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Abstract

Graph Neural Network (GNN) resembles the dif-
fusion process, leading to the over-smoothing
of learned representations when stacking many
layers. Hence, the reverse process of message
passing can produce the distinguishable node
representations by inverting the forward mes-
sage propagation. The distinguishable represen-
tations can help us to better classify neighbor-
ing nodes with different labels, such as in het-
erophilic graphs. In this work, we apply the de-
sign principle of the reverse process to the three
variants of the GNNs. Through the experiments
on heterophilic graph data, where adjacent nodes
need to have different representations for suc-
cessful classification, we show that the reverse
process significantly improves the prediction per-
formance in many cases. Additional analysis re-
veals that the reverse mechanism can mitigate
the over-smoothing over hundreds of layers. Our
code is available at https://github.com/
ml-postech/reverse-gnn.

1. Introduction
Graph neural networks (GNNs) have emerged as an im-
portant tool for learning relational data. Earlier attempts
aim to learn the node representations from graphs based
on a message-passing mechanism. The message-passing
neural network framework shows partial success with the
homophilic graphs, where the nodes with the same labels are
likely to be connected. When the heterophilic graphs, where
node labels significantly differ from those of their neighbors,
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are considered, the models based on the homophilic assump-
tion (McPherson et al., 2001) often perform worse than the
naive neural network architectures without considering the
relationship between nodes (Zhu et al., 2020).

To learn the node representations of heterophilic graphs,
a GNN needs to capture long-range interactions between
nodes, leading to the stacking of multiple message-passing
layers (Li et al., 2022; Rusch et al., 2023). However, many
studies empirically and theoretically identify that GNN
tends to smooth the node representations over the layers, and
eventually, the learned representations are likely to be simi-
lar, known as the over-smoothing issue (Chen et al., 2020;
Rusch et al., 2023). Furthermore, GRAND (Chamberlain
et al., 2021) shows that GNN can be seen as a discretization
of a heat diffusion equation. The diffusion perspective im-
plies that learning distinguishable node representation with
deep GNN is challenging since heat only diffuses to reach
equilibrium, where node representation becomes indistin-
guishable.

In this work, we claim not to forcefully correct the diffusive
nature of the GNNs. Instead, we propose to use the reverse
process of the aggregation. The aggregation process is
known to make the node representations similar; hence, its
reverse process can make the neighborhood representations
more distinguishable. Revisiting the diffusion perspective,
applying the reverse process means learning the states in
the past, which are further away from equilibrium and more
distinguishable.

To illustrate our intuition, we showcase our experimen-
tal results on the Minesweeper dataset, a well-known het-
erophilic dataset (Platonov et al., 2023b), in Figure 1. In
Minesweeper, a board is a grid-structured graph where each
node is initialized with the number of mines in the adjacent
nodes X(0), and the goal is to classify the location of mine
Y correctly. The top row visualizes the learned node repre-
sentations with our approach, and the bottom row visualizes
the representations with the GCN (Kipf & Welling, 2017).
With the forward-only method, such as GCN, the learned
representations often fail to obtain distinguishable repre-
sentations for classification. However, when the reverse
process is applied to the initial features, we can obtain a
distinguishable representation from the backward process.
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Figure 1. Visualized node representations over the forward and reverse processes in Minesweeper. Top: our approach with the forward
and reverse processes. Bottom: a classical GCN with a forward process only. The original node features are smoothed over the forward
process, whereas the features are more distinguishable over the reverse process. Visualization details are provided in Section 4.1.3.

To this end, we propose the framework of reverse pro-
cess GNNs utilizing the inversion of forward message-
passing layers. Specifically, we provide three variants of
reverse process GNN based on three backbone models:
1) GRAND (Chamberlain et al., 2021), 2) GCN (Kipf &
Welling, 2017), and 3) GAT (Veličković et al., 2018). For
GRAND, we directly use the numerical method to obtain
the representations in a backward direction. For GCN and
GAT, we adopt the idea of iResNet (Behrmann et al., 2019)
to make invertible message-passing layers that can model
the reverse process.

The experimental results on heterophilic datasets show that
the reverse process improves the prediction performance
compared with the forward-only models. Our investigation
reveals that the reverse process produces distinguishable
representations and enables the stacking of hundreds, even
a thousand layers, mitigating over-smoothing. Successfully
stacking deep layers allows for the capture of long-range
dependencies, which are crucial for performance on het-
erophilic datasets. The experiments on homophilic datasets
confirm that the reverse process does not harm the prediction
performance when the aggregation mechanism is sufficient.

2. Related Work
Most studies on heterophilic data focus on identifying nodes
with similar characteristics even among non-adjacent ones
for aggregation. GPR-GNN (Chien et al., 2020) utilizes
a trainable generalized PageRank for feature aggregation,
learning important neighborhood ranges from the data and
emphasizing information within those ranges for aggrega-
tion. CPGNN (Zhu et al., 2021) introduces a learnable com-
patibility matrix to capture the information of non-adjacent
homophilic nodes. FSGNN (Maurya et al., 2022) proposes
soft feature selection, wherein it adaptively selects neigh-
bors to aggregate with different hop distances. GloGNN (Li
et al., 2022) employs a coefficient matrix that represents

node-to-node relationships for aggregation, allowing the
aggregation of information from all nodes. GBK-GNN (Du
et al., 2022) proposes a bi-kernel graph neural network that
separately handles homophilic and heterophilic nodes. It
uses a selection gate to predict whether a node is homophilic
or heterophilic and obtains features using the corresponding
kernel based on the prediction. LRGNN (Liang et al., 2023)
uses a low-rank approximation to compute a label relation-
ship matrix, employing it for signed message passing.

However, aggregation still causes global node representa-
tions to become similar, known as over-smoothing, leading
to performance degradation on heterophilic datasets. To
overcome this issue, H2GCN (Zhu et al., 2020) and Or-
dered GNN (Song et al., 2023) proposes to preserve non-
aggregated representation separately. H2GCN learns node
representation by separating ego-embedding and neighbor-
embedding and employing intermediate representations. Or-
dered GNN proposes ordering message passing to prevent
the mixing of messages from different hops.

Several studies propose methods to adaptively learn ap-
propriate filters that can handle various graph structures.
FAGCN (Bo et al., 2021) introduces a GNN framework with
a self-gating mechanism to adaptively use low-frequency
and high-frequency signals. JacobiConv (Wang & Zhang,
2022) uses Jacobi bases for spectral filter, whose orthogonal-
ity and flexibility enable adaptation to a wide range of graph
signal densities. ACM-GCN (Luan et al., 2022) utilizes a
filterbank which combines low-pass and high-pass filters,
and adaptively considers node-wise local information.

On the other hand, several studies tackle the over-smoothing
issue. GRAND (Chamberlain et al., 2021) enhances the
understanding of over-smoothing from the perspective of
the resemblance between GNN structures and the heat dif-
fusion equation. PairNorm (Zhao & Akoglu, 2020) pro-
poses a normalization layer that remains the total pairwise
feature distances constant. DropEdge (Rong et al., 2020)
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randomly removes edges from the graph to cut off messages
passing between adjacent nodes. Half-Hop (Azabou et al.,
2023) up-sample edges and slow down the message passing.
While delaying or limiting over-smoothing can make node
representations less smooth, learning difference-enhanced
representations between adjacent nodes, which is helpful
for heterophilic data, is still challenging.

3. Method
We aim to introduce a framework that can learn distinct
node representations between adjacent nodes through re-
verse diffusion. We first provide the overall framework of
our approach and then show three substantiations of the
framework for three baseline models.

3.1. Framework

We consider a graph G = (V, E), where V and E are a set of
nodes and edges respectively, with additional d-dimensional
node features represented as X ∈ R|V|×d for all node, and
xi ∈ Rd denotes the feature of node i. It is a well-known
fact that a typical GNN layer f tends to learn similar repre-
sentations between neighboring nodes, leading to the issue
of over-smoothing. Chamberlain et al. (2021) highlighted
that this is due to the diffusive property inherent in GNN
structures.

In contrast to a typical GNN layer, we propose a GNN layer
g that performs the opposite role by reversing diffusion and
re-concentrating diffused information. Our main idea is
to design an inverse function of a message-passing GNN
layer f , with g = f−1 to perform the reversion. Due to the
diffusive nature of the GNN layer f , its inverse form g is
expected to have two properties: 1) g cancels the smooth-
ing effect, producing distinguishable representations that
mitigate the over-smoothing issue and thus 2) leading to
stacking multiple layers of g.

Formally, with the inverse of multiple message passing lay-
ers, our framework predicts node label Y as follows:

Ŷ = ϕ(f (L) ◦ · · · ◦ f (1)(X(0))∥g(1) ◦ · · · ◦ g(L)(X(0))),

where X(0) is input node features, f (ℓ) is the ℓ-th forward
message-passing layer with g(ℓ) = f (ℓ)−1

, L is the number
of layers, ∥ denotes concatenation, and ϕ is a prediction
function based on the forward and reverse processes of the
input features. We concatenate the representations from both
directions for prediction to utilize advantage of difference
enhanced representation and smooth representaiton at the
same time. In practice, we can set the number of forward
and reverse layers differently as LF and LR, and share the
parameters of different layers.

In the following sections, we propose a range of methods to
develop a reverse diffusion function for GRAND and two

variants of GNN with residual connections.

3.2. Reverse Diffusion Based on GRAND

In this section, we suggest a reverse diffusion function based
on GRAND. In GRAND, a GNN is interpreted as a dis-
cretization of the heat diffusion process. This is modeled by
the following heat diffusion equation on the graph:

∂X(t)

∂t
=
(
A(X(t))− I

)
X(t), (1)

where A(X) ∈ R|V|×|V| represents the learnable attention
matrix. Here, [A(X)]ij = 0 for any (i, j) /∈ E .

Within the framework of diffusion, the time parameter
serves as a continuous layer, similar to the concept used
in NeuralODEs (Chen et al., 2018). Using Equation (1),
GRAND produce node representations at time TF > 0 by:

X(TF ) = X(0) +

∫ TF

0

∂X(t)

∂t
dt, (2)

where numerical techniques like the Euler method are used
to solve integration. Since Equation (1) models the property
of heat reaching equilibrium over time, the node represen-
tations obtained through Equation (2) become diffused as
time progresses. Conversely, tracing back in time allows us
to observe the concentrated form of heat before diffusion.
Utilizing Equation (1), node representations at a past time
TR < 0 can be calculated as follows:

X(TR) = X(0)−
∫ 0

TR

∂X(t)

∂t
dt. (3)

Equation (3) reverses the diffusion process, enabling us to
obtain distinguishable representations.

In experiments, we utilize the GRAND-l model, where the
learnable attention matrix remains constant throughout the
diffusion process, A(X(t)) = A, which is known to be
parameter-efficient and robust to overfitting. Following the
original work, we use the scaled dot product attention to
calculate the learnable attention matrix A(X), which is
given as follows:

[A(X)]ij = softmax

(
(WKxi)

⊤
WQxj

d′

)
, (4)

where WK and WQ are d′ × d learnable parameters. When
multi-head attention is employed, we use the average of
attentions, i.e., A(X) = 1

K

∑
k A

(k)(X), where A(k) is
the attention with k-th head.

3.3. Reverse Process Based on GNN with Residual
Connections

We have explored the design of reverse process in widely
used two message-passing GNN structures: graph convo-
lutional network (GCN) (Kipf & Welling, 2017) and graph
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attention network (GAT) (Veličković et al., 2018). Both
GCN and GAT model a node representation through an
aggregation step, where neighborhood representations are
combined, and an update step, where the aggregated repre-
sentations are merged into the target node representation.
Let Â ∈ R|V|×|V| encode neighborhood structure in a graph,
and W ∈ Rd×d be a matrix of learnable parameters. With
the application of skip-connections (He et al., 2016), the
GCN and GAT layers can be formalized as

f(X(ℓ)) = X(ℓ+1) = X(ℓ) + σ(ÂX(ℓ)W) (5)

= X(ℓ) + h(X(ℓ)), (6)

where σ(·) represents a non-linear activation function. Â is
the renormalized adjacency matrix in GCN and a learnable
attention matrix in GAT. We note that when using multi-
head attention, we take averaging approach as in GRAND
to keep invertibility.

According to Behrmann et al. (2019), the inverse of the
GNN layer g = f−1 exists if the Lip(h) < 1, where Lip(h)
is Lipschitz constant of h. With the contractive nonlinear ac-
tivations like ReLU, ELU, and tanh, Lip(h) < 1 is satisfied
if

sup
X̸=0

∥ÂXW∥F
∥X∥F

< 1 , (7)

where ∥·∥F denotes Frobenius norm. When the condition
is guaranteed, g(X(ℓ)) can be computed via fixed point
iteration as described in Algorithm 1, resulting in X(ℓ−1).

To ensure the invertibility of f throughout the entire training
procedure, we enforce the weight matrix W to satisfy the
condition. Since it is difficult to optimize the weight matrix
while satisfying the condition, we normalize the weight
matrix after each gradient descent step. Specifically, given
that the left side of Equation (7) is upper bounded by

sup
X̸=0

∥ÂXW∥F
∥X∥F

≤ ∥Â∥2∥W∥F , (8)

where ∥·∥2 denotes spectral norm, we use the upper bound
to normalize the weight matrix.

Note that the spectral norm of Â is straightforward for the
two models that we considered as baselines: GCN and GAT.
In GCN, Â = D̃− 1

2 ÃD̃− 1
2 where Ã = A+ I is the adja-

cency matrix A with added self-loops and D̃ is the diagonal
degree matrix of Ã. A spectral norm of renormalized ad-
jacency matrix ∥Â∥2 = 1. In GAT, ∥Â∥2 = 1 since Â
is right-stochastic. Therefore, normalizing the weight ma-
trix through its Frobenius norm is sufficient to guarantee
the condition in Equation (7). The upper bound normal-
ization reduces the time complexity at the expense of the
exact supremum calculation. In experiments, we find that
the Frobenius upper bound can still result in a competitive
performance.

Algorithm 1 Inverse of GNN via fixed-point iteration

Input: output of residual layer X(ℓ), residual block h,
the number of fixed-point iterations M
Output: input of residual layer X(ℓ−1)

X← X(ℓ)

for m = 1, . . . ,M do
X← X− h(X)

end for
Return X

When the scaling coefficient c < 1 is given, W is normal-
ized to cW

∥W∥F
if c < ∥W∥F , in order to satisfy Lip(h) < c.

When multi-head attention with K heads is employed
for GAT, parameters of k-th head W(k) is normalized to

cW(k)

1
K

∑K
k=1∥W(k)∥F

for all k, since the upper bound result in
1
K

∑K
k=1∥W(k)∥F . The derivation of the upper bound for

multi-head attention is provided in Appendix C. Since resid-
ual block h is an operator on a Banach space, and we con-
straint the Lip(h) < 1, the convergence of Algorithm 1 is
guaranteed by the Banach fixed point theorem (Behrmann
et al., 2019). Inversion error in practice are reported in
Section 4.2.

While the time complexity of a GCN mainly depends on
the number of the forward layers LF , the complexity of
the reverse process depends on the number of fixed point
iterations M and of the number of reverse layers LR. In
our implementation, we run the fixed point iteration until
convergence and backpropagate over the iterations. We
provide the time and memory complexity analysis in Table 1,
and the proof is provided in Appendix A. An analysis on M
and the run-time with varying LR in real experiments are
provided in Section 4.3.

4. Experiments
The experimental section focuses on validating two research
questions: 1) Can the reverse process produce distinguish-
able representations? 2) Does the reverse process allevi-
ate over-smoothing problems, enabling the construction of
deeper layers?

Throughout this section, we denote models with additional
reverse layers by ReP (Reverse Process). For example,
GCN+ReP indicates the GCN backbone with the reverse
process. We adopt weight sharing approach of GRAND-l
for all experiments using ReP.

4.1. Node Classification

In this section, we validate the effectiveness of our frame-
work on node classification. Our primary focus is on as-
sessing performance improvements in heterophilic datasets,
while we have also evaluated performance on homophilic
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GCN with Residual Connection + Reverse Process

Forward Time O(LF |E|d+ LF |V|d2) + O(M2LR|E|d+MLR|V|d2 +M2LRd
3)

Forward Memory O(|E|+ LF |V|d+ d2) + O(LR|V|d)
Backward Time O(L2

F |E|d+ LF |V|d2 + L2
F d

3) + O(M2L3
R|E|d+ML2

R|V|d2 +M2L3
Rd

3)
Backward Memory O(|E|+ |V|d+ d2) ✗

Table 1. Space and time complexity of GCN for the forward and reverse processes. We show an additional complexity when using reverse
process, for simplicity. ✗ denotes there are no additional complexity. LF and LR represent the number of forward and reverse layers,
respectively, M is the number of fixed point iterations, and d is the dimensionality of the node representation.

datasets.

4.1.1. DATASETS

For the node classification task, we utilize a diverse set
of datasets to assess our model. For heterophilic data,
we explore two Wikipedia graphs, Chameleon and Squir-
rel, and five additional datasets, Roman-Empire, Amazon-
Ratings, Minesweeper, Tolokers, and Questions, introduced
by Platonov et al. (2023b). We adopted the filtering pro-
cess for Chameleon and Squirrel to prevent train-test data
leakage as recommended by Platonov et al. (2023b). In the
case of homophilic data, our selection includes three cita-
tion graphs: Cora, CiteSeer, and PubMed, along with two
Amazon co-purchase graphs, Computers and Photo. The
statistics of the datasets are summarized in Appendix B.

4.1.2. EXPERIMENTAL SETUP AND BASELINES

For the heterophilic datasets, we adopt the experimental
setup from Platonov et al. (2023b), which provides ten
random train/validation/test splits. We train a model with
cross-entropy loss and report mean accuracy and standard
deviation for multi-class classification datasets, including
Chameleon, Squirrel, Roman-Empire, and Amazon-Ratings.
For binary classification datasets, including Minesweeper,
Tolokers, and Questions, binary cross-entropy loss is used,
and mean ROC-AUC and standard deviation are reported.

We benchmark several neural architectures as base-
lines, including classic GNN models like GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), and Graph Transformer (GT)
(Shi et al., 2020) for more complex attention mechanisms.
These baselines are augmented with skip connections and
layer normalization. In addition, modifications proposed
in Zhu et al. (2020) are made to GAT and GT, resulting in
GAT-sep and GT-sep models. For heterophily-specific mod-
els, we use 10 models including H2GCN (Zhu et al., 2020),
CPGNN (Zhu et al., 2021), GPR-GNN (Chien et al., 2020),
FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022),
FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022),
JacobiConv (Wang & Zhang, 2022), LRGNN (Liang et al.,
2023), Ordered GNN (Song et al., 2023), ACM-GCN (Luan
et al., 2022), and Dir-GNN (Rossi et al., 2023).

For the homophilic datasets, we adopt the experimen-
tal setup from He et al. (2021), splitting datasets into
60%/20%/20% train/validation/test sets and using ten ran-
dom splits for averaging results. We compare our frame-
work against seven baselines: MLP, GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), APPNP (Gasteiger
et al., 2018), ChebNet (Defferrard et al., 2016), GPR-GNN
(Chien et al., 2020), and BernNet (He et al., 2021).

Validation For all experiments, we set the number of
epochs to 1,000 and apply early stopping when there
is no performance improvement for 100 consecutive
epochs. For GRAND+ReP, we validate the hyperpa-
rameters that maximize the validation metric in the fol-
lowing ranges: learning rate ∈ [10−5, 10−1], TF , TR ∈
[0, 10], d ∈ {16, 32, 64, 128, 256, 512}, K ∈ [1, 8], d′ ∈
{4, 8, 16, 32, 64, 128}. With the Euler or Runge-Kutta
methods, we search the step size over [0.5, 8] and tol-
erance scale over [1, 20000] with the Dormand-Prince
method. For GCN+ReP and GAT+ReP, we validate
the hyperparameters in the following ranges: learning
rate∈ [10−5, 10−1], the number of forward and reverse
layers LF , LR ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512},
dropout probability ∈ [0, 0.9] with step size of 0.1,
c ∈ {0.1, 0.5, 0.9, 0.999, 0.99999}, convergence thresh-
old for fixed point iteration ∈ {10−4, 10−5, 10−6}, d ∈
{128, 256, 512, 1024, 2048}, and M ∈ {8, 16, 32, 64}. We
fix the non-linear activation function to ReLU.

4.1.3. RESULTS

Table 2 shows node classification results on the heterophilic
datasets. Results marked with * and † in Table 2 are ob-
tained from Platonov et al. (2023b) and Rossi et al. (2023),
and * in Table 3 from He et al. (2021). Applying ReP shows
performance improvement for all backbones across most
heterophilic datasets, with the most significant and consis-
tent improvement observed in GCN. GCN+ReP achieves
state-of-the-art performance in four out of seven datasets
and the second-best performance in one. In the datasets
where GCN+ReP attained state-of-the-art performance, the
number of reverse layers was consistently above 64. This
observation shows that deep layers of GNNs with ReP can
achieve superior performance without over-smoothing.
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Squirrel Chameleon Roman- Amazon- Minesweeper Tolokers Questionsempire ratings

SAGE* 36.09±1.99 37.77±4.14 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

GAT-sep* 35.46±3.10 39.26±2.50 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

GT* 36.30±1.98 38.87±3.66 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep* 36.66±1.63 40.31±3.01 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

H2GCN * 35.10±1.15 26.75±3.64 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

CPGNN* 30.04±2.03 33.00±3.15 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

GPR-GNN* 38.95±1.99 39.93±3.30 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

FSGNN* 35.92±1.32 40.61±2.97 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GloGNN* 35.11±1.24 25.90±3.58 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

FAGCN* 41.08±2.27 41.90±2.72 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

GBK-GNN* 35.51±1.65 39.61±2.60 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

JacobiConv* 29.71±1.66 39.00±4.20 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

LRGNN 39.51±2.12 41.24±2.95 40.88±1.84 42.23±4.85 52.66±6.40 74.24±1.37 66.41±1.75

Ordered GNN 38.96±2.19 38.04±5.55 80.12±1.22 49.66±1.01 90.21±1.15 81.42±0.65 73.36±1.09

ACM-GCN 33.07±3.03 31.78±3.35 69.66±0.62† 32.26±2.06 90.53±0.56 79.18±0.77 62.50±4.05

Dir-GNN 40.39±1.11 41.26±2.00 91.23±0.32† 44.88±0.84 91.35±0.65 81.78±0.83 76.30±0.99

GRAND 35.94±1.64 37.71±4.48 75.19±0.56 49.34±0.72 90.41±0.78 78.38±1.91 76.22±1.06

GRAND+ReP 40.75±2.44 42.14±3.62 77.53±0.62 48.30±0.60 91.42±0.78 80.44±1.64 76.41±1.04

∆ +4.81 (↑) +4.43 (↑) +2.34 (↑) −1.04 (↓) +1.01 (↑) +2.06 (↑) +0.19 (↑)
GAT* 35.62±2.06 39.21±3.08 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT+ReP 39.66±2.00 43.24±4.48 85.87±0.64 52.68±0.27 94.89±0.33 84.52±0.56 76.21±0.74

(32/32) (64/32) (64/4) (16/2) (32/16) (8/1) (64/1)
∆ +4.04 (↑) +4.03 (↑) +5.00 (↑) +3.59 (↑) +2.11 (↑) +0.82 (↑) −1.22 (↓)

GCN* 39.47±1.47 40.89±4.12 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

GCN+ReP 45.89±1.45 47.57±3.90 86.43±0.74 52.75±0.62 96.05±0.19 86.08±0.84 77.96±0.96

(256/256) (128/256) (256/16) (32/1) (1/256) (128/64) (128/64)
∆ +6.42 (↑) +6.68 (↑) +12.74 (↑) +4.05 (↑) +6.30 (↑) +2.44 (↑) +1.87 (↑)

Table 2. Test performance and standard deviation on heterophilic datasets. ∆ indicates the difference with and without ReP. We also
report the number of forward and reverse layers below the performance of GCN+ReP and GAT+ReP. The best and the second-best are
bolded and underlined, respectively.

Table 3 shows node classification performance on the ho-
mophilic datasets. Due to spacing, we only report the results
on three datasets. All results are reported in Appendix D.
No significant performance changes were observed when
ReP applied on homophilic node classification. The results
confirm that the distinguishable representations do not harm
the prediction performance for homophily datasets where
the forward aggregation is sufficient.

Analysis on the Number of Forward and Reverse Layers
To investigate whether many layers of reverse process im-
prove performance in heterophilic datasets and compare
its effect with that of many forward layers, we trained
GCN+ReP with varying pairs of steps on two datasets:
Chameleon and Minesweeper. Specifically, we vary the
number of layers from 1 to 1024 in one direction.

The prediction performances with varying numbers of layers

are reported in Figure 2. In both datasets, the prediction per-
formance keeps increasing as the number of reverse layers
increases. These results indicate that the reverse process is
capable of deep stacking to mitigate over-smoothing. This
enables the models to capture long-range dependencies ef-
fectively, which is known to be important, especially in
heterophilic graphs. The prediction performance also tends
to increase as we increase the number of forward steps up
to 1024 in the Chameleon dataset.

Over-Smoothing Analysis We evaluate whether the pro-
posed reverse process mitigates the over-smoothing issue.
To measure the degree of over-smoothing, we adopt Graph
Smoothness Level (GSL) proposed by Zhang et al. (2022)
defined as:

GSL(X) =
1

|V|(|V| − 1)

∑
i∈V

∑
j∈V,j ̸=i

xi · xj

∥xi∥F ∥xj∥F
, (9)
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Cora CiteSeer PubMed

MLP* 76.96±0.95 76.58±0.88 85.94±0.22

vanilla-GCN* 87.14±1.01 79.86±0.67 86.74±0.27

vanilla-GAT* 88.03±0.79 80.52±0.71 87.04±0.24

APPNP* 88.14±0.73 80.47±0.74 88.12±0.31

ChevNet* 86.67±0.82 79.11±0.75 87.95±0.28

GPR-GNN* 88.57±0.69 80.12±0.83 88.46±0.33

BernNet* 88.52±0.95 80.09±0.79 88.48±0.41

GRAND 85.53±0.64 74.95±1.37 88.81±0.69

GRAND+ReP 85.73±1.39 75.78±1.48 89.03±0.61

∆ +0.20 (↑) +0.83 (↑) +0.22 (↑)
GAT 87.67±0.84 77.36±1.59 89.66±0.60

GAT+ReP 87.93±1.60 77.06±1.60 89.94±0.61

(64/32) (32/128) (8/8)
∆ +0.26(↑) −0.30(↓) +0.28(↑)

GCN 88.00±1.42 77.15±1.44 89.37±0.52

GCN+ReP 87.63±1.40 77.33±1.65 89.96±0.55

(32/512) (8/32) (32/32)
∆ −0.37(↓) +0.18(↑) +0.59(↑)

Table 3. Test accuracy and standard deviation on homophilic
datasets. ∆ indicates the difference with and without ReP. We also
report the number of forward and reverse layers below the perfor-
mance of GCN+ReP and GAT+ReP. The best and the second-best
are bolded and underlined, respectively.

Figure 2. Prediction performance with varying the number of for-
ward and reverse layers. We vary the number of layers (depth)
in one direction. Due to memory constraints, we restricted the
reverse depth used in Minesweeper to 256 or less.

where xi is the representation of node i. The GSL represents
the average cosine similarity across all pairs of nodes in the
graph. A GSL value closer to one indicates more severe
over-smoothing.

Figure 3 shows GSL of GCN+ReP and GCN with varying

Figure 3. Over-smoothing levels measured by GSL over the num-
ber of layers (depth). ReP (forward) denotes the measured GSL in
the forward process of GCN+ReP. We compare the results with
GCN of three different depths: 16, 32, 64.

numbers of layers on Squirrel and Chameleon datasets. In
both datasets, the GSL of GCN+ReP remains below 0.6
up to 1024 reverse layers, whereas the learned represen-
tations from GCN with 32 and 64 layers tend to become
similar even after eight layers. GCN with 16 layers shows
relatively low GSL values yet still exceeds 0.9 after eight
layers. Compared with CGN, GCN+ReP shows relatively
less GSL, showing that the reverse process can mitigate the
over-smoothing in the forward processes as well.

Qualitative Analysis on Minesweeper Dataset To val-
idate that the reverse process produces a distinguish-
able representation, we visualize label predictions on the
Minesweeper dataset. The Minesweeper dataset is a binary
classification task on a grid-structured graph, where the
node with a positive label indicates the location of a mine.
Each node, unless located on the boundaries, is connected
to eight adjacent nodes, including the ones in the diagonal
directions. The node feature is initialized with the number
of mines in the adjacent nodes, and a one-hot representation
of the feature is used as an initial representation of the node
for learning.

Based on the representations obtained from the forward and
reverse processes, we trained a GCN+ReP model with a
single-layer MLP as a prediction head. In Figure 4, we visu-
alize the prediction results of two randomly sampled 7× 7
sub-grids from 100× 100 grid structure. For each example,
we visualize the prediction results with node representations
from 1) forward process, 2) reverse process, and 3) both
directions, as well as 4) the true labels, displayed from upper
left to lower right. In the visualization of the true labels,
black cells indicate the presence of mine, and white cells
indicate its absence. In the visualization of the prediction
results, the darker the cell, the higher the predicted probabil-
ity of a mine being present. Since the prediction head needs
concatenated representations for prediction, to visualize the
prediction results focused on a forward or reverse represen-
tation, we set the other node representation to be zero, e.g.,
to predict the mine using node representation at layer ℓ > 0,
(X(ℓ)∥0) is fed into the prediction head.
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Forward Reverse

Both True Label

Forward Reverse

Both True Label

(a) Example 1

Forward Reverse

Both True Label

Forward Reverse

Both True Label

(b) Example 2

Figure 4. Visualization of node prediction on the Minesweeper
dataset. We visualize the prediction from 1) forward, 2) reverse,
and 3) both representations, along with 4) the ground truth labels.

In both examples, the prediction results from the reverse pro-
cess appear distinguishable, while those from the forward
process tend to be smooth. Additionally, the distinguish-
able prediction created by the reverse process significantly
contributes to label prediction. Although in some cases, the
reverse process can perfectly classify the location of mines,
e.g., Example 1, the other cases require representations from
both directions to classify the mines correctly, e.g., Example
2.

Figure 1 shows the changes in predictions over the number
of layers on the 10× 10 sampled sub-grids. We follow the
same visualization procedure with Figure 4. As expected,
the predictions and representations tend to be more distin-
guishable as the number of reverse layers increases.

4.2. Inversion Error

Although the invertibility of Algorithm 1 is guaranteed in
theory, the inversion may not be achieved due to numerical
errors. To verify the fixed point method, we conduct the
experiment to restore the inputs from the outputs of GCN
and GAT at a depth of 64. We set the scaling coefficient c
to 0.99999 and the number of fixed point iterations to eight,
which is challenging due to the large coefficient (note that
the Lipschitz of 1 is non-invertible) and the small number of
iterations. Table 4 shows the mean absolute error between
the original inputs and restored input data. As the results
show, the inversion error is negligible in practice.

4.3. Run Time Analysis

We first measure how many iterations are required for the
fixed point iterations to be converged. Figure 5 shows the dif-
ference between consecutive representations over the fixed
point iterations with two datasets in terms of mean absolute
difference. As shown in the figure, the fixed point method
converges after seven iterations in general. In addition, we

GCN+ReP GAT+ReP

Squirrel 3.36× 10−5 3.28× 10−5

Chameleon 2.23× 10−5 2.41× 10−5

Roman-empire 2.79× 10−5 3.56× 10−5

Amazon-ratings 4.31× 10−5 3.46× 10−5

Table 4. Mean absolute error between the original inputs and re-
stored input data by Algorithm 1.

Figure 5. The mean absolute difference between two consecutive
representations in the fixed-point method.

Figure 6. Average training time for the single epoch. The number
of forward layers are shown next to the model.

measure the training time for a single epoch and plot the
results in Figure 6. The results show that the training time in-
creases linearly as we increase the number of reverse layers
coincided with the complexity analysis in Section 3.3.

5. Conclusion
In this work, we propose a reverse process for the message-
passing-based graph neural networks. Through extensive
empirical analysis, we have found that the reverse process
can mitigate over-smoothing issues and allow long-distance
nodes to interact with each other. Especially for the het-
erophilic datasets where the long-range interaction is neces-
sary for a better prediction, the proposed method achieves
outstanding results against many baseline models.

Future Work To ensure invertibility, the Lipschitz con-
stant of the forward process must be restricted, and the
hidden dimension of weight parameters must remain con-
stant. These restrictions limit the representation power and
design choices. Investigating less restrictive invertible forms
could lead to performance improvements.
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Günnemann, S., and Bronstein, M. M. Edge direction-
ality improves learning on heterophilic graphs. In The
Second Learning on Graphs Conference, 2023. 5

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023. 1

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020. 5

Song, Y., Zhou, C., Wang, X., and Lin, Z. Ordered GNN:
Ordering message passing to deal with heterophily and
over-smoothing. In The Eleventh International Confer-
ence on Learning Representations, 2023. 2, 5
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A. Complexity Analysis
The forward and reverse processes of a GCN with residual connections and weight sharing are as follows:

X(ℓ+1) = X(ℓ) + ÂX(ℓ)W, (forward process), (10)

X(ℓ−1) = X(ℓ) +

M∑
m=1

(−1)mÂmX(ℓ)Wm, (reverse process), (11)

where M is the number of fixed point iterations. For simplicity, we ignore an activation function.

A.1. Forward Pass of Forward Process

Equation 10 involves three key operations: matrix multiplication between X and W with complexity O(|V|d2), matrix
multiplication between sparse matrix Â and X(ℓ)W with complexity O(|E|d), and matrix addition with complexity O(|V|d).
Overall, the time complexity for a single layer is O(|V|d2 + |E|d). Therefore, the total time complexity over LF forward
layers is O(LF |V|d2 + LF |E|d). Memory cost is calculated as O(LF |V|d+ |E|+ d2).

A.2. Backward Pass of Forward Process

The time complexity of the backward pass is primarily determined by the computation cost of ∂L
∂W . By applying the chain

rule, the gradient can be expressed as:

∂L
∂W

=
∂L

∂X(LF )

∂X(LF )

∂X(LF−1)
· · · ∂X

(2)

∂X(1)

∂X(1)

∂W
. (12)

By sequentially multiplying ∂X(n)

∂X(n−1) for n = LF , · · · , 2 on the right side of ∂L
∂X(LF ) , we derive:

∂L
∂X(LF )

∂X(LF )

∂X(LF−1)
· · · ∂X

(2)

∂X(1)
=

LF−1∑
ℓ=0

(
LF − 1

ℓ

)
(Â⊤)ℓ

(
∂L

∂X(LF )

)
(W⊤)ℓ . (13)

To demonstrate Equation (13), we illustrate part of the sequential multiplication process. Multiplying ∂X(LF )

∂X(LF −1) to the right
side of ∂L

∂X(LF ) , we get:

∂L
∂X(LF )

∂X(LF )

∂X(LF−1)
=

∂L
∂X(LF )

(
∂

∂X(LF−1)
IX(LF−1) +

∂

∂X(LF−1)
ÂX(LF−1)W

)
=

∂L
∂X(LF )

+ Â⊤ ∂L
∂X(LF )

W⊤. (14)

Next, we multiply ∂X(LF −1)

∂X(LF −2) on the right side of Equation (14), yielding:

∂L
∂X(LF )

∂X(LF )

∂X(LF−1)

∂X(LF−1)

∂X(LF−2)
=

(
∂L

∂X(LF )
+ Â⊤ ∂L

∂X(LF )
W⊤

)(
∂

∂X(LF−2)
IX(LF−2) +

∂

∂X(LF−2)
ÂX(LF−2)W

)
=

2∑
ℓ=0

(
2

ℓ

)
(Â⊤)ℓ

(
∂L

∂X(LF )

)
(W⊤)ℓ . (15)

Repeating the process above, we can derive Equation (13).
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Finally, ∂L
∂W is derived by multiplying Equation (13) with ∂X(1)

∂W :

∂L
∂W

=

(
∂L

∂X(1)

)(
∂X(1)

∂W

)
=

( LF−1∑
ℓ=0

(
LF − 1

ℓ

)
(Â⊤)ℓ

(
∂L

∂X(LF )

)
(W⊤)ℓ

)(
∂

∂W
ÂX(0)W

)

=
(
ÂX(0)

)⊤( LF−1∑
ℓ=0

(
LF − 1

ℓ

)
(Â⊤)ℓ

(
∂L

∂X(LF )

)
(W⊤)ℓ

)
. (16)

The time complexity of the term in the summation is O(LF + ℓ|E|d+ |V|d2 + ℓd3). Therefore, the overall time complexity
for computing ∂L

∂W is O(L2
F d

3 + LF |V|d2 + L2
F |E|d), with a memory cost of O(|V|d+ |E|+ d2).

A.3. Forward Pass of Reverse Process

To calculate Equation 11, the initial step involves computing (−1)mÂmX(ℓ)Wm. The time complexity for this part is
O(m|E|d + |V|d2 + md3). Summing over m from 0 to M , the overall complexity becomes O(M2|E|d + M |V|d2 +
M2d3). With LR representing the number of reverse process layers, additional time complexity becomes O(M2LR|E|d+
MLR|V|d2 +M2LRd

3) comparing to forward pass without reverse process.

A.4. Backward Pass of Reverse Process

The time complexity of the backward pass is primarily determined by the computation cost of ∂L
∂W . By applying the chain

rule, the gradient can be expressed as:

∂L
∂W

=
∂L

∂X(−LR)

∂X(−LR)

∂X(−LR+1)
· · · ∂X

(−2)

∂X(−1)

∂X(−1)

∂W
. (17)

By sequentially multiplying ∂X(−n)

∂X(−n+1) for n = LR, · · · , 2 to the right side of ∂L
∂X(−LR) , we derive:

∂L
∂X(−LR)

∂X(−LR)

∂X(−LR+1)
· · · ∂X

(−2)

∂X(−1)

=
∂L

∂X(−LR)
+

LR−1∑
ℓ=1

(
LR − 1

ℓ

) ∑
(m1,m2,··· ,mℓ)

(−1)
∑ℓ

i=1 mi(Â⊤)
∑ℓ

i=1 mi

(
∂L

∂X(−LR)

)
(W⊤)

∑ℓ
i=1 mi , (18)

where mi = 1, · · · ,M for all i. To demonstrate Equation (18), we show part of the sequential multiplication process.
Multiplying ∂X(−LR)

∂X(−LR+1) to the right side of ∂L
∂X(−LR) , we get:

∂L
∂X(−LR)

∂X(−LR)

∂X(−LR+1)
=

∂L
∂X(−LR)

∂

∂X(−LR+1)

(
X(−LR+1) +

M∑
m=1

(−1)mÂmX(−LR+1)Wm

)

=
∂L

∂X(−LR)
+

M∑
m=1

(−1)m
(
Âm

)⊤ ∂L
∂X(−LR)

(Wm)
⊤

, (19)

which can also be obtained by substitute LR = 2 in Equation (18).

Next, we multiply ∂X(−LR+1)

∂X(−LR+2) on the right side of Equation (19), yielding:
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∂L
∂X(−LR)

∂X(−LR)

∂X(−LR+1)

∂X(−LR+1)

∂X(−LR+2)

=

(
∂L

∂X(−LR)
+

M∑
m=1

(−1)m
(
Âm

)⊤ ∂L
∂X(−LR)

(Wm)
⊤

)
∂

∂X(−LR+2)

(
X(−LR+2) +

M∑
m=1

(−1)mÂmX(−LR+2)Wm

)

=
∂L

∂X(−LR)
+

2∑
ℓ=1

(
2

ℓ

) ∑
(m1,m2,··· ,mℓ)

(−1)
∑ℓ

i=1 mi(Â⊤)
∑ℓ

i=1 mi

(
∂L

∂X(−LR)

)
(W⊤)

∑ℓ
i=1 mi . (20)

Repeating the process above, we can derive Equation (18).

Finally, ∂L
∂W is derived by multiplying Equation (18) with ∂X(−1)

∂W :

∂L
∂W

=

M∑
m0=1

(−1)m0m0(Â
m0X(0))⊤

(
∂L

∂X(−LR)

)
Wm0−1

+

LR−1∑
ℓ=1

(
LR − 1

ℓ

) ∑
(m0,m1,··· ,mℓ)

(−1)
∑ℓ

i=1 mim0(Â
m0X(0))⊤(Â⊤)

∑ℓ
i=1 mi

(
∂L

∂X(−LR)

)
(W⊤)

∑ℓ
i=1 miWm0−1 ,

(21)

where mi = 1, · · · ,M for all i. The time complexity of the first term is O(M2|E|d +M |V|d2 +M2d3). In the case of
the second term, the time complexity is O(M2L3

R|E|d + ML2
R|V|d2 + M2L3

Rd
3), since there are up to 2ℓM possible

outcomes for
∑ℓ

i=1 mi. Therefore, the overall time complexity of the reverse process is O((L2
F +M2L3

R)|E|d+ (L2
F +

ML2
R)|V|d2 +M2L3

Rd
3). The memory complexity is O(|V|d+ |E|+ d2).

B. Dataset Statistics
Table 5 presents the dataset statistics utilized in experiments. There are two forms of homophily: edge homophily (Abu-El-
Haija et al., 2019; Zhu et al., 2020) and adjusted homophily (Platonov et al., 2023a). Edge homophily denotes the proportion
of edges connecting nodes with the same label, formally expressed as:

hedge =
| (u, v) ∈ E : yu = yv} |

|E|
,

where E is the set of edges, and yn is the label of node n. However, edge homophily is acknowledged to be meaningless in
graphs with imbalanced labels. To address this issue, adjusted homophily is introduced. Formally, adjusted homophily is
defined as:

hadj =
hedge −

∑C
k=1 D

2
k/(2|E|)2

1−
∑C

k=1 D
2
k/(2|E|)2

,

where Dk is the total degree of nodes of class k, and C is the number of classes. We employed seven heterophilic datasets
characterized by low adjusted homophily and five commonly used homophilic datasets exhibiting high edge homophily and
adjusted homophily.

C. Multi-Head Attention for GAT
GAT calculates an attention matrix as follows:

Âij =
exp

(
LeakyReLU

(
a⊤
[
W⊤Xi∥W⊤Xj

]))∑
k∈Ni

exp (LeakyReLU (a⊤ [W⊤Xi∥W⊤Xj ]))
, (22)

where a ∈ R2d is a learnable parameter. Our framework also adopts averaging when using multi-head attention and remains
hidden dimension constant to ensure invertibility, resulting in:

h(X(ℓ)) = σ(
1

K

K∑
k=1

Â(k)X(ℓ)W(k)). (23)
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Dataset # nodes # edges # classes avg degree edge homophily adjusted homophily

Squirrel-filtered 2,223 46,998 5 42.28 0.21 0.01
Chameleon-filtered 890 8,854 5 19.90 0.24 0.03

roman-empire 22,662 32,927 18 2.91 0.05 -0.05
amazon-ratings 24,492 93,050 5 7.60 0.38 0.14
minesweeper 10,000 39,402 2 7.88 0.68 0.01

tolokers 11,758 519,000 2 88.28 0.59 0.09
questions 48,921 153,540 2 6.28 0.84 0.02

Cora 2,708 5,278 7 3.90 0.81 0.77
CiteSeer 3,327 4,552 6 2.74 0.74 0.67
PubMed 19,717 44,324 3 4.50 0.80 0.69

Computers 13,752 245,861 10 35.76 0.78 0.68
Photo 7,650 119,081 8 31.13 0.83 0.79

Table 5. Statistics of the dataset utilized in the experiments.

In this case, the Lipschitz constant of h, Lip(h) < 1 is satisfied if

sup
X ̸=0

∥ 1
K

∑K
k=1 Â

(k)X(ℓ)W(k)∥F
∥X∥F

< 1 . (24)

The upper bound of left side is computed by:

sup
X ̸=0

∥ 1
K

∑K
k=1 Â

(k)X(ℓ)W(k)∥F
∥X∥F

≤ 1

K

K∑
k=1

sup
X ̸=0

∥Â(k)X(ℓ)∥F
∥X∥F

∥W(k)∥F

≤ 1

K

K∑
k=1

∥W(k)∥F , (25)

since ∥
∑

X∥F ≤
∑
∥X∥F .

D. Full Results of Homophily Datasets
We provide the experimental results of all homophilic datasets in Table 6.
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Cora CiteSeer PubMed Computers Photo

MLP* 76.96±0.95 76.58±0.88 85.94±0.22 82.85±0.38 84.72±0.34

vanilla-GCN* 87.14±1.01 79.86±0.67 86.74±0.27 83.32±0.33 88.26±0.73

vanilla-GAT* 88.03±0.79 80.52±0.71 87.04±0.24 83.32±0.39 90.94±0.68

APPNP* 88.14±0.73 80.47±0.74 88.12±0.31 85.32±0.37 88.51±0.31

ChevNet* 86.67±0.82 79.11±0.75 87.95±0.28 87.54±0.43 93.77±0.32

GPR-GNN* 88.57±0.69 80.12±0.83 88.46±0.33 86.85±0.25 93.85±0.28

BernNet* 88.52±0.95 80.09±0.79 88.48±0.41 87.64±0.44 93.63±0.35

GRAND 85.53±0.64 74.95±1.37 88.81±0.69 90.28±0.47 94.01±0.73

GRAND+ReP 85.73±1.39 75.78±1.48 89.03±0.61 89.51±0.78 94.48±0.61

∆ +0.20 (↑) +0.83 (↑) +0.22 (↑) −0.77 (↓) +0.47 (↑)
GAT 87.67±0.84 77.36±1.59 89.66±0.60 92.15±0.30 95.86±0.58

GAT+ReP 87.93±1.60 77.06±1.60 89.94±0.61 91.03±0.62 95.44±0.71

(64/32) (32/128) (8/8) (16/8) (32/8)
∆ +0.26(↑) −0.30(↓) +0.28(↑) −1.12(↓) −0.42(↓)

GCN 88.00±1.42 77.15±1.44 89.37±0.52 91.87±0.57 95.35±0.47

GCN+ReP 87.63±1.40 77.33±1.65 89.96±0.55 90.92±0.52 95.50±0.63

(32/512) (8/32) (32/32) (32/64) (32/128)
∆ −0.37(↓) +0.18(↑) +0.59(↑) −0.95(↓) +0.15(↑)

Table 6. Test accuracy and standard deviation on homophilic datasets. ∆ indicates the difference with and without ReP. We also report the
number of forward and reverse layers below the performance of GCN+ReP and GAT+ReP. The best and the second-best are bolded and
underlined, respectively.
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