
Diffusion Model-Augmented Behavioral Cloning

Hsiang-Chun Wang * 1 Shang-Fu Chen * 1 Ming-Hao Hsu 1 Chun-Mao Lai 1 Shao-Hua Sun 1

Abstract

Imitation learning addresses the challenge of
learning by observing an expert’s demonstrations
without access to reward signals from environ-
ments. Most existing imitation learning methods
that do not require interacting with environments
either model the expert distribution as the condi-
tional probability p(a|s) (e.g., behavioral cloning,
BC) or the joint probability p(s, a) (e.g., implicit
behavioral cloning). Despite its simplicity, mod-
eling the conditional probability with BC usually
struggles with generalization. While modeling
the joint probability can lead to improved general-
ization performance, the inference procedure can
be time-consuming and it often suffers from man-
ifold overfitting. This work proposes an imitation
learning framework that benefits from modeling
both the conditional and joint probability of the
expert distribution. Our proposed diffusion model-
augmented behavioral cloning (DBC) employs a
diffusion model trained to model expert behaviors
and learns a policy to optimize both the BC loss
(conditional) and our proposed diffusion model
loss (joint). DBC outperforms baselines in vari-
ous continuous control tasks in navigation, robot
arm manipulation, dexterous manipulation, and
locomotion. We design additional experiments to
verify the limitations of modeling either the con-
ditional probability or the joint probability of the
expert distribution as well as compare different
generative models.

1 Introduction
Recently, the success of deep reinforcement learning
(DRL) (Mnih et al., 2015; Lillicrap et al., 2016; Arulku-
maran et al., 2017) has inspired the research community
to develop DRL frameworks to control robots, aiming to
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automate the process of designing sensing, planning, and
control algorithms by letting the robot learn in an end-to-end
fashion. Yet, acquiring complex skills through trial and error
can still lead to undesired behaviors even with sophisticated
reward design (Christiano et al., 2017; Leike et al., 2018;
Lee et al., 2019). Moreover, the exploring process could
damage expensive robotic platforms or even be dangerous
to humans (Garcıa & Fernández, 2015; Levine et al., 2020).

To overcome this issue, imitation learning (i.e., learning
from demonstration) (Schaal, 1997; Osa et al., 2018) has
received growing attention, whose aim is to learn a policy
from expert demonstrations, which are often more acces-
sible than appropriate reward functions for reinforcement
learning. Among various imitation learning directions, ad-
versarial imitation learning (Ho & Ermon, 2016; Zolna et al.,
2021; Kostrikov et al., 2019) and inverse reinforcement
learning (Ng & Russell, 2000; Abbeel & Ng, 2004) have
achieved encouraging results in a variety of domains. Yet,
these methods require interacting with environments, which
can still be expensive or unsafe.

On the other hand, behavioral cloning (BC) (Pomerleau,
1989; Bain & Sammut, 1995) does not require interacting
with environments. BC formulates imitation learning as a
supervised learning problem — given an expert demonstra-
tion dataset, an agent policy takes states sampled from the
dataset as input and learns to replicate the corresponding
expert actions. One can view a BC policy as a discrimina-
tive model p(a|s) that models the conditional probability
of an action a given a state s. Due to its simplicity and
training stability, BC has been widely adopted for various
applications.

However, BC struggles at generalizing to states unobserved
during training (Nguyen et al., 2023). To address this issue,
implicit behavioral cloning (IBC) (Florence et al., 2022)
aims to model the joint probability of the expert state-action
pairs p(s, a) with energy-based models. IBC demonstrates
superior performance when generalization is required. Yet,
imitation learning methods in a similar vein (Ganapathi
et al., 2022) that model the joint probability of state-action
pairs p(s, a) instead of directly predicting actions p(a|s)
require time-consuming actions sampling and optimization
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to retrieve a desired action argmax
a∈A

p(s, a) during inference

despite the choice of models.

This work proposes an imitation learning framework that
combines both the efficiency of modeling the conditional
probability and the generalization ability of modeling the
joint probability. Specifically, we propose to model the
expert state-action pairs using a state-of-the-art generative
model, a diffusion model, which learns to estimate how
likely a state-action pair is sampled from the expert dataset.
Then, we train a policy to optimize both the BC objective
and the estimate produced by the learned diffusion model.
Therefore, our proposed framework not only can efficiently
predict actions given states via capturing the conditional
probability p(a|s) but also enjoys the generalization abil-
ity induced by modeling the joint probability p(s, a) and
utilizing it to guide policy learning.

We evaluate our proposed framework and baselines in vari-
ous continuous control domains, including navigation, robot
arm manipulation, and locomotion. The experimental re-
sults show that the proposed framework outperforms all
the baselines or achieves competitive performance on all
tasks. Extensive ablation studies compare our proposed
method to its variants, justifying our design choices, such
as different generative models, and investigating the effect
of hyperparameters.

2 Related Work
Imitation learning addresses the challenge of learning by
observing expert demonstrations without access to reward
signals from environments. It has various applications
such as robotics (Schaal, 1997), autonomous driving (Ly &
Akhloufi, 2020), and game AI (Harmer et al., 2018).

Behavioral Cloning (BC). BC (Pomerleau, 1989; Torabi
et al., 2018) formulate imitating an expert as a supervised
learning problem. Due to its simplicity and effectiveness,
it has been widely adopted in various domains. Yet, it of-
ten struggles at generalizing to states unobserved from the
expert demonstrations (Ross et al., 2011; Florence et al.,
2022). In this work, we augment BC by employing a dif-
fusion model that learns to capture the joint probability of
expert state-action pairs.

Adversarial Imitation Learning (AIL). AIL methods aim
to match the state-action distributions of an agent and an
expert via adversarial training. Generative adversarial im-
itation learning (GAIL) (Ho & Ermon, 2016) and its ex-
tensions (Torabi et al., 2019; Kostrikov et al., 2019; Zolna
et al., 2021) resemble the idea of generative adversarial net-
works (Goodfellow et al., 2014), which trains a generator
policy to imitate expert behaviors and a discriminator to
distinguish between the expert and the learner’s state-action

pair distributions. While modeling state-action distributions
often leads to satisfactory performance, adversarial learning
can be unstable and inefficient (Chen et al., 2020). Moreover,
AIL methods require online interaction with environments,
which can be costly or even dangerous. In contrast, our
work does not require interacting with environments.

Inverse Reinforcement Learning (IRL). IRL methods (Ng
& Russell, 2000; Abbeel & Ng, 2004; Fu et al., 2018; Lee
et al., 2021) are designed to infer the reward function that
underlies the expert demonstrations and then learn a policy
using the inferred reward function. This allows for learning
tasks whose reward functions are difficult to specify man-
ually. However, due to its double-loop learning procedure,
IRL methods are typically computationally expensive and
time-consuming. Additionally, obtaining accurate estimates
of the expert’s reward function can be difficult, especially
when the expert’s behavior is non-deterministic or when the
expert’s demonstrations are sub-optimal.

Diffusion Policies. Recently, (Pearce et al., 2023; Chi et al.,
2023; Reuss et al., 2023) propose to represent and learn
an imitation learning policy using a conditional diffusion
model, which produces a predicted action conditioning on
a state and a sampled noise vector. These methods achieve
encouraging results in modeling stochastic and multimodal
behaviors from human experts or play data. In contrast,
instead of representing a policy using a diffusion model, our
work employs a diffusion model trained on expert demon-
strations to guide a policy as a learning objective.

3 Preliminaries

3.1 Imitation Learning

Without loss of generality, the reinforcement learning prob-
lem can be formulated as a Markov decision process (MDP),
which can be represented by a tuple M = (S,A,R, P, ρ, γ)
with states S, actions A, reward function R(S,A) ∈ (0, 1),
transition distribution P (s

′ |s, a) : S×A×S → [0, 1], initial
state distribution ρ, and discounted factor γ. Based on the
rewards received while interacting with the environment, the
goal is to learn a policy π(·|s) to maximize the expectation
of the cumulative discounted return (i.e., value function):

V (π) = E[
T∑

t=0
γtR(st, at)|s0 ∼ ρ(·), at ∼ π(·|st), st+1 ∼

P (st+1|st, at)], where T denotes the episode length. In-
stead of interacting with the environment and receiving
rewards, imitation learning aims to learn an agent policy
from an expert demonstration dataset, containing M trajec-
tories, D = {τ1, ..., τM}, where τi represents a sequence of
ni state-action pairs {si1, ai1, ..., sini

, aini
}.
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3.2 Behavioral Cloning: Modeling Conditional
Probability p(a|s)

To learn a policy π, behavioral cloning (BC) directly esti-
mates the expert policy πE with maximum likelihood esti-
mation (MLE). Given a state-action pair (s, a) sampled from
the dataset D, BC optimizes max

θ

∑
(s,a)∈D

log(πθ(a|s)),

where θ denotes the parameters of the policy π. One can
view a BC policy as a discriminative model p(a|s), captur-
ing the conditional probability of an action a given a state
s. Despite its success in various applications, BC tends to
overfit and struggle at generalizing to states unseen during
training (Ross et al., 2011; Codevilla et al., 2019; Wang
et al., 2022).

3.3 Modeling Joint Probability p(s, a)

Aiming for improved generalization ability, implicit behav-
ioral cloning (Florence et al., 2022) and methods in a sim-
ilar vein (Ganapathi et al., 2022) model the joint proba-
bility p(s, a) of expert state-action pairs. These methods
demonstrate superior generalization performance in diverse
domains. Yet, without directly modeling the conditional
probability p(a|s), the action sampling and optimization
procedure to retrieve a desired action argmaxa∈A p(s, a)
during inference is often time-consuming.

Moreover, explicit generative models such as energy-based
models (Du & Mordatch, 2019; Song & Kingma, 2021),
variational autoencoder (Kingma & Welling, 2014), and
flow-based models (Rezende & Mohamed, 2015; Dinh et al.,
2017) are known to struggle with modeling observed high-
dimensional data that lies on a low-dimensional manifold
(i.e., manifold overfitting) (Wu et al., 2021; Loaiza-Ganem
et al., 2022). As a result, these methods often perform
poorly when learning from demonstrations produced by
script policies or PID controllers, as discussed in Section
5.4.

We aim to develop an imitation learning framework that
enjoys the advantages of modeling the conditional probabil-
ity p(a|s) and the joint probability p(s, a). Specifically, we
propose to model the joint probability of expert state-action
pairs using an explicit generative model ϕ, which learns to
produce an estimate indicating how likely a state-action pair
is sampled from the expert dataset. Then, we train a policy
to model the conditional probability p(a|s) by optimizing
the BC objective and the estimate produced by the learned
generative model ϕ. Hence, our method can efficiently pre-
dict actions given states, generalize better to unseen states,
and suffer less from manifold overfitting.

q(xn |xn−1)

ϕ(xn−1 |xn)
xn−1 xn xNx0

Forward diffusion process

Reverse diffusion process

Figure 1. Denoising Diffusion Probabilistic Model (DDPM). La-
tent variables x1, ..., xN are produced from the data point x0 via
the forward diffusion process, i.e., gradually adding noises to the
latent variables. The diffusion model ϕ learns to reverse the diffu-
sion process by denoising the noisy data to reconstruct the original
data point x0.

3.4 Diffusion Models

As described in the previous sections, this work aims to
combine the advantages of modeling both the conditional
probability p(a|s) and the joint probability p(s, a). To this
end, we leverage diffusion models to model the joint prob-
ability of expert state-action pairs. The diffusion model
is a recently developed class of generative models and has
achieved state-of-the-art performance on various tasks (Sohl-
Dickstein et al., 2015; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021).

In this work, we utilize Denoising Diffusion Probabilistic
Models (DDPMs) (J Ho, 2020) to model expert state-action
pairs. Specifically, DDPM models gradually add noise to
data samples (i.e., concatenated state-action pairs) until they
become isotropic Gaussian (forward diffusion process), and
then learn to denoise each step and restore the original data
samples (reverse diffusion process), as illustrated in Figure
1. In other words, DDPM learns to recognize a data dis-
tribution by learning to denoise noisy sampled data. More
discussion on diffusion models can be found in the Section
E.

4 Approach
Our goal is to design an imitation learning framework that
enjoys both the advantages of modeling the conditional
probability and the joint probability of expert behaviors. To
this end, we first adopt behavioral cloning (BC) for mod-
eling the conditional probability from expert state-action
pairs, as described in Section 4.1. To capture the joint prob-
ability of expert state-action pairs, we employ a diffusion
model which learns to produce an estimate indicating how
likely a state-action pair is sampled from the expert state-
action pair distribution, as presented in Section 4.2.1. Then,
we propose to guide the policy learning by optimizing this
estimate provided by a learned diffusion model, encourag-
ing the policy to produce actions similar to expert actions,
as discussed in Section 4.2.2. Finally, in Section 4.3, we
introduce the framework that combines the BC loss and
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(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Figure 2. Diffusion Model-Augmented Behavioral Cloning. Our proposed method DBC augments behavioral cloning (BC) by employing
a diffusion model. (a) Learning a Diffusion Model: the diffusion model ϕ learns to model the distribution of concatenated state-action
pairs sampled from the demonstration dataset D. It learns to reverse the diffusion process (i.e., denoise) by optimizing Ldiff in Eq. 2. (b)
Learning a Policy with the Learned Diffusion Model: we propose a diffusion model objective LDM for policy learning and jointly
optimize it with the BC objective LBC. Specifically, LDM is computed based on processing a sampled state-action pair (s, a) and a
state-action pair (s, â) with the action â predicted by the policy π with Ldiff.

our proposed diffusion model loss, allowing for learning
a policy that benefits from modeling both the conditional
probability and the joint probability of expert behaviors. An
overview of our proposed framework is illustrated in Figure
2.

4.1 Behavioral Cloning Loss

The behavioral cloning (BC) model aims to imitate expert
behaviors with supervision learning. BC learns to capture
the conditional probability p(a|s) of expert state-action
pairs. Given a sampled expert state-action pair (s, a), a
policy π learns to predict an action â ∼ π(s) by optimizing

LBC = d(a, â), (1)

where d(·, ·) denotes a distance measure between a pair of
actions. For example, we can adapt the mean-square error
(MSE) loss ||a− â||2 for most continuous control tasks.

4.2 Learning a Diffusion Model and Guiding Policy
Learning

Instead of directly learning the conditional probability
p(a|s), this section discusses how to model the joint prob-
ability p(s, a) of expert behaviors with a diffusion model
in Section 4.2.1 and presents how to leverage the learned
diffusion model to guide policy learning in Section 4.2.2.

4.2.1 Learning a Diffusion Model

We propose to model the joint probability of expert state-
action pairs with a diffusion model ϕ. Specifically, we
create a joint distribution by simply concatenating a state
vector s and an action vector a from a state-action pair
(s, a). To model such distribution by learning a denoising
diffusion probabilistic model (DDPM) (J Ho, 2020), we
inject noise ϵ(n) into sampled state-action pairs, where n
indicates the number of steps of the Markov procedure,
which can be viewed as a variable of the level of noise.
Then, we train the diffusion model ϕ to predict the injected
noises by optimizing

Ldiff(s, a, ϕ) = ||ϵ̂(s, a, n)− ϵ(n)||2

= ||ϕ(s, a, ϵ(n))− ϵ(n)||2,
(2)

where ϵ̂ is the noise predicted by the diffusion model ϕ.
Once optimized, the diffusion model can recognize the ex-
pert distribution by perfectly predicting the noise injected
into state-action pairs sampled from the expert distribution.
On the other hand, predicting the noise injected into state-
action pairs sampled from any other distribution should
yield a higher loss value. Therefore, we propose to view
Ldiff(s, a, ϕ) as an estimate of how well the state-action pair
(s, a) fits the state-action distribution that ϕ learns from.



Diffusion Model-Augmented Behavioral Cloning

4.2.2 Learning a Policy with Diffusion Model Loss

A diffusion model ϕ trained on the expert distribution can
produce an estimate Ldiff(s, a, ϕ) indicating how well a
state-action pair (s, a) fits the expert distribution. We pro-
pose to leverage this signal to guide a policy to imitate
the expert. Specifically, given a state-action (s, a) sampled
from D, the π predicts an action given the state â ∼ π(s)
by optimizing

Lagent
diff = Ldiff(s, â, ϕ) = ||ϵ̂(s, â, n)− ϵ||2. (3)

Intuitively, the policy learns to predict actions that are indis-
tinguishable from the expert actions for the diffusion model
conditioning on the same set of states.

We hypothesize that learning a policy to optimize Eq. 3
can be unstable, especially for state-action pairs that are not
well-modeled by the diffusion model, which yield a high
value of Ldiff even with expert state-action pairs. Therefore,
we propose to normalize the agent diffusion loss Lagent

diff with
an expert diffusion loss Lexpert

diff , which can be computed with
expert state-action pairs (s, a) as follows:

Lexpert
diff = Ldiff(s, a, ϕ) = ||ϵ̂(s, a, n)− ϵ||2. (4)

We propose to optimize the diffusion model loss LDM based
on calculating the difference between the above agent and
expert diffusion losses:

LDM = max(Lagent
diff − Lexpert

diff , 0). (5)

4.3 Combining the Two Objectives

Our goal is to learn a policy that benefits from both model-
ing the conditional probability and the joint probability of
expert behaviors. To this end, we propose to augment a BC
policy that optimizes the BC loss LBC in Eq. 1 by jointing
optimizing the proposed diffusion model loss LDM in Eq. 5,
which encourages the policy to predict actions that fit the
expert joint probability captured by a diffusion model. To
learn from both the BC loss and the diffusion model loss,
we train the policy to optimize

Ltotal = LBC + λLDM, (6)

where λ is a coefficient that determines the importance of
the diffusion model loss relative to the BC loss. We analyze
the effect of the coefficient in Section 5.7.1.

5 Experiments
We design experiments in various continuous control do-
mains, including navigation, robot arm manipulation, dexter-
ous manipulation, and locomotion, to compare our proposed
framework (DBC) to its variants and baselines.

5.1 Experimental Setup

This section describes the environments, tasks, and expert
demonstrations used for learning and evaluation. More
details can be found in Section A.

Navigation. To evaluate our method on a navigation task,
we choose MAZE, a maze environment proposed in (Fu
et al., 2020) (maze2d-medium-v2), as illustrated in Figure
3a. This task features a point-mass agent in a 2D maze
learning to navigate from its start location to a goal location
by iteratively predicting its x and y acceleration. The agent’s
beginning and final locations are chosen randomly. We
collect 100 demonstrations with 18,525 transitions using a
controller.

Robot Arm Manipulation. We evaluate our method in
a robot arm manipulation domain with two 7-DoF Fetch
tasks: FETCHPICK and FETCHPUSH, as illustrated in Fig-
ure 3c and Figure 3b. FETCHPICK requires picking up
an object from the table and lifting it to a target location;
FETCHPUSH requires the arm to push an object to a target
location. We use the demonstrations provided in Lee et al.
(2021) for these tasks. Each dataset contains 10k transitions
(303 trajectories for FETCHPICK and 185 trajectories for
FETCHPUSH).

Dexterous Manipulation. In HANDROTATE, we further
evaluate our method on a challenging environment proposed
in Plappert et al. (2018), where a 24-DoF Shadow Dex-
terous Hand learns to in-hand rotate a block to a target
orientation, as illustrated in Figure 3d. This environment
has a high-dimensional state space (68D) and action space
(20D). We collected 10k transitions (515 trajectories) from
a SAC (Haarnoja et al., 2018) expert policy trained for 10M
environment steps.

Locomotion. For locomotion, we leverage the WALKER en-
vironment (Brockman et al., 2016), which requires a bipedal
agent to walk as fast as possible while maintaining its bal-
ance, as illustrated in Figure 3e. We use the demonstrations
provided by Kostrikov (2018), which contains 5 trajectories
with 5k state-action pairs.

5.2 Baselines

We compare our method DBC with the following baselines.

• BC learns to imitate an expert by modeling the con-
ditional probability p(a|s) of the expert behaviors via
optimizing the BC loss LBC in Eq. 1.

• Implicit BC (IBC) (Florence et al., 2022) models ex-
pert state-action pairs with an energy-based model. For
inference, we implement the derivative-free optimiza-
tion algorithm proposed in IBC, which samples actions
iteratively to select the desired action with the minimum
predicted energy. This baseline serves a representative
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(a) MAZE (b) FETCHPICK (c) FETCHPUSH (d) HANDROTATE (e) WALKER

Figure 3. Environments & Tasks. (a) MAZE: A point-mass agent (green) in a 2D maze learns to navigate from its start location to a
goal location (red). (b)-(c) FETCHPICK and FETCHPUSH: The robot arm manipulation tasks employ a 7-DoF Fetch robotics arm.
FETCHPICK requires picking up an object (yellow cube) from the table and moving it to a target location (red); FETCHPUSH requires the
arm to push an object (black cube) to a target location (red). (d) HANDROTATE: This dexterous manipulation task requires a Shadow
Dexterous Hand to in-hand rotate a block to a target orientation. (e) WALKER: This locomotion task requires learning a bipedal walker
policy to walk as fast as possible while maintaining its balance.

Table 1. Experimental Result. We report the mean and the standard deviation of success rate (MAZE, FETCHPICK, FETCHPUSH,
HANDROTATE) and return (WALKER), evaluated over three random seeds. Our proposed method (DBC) outperforms the baselines on
MAZE, FETCHPICK, FETCHPUSH, and HANDROTATE, and performs competitively against the best-performing baseline on WALKER.

Method MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC 79.35% ± 5.05% 69.15% ± 5.00% 66.02% ± 6.88% 55.48% ± 3.97% 7066.61 ± 22.79
Implicit BC 81.43% ± 4.88% 72.27% ± 6.71% 77.70% ± 4.42% 14.52% ± 3.04% 685.92 ± 150.26

Diffusion Policy 73.34% ± 5.30% 74.37% ± 3.80% 86.93% ± 3.26% 58.59% ± 2.85% 6429.87 ± 356.70
DBC (Ours) 86.99% ± 2.84% 88.71% ± 6.46% 94.92% ± 3.09% 60.34% ± 4.60% 7057.42 ± 36.19

of the methods that solely model the joint probability
p(s, a) of the expert behaviors.

• Diffusion policy refers to the methods that learn a con-
ditional diffusion model as a policy (Chi et al., 2023;
Reuss et al., 2023). Specifically, we implement this
baseline based on Pearce et al. (2023). We include this
baseline to analyze the effectiveness of using diffusion
models as a policy or as a learning objective (ours).

5.3 Experimental Results

We report the experimental results in terms of success rate
(MAZE, FETCHPICK, FETCHPUSH, HANDROTATE), and
return (WALKER) in Table 1. The details of model archi-
tecture can be found in Section B. Training and evaluation
details can be found in Section C. Additional analysis and
experimental results can be found in Section 5.5 and Section
D.

Overall Task Performance. Our proposed method DBC
achieves the highest success rates, outperforming our base-
lines in all the goal-directed tasks (MAZE, FETCHPICK,
FETCHPUSH, and HANDROTATE) and perform competi-
tively in WALKER compared to the best-performing baseline
(BC). We hypothesize the improvement in the goal-directed
tasks can be mostly attributed to the better generalization
ability since starting positions and the goals are randomized

during evaluation and therefore requires the policy to deal
with unseen situation. To verify this hypothesis, we further
evaluate the baselines and our method in FETCHPICK and
FETCHPUSH with different levels of randomization in Sec-
tion 5.5.

Locomotion. Unlike the goal-directed tasks, we do not ob-
serve significant improvement but competitive results from
DBC compared to the best-performing baseline (BC). We
hypothesize that this is because locomotion tasks such as
WALKER, with sufficient expert demonstrations and little
randomness, do not require generalization during inference.
The agent can simply follow the closed-loop progress of
the expert demonstrations, resulting in both BC (7066.61)
and DBC (7057.42) performing similarly to the expert with
an average return of 7063.72. On the other hand, we hy-
pothesize that Diffusion Policy performs slightly worse due
to its design for modeling multimodal behaviors, which is
contradictory to learning from this single-mode simulated
locomotion task.

Action Space Dimension. While Implicit BC models the
joint distribution and generalizes better, it requires time-
consuming actions sampling and optimization during in-
ference. Moreover, such procedure may not scale well to
high-dimensional action spaces. Our Implicit BC baseline
with a derivative-free optimizer struggles in HANDROTATE
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(a) (b) (c)

Figure 4. Comparing Modeling Conditional Probability and Joint Probability. (a) Generalization. We collect expert trajectories
from a PPO policy learning to navigate to goals sampled from the green regions. Then, we learn a policy πBC to optimize LBC, and
another policy πDM to optimize LDM with a diffusion model trained on the expert distribution. We evaluate the two policies by sampling
goals from the red regions, which requires the ability to generalize. πBC (orange) struggles at generalizing to unseen goals, whereas
πDM (blue) can generalize (i.e., extrapolate) to some extent. (b)-(c) Manifold overfitting. We collect the green spiral trajectories from a
script policy, whose actions are visualized as red crosses. We then train and evaluate πBC and πDM . The trajectories of πBC (orange)
can closely follow the expert trajectories (green), while the trajectories of πDM (blue) drastically deviates from expert’s. This is because
the diffusion model struggles at modeling such expert action distribution with a lower intrinsic dimension, which can be observed from
poorly predicted actions (blue dots) produced by the diffusion model.

and WALKER environments, whose action dimensions are
20 and 6, respectively. This is consistent with Florence et al.
(2022), which reports that the optimizer failed to solve tasks
with an action dimension larger than 5. In contrast, our
proposed DBC can handle high-dimensional action spaces.

Inference Efficiency. To evaluate the inference efficiency,
we measure and report the number of evaluation episodes
per second (↑) for Implicit BC (9.92), Diffusion Policy
(1.38), and DBC (30.79) on an NVIDIA RTX 3080 Ti GPU
in MAZE. As a results of modeling the conditional probabil-
ity p(a|s), DBC and BC can directly map states to actions
during inference. In contrast, Implicit BC samples and opti-
mizes actions, while Diffusion Policy iteratively denoises
sampled noises, which are both time-consuming. This veri-
fies the efficiency of modeling the conditional probability.

5.4 Comparing Modeling Conditional Probability and
Joint Probability

This section aims to empirically identify the limitations of
modeling either the conditional or the joint probability in an
open maze environment implemented with (Fu et al., 2020).

Generalization. We aim to investigate if learning from the
BC loss alone struggles at generalization (conditional) and
examine if guiding the policy using the diffusion model loss
yields improved generalization ability (joint). We collect
trajectories of a PPO policy learning to navigate from (5, 3)
to goals sampled around (1, 2) and (1, 4) (green), as shown

in Figure 4a. Given these expert trajectories, we learn a
policy πBC to optimize Eq. 1 and another policy πDM

to optimize Eq. 5. Then, we evaluate the two policies by
sampling goals around (1, 1), (1, 3), and (1, 5) (red), which
requires the ability to generalize. Visualized trajectories
of the two policies in Figure 4a show that πBC (orange)
fails to generalize to unseen goals, whereas πDM (blue) can
generalize (i.e., extrapolate) to some extent. This verifies
our motivation to augment BC with the diffusion model
loss.

Manifold overfitting. We aim to examine if modeling the
joint probability is difficult when observed high-dimensional
data lies on a low-dimensional manifold (i.e., manifold over-
fitting). We collect trajectories from a script policy that
executes actions (0.5, 0), (0, 0.5), (−0.7, 0), and (0,−0.7)
(red crosses in Figure 4b), each for 40 consecutive time steps,
resulting the green spiral trajectories visualized in Figure
4c.

Given these expert demonstrations, we learn a policy πBC

to optimize Eq. 1, and another policy πDM to optimize Eq.
5 with a diffusion model trained on the expert distribution.
Figure 4b shows that the diffusion model struggles at mod-
eling such expert action distribution with a lower intrinsic
dimension. As a result, Figure 4c show that the trajectories
of πDM (blue) drastically deviates from the expert trajecto-
ries (green) as the diffusion model cannot provide effective
loss. On the other hand, the trajectories of πBC (orange) is
able to closely follow expert’s. This verifies our motivation
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Table 2. FETCHPICK Generalization Experimental Result. We report the performance of our proposed framework DBC and the
baselines regarding the mean and the standard deviation of the success rate with different levels of noise injected into the initial state and
goal locations in FETCHPICK, evaluated over three random seeds.

Method Noise Level
1 1.25 1.5 1.75 2

BC 86.78% ± 4.68% 69.15% ± 5.00% 54.42% ± 3.89% 43.49% ± 4.68% 36.64% ± 3.85%
Implicit BC 89.40% ± 4.85% 72.27% ± 6.71% 46.32% ± 5.49% 34.60% ± 4.78% 25.84% ± 4.16%

Diffusion Policy 76.04% ± 3.12% 74.37% ± 3.80% 69.22% ± 5.23% 56.95% ± 4.63% 53.93% ± 4.49%
DBC (Ours) 97.59% ± 1.53% 88.71% ± 6.46% 78.76% ± 10.84% 69.36% ± 12.72% 62.62% ± 14.01%

Table 3. FETCHPUSH Generalization Experimental Result. We report the performance of our proposed framework DBC and the
baselines regarding the mean and the standard deviation of the success rate with different levels of noise injected into the initial state and
goal locations in FETCHPUSH, evaluated over three random seeds.

Method Noise Level
1 1.25 1.5 1.75 2

BC 94.07% ± 4.45% 82.52% ± 5.46% 66.02% ± 6.88% 48.85% ± 8.65% 34.82% ± 7.13%
Implicit BC 85.95% ± 8.39% 83.99% ± 6.06% 77.70% ± 4.42% 70.33% ± 6.06% 56.98% ± 11.74%

Diffusion Policy 97.92% ± 1.10% 93.02% ± 2.36% 86.93% ± 3.26% 74.50% ± 3.66% 65.84% ± 3.81%
DBC (Ours) 99.83% ± 0.23% 99.38% ± 0.78% 94.92% ± 3.09% 87.48% ± 5.04% 78.43% ± 7.41%

to complement modeling the joint probability with modeling
the conditional probability (i.e., BC).

5.5 Generalization Experiments in FETCHPICK and
FETCHPUSH

This section further investigates the generalization capabili-
ties of the policies learned by our proposed framework and
the baselines. To this end, we evaluate the policies by inject-
ing different noise levels to both the initial state and goal
location in FETCHPICK and FETCHPUSH. Specifically, we
parameterize the noise by scaling the 2D sampling regions
for the block and goal locations in both environments. We
expect all the methods to perform worse with higher noise
levels, while the performance drop of the methods with
better generalization ability is less significant. In this experi-
ment, we set the coefficient λ of DBC to 0.5 in FETCHPUSH
and 0.1 in FETCHPICK. The results are presented in Table
2 for FETCHPICK and Table 3 for FETCHPUSH.

Overall Performance. Our proposed framework DBC con-
sistently outperforms all the baselines with different noise
levels, indicating the superiority of DBC when different
levels of generalization are required.

Performance Drop with Increased Noise Level. In
FETCHPICK, DBC experiences a performance drop of
35.8% when the noise level increase from 1 to 2. However,
BC and Implicit BC demonstrate a more significant perfor-
mance drop of 57.8% and 71.1%, respectively. Notably,
Diffusion Policy initially performs poorly at a noise level
of 1 but demonstrates its robustness with a performance
drop of only 29.1% when the noise level increases to 2. On

the other hand, in FETCHPUSH, DBC experiences a perfor-
mance drop of 21.4% when the noise level increase from 1
to 2, while all the baselines have a more significant perfor-
mance drop: BC (63%), Implicit BC (33.7%), and Diffusion
Policy (32.8%). This demonstrates that our proposed frame-
work not only generalizes better but also exhibits greater
robustness to noise compared to the baselines.

5.6 Comparing Different Generative Models

Our proposed framework employs a diffusion model (DM)
to model the joint probability of expert state-action pairs
and utilizes it to guide policy learning. To justify our choice,
we explore using other popular generative models to replace
the diffusion model in MAZE. We consider energy-based
models (EBMs) (Du & Mordatch, 2019; Song & Kingma,
2021), variational autoencoder (VAEs) (Kingma & Welling,
2014), and generative adversarial networks (GANs) (Good-
fellow et al., 2014). Each generative model learns to model
expert state-action pairs. To guide policy learning, given a
predicted state-action pair (s, â) we use the estimated en-
ergy of an EBM, the reconstruction error of a VAE, and the
discriminator output of a GAN to optimize a policy with or
without the BC loss. More details on learning generative
models and utilizing them to guide policy learning can be
found in Section C.4.

Table 4 compares using different generative models to model
the expert distribution and guide policy learning. All the
generative model-guide policies can be improved by adding
the BC loss, justifying our motivation to complement mod-
eling the joint probability with modeling the conditional
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Table 4. Comparing Different Generative Models. We compare
using different generative models to model the expert state-action
pair distribution and guide policy learning in MAZE. The per-
formance of learning a policy only from the loss provided by a
generative model is reported in the "without BC" column; the "with
BC" column presents the performance of optimizing a policy using
both the generative model loss and the BC loss. The results show
that guiding a policy with a diffusion model yields the best perfor-
mance, which justifies our choice of generative models. Moreover,
combining the generative model loss with the BC loss leads to
improved performance of all the generative models, which verifies
our motivation of modeling both conditional and joint probability.

Method without BC with BC

BC N/A 79.35% ± 5.05%
EBM 49.09% ± 15.15% 80.00% ± 4.06%
VAE 48.47% ± 7.57% 82.31% ± 5.84%
GAN 50.29% ± 8.27% 71.64% ± 5.50%
DM 53.51% ± 4.20% 86.99% ± 2.84%

probability. With or without the BC loss, the diffusion
model-guided policy achieves the best performance com-
pared to other generative models, verifying our choice of
the generative model.

5.7 Ablation Study

In this section, we investigate the effect of the diffusion
model loss coefficient λ (Section 5.7.1) and examine the ef-
fect of the normalization term Lexpert

diff in the diffusion model
loss LDM (Section 5.7.2).

5.7.1 Effect of the Diffusion Model Loss Coefficient λ

We examine the impact of varying the coefficient of the dif-
fusion model loss λ in Eq. 6 in MAZE. The result presented
in Table 5 shows that λ = 5 yields the best performance. A
higher or lower λ leads to worse performance, demonstrat-
ing how modeling the conditional probability (LBC) and the
joint probability (LDM) can complement each other.

5.7.2 Effect of the Normalization Term Lexpert
diff

We aim to investigate whether normalizing the diffusion
model loss LDM with the expert diffusion model loss Lexpert

diff
yields improved performance in MAZE. We train a variant
of DBC where only Lagent

diff in Eq. 3 instead of LDM in Eq. 5
is used to augment BC. This variant learning from an unnor-
malized diffusion model loss achieves an average success
rate of 80.20%, worse than the full DBC (86.99%). This jus-
tifies the effectiveness of the proposed normalization term
Lexpert

diff in LDM.

Table 5. Effect of the Diffusion Model Loss Coefficient λ. We
experiment with different values of the diffusion model loss coef-
ficient λ in MAZE, each evaluated over three random seeds. A λ
that is too hig or too lower leads to worse performance, demon-
strating how modeling the conditional probability (LBC) and the
joint probability (LDM) can complement each other.

λ Success Rate

1 85.40% ± 4.37%
2 85.64% ± 3.69%
5 86.99% ± 2.84%

10 85.46% ± 4.47%
20 85.17% ± 2.61%

6 Conclusion
We propose an imitation learning framework that benefits
from modeling both the conditional probability p(a|s) and
the joint probability p(s, a) of the expert distribution. Our
proposed diffusion model-augmented behavioral cloning
(DBC) employs a diffusion model trained to model expert
behaviors and learns a policy to optimize both the BC loss
and our proposed diffusion model loss. Specifically, the
BC loss captures the conditional probability p(a|s) from
expert state-action pairs, which directly guides the policy
to replicate the expert’s action. On the other hand, the dif-
fusion model loss models the joint distribution of expert’s
state-action pairs p(s, a), which provides an evaluation of
how well the predicted action aligned with the expert distri-
bution. DBC outperforms baselines or achieves competitive
performance in various continuous control tasks in naviga-
tion, robot arm manipulation, dexterous manipulation, and
locomotion. We design additional experiments to verify the
limitations of modeling either the conditional probability
or the joint probability of the expert distribution as well
as compare different generative models. Ablation studies
investigate the effect of hyperparameters and justify the
effectiveness of our design choices.
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Appendix

A Environment & Task Details

A.1 MAZE

Description. A point-maze agent in a 2D maze learns to navigate from its start location to a goal location by iteratively
predicting its x and y acceleration. The 6D states include the agent’s two-dimensional current location and velocity, and the
goal location. The start and the goal locations are randomized when an episode is initialized.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our method with the baselines
regarding the average success rate and episode lengths, representing the effectiveness and efficiency of the policy learned by
different methods. An episode terminates when the maximum episode length of 400 is reached.

Expert Dataset. The expert dataset consists of the 100 demonstrations with 18, 525 transitions provided by Lee et al.
(2021).

A.2 FETCHPICK & FETCHPUSH

Description. FETCHPICK requires a 7-DoF robot arm to pick up an object from the table and move it to a target location;
FETCHPUSH requires the robot arm to push an object to a target location. Following the environment setups of Lee et al.
(2021), a 16D state representation consists of the angles of the robot joints, the robot arm poses relative to the object, and
goal locations. The first three dimensions of the action indicate the desired relative position at the next time step. For
FETCHPICK, the fourth dimension of action specifies the distance between the two fingers of the gripper.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our method with the baselines
regarding the average success rate and episode lengths. An episode terminates when the agent completes the task or the
maximum episode length is reached, which is set to 50 for FETCHPICK and 120 for FETCHPUSH.

Expert Dataset. The expert dataset of FETCHPICK consists of 303 trajectories (10k transitions) while the expert dataset of
FETCHPUSH consists of 185 trajectories (10k transitions) provided by Lee et al. (2021).

A.3 HANDROTATE

Description. HANDROTATE Plappert et al. (2018) requires a 24-DoF Shadow Dexterous Hand to in-hand rotate a block to a
target orientation. The 68D state representation consists of the joint angles and velocities of the hand, object poses, and
the target rotation. The 20D action indicates the position control of the 20 joints, which can be controlled independently.
HANDROTATE is extremely challenging due to its high dimensional state and action spaces. We adapt the experimental
setup used in Plappert et al. (2018) and Lee et al. (2021), where the rotation is restricted to the z-axis and the possible
initial and target z rotations are set within [− π

12 ,
π
12 ] and [π3 ,

2π
3 ], respectively.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our method with the baselines
regarding the average success rate and episode lengths. An episode terminates when the agent completes the goal or the
maximum episode length of 50 is reached.

Expert Dataset. To collect expert demonstrations, we train a SAC Haarnoja et al. (2018) policy using dense rewards for
10M environment steps. The dense reward given at each time step t is R(st, at) = dt − dt+1, where dt and dt+1 represent
the angles (in radian) between current and the desired block orientations before and after taking the actions. Following the
training stage, the SAC expert policy achieves a success rate of 59.48%. Subsequently, we collect 515 successful trajectories
(10k transitions) from this policy to form our expert dataset for HANDROTATE.

A.4 WALKER

Description. WALKER requires an agent to walk toward x-coordinate as fast as possible while maintaining its balance. The
17D state consists of angles of joints, angular velocities of joints, and velocities of the x and z-coordinate of the top. The 6D
action specifies the torques to be applied on each joint of the walker avatar.

Evaluation. We evaluate each learned policy with 30 episodes and three random seeds and compare our method with the
baselines regarding the average returns of episodes and episode lengths. The return of an episode is accumulated from
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Table 6. Model Architectures. We report the architectures used for all the methods on all the tasks.

Method Models Component MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC Policy π

# Layers 3 2 2 3 3
Input Dim. 6 16 16 68 17

Hidden Dim. 256 1024 1024 1024 256
Output Dim. 2 4 3 20 6

Implicit BC Policy π

# Layers 2 2 2 2 2
Input Dim. 8 20 19 88 23

Hidden Dim. 1024 1024 1024 512 1024
Output Dim. 1 1 1 1 1

Diffusion Policy Policy π

# Layers 5 5 5 5 5
Input Dim. 8 20 19 88 23

Hidden Dim. 256 1200 1024 2100 1200
Output Dim. 2 4 3 20 6

DBC

DM ϕ

# Layers 5 5 5 5 5
Input Dim. 8 20 19 88 23

Hidden Dim. 128 1024 1024 2048 1024
Output Dim. 8 20 19 88 23

Policy π

# Layers 3 2 2 3 3
Input Dim. 6 16 16 68 17

Hidden Dim. 256 1024 1024 512 256
Output Dim. 2 4 3 20 6

all the time steps of an episode. An episode terminates when the agent is unhealthy (i.e., ill conditions predefined in the
environment) or the maximum episode length (1000) is reached.

Expert Dataset. The expert dataset consists of 5 trajectories with 5k state-action pairs provided by Kostrikov (2018).

B Model Architecture
This section describes the model architectures used for all the experiments. Section B.1 presents the model architectures of
BC, Implicit BC, Diffusion Policy, and our proposed framework DBC. Section B.2 details the model architectures of the
EBM, VAE, and GAN used for the experiment comparing different generative models.

B.1 Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC

We compare our DBC with three baselines (BC, Implicit BC, and Diffusion Policy) on various tasks in Section 5.3. We
detail the model architectures for all the methods on all the tasks in Table 6. Note that all the models, the policy of BC, the
energy-based model of Implicit BC, the conditional diffusion model of Diffusion Policy, the policy and the diffusion model
of DBC, are parameterized by a multilayer perceptron (MLP). We report the implementation details for each method as
follows.

BC. The non-linear activation function is a hyperbolic tangent for all the BC policies. We experiment with BC policies with
more parameters, which tend to severely overfit to expert datasets, resulting in worse performance.

Implicit BC. The non-linear activation function is ReLU for all energy-based models of Implicit BC. We empirically find
that Implicit BC prefers shallow architectures in our tasks, so we set the number of layers to 2 for the energy-based models.

Diffusion Policy. The non-linear activation function is ReLU for all the policies of Diffusion Policy. We empirically find
that Diffusion Policy performs better with a deeper architecture. Therefore, we set the number of layers to 5 for the policy.
In most cases, we use a Diffusion Policy with more parameters than the total parameters of DBC consisting of the policy
and the diffusion model.
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DBC. The non-linear activation function is ReLU for the diffusion models and is a hyperbolic tangent for the policies. We
apply batch normalization and dropout layers with a 0.2 ratio for the diffusion models on FETCHPICK and FETCHPUSH.

B.2 Model Architecture of EBM, VAE, and GAN

We compare different generative models (i.e., EBM, VAE, and GAN) on MAZE in Section 5.6, and we report the model
architectures used for the experiment in this section.

Energy-Based Model. An energy-based model (EBM) consists of 5 linear layers with ReLU activation. The EBM takes a
concatenated state-action pair with a dimension of 8 as input; the output is a 1-dimensional vector representing the estimated
energy values of the state-action pair. The size of the hidden dimensions is 128.

Variational Autoencoder. The architecture of a variational autoencoder consists of an encoder and a decoder. The inputs of
the encoder are a concatenated state-action pair, and the outputs are the predicted mean and variance, which parameterize a
Gaussian distribution. We apply the reparameterization trick (Kingma & Welling, 2014), sample features from the predicted
Gaussian distribution, and use the decoder to produce the reconstructed state-action pair. The encoder and the decoder both
consist of 5 linear layers with LeakyReLU Xu et al. (2020) activation. The size of the hidden dimensions is 128. That
said, the encoder maps an 8-dimensional state-action pair to two 128-dimensional vectors (i.e., mean and variance), and the
decoder maps a sampled 128-dimensional vector back to an 8-dimensional reconstructed state-action pair.

Generative Adversarial Network. The architecture of the generative adversarial network consists of a generator and a
discriminator. The generator is the policy model that predicts an action from a given state, whose input dimension is 6 and
output dimension is 2. On the other hand, the discriminator learns to distinguish the expert state-action pairs (s, a) from the
state-action pairs produced by the generator (s, â). Therefore, the input dimension of the discriminator is 8, and the output
is a scalar representing the probability of the state-action pair being "real." The generator and the discriminator both consist
of three linear layers with ReLU activation, and the size of the hidden dimensions is 256.

C Training and Inference Details
We describe the details of training and performing inference in this section, including computation resources and hyperpa-
rameters.

C.1 Computation Resource

We conducted all the experiments on the following three workstations:

• M1: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-Lane CPU, 64GB memory,
an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti GPU

• M2: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-Lane CPU, 64GB memory,
an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti GPU

• M3: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-Lane CPU, 64GB memory,
and two NVIDIA RTX 3080 Ti GPUs

C.2 Hyperparamters

We report the hyperparameters used for all the methods on all the tasks in Table 7. We use the Adam optimizer (Kingma &
Ba, 2015) for all the methods on all the tasks and use linear learning rate decay for all policy models.

C.3 Inference Details

This section describes how each method infers an action â given a state s.

BC & DBC. The policy models of BC and DBC can directly predict an action given a state, i.e., â ∼ π(s), and are therefore
more efficient during inference as described in Section 5.3.

Implicit BC. The energy-based model (EBM) of Implicit BC learns to predict an estimated energy value for a state-action
pair during training. To generate a predicted â given a state s during inference, it requires a procedure to sample and optimize
actions. We follow Florence et al. (2022) and implement a derivative-free optimization algorithm to perform inference.
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Table 7. Hyperparameters. This table reports the hyperparameters used for all the methods on all the tasks. Note that our proposed
framework (DBC) consists of two learning modules, the diffusion model and the policy, and therefore their hyperparameters are reported
separately.

λ Hyperparameter MAZE FETCHPICK FETCHPUSH HANDROTATE WALKER

BC
Learning Rate 1e-4 1e-5 1e-5 5e-6 1e-4

Batch Size 128 128 128 128 128
# Epochs 2000 5000 5000 5000 2000

Implicit BC
Learning Rate 1e-4 5e-6 1e-4 1e-5 1e-4

Batch Size 128 512 512 512 128
# Epochs 10000 15000 15000 5000 10000

Diffusion Policy
Learning Rate 2e-4 1e-5 1e-5 1e-4 1e-4

Batch Size 128 128 128 128 128
# Epochs 20000 15000 15000 30000 10000

DBC (Ours)

Diffusion Model Learning rate 1e-3 1e-4 1e-4 3e-5 2e-4
Diffusion Model Batch Size 128 128 128 128 1024
Diffusion Model # Epochs 8000 10000 10000 10000 8000

Policy Learning Rate 1e-4 1e-5 2e-5 1e-4 1e-4
Policy Batch Size 128 128 128 128 128
Policy # Epochs 2000 5000 5000 5000 2000

λ 5 0.1 0.2 1 0.05

The algorithm first randomly samples Ns vectors from the action space as candidates. The EBM then produces the estimated
energy value of each candidate action and applies the Softmax function on the estimated energy values to produce a
Ns-dimensional probability. Then, it samples candidate actions according to the above probability and adds noise to them to
generate another Ns candidates for the next iteration. The above procedure iterates Niter times. Finally, the action with
maximum probability in the last iteration is selected as the predicted action â. In our experiments, Ns is set to 1000 and
Niter is set to 3.

Diffusion Policy. Diffusion Policy learns a conditional diffusion model as a policy and produces an action from sampled
noise vectors conditioning on the given state during inference. We follow Pearce et al. (2023); Chi et al. (2023) and adopt
Denoising Diffusion Probabilistic Models (DDPMs) J Ho (2020) for the diffusion models. Once learned, the diffusion policy
π can "denoise" a noise sampled from a Gaussian distribution N (0, 1) given a state s and yield a predicted action â using
the following equation:

an−1 =
1

√
αn

(an − 1− αn√
1− ᾱn

π(s, an, n)) + σnz, (7)

where αn, ᾱn, and σn are schedule parameters, n is the current time step of the reverse diffusion process, and z ∼ N (0, 1)
is a random vector. The above denoising process iterates N times to produce a predicted action a0 from a sampled noise
aN ∼ N (0, 1). The number of total diffusion steps N is 100 in our experiment, which is the same for the diffusion model
in DBC.

C.4 Comparing Different Generative Models

Our proposed framework employs a diffusion model (DM) to model the joint probability of expert state-action pairs and
utilizes it to guide policy learning. To justify our choice of generative models, we explore using other popular generative
models to replace the diffusion model in MAZE. Specifically, we consider energy-based models (EBMs) (Du & Mordatch,
2019; Song & Kingma, 2021), variational autoencoders (VAEs) (Kingma & Welling, 2014), and generative adversarial
networks (GANs) (Goodfellow et al., 2014). Each generative model learns to model the joint distribution of expert state-
action pairs. For fair comparisons, all the policy models learning from learned generative models consists of 3 linear layers
with ReLU activation, where the hidden dimension is 256. All the policies are trained for 2000 epochs using the Adam
optimizer (Kingma & Ba, 2015), and a linear learning rate decay is applied for EBMs and VAEs.
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C.4.1 Energy-Based Model

Model Learning. Energy-based models (EBMs) learn to model the joint distribution of the expert state-action pairs by
predicting an estimated energy value for a state-action pair (s, a). The EBM aims to assign low energy value to the real
expert state-action pairs while high energy otherwise. Therefore, the predicted energy value can be used to evaluate how
well a state-action pair (s, a) fits the distribution of the expert state-action pair distribution.

To train the EBM, we generate Nneg random actions as negative samples for each expert state-action pair as proposed
in Florence et al. (2022). The objective of the EBM Eϕ is the InfoNCE loss Oord et al. (2018):

LInfoNCE =
e−Eϕ(s,a)

e−Eϕ(s,a) +Σ
Nneg

i=1 e−Eϕ(s,ãi)
, (8)

where (s, a) indicates an expert state-action pair, ãi indicates the sampled random action, and Nneg is set to 64 in our
experiments. The EBM learns to separate the expert state-action pairs from the negative samples by optimizing the above
InfoNCE loss.

The EBM is trained for 8000 epochs with the Adam optimizer (Kingma & Ba, 2015), with a batch size of 128 and an initial
learning rate of 0.0005. We apply learning rate decay by 0.99 for every 100 epoch.

Guiding Policy Learning. To guide a policy π to learn, we design an EBM loss LEBM = Eϕ(s, â), where â indicates the
predicted action produced by the policy. The above EBM loss regularizes the policy to generate actions with low energy
values, which encourage the predicted state-action pair (s, â) to fit the modeled expert state-action pair distribution. The
policy learning from this EBM loss LEBM achieves a success rate of 49.09% in MAZE as reported in Table 4.

We also experiment with combining this EBM loss LEBM with the LBC loss. The policy optimizes LBC + λEBMLEMB, where
λEBM is set to 0.1. Optimizing this combined loss yields a success rate of 80.00% in MAZE as reported in Table 4.

C.4.2 Variational Autoencoder

Model Learning. Variational autoencoders (VAEs) model the joint distribution of the expert data by learning to reconstruct
expert state-action pairs (s, a). Once the VAE is learned, how well a state-action pair fits the expert distribution can be
reflected in the reconstruction loss.

The objective of training a VAE is as follows:

Lvae = ||x̂− x||2 +DKL(N (µx, σx)||N (0, 1)), (9)

where x is the latent variable, i.e., the concatenated state-action pair x = [s, a], and x̂ is the reconstruction of x, i.e., the
reconstructed state-action pair. The first term is the reconstruction loss, while the second term encourages aligning the data
distribution with a normal distribution N (0, 1), where µx and σx are the predicted mean and standard deviation given x.

The VAE is trained for 100k update iterations with the Adam optimizer (Kingma & Ba, 2015), with a batch size of 128 and
an initial learning rate of 0.0001. We apply learning rate decay by 0.5 for every 5k epoch.

Guiding Policy Learning. To guide a policy π to learn, we design a VAE loss LVAE = max(Lagent
vae − Lexpert

vae , 0), similar
to Eq. 5. This loss forces the policy to predict an action, together with the state, that can be well reconstructed with the
learned VAE. The policy learning from this VAE loss LVAE achieves a success rate of 48.47% in MAZE as reported in Table
4.

We also experiment with combining this VAE loss LVAE with the LBC loss. The policy optimizes LBC + λVAELVAE, where
λVAE is set to 1. Optimizing this combined loss yields a success rate of 82.31% in MAZE as reported in Table 4.

C.4.3 Generative Adversarial Network

Adversarial Model Learning & Policy Learning. Generative adversarial networks (GANs) model the joint distribution of
expert data with a generator and a discriminator. The generator aims to synthesize a predicted action â given a state s. On
the other hand, the discriminator aims to identify expert the state-action pair (s, a) from the predicted one (s, â). Therefore,
a learned discriminator can evaluate how well a state-action pair fits the expert distribution.

While it is possible to learn a GAN separately and utilize the discriminator to guide policy learning, we let the policy π be
the generator directly and optimize the policy with the discriminator iteratively. We hypothesize that a learned discriminator
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may be too selective for a policy training from scratch, so we learn the policy π with the discriminator D to improve the
policy and the discriminator simultaneously.

The objective of training the discriminator D is as follows:

Ldisc = BCE(D(s, a), 1) +BCE(D(s, â), 0) = −log(D(s, a))− log(1−D(s, â)), (10)

where â = π(s) is the predicted action, and BCE is the binary cross entropy loss. The binary label (0, 1) indicates whether
or not the state-action pair sampled from the expert data. The generator and the discriminator are both updated by Adam
optimizers using a 0.00005 learning rate.

To learn a policy (i.e., generator), we design the following GAN loss:

LGAN = BCE(D(s, â), 1) = −log(D(s, â)). (11)

The above GAN loss guides the policy to generate state-action pairs that fit the joint distribution of the expert data. The
policy learning from this GAN loss LGAN achieves a success rate of 50.29% in MAZE as reported in Table 4.

We also experiment with combining this GAN loss LGAN with the LBC loss. The policy optimizes LBC + λGANLGAN, where
λGAN is set to 0.2. Optimizing this combined loss yields a success rate of 71.64% in MAZE as reported in Table 4.

D Qualitative Results and Additional Analysis
This section provides more detailed analyses of our proposed framework and the baselines. We present the qualitative
results in Section D.1. Then, we analyze the learning progress and the episode length of goal-directed tasks during inference
in Section D.2 and Section D.3, respectively.

D.1 Qualitative Results

Rendered videos of the policies learned by our proposed framework and the baselines can be found at https://sites.
google.com/view/diffusion-behavioral-cloning. A screenshot of the rendered videos on the web page is
presented in Figure 5.

D.2 Learning Progress Analysis

In this section, we analyze the learning progress of all the methods on all the tasks. The training curves are presented
in Figure 6. Our proposed framework (DBC) not only achieves the best converged performance but also converges the
fastest, demonstrating its learning efficiency.

Since Implicit BC and Diffusion Policy take significantly longer to converge, we set a higher number of training epochs for
these two methods (see Table 7), and hence their learning curves are notably longer than BC and DBC.

Note that we make sure the numbers of training epochs for Implicit BC and Diffusion Policy are not less the total number
of training epochs for learning both the diffusion model and the policy in DBC, except for Implicit BC in HANDROTATE
where training longer does not yield any improvement. This forecloses the possibility of the superior performance of DBC
coming from learning with a higher total number of training epochs.

D.3 Episode Length Analysis of Goal-Directed Tasks

In this section, we investigate the efficiency of the learned policies regarding the number of time steps they need to fulfill
a task. We compare all the methods regarding average episode lengths over 100 episodes and three random seeds in all
goal-directed tasks (MAZE, FETCHPUSH, FETCHPICK, and HANDROTATE). The results are presented in Table 8 and Figure
7 .

Note that Implicit BC and Diffusion Policy take significantly longer to converge, and hence we set a higher number of
training epochs for these two methods (see Table 7). As a result, their learning curves are notably longer than BC and DBC.

We observe that our proposed framework DBC results in the shortest episode lengths in MAZE, FETCHPUSH, and
FETCHPICK while performing competitively against the best-performing baseline (Diffusion Policy) in HANDROTATE.
This indicates that DBC learns an efficient policy that can accomplish tasks quickly.

https://sites.google.com/view/diffusion-behavioral-cloning
https://sites.google.com/view/diffusion-behavioral-cloning
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Figure 5. Qualitative Results. Rendered videos of the policies learned by our proposed framework and the baselines can be found at
https://sites.google.com/view/diffusion-behavioral-cloning.

E On the Theoretical Motivation for Guiding Policy Learning with Diffusion Model
This section further elaborates on the technical motivation for leveraging diffusion models for imitation learning. Specifically,
we aim to learn a diffusion model to model the joint distribution of expert state-action pairs. Then, we propose to utilize this
learned diffusion model to augment a BC policy that aims to imitate expert behaviors.

We consider the distribution of expert state-action pairs as the real data distribution qx in learning a diffusion model. Follow-
ing this setup, x0 represents an original expert state-action pair (s, a) and q(xn|xn−1) represents the forward diffusion pro-
cess, which gradually adds Gaussian noise to the data in each timestep n = 1, ..., N until xN becomes an isotropic gaussian
distribution. On the other hand, the reverse diffusion process is defined as ϕ(xn−1|xn) := N (xn−1;µθ(xn, n),Σθ(xn, n)),
where θ denotes the learnable parameters of the diffusion model ϕ, as illustrated in Figure 1.

Our key idea is to use the proposed diffusion model loss LDM in Eq. 5 as an estimate of how well a predicted state-action pair
(s, â) fits the expert state-action pair distribution, as described in Section 4.2.2. In the following derivation, we will show that
by optimizing this diffusion model loss LDM, we maximize the lower bound of the agent data’s probability under the derived
expert distribution and hence bring the agent policy π closer to the expert policy πE , which is the goal of imitation learning.

As depicted in Luo (2022), one can conceptualize diffusion models, including DDPM (J Ho, 2020) adopted in this work, as
a hierarchical variational autoencoder (Kingma & Welling, 2014), which maximizes the likelihood p(x) of observed data
points x. Therefore, similar to hierarchical variational autoencoders, diffusion models can optimize the Evidence Lower
Bound (ELBO) by minimizing the KL divergence DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn)). Consequently, this can be viewed

https://sites.google.com/view/diffusion-behavioral-cloning
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Figure 6. Learning Progress. We evaluate the baselines and our proposed method DBC and its variants during the learning process.
Since Implicit BC (green) and Diffusion Policy (brown) take significantly longer to converge, we set a higher number of training epochs
for these two methods, and hence their learning curves are notably longer than BC (orange) and DBC (blue). Our method demonstrates
superior learning efficiency over the baselines.

Table 8. Episode Length of Goal-Directed Tasks. We report the mean and the standard deviation of the episode length (↓) on MAZE,
FETCHPICK, FETCHPUSH, and HANDROTATE, evaluated over three random seeds. The experiments demonstrate that our proposed
method (DBC) outperforms (i.e., finish tasks with fewer time steps) the baselines on MAZE, FETCHPICK, and FETCHPUSH while
performing competitively in HANDROTATE.

Method MAZE FETCHPICK FETCHPUSH HANDROTATE

BC 219.95 ± 13.21 39.92 ± 0.65 74.08 ± 5.55 33.79 ± 1.18
Implicit BC 199.91 ± 15.95 44.67 ± 0.65 67.75 ± 3.13 46.13 ± 0.84

Diffusion Policy 241.45 ± 12.47 42.20 ± 0.64 80.93 ± 8.88 31.95 ± 0.82
DBC (Ours) 193.12 ± 10.30 30.22 ± 1.38 54.58 ± 3.33 31.97 ± 1.49

as minimizing the KL divergence to fit the distribution of the predicted state-action pairs (s, â) to the distribution of expert
state-action pairs.

According to Bayes’ theorem and the properties of Markov chains, the forward diffusion process q(xn−1|xn, x0) follows:

q(xn−1|xn, x0) ∼ N (xn−1;

√
αn(1− ᾱn−1)xn +

√
ᾱn−1(1− αn)x0

1− ᾱn︸ ︷︷ ︸µq(xn, x0),

(1− αn)(1− ᾱn−1)

1− ᾱn︸ ︷︷ ︸Σq(n)).

The variation term Σq(n) in the above equation can be written as σ2
q (n)I , where σ2

q (n) =
(1− αn)(1− ᾱn−1)

1− ᾱn
. Therefore,
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(a) MAZE (b) FETCHPICK (c) FETCHPUSH (d) HANDROTATE

Figure 7. Episode Length of Goal-Directed Tasks. We evaluate the baselines and our proposed method regarding the episode length
during the learning process. Since Implicit BC (green) and Diffusion Policy (brown) take significantly longer to converge, we set a higher
number of training epochs for these two methods, and hence their learning curves are notably longer than BC (orange) and DBC (blue).
The average episode length indicates how fast the agent reaches the goal, which can be a measurement of the efficiency of the agent. Our
method DBC demonstrates superior efficiency in accomplishing tasks.

minimizing the KL divergence is equivalent to minimizing the gap between the mean values of the two distributions:

argmin
θ

DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn))

= argmin
θ

DKL(N (xn−1;µq,Σq(n))||N (xn−1;µθ,Σq(n)))

= argmin
θ

1

2σ2
q (n)

[||µθ − µq||22],

where µq represents the denoising transition mean and µθ represents the approximated denoising transition mean by the
model.

Different implementations adopt different forms to model µθ. Specifically, for DDPMs adopted in this work, the true
denoising transition mean µq(xn, x0) derived above can be rewritten as:

µq(xn, x0) =
1

√
αn

(xn − 1− αn√
1− ᾱn

ϵ0),

which is referenced from Eq. 11 in J Ho (2020). Hence, we can set our approximate denoising transition mean µθ in the
same form as the true denoising transition mean:

µθ(xn, n) =
1

√
αn

(xn − 1− αn√
1− ᾱn

ϵ̂θ(xn, n)), (12)

as illustrated in Popov et al. (2022). Song et al. (2021) further show that the entire diffusion model formulation can be
revised to view continuous stochastic differential equations (SDEs) as a forward diffusion. It points out that the reverse
process is also an SDE, which can be computed by estimating a score function ∇x log pt(x) at each denoising time step. The
idea of representing a distribution by modeling its score function is introduced in Song & Ermon (2019). The fundamental
concept is to model the gradient of the log probability density function ∇x log pt(x), a quantity commonly referred to as the
(Stein) score function. Such score-based models are not required to have a tractable normalizing constant and can be directly
acquired through score matching. The measure of this score function determines the optimal path to take in the space of the
data distribution to maximize the log probability under the derived real distribution.

As shown in Figure 8b, we visualized the learned gradient field of a diffusion model, which learns to model the expert
state-action pairs in MAZE. Once trained, this diffusion model can guide a policy with predicted gradients (blue arrows) to
move to areas with high probability, as proposed in our work.

Essentially, by moving in the opposite direction of the source noise, which is added to a data point xt to corrupt it, the data
point is “denoised”; hence the log probability is maximized. This is supported by the fact that modeling the score function
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(a) Maze Layout (b) Learned Gradient Field

Figure 8. Visualized Gradient Field. (a) Maze Layout: The layout of the medium maze used for MAZE. (b) Learned Gradient Field:
We visualize the MAZE expert demonstration as a distribution of points by their first two dimensions in gray. The points that cluster
densely have a high probability, and vice versa. Once a diffusion model is well-trained, it can move randomly sampled points to the area
with high probability by predicting gradients (blue arrows). Accordingly, the estimate p(s, a) of joint distribution modeling can serve as
guidance for policy learning, as proposed in this work.

is the same as modeling the negative of the source noise. This perspective of the diffusion model is dubbed diffusion
SDE. Moreover, Popov et al. (2022) prove that Eq. 12 is diffusion SDE’s maximum likelihood SDE solver. Hence, the
corresponding divergence optimization problem can be rewritten as:

argmin
θ

DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn))

= argmin
θ

1

2σ2
q (n)

(1− αn)
2

(1− ᾱn)αn
[||ϵ̂θ(xn, n)− ϵ0||22],

where ϵθ is a function approximator aim to predict ϵ from x. As the coefficients can be omitted during optimization, we
yield the learning objective Ldiff as stated in in Eq. 2:

Ldiff = ||ϵ̂(s, a, n)− ϵ(n)||2 = ||ϕ(s, a, ϵ(n))− ϵ(n)||2.

The above derivation motivates our proposed framework that augments a BC policy by using the diffusion model to provide
guidance that captures the joint probability of expert state-action pairs. Based on the above derivation, minimizing the
proposed diffusion model loss (i.e., learning to denoise) is equivalent to finding the optimal path to take in the data space to
maximize the log probability. To be more accurate, when the learner policy predicts an action that obtains a lower Ldiff, it
means that the predicted action â, together with the given state s, fits better with the expert distribution.

Accordingly, by minimizing our proposed diffusion loss, the policy is encouraged to imitate the expert policy. To further
alleviate the impact of rarely-seen state-action pairs (s, a), we propose to compute the above diffusion loss for both expert
data (s, a) and predicted data (s, â) and yield Lexpert

diff and Lagent
diff , respectively. Therefore, we propose to augment BC with

this objective: LDM = max(Lagent
diff − Lexpert

diff , 0) This design is justified in Section 5.7.2.

F Limitations
This section discusses the limitations of our proposed framework.

• Since this work aims to learn from demonstrations without interacting with environments, our proposed framework in
its current form is only designed to learn from expert trajectories and cannot learn from trajectories produced by the
learner policy. Extending our method to incorporate agent data can potentially allow for improvement when interacting
environments are possible, which is left for future work.
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• The key insight of our work is to allow the learner policy to benefit from both modeling the conditional and joint
probability of expert state-action distributions. To this end, we propose to optimize both the BC loss and the proposed
diffusion model loss. To balance the importance of the two losses, we introduce a coefficient λ as an additional
hyperparameter. While the ablation study conducted in MAZE shows that the performance of our proposed framework
is robust to λ, this can potentially increase the difficulty of searching for optimal hyperparameters when applying our
proposed framework to a new application.

G Broader Impacts
This work proposes Diffusion Model-Augmented Behavioral Cloning, a novel imitation learning framework that aims to
increase the ability of autonomous learning agents (e.g., robots, game AI agents) to acquire skills by imitating demonstrations
provided by experts (e.g., humans). However, it is crucial to acknowledge that our proposed framework, by design, inherits
any biases exhibited by the expert demonstrators. These biases can manifest as sub-optimal, unsafe, or even discriminatory
behaviors. To address this concern, ongoing research endeavors to mitigate bias and promote fairness in machine learning
hold promise in alleviating these issues. Moreover, research works that enhance learning agents’ ability to imitate experts,
such as this work, can pose a threat to job security. Nevertheless, in sum, we firmly believe that our proposed framework can
offer tremendous advantages in terms of enhancing the quality of human life and automating laborious, arduous, or perilous
tasks that pose risks to humans, which far outweigh the challenges and potential issues.


