
⊤
t Xt

10: end for
11: Return estimated β using all observations.

is optimal up to a factor of 1 + O
(

ln(n)
n

)
with respect to

Eq. (6).

In practice, we solve for dT by numerically optimizing
the objective in Eq. (7) using the SLSQP solver in Scipy
(Virtanen et al., 2020). The number of iterations for the op-
timizer to converge is roughly O(p3), and the complexity of
each iteration is O(nK2 +K3) (where the first term comes
from the matrix multiplication of X TX and the second term
comes from computing the eigenvalues of Σ(d)). Recall
the definition of K to be the number of interactions under
consideration, i.e. K =

∑k
i=0

(
p
i

)
= O(pk) for small k.

Therefore, the overall complexity is O(np3k+3 + p6k+3)
for small k. In practice, we may recommend using a proxy,
which only involves the inverse of the minimum eigenvalue:
dT = argmind∈[0,1]p

1

λmin(Σ(d)+ 1
n

∑T−1
t=1 X⊤

t Xt)
. We found

that numerically optimizing this was significantly faster
and that the solver was consistently accurate. While the
complexity computed above should be the same for this
approach, in practice it takes many less iterations to con-
verge. We summarize the procedure for the active setting in
Algorithm 1.

5. Extensions
In this section, we consider several extensions and discuss
how the design policy changes in different scenarios.

5.1. Limited Supply Constraint

Here, we consider the case where we have additional con-
straint on the possible dosages d:

p∑
i=1

di ≤ L, for some 0 < L <
p

2
. (8)

We assume L < p
2 , as otherwise d = (1/2, . . . , 1/2) is

feasible and therefore optimal. This case is inspired by a

setting where we have supply constraints on treatments, or
where we do not want to assign a unit too many treatments
at once. Note that the constraint implies that the expected
number of treatments assigned to a unit is at most L.

In the passive setting, we derive a closed-form near-optimal
dosage for the pure-additive model, i.e. k = 1 in Assump-
tion 3.1. This result requires understanding of the spectrum
of Σ(d). In the no-interaction case, we are able to derive
the characteristic polynomial for Σ(d), which becomes dif-
ficult when k > 1. However, empirical results show that the
result, which we now state, to hold for k > 1 as well (see
section 6).

Theorem 5.1. For the additive model with k = 1, among
the dosages that satisfy the constraint in Eq. (8), the uniform
dosage d with di = L

p for all i ∈ [p] is optimal up to a factor

of 1 +O
(

ln(n)
n

)
with respect to Eq. (9).

For non-additive models and the active setting, we note that
Theorem 4.4, where the feasible region of d is modified
according to Eq. (8), to still hold. Therefore, although no
closed-form solution can be derived, we can still obtain a
near-optimal solution via numerical optimization.

5.2. Heteroskedastic Multi-round Case

Our results can easily extend to the scenario where the noise
in the outcomes varies by round. This case might be relevant
when different rounds of experiments have systematic batch
effects, e.g., if they are collected within different labs.

Assume that in round t, the variance of the observed
outcome noise is σ2

t . Note that in this setting, d =
(1/2, . . . , 1/2) is still near-optimal for the first round. How-
ever, the optimal choice of dosage at round T becomes

dT = argmin
d∈[0,1]p

K∑
i=1

1

λi

(
1
σ2
T
Σ(d) + 1

n

∑T−1
t=1

1
σ2
i
X⊤

t Xt

)
where we now scale the observations at round t by 1

σt
and

use the truncated OLS estimator on this modified dataset
(Eq. (6)), following a weighted least squares approach.

5.3. Limited Intervention Cardinality

Consider the scenario where the set of possible treatments
that can be applied has limited cardinality:

∥d∥0 ≤ L, for some 0 < L < p.

Suppose that di ̸= 0 for i ∈ D, where the cardinality |D| is
bounded by L. Then it holds that X:,S = (−1)|S\D|X:,S∩D.
Therefore the design matrix can be written as

X = XDΓD

6
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where XD denotes the submatrix of X corresponding to
columns X:,S with S ⊆ D and ΓD consists of one-hot
vectors as columns. In this case, we may estimate β only up
to ΓDβ, e.g., using the following truncated OLS estimator{

(X⊤
DXD)−1X⊤

DY if
∑K

i=1 λi(X⊤
DXD)−1 ≤ B2

σ2 ,

0 otherwise.

Note that this has a form similar to β̂, where using similar
arguments as in Section 4, we can show that di = 1/2 for
i ∈ D is near optimal. Thus, in the passive setting, the near-
optimal strategy becomes selecting a subset of treatments
D with |D| ≤ L and setting di = 1/2 for i ∈ D and di = 0
for i /∈ D. As the estimator for ΓDβ directly estimates
entries βS of β with S ⊆ D, one can select D based on
prior preference of which coefficients of β are of interest.

5.4. Emulating a Target Combinatorial Distribution

We consider a different problem that explores the possibility
of emulating a target distribution of combinatorial interven-
tions with one round of probabilistic factorial design.

Formally, let q be an arbitrary distribution over all possible
combinatorial interventions, we are interested in approxi-
mating q with choices of d. Denote pd as the distribution
over combinatorial interventions induced by dosage d. We
use KL divergence D(q || pd) to measure the approxima-
tion error. To optimize over d, note that pd is a product
distribution and we have

D(q || pd) = H(q)−
p∑

i=1

qi log(di)− (1− qi) log(1−di),

where qi =
∑

xi=1 q(xi) is the marginal distribution of
receiving treatment i under the target distribution, and H(·)
denotes the entropy. Minimizing this equality quickly ob-
tains di = qi, which indicates choosing d based on the
marginals of the target distribution. The minimal approxi-
mation error is then

H(q)−H(q1 ⊗ . . . qp),

which means we can emulate a target distribution well if it
is closed to a product distribution.

6. Experiments
We conduct experiments to validate our theoretical results,
as well as show a comparison to fractional factorial design,
using simulated data. We generate the outcome model f by
sampling the Fourier coefficients from the uniform distri-
bution, i.e., β ∼ U(−1, 1)K . We noise the outcomes with
standard Gaussian noise. In each of the following simu-
lations, we keep β constant through all iterations of each
run. Further details and the code repository can be found in
Appendix D.

6.1. Comparison to Fractional Factorial Design

Here we compare the half dosage versus a partial facto-
rial design in the passive setting. We generate a degree-1
Boolean function with p = 8. We use a 28−2 Resolution V
design with 64 samples for each approach.

The fractional design returns a mean squared error of 0.14±
0.062, where the half dosage gives 0.16± 0.078 (averaged
over 300 trials and with ±1 std). With fewer samples, the
careful selection of combinations will make a difference,
so the fractional design can outperform the half dosage.
But in many cases, especially in biological applications,
careful selection of combinations is not possible which is
why the much more flexible dosage design is preferable, as
it enables the administration of an exponential number of
combinations by choosing a linear number of dosages.

However, in the active setting, the optimal dosage can out-
perform a fractional design. This is discussed further in
Section 6.3.

6.2. Passive Setting

In Theorem 4.2, we show that d = (1/2, . . . , 1/2) is optimal
up to a factor of 1 +O( ln(n)n ). Empirically, our validations
build on the comparison of estimation error between half
dosages and randomly sampled dosage vectors. We consider
two different ways to generate dosages in this comparison,
as described below.

Simulation 1. Here, we investigate the approximation of β̂
achieved by different dosages d based on their l∞-distances
from the 1

2 := (1/2, . . . , 1/2), i.e.,
∥∥d− 1

2

∥∥
∞. We consider

distances ranging from 0 to .4, where we sample 100 differ-
ent dosage vectors at each distance. For each dosage, we
generate 20 sets of observations and regress on each.

Figure 1. Simulation 1. Average ∥β̂ − β∥22 over 2000 different
observation sets generated from 100 different dosages at each
given distance. The bars correspond to ±.5 std over the 2000
observations. The curves are generated with values p = 10, k =
2, n = 200; p = 20, k = 2, n = 1000; and p = 30, k = 2, n =
1000.

7



Probabilistic Factorial Experimental Design for Combinatorial Interventions

Figure 2. Simulation 2. Approximation error of uniform dosages.
Bars correspond to ±.5 std over 500 observations per dosage.
The curves are generated with values p = 10, k = 2, n = 200;
p = 20, k = 2, n = 1000; and p = 30, k = 2, n = 1000.

We show these results for three different sets of p, k, and n
in Figure 6.2. These values are chosen such that the ratio
K/n is kept approximately constant under different number
of total treatments, following Corollary 4.3: p = 10, k =
2, n = 200; p = 20, k = 2, n = 1000; and p = 30, k =
2, n = 1000.

Simulation 2. Here, we only consider dosages where each
treatment is administered at the same dosage, which we
refer to as a uniform dosage. We consider dosage values
ranging from .4 to .6, and generate 500 different observation
sets for each dosage. We show the approximation error of β̂
against the dosage value in Figure 2 for the three different
sets of p, k, and n used in simulation 1.

Results. In simulation 1, we see that the approximation error
is generally increasing in

∥∥d− 1
2

∥∥
∞. Even with relatively

small n (on the scale of O(K), rather than poly(K) in
Corollary 4.3), we see that the half dosage seems to be
optimal. In simulation 2, we again see that the half dosage
exhibits optimality, with U−shaped curves dipping at .5.

6.3. Active Setting

Here, we carry out 10 sequential experimental rounds. We
compare our proposed choice of dosage in Theorem 4.4,
which we refer to as optimal, to two baselines. The
first baseline, referred to as random, randomly chooses a
dosage from U(0, 1)p at each round. The second baseline,
referred to as half, chooses the dosage of 1

2 at each round.
On synthetic data, we find that optimal and half per-
form similarly when n is relatively large, while clearly out-
performing random (Figure 3). In settings where n is rela-
tively small, optimal outperforms half (Figure 4). We
also add a partial design baseline, referred to as partial
(a Resolution V 25−1 design), in the small p setting. In
earlier rounds, we see optimal performs the best, and
partial catches up after sufficiently many rounds.

Figure 3. Active setting with relatively large n. Results are av-
eraged over 20 trials, where p = 15, k = 2, n = 75. We limit
the y−axis to 1, focusing on later rounds when the approximation
error is small. Bars correspond to ±.2 std.

Figure 4. Active setting with relative small n, high noise. Results
are averaged over 50 trials, where p = 5, k = 1, n = 16, σ = 5.
Bars correspond to ±.1 std.

Results. We see that random performs consistently worse
that optimal and half. For high n (compared to K),
the difference between optimal and half is marginal
(as seen in Figure 3). However, when n is small, there is a
noticeable gap between optimal and half. In the case
where there are not many samples (compared to features)
per round, we find that the optimal acquisition strategy
more clearly outperforms the half strategy. This is because
when we have a smaller number of samples, we will need
to“correct” as the distribution of combinations will be more
lopsided and further away from the uniform distribution.
Similarly, this is why optimal can outperform partial
in a multiple-round setting, though it may be subpar in a
single round. Therefore, in scenarios where each round has
few samples, we think it is worth computing the optimal
acquisition dosage. When we have a large n relative to p,
the half strategy and optimal strategy perform very similarly.
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Figure 5. Limited Supply Constraint. Here d needs to satisfy∑p
i=1 di ≤ 2. The x-axis shows the l∞-distance from the L/p

uniform dosage . We vary p over 8, 9, 10, keeping k = 2 and
n = 1000 constant. 50 different dosages are sampled at each
distance, with 40 iterations of each. Bars are ±.5 std over the
2000 squared errors at each distance.

6.4. Extensions

In Theorem 5.1, we proved that the uniform dosage of L
p

is optimal in the constrained case for the simple additive
models. Empirically, we see that this holds for interactive
models as well, both in simulations and in numerically op-
timizing Eq. (4). For example, for the pairwise interaction
case, Figure 5 shows the approximation error versus the
deviation from the suspected optimal dosage. We see that
with L = 2, n = 1000, and varying p = 8, 9, 10, the
approximation error increases as we deviate from L

p .

6.5. Misspecified model

In the case where we do not know the true degree of the
highest-order interaction, our model may be misspecified
case. While our theoretical results do not support this case,
we conduct experiments that show that the half dosage still
appears to be optimal in a single-round setting. Here, we
use a Boolean function of full degree (with p = 5), and
vary k between 2 and 4. So while the true function features
interaction terms of all degrees, our assumption is that only
terms of interaction up to k appear in f . We fit the model
under these assumed values of k, and observe that a half
dosage appears to still lead to the lowest estimation errors
in Figure 6.

7. Discussion
In this work, we propose and study probabilistic factorial de-
sign, a scalable and flexible approach to implementing facto-
rial experiments, which generalizes both full and fractional
factorial designs. Within this framework, we tackle the op-
timal design problem, focusing on learning combinatorial
intervention models using Boolean function representations

Figure 6. Misspecification. The x-axis shows the l∞-distance
from the half dosage. We vary k from 2 to 4, where the true k = 5.
We use 300, 100, and 200 samples, respectively. 50 different
dosages are sampled at each distance, with 20 iterations of each.
Bars are ±.2 std.

with bounded-degree interactions. We establish theoretical
guarantees and near-optimal desgin strategies in both pas-
sive and active learning settings. In the passive setting, we
prove that a uniform dosage of 1/2 per treatment is near-
optimal for estimating any k-way interaction model. In the
active setting, we propose a numerically optimizable acquisi-
tion function and demonstrate its theoretical near-optimality.
Additionally, we extend our approach to account for prac-
tical constraints, including limited supply, heteroskedastic
multi-round noise, and emulating target combinatorial dis-
tributions. Finally, these theoretical results are validated
through simulated experiments.

Limitations and Future Work. This work has several
limitations and assumptions that may be interesting to ad-
dress in future work. First, we assume a product infection
mechanism in the probabilistic design. However, this as-
sumption may not hold in certain scenarios, such as when
interference or censoring effects are present. For exam-
ple, in cell biology, experiments conducted on tissue sam-
ples may exhibit spatial interactions among neighboring
cells. Additionally, certain treatment combinations may in-
duce cell death, leading to a lack of observable units for
those combinations. Second, our combinatorial interven-
tion model could be extended to incorporate unit-specific
covariates. The current model assumes that outcomes are
determined solely by the received treatment, which suffices
for homogenous units and average effects. However, incor-
porating covariate-based models would enable finer-grained
personalized treatment-outcome predictions. Third, while
we explore several extensions to the design problem, further
investigations into alternative constraints, such as sparse
interventions, and alternative objectives, such as optimizing
specific outcome variables, could be valuable directions for
future work.
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A. Proof for Section 3
A.1. Fourier Representation

Lemma A.1. f admits the representation f(x) =
∑

S⊆[p] βSϕS(x), where βS = 1
2p

∑
y∈{−1,1}p f(y)ϕS(y).

Proof. Plugging in the value of βS , we have

f(x) =
∑
S⊆[p]

 1

2p

∑
y∈{−1,1}p

f(y)ϕS(y)

ϕS(x)

=
1

2p

∑
S⊆[p]

∑
y∈{−1,1}p

f(y)
∏
i∈S

xiyi

=
1

2p

∑
y∈{−1,1}p

f(y)
∑
S⊆[p]

∏
i∈S

xiyi

=
1

2p
f(x)2p

= f(x),

as
∑

S⊆[p]

∏
i∈S xiyi = 2p if x = y and 0 otherwise.

Lemma A.2. Consider a model on {−1, 1}p, where ψS(x) = 1 iff xi = 1 for all i ∈ S, and

g(x) =
∑
S∈[p]

αSψS(x).

This model is a specific case of our model, where a low-interaction constraint on this model implies a low-interaction
constraint on our model.

Proof. We have

g(x) =
∑
S⊆[p]

αSψS(x)

=
∑
S⊆[p]

αS

∏
i∈S

(xi + 1)

2

=
∑
S⊆[p]

1

2|S|αS

∑
T⊆S

∏
i∈T

xi

=
∑
T⊆[p]

∑
S⊇T

αS

2|S|

ϕT (x).

Therefore,
g(x) =

∑
S⊆[p]

βSϕS(x),

where
βS =

∑
T⊇S

αT

2|T | .

Note that αS = 0 for all |S| > k implies that βS = 0 for all |S| > k.
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B. Proofs for Section 4
B.1. Properties of Σ(d)

Lemma B.1. Let Σ(d) = Eϕ(x)Tϕ(x), where ϕ(x) is the row vector composed of ϕS(x) for all S with |S| ≤ k and x is
distributed according to the dosage d. Then the minimum eigenvalue of Σ(d) is at most 1, with equality iff d = 1

21p.

Proof. First note that Σ(d) is given by

Σ(d)S,S′ =
∏

i∈S∆S′

(2di − 1)

Therefore, Σ is symmetric with diagonal elements equal to 1. In addition, Σ(d) is positive semidefinite and hence has real,
non-negative eigenvalues. Combined with the fact that the trace of Σ(d) is M , the mean of the eigenvalues must be 1.
Therefore, the minimum eigenvalue is equal to 1 if and only if all the eigenvalues are equal to 1. A real symmetric matrix has
a spectrum of only 1’s if and only if it is the identity. Noting that Σ(d)∅,{i} = 2di − 1, Σ(d) = IK if and only if di = 1

2 ,
concluding the proof.

Lemma B.2. With Σ(d) defined as above, we have λmin(Σ(d)) ≤ mini(1− |2di − 1|).

Proof. We proceed with proof by contradiction. Let c∗ = mini(1 − |2di − 1|) and i∗ = argmin
i

(1 − |2di − 1|). If

λmin(Σ(d)) > c∗, then Σ(d) − c∗IK is positive definite because Σ(d) is positive semidefinite. Therefore, all leading
principal minors of Σ(d)−c∗IK must have positive determinants. Consider the 2×2 submatrix defined by the rows/columns

corresponding to ∅ and {i∗}). In Σ−c∗IK , this is
[
|2d∗i − 1| 2d∗i − 1
2d∗i − 1 |2d∗i − 1|

]
, which has determinant 0. Note that this submatrix

is a principal minor in a permuted version of Σ− c∗I , which is also positive definite. Therefore, we have a contradiction as
Σ− c∗IK is not positive definite, and hence λmin(Σ(d)) ≤ mini(1− |2di − 1|).

B.2. Proof of Lemma 4.1

Lemma B.3 (Truncated OLS). Given a fixed design matrix X , the truncated OLS estimator satisfies the following property:

EY

[
∥β̂ − β∥22

]
=

{∑K
i=1

σ2

λi(X⊤X )
, if

∑K
i=1

1
λi(X⊤X )

≤ B2

σ2 ,

∥β∥22, otherwise.

In particular, there is min{
∑K

i=1
σ2

λi(X⊤X )
, ∥β∥22} ≤ E

[
∥β̂ − β∥22

]
≤ min{

∑K
i=1

σ2

λi(X⊤X )
, B2}.

Proof. We utilize the eigen-decomposition UDUT of X TX . We have

E
[∥∥∥β̂OLS

− β
∥∥∥2] = E

[∥∥(X TX )−1X T ϵ
∥∥2]

= E
[
ϵTX (X TX )−1(X TX )−1X T ϵ

]
= E

[
tr(ϵTX (X TX )−1(X TX )−1X T ϵ)

]
= tr

[
E
[
ϵϵT
]
X (X TX )−1(X TX )−1X T

]
≤ σ2tr

[
X (X TX )−1(X TX )−1X T

]
= σ2

K∑
i=1

1

λi(X TX )

Therefore, if
∑K

i=1
1

λi(XTX )
≤ B2

σ2 , we use the OLS estimator which has an MSE of
∑K

i=1
σ2

λi(XTX )
. Otherwise, if∑K

i=1
1

λi(XTX )
> B2

σ2 , our estimator is 0K which has a squared error of ∥β∥22 ≤ B2. This gives the desired result.
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Lemma B.4 (OLS+Ridge estimator). Given a fixed n×K design matrix X , the OLS+Ridge estimator is defined by

β̂ =

β̂
OLS 1

λmin(XTX )
≤ B2n

B2λmin(XTX )+Knσ2 ,

β̂
ridge

otherwise.

and satisfies

EY

[
∥β̂ − β∥22

]
≤ min

(
Kσ2

λmin(X TX )
,

B2Knσ2

B2λmin(X TX )2 +Knσ2

)
. (9)

Proof. The bound on OLS follows easily from the proof of Proposition B.3, where we have that

σ2
K∑
i=1

1

λi(X TX )
≤ Kσ2

λmin(X TX )
.

Now, we analyze the ridge estimator. Recall the definition:

β̂
ridge

= (X TX + λIK)−1X T y

where λ is a chosen regularization parameter. The bias-variance decomposition gives us

E
[∥∥∥β̂ridge

− β
∥∥∥2] = ∥∥∥E [β̂ridge]

− β
∥∥∥2 + E

[∥∥∥β̂ridge
− E

[
β̂

ridge]∥∥∥2] .
We analyze each term separately. For the bias term, we have

E
[
β̂

ridge
− β

]
= ((X TX + λIK)−1X TX − IK)β

= −λ(X TX + λIK)−1β

so that ∥∥∥E [β̂ridge
− β

]∥∥∥2 = λ2βT (X TX + λIK)−1(X TX + λIK)−1β

≤ λ2 ∥β∥2 max
∥x∥=1

∥∥(X TX + λIK)−1x
∥∥2

= λ2 ∥β∥2 λmax((X TX + λIK)−1(X TX + λIK)−1)

=
λ2 ∥β∥2

(λmin(X TX ) + λ)2
.

Now for the variance, we have (where once again, we use the eigen-decomposition X TX = UDUT )

E
[∥∥∥β̂ridge

− E
[
β̂

ridge]∥∥∥2] = E
[∥∥(X TX + λIK)−1X T ϵ

∥∥2]
= E

[
ϵTX (X TX + λIK)−1(X TX + λIK)−1X T ϵ

]
= E

[
tr(ϵTX (X TX + λIK)−1(X TX + λIK)−1X T ϵ)

]
= tr

[
E
[
ϵϵT
]
X (X TX + λIK)−1(X TX + λIK)−1X T

]
≤ σ2tr

[
X (X TX + λIK)−1(X TX + λIK)−1X T

]
= σ2tr

[
UD(D + λIK)−1(D + λIK)−1UT

]
= σ2tr

[
D(D + λIK)−1(D + λIK)−1

]
= σ2

K∑
i=1

λi(X TX )
(λi(X TX ) + λ)2

≤ σ2tr(X TX )
(λmin(X TX ) + λ)2

.
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With the knowledge that ∥β∥22 ≤ B2, we choose

λ =
σ2tr(X TX )

B2λmin(X TX )

which gives us an overall bound of
B2σ2tr(X TX )

B2λmin(X TX )2 + σ2tr(X TX )
.

Lemma B.5 (Concentration of 1
nX

TX ). Let X be the (random) design matrix generated by dosage d. Then

P
(∥∥∥∥ 1nX TX − Σ(d)

∥∥∥∥ ≤ t) ≥ 1− 2 exp

(
K ln 9− nt2

8K2

)
where the first norm is the spectral norm, and Σ(d) is defined as in Lemma B.1.

Proof. This proof loosely follows the proof of Theorem 4.5.1 in (Vershynin, 2018). Let X be the (random) design matrix
generated by dosage d. Recall that X TX is a K × K matrix. Now, let N be a 1

4− net on the unit sphere SK−1 with
|N | ≤ 9K(Vershynin, 2018). We have∥∥∥∥ 1nX TX − Σ(d)

∥∥∥∥ ≤ 2max
x∈N

∣∣∣∣〈( 1

n
X TX − Σ(d)

)
x, x

〉∣∣∣∣ = 2max
x∈N

∣∣∣∣ 1n ∥Xx∥22 − xTΣ(d)x
∣∣∣∣ (10)

where the first norm is the spectral norm. This chain of inequalities follows from the definition of an ϵ−net and the
triangle inequality (Vershynin, 2018). Let Xi denote the ith row of X , and define Zi := ⟨Xi, x⟩. Then we have ∥Xx∥2 =∑n

i=1⟨Xi, x⟩2 =
∑n

i=1 Z
2
i where Z2

i ≤ K by Cauchy-Schwarz. It follows that |Z2
i − xTΣ(d)x| ≤ 2K, as E[Z2

i ] =
xTΣ(d)x. Therefore, by Hoeffding’s inequality, we have that

P

(∣∣∣∣∣ 1n
n∑

i=1

Z2
i − xTΣ(d)x

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2K2

)
.

Now, applying union bound over N and substituting into (9), we have

P
(∥∥∥∥ 1nX TX − Σ

∥∥∥∥ ≤ t) ≥ 1− 9K · 2 exp
(
− nt2

8K2

)
= 1− 2 exp

(
K ln 9− nt2

8K2

)
.

B.3. Proof of Theorem 4.2

Proof. We have that, under the half dosage,

nE
[∥∥∥β̂ − β∥∥∥2] ≤ nmin{

K∑
i=1

σ2

λi(X⊤X )
, B2}

≤ P
(∥∥∥∥ 1nX⊤X − Σ(d)

∥∥∥∥ ≤ δ) K∑
i=1

σ2(
λmin(XTX )

n

) + P
(∥∥∥∥ 1nX⊤X − Σ(d)

∥∥∥∥ > δ

)
nB2

≤ Kσ2

1− δ
+ nB2 exp

(
K ln 9− nδ2

8K2

)
(11)

where we use Lemma B.1, Lemma B.5, and Weyl’s inequality (|λmin(A)−λmin(B)| ≤ ∥A−B∥ for real, symmetric A,B)
in the last step.
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Next, we lower bound 4 for any other dosage d. Let c = mini(1− |2di − 1|). We have

nE
[∥∥∥β̂ − β∥∥∥2] ≥ nmin{

K∑
i=1

σ2

λi(X⊤X )
, ∥β∥2}

≥ P
(∥∥∥∥ 1nX⊤X − Σ(d)

∥∥∥∥ ≤ δ)min{
K∑
i=1

σ2

λi(Σ(d)) + δ
, n ∥β∥2}

≥
(
1− 2 exp

(
K ln 9− nδ2

8K2

))
min{

K∑
i=1

σ2

λi(Σ(d)) + δ
, n ∥β∥2}

≥
(
1− 2 exp

(
K ln 9− nδ2

8K2

))
min{ σ2

c+ δ
+
σ2(K − 1)

1 + δ
, n ∥β∥2} (12)

where the last step is by Lemma B.2 and Cauchy-Schwarz:(
K∑
i=1

1

λi(Σ(d)) + δ

)(
K∑
i=1

λi(Σ(d)) + δ

)
≥ K2 (13)

with equality if and only if λi(Σ(d)) are equal for all i. In particular, because λmin(Σ(d)) ≤ c by Lemma B.2, we have that

K∑
i=1

1

λi(Σ(d)) + δ
≥ 1

c+ δ
+

K∑
i=2

1

λi(Σ(d)) + δ
≥ 1

c+ δ
+
K − 1

1 + δ

applying Cauchy-Schwarz as we did in (13).

Setting δ = δ1 in 11 and δ = δ2 in 12, the 1
2 dosage is optimal to within a factor of

Kσ2

1−δ1
+ nB2 exp

(
K ln 9− nδ21

8K2

)
(
1− 2 exp

(
K ln 9− nδ22

8K2

))
min{ Kσ2

1+δ2
, n ∥β∥2}

which is the result of dividing expression 11 by expression 12, and plugging in c = 1 in 12. We further have that for n large
enough, if

c < σ2

 Kσ2

1−δ1
+ nB2 exp

(
K ln 9− nδ21

8K2

)
1− 2 exp

(
K ln 9− nδ22

8K2

) − σ2(K − 1)

1 + δ2

−1

− δ2

then d results in a lower mean squared error than the 1
2 dosage. This expression is the result of solving for c such that

expression 12 is greater than expression 11.

Choosing δ1 = δ2 =
(

2 ln(n)
n

)1/2
, we have optimality to a factor of

1 +O

(
ln(n)

n

)

and that the optimal solution d∗ must satisfy c ≥ 1−O
(√

ln(n)
n

)
, i.e.

∥∥∥∥d∗ − 1

2

∥∥∥∥
∞
< O

(√
ln(n)

n

)
.
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This result can be extended to allow for arbitrary distributions over combinations, rather than product distributions over
treatments as induced by dosages:

Theorem B.6. Allowing for any distribution over combinations, the uniform distribution over combinations is optimal to a
factor of at most 1 +O

(
ln(n)
n

)
. In particular, as n→∞, the uniform distribution minimizes the mean squared error of the

truncated OLS estimator.

Proof. The same argument used to show Lemma B.1 can be extended to arbitrary distributions. Let Σ(g) = Eϕ(x)Tϕ(x)
where ϕ(x) is distributed according to the distribution g over combinations. Then, once again, Σ(g) has trace K for all g,
and

∑K
i=1

σ2

λi(Σ(g)) is minimized when Σ(g) is the identity matrix (refer to the Cauchy-Schwarz argument above). This is
achieved by g = U({−1, 1}p), i.e. the uniform distribution over combinations. Therefore, we may repeat the argument
above to get the same result on the optimality factor of the uniform distribution in this more general case.

B.4. Proof of Theorem 4.4

Proof. Let P = 1
n

∑t−1
i=1 X T

i Xi, where Xi is the design matrix from round i. Now, define

d∗ = argmin
d

K∑
i=1

1

λi(Σ(d) + P )
.

We begin by showing an upper bound on 4 when the design matrix at round t is generated by d∗. Let X denote the
cumulative design matrix after t rounds, so that X TX = X T

t Xt + nP . We have

nE
[∥∥∥β̂ − β∥∥∥2] ≤ nmin{

K∑
i=1

σ2

λi(X TX )
, B2}

≤
K∑
i=1

σ2(
λmin(XTX )

n

) + P
(∥∥∥∥( 1

n
X⊤

t Xt + P

)
− (Σ(d∗) + P )

∥∥∥∥ > δ

)
nB2

≤
K∑
i=1

σ2

λi(Σ(d∗) + P )− δ
+ nB2 exp

(
K ln 9− nδ2

8K2

)
(14)

Where we use Lemma B.5 and Weyl’s inequality, as in the proof of Theorem 4.2.

Next, we lower bound 4 for any other dosage d. We have

nE
[∥∥∥β̂ − β∥∥∥2] ≥ nmin{

K∑
i=1

σ2

λi(X⊤X )
, ∥β∥2}

≥ P
(∥∥∥∥ 1nX⊤X − (Σ(d) + P )

∥∥∥∥ ≤ δ)min{
K∑
i=1

σ2

λi(Σ(d) + P ) + δ
, n ∥β∥2}

≥
(
1− 2 exp

(
K ln 9− nδ2

8K2

))
min{

K∑
i=1

σ2

λi(Σ(d) + P ) + δ
, n ∥β∥2} (15)

Setting δ = δ1 in 14 and δ = δ2 in 15, the d∗ is optimal to within a factor of∑K
i=1

σ2

λi(Σ(d∗)+P )−δ1
+ nB2 exp

(
K ln 9− nδ21

8K2

)
(
1− 2 exp

(
K ln 9− nδ22

8K2

))
min{

∑K
i=1

σ2

λi(Σ(d)+P )+δ2
, n ∥β∥2}

which is the result of dividing expression 14 by expression 15.
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Choosing δ1 = δ2 =
(

2 ln(n)
n

)1/2
, we have optimality of d∗ to a factor of at most

1 +O

(
ln(n)

n

)
.

C. Proof for Section 5
C.1. Proof of Theorem 5.1

Proof. Following the proof of theorems 4.2, and noting that both terms in Eq. (9) are decreasing in λmin(X TX ), it suffices
to show that among dosages satisfying

∑p
i=1 di ≤ L, the uniform dosage with values L

p leads to Σ(d) with the highest
minimum eigenvalue. When k = 1, Σ(d) can be written as below. Let ci = 1 − (2di − 1)2. Define the following two
matrices: y is the p−length column vector with yi = 2di − 1, and C is the diagonal matrix with Cii = ci. Then

Σ(d) =

[
1 yT

y yyT + C

]
We compute det(Σ(d)− λIK) using the formula for the determinant of a block matrix and the matrix determinant lemma.
Let ci = 1− (2di − 1)2. Then for λ ̸= 1, ci for any i, we have

det(Σ(d)− λIK) = (1− λ) det(yyT + C − λIK −
1

1− λ
yyT )

= (1− λ)
p∏

i=1

(ci − λ)

[
1− λ

1− λ

p∑
i=1

1− ci
ci − λ

]

Therefore, the eigenvalues can be 1, ci for any i, or the solutions to 1− λ
1−λ

∑p
i=1

1−ci
ci−λ = 0. Define

gd(λ) = 1− λ

1− λ

p∑
i=1

1− ci
ci − λ

where ci’s are defined according to d.

WLOG, assume c1 ≤ c2 . . . ≤ cp. We first note that the minimum eigenvalue must lie in [0, c1), as gd(λ) must have a
root in this interval. This is because g(0) = 1 (unless the di = 0 or 1 for some i, in which case Σ(d) is singular) and
limλ→c1 g(λ) = −∞.

Now, let d∗ be the uniform dosage with elements L
p , so that c∗ = 1−

(
2L
p − 1

)2
. The minimum eigenvalue here is given by

λ∗ =
1

2

(
c∗ + 1 + p(1− c∗)−

√
(c∗ + 1 + p(1− c∗))2 − 4c∗

)
,

so it suffices to show that for any dosage (satisfying the constraint) that

c1 > λ∗ ⇒ gd(λ
∗) ≤ 0,

implying that there is a root to gd(λ) that is less than or equal to λ∗.
Note that gd∗(λ∗) = 0, so it suffices to show that

c1 > λ∗ ⇒ gd(λ
∗) ≤ gd∗(λ∗).

Now, treating g as a function of c = (c1, c2, . . . cp) parametrized by λ, it suffices to show that g is concave in c. This would
imply that a maximizer exists at a uniform dosage (since g is symmetric in c), and that dosage must be L

p as h(c) = 1−c
c−λ is

decreasing in c. We have concavity of g as the Hessian is a diagonal matrix with the ith element being −2λ∗

(ci−λ∗)3 ≤ 0 as
c1 > λ∗. Therefore, the minimum eigenvalue of Σ(d) is indeed maximized at d∗, and we may proceed with the proof as in
Theorem 4.2.
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D. Experiment Details
Code can be found at the linked repository. Below we give a few additional details of our experiments.

Hardware and libraries. Experiments were run on a device with a 16 core Intel Core Ultra 7 165H processor with 32 GB
RAM, and an NVIDIA RTX 4000 Mobile Ada Generation 12 GB GPU. The code is implemented in Python, utilizing the
cupy and numba libraries, among others. The active design optimization was done using scipy SLSQP solver.
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