
An Alignment-based Approach to Text Segmentation Similarity Scoring

Anonymous EMNLP submission

Abstract

Text segmentation is a natural language pro-001
cessing task with popular applications, such as002
topic segmentation, element discourse extrac-003
tion, and sentence tokenization. Much work004
has been done to develop accurate segmenta-005
tion similarity metrics, but even the most ad-006
vanced metrics used today, B, and WindowDiff,007
exhibit incorrect behavior due to their evalua-008
tion of boundaries in isolation. In this paper,009
we present a new segment-alignment based ap-010
proach to segmentation similarity scoring and011
a new similarity metric A. We show that A012
does not exhibit the erratic behavior of B and013
WindowDiff, quantify the likelihood of B and014
WindowDiff misbehaving through simulation,015
and discuss the versatility of alignment-based016
approaches for segmentation similarity scoring.017
We make our implementation of A publicly018
available in the hope that it will encourage the019
community to explore more sophisticated ap-020
proaches for text segmentation similarity scor-021
ing.022

1 Introduction023

Text segmentation is a natural language processing024

(NLP) task that consists of dividing a sequence of025

text elements into segments.026

Let T = e1, e2, e3...en be a sequence of text el-027

ements (e.g. words, sentences, paragraphs, etc...).028

A segmentation S of T is given by a binary string029

Q = [0|1]n−1 that encodes boundaries between030

the elements of T . The ith character of Q codi-031

fies the presence of a boundary (1) or lack thereof032

(0) between ei and ei+1 in S. S contains m − 1033

boundaries and partitions T into m segments1.034

Measuring similarity between segmentations is035

not simple. The most straightforward approach is036

to frame a segmentation as a series of decisions037

1This definition corresponds to single-type segmentation.
A multi-type version also exists where different boundary
types are considered, enabling the encoding of different types
of segments and even hierarchical relations between them.

S Dogs are cute Very fast cars

0 0 1 0 0

Figure 1: Example segmentation with Q = 00100.

made at every potential boundary position (PBP), 038

which exist between every pair of elements in T , 039

and to calculate the average PBP agreement, but 040

this does not match human intuition well. 041

Consider how S in Figure 1 compares with h1 042

and h2 in Figure 2: h1 agrees with S in 4 out of 5 043

positions (one missing boundary), while h2 agrees 044

with S in only 3 out of 5 positions (one missing and 045

one “extra" boundary). Yet it is easy to agree that 046

h2 is actually closer to S, as it has simply “shifted" 047

the boundary in S one unit to the right. 048

h1 Dogs are cute Very fast cars

h2 Dogs are cute Very fast cars

Figure 2: Alternate segmentations to S from Figure 1.

To address this, researchers have proposed a vari- 049

ety of similarity metrics that distinguish “soft" and 050

“hard" errors (shifted versus missing/extra bound- 051

aries). However, existing metrics look at boundary 052

errors in isolation; they do not consider the impact 053

that errors have on segments around them. 054

g

h3

h4

Figure 3: Three similar segmentations.

Consider how hypothesis segmentations h3 and 055

h4 compare to a reference segmentation r in Figure 056

3. Both have a boundary that is shifted one PBP 057

to the right, which results in an“extra" element in 058

the segment to the left of the PBP and a missing 059

1

element in the segment to the right. However, the060

resulting segment distortion is not the same. In h3,061

only 1/2 of the elements in the the first segment062

are correct, while 1/2 of the reference elements are063

missing from the second segment; in h4, the third064

segment has 4/5 correct elements, and the fourth065

segment has 1/4 missing elements. It is easy to066

argue then that h4 is closer to r than h3, but current067

metrics are unable to distinguish between them.068

We propose a new similarity metric based on069

segment alignment, which scores segmentations070

based on how well their segments match, rather071

than their boundaries (Section 3). We show that our072

metric aligns more closely with human intuition073

than existing metrics (Section 4) and quantify the074

errors encountered by those metrics (Section 5).075

2 Existing Metrics076

Current segmentation similarity metrics fall into077

two categories: window-based metrics try to cap-078

ture errors by sliding a window across the element079

sequence T and comparing the boundaries in both080

segmentations; in contrast, edit-based metrics try081

to find a sequence of boundary edit operations that082

would make both segmentations equal.083

2.1 Window-Based Metrics084

WindowDiff (Pevzner and Hearst, 2002) and Pk085

(Beeferman et al., 1999) are the most popular simi-086

larity metrics currently used.087

Pk is defined as “the probability that a random088

pair of elements, k elements apart, will be classi-089

fied inconsistently by two segmentations as belong-090

ing/not belonging in the same segment.” Given091

an element sequence T of length n, a reference092

segmentation r, and an alternate segmentation h, a093

window of size k+1 is slid across the elements(k is094

recommended to be half the average segment size095

in r); at every window position, the segmentations096

are compared based on the elements at the edges097

of the window, ei and ei+k; if the segmentations098

disagree on whether the elements belong in the099

same segment, a penalty of 1 is added; finally, the100

penalty sum is divided by the number of windows:101

Pk(r, h) =
1

n− k

i=n−k∑
i=1,j=i+k

δ(ri,j) ̸= δ(hi,j)102

where δ(xi,j) is true iff ei, ej are in the same seg-103

ment in segmentation x.104

Figure 4: Illustration of Pk and WindowDiff with k = 4
(Pevzner and Hearst, 2002). Penalized windows indi-
cated by dashed lines.

There are a variety of situations where Pk pe- 105

nalizes errors inconsistently (Pevzner and Hearst, 106

2002): it penalizes missing boundaries more than 107

extra boundaries, fails to penalize extra boundaries 108

that are in close proximity to correct boundaries, 109

and is also quite sensitive to the window size k. 110

WindowDiff improves on Pk by using a dif- 111

ferent penalty criteria. Instead of comparing the 112

elements at the window edges, WindowDiff counts 113

the number of boundaries contained within the win- 114

dow and assigns a penalty of 1 if the number is 115

inconsistent between segmentations: 116

WD(r, h) =
1

n− k

i=n−k∑
i=1,j=i+k

b(ri,j) ̸= b(hi,j) 117

where b(xi,j) is the boundary count between ei and 118

ej in segmentation x. 119

WindowDiff solves some of Pk’s inconsistency 120

problems, but still produces unintuitive scores and 121

penalizes errors at the edges of the element se- 122

quence less than those towards the middle (a weak- 123

ness shared with Pk). WindowDiff is usually re- 124

ported along with Pk rather than instead of it. 125

Lamprier et al. (2007) present a simple correc- 126

tion to WindowDiff: adding k − 1 extra elements 127

at the beginning and end of the sequence T ensures 128

that errors at every PBP are penalized an equal num- 129

ber of times. Further, they argue that WindowDiff 130

is unfair because the expected score of a random 131

segmenter depends on the number of boundaries 132

in the reference r. To address this, they present 133

two normalized versions of WindowDiff, NWin 134

and TNWin, which take into account the expected 135

WindowDiff scores of two random segmentations 136

with the same cardinality as the reference and hy- 137

pothesis segmentations being evaluated. 138

Finally, Scaiano and Inkpen (2012) propose 139

WinPR, which uses the element padding correction 140

from (Lamprier et al., 2007) and categorizes the 141

2

errors at each window into true positives (correct142

boundaries), false positives (extra boundaries), true143

negatives (correct empty PBPs), and false negatives144

(missing boundaries), allowing for finer-grained er-145

ror analysis and the calculation of F1 scores.146

Although WinPR is an improvement on Win-147

dowDiff, it has not been widely adopted by the148

community and, like NWin, depends on the correct-149

ness of WindowDiff. Thus, throughout the rest of150

this paper, we will limit our discussion of window-151

based metrics to WindowDiff and Pk.152

2.2 Edit-Based Metrics153

Edit-based segmentation similarity metrics154

are based on ideas introduced by Damerau-155

Levenshtein string edit distance (Damerau, 1964;156

Levenshtein, 1966) and partially replicated by157

Generalized Hamming Distance (Bookstein et al.,158

2002). The general idea is that every segmentation159

can be framed as a sequence of boundaries, each160

placed at a specific position. If we define a set of161

edit operations (with costs) that can modify any162

sequence of boundaries, the distance between two163

segmentations can be measured as the cost of the164

optimal sequence of edit operations required to165

make the two segmentations equal. The optimal166

sequence of edit operations is equivalent to a167

boundary alignment between the segmentations.168

Segmentation Similarity (Fournier and Inkpen,169

2012) and Boundary Similarity (Fournier and170

Inkpen, 2012) are both based on the same set of171

boundary edit operations:172

• Match: Mark a boundary as correct (no cost).173

• Addition/Deletion: Insert or delete a boundary.174

• K-Transposition: Shift a boundary to the left or175

right by a max of k units2. Default k = 13.176

• Substitution: Replace a boundary with one of a177

different type4.178

Segmentation Similarity (S) (Fournier and179

Inkpen, 2012) assigns a constant cost to all edit180

operations and normalizes the resulting distance181

based on the total number of possible boundaries182

for the given element sequence. The idea behind183

this normalization is to scale the cost based on the184

potential complexity of the segmentation in ques-185

tion; the intuition is that a constant cost is less186

2If a boundary can not be transposed, it must be deleted
and a new boundary must be inserted at the new location.

3When k > 1, Segmentation Similarity and Boundary
Similarity allow transpositions across existing boundaries.

4Only required for multi-type segmentation.

Figure 5: Example segmentation alignment with bound-
ary edit operations (Fournier, 2013).

impactful on a longer/more complex sequence than 187

it is on a shorter/simpler one. 188

Let Ae, Te Se be the sets of the optimal boundary 189

addition/deletion, transposition, and substitution 190

operations required to align a pair of segmentations, 191

h1 and h2, over a sequence of elements T . Further, 192

let b be the number of boundary types (in the case 193

of multi-type segmentation) available. 194

S(h1, h2, T) = 1− |Ae|+ |Te|+ |Se|
b(|T | − 1)

195

Fournier and Inkpen show that S a) produces 196

scores that align favorably with human judgment 197

compared to WindowDiff in three key examples, 198

b) has reduced sensitivity to variations in segment 199

sizes compared to WindowDiff, and c) produces 200

more accurate inter-annotator agreement scores 201

than WindowDiff in one dataset. It is also noted 202

that S can be used for multi-type segmentation, 203

where traditional window-based methods can not. 204

Boundary Similarity (B) (Fournier, 2013) im- 205

proves S by introducing weighted-costs transposi- 206

tions/substitutions, improving the edit distance nor- 207

malization factor, and producing a confusion matrix 208

from the edit operations to calculate F1 scores. 209

B(h1, h2, T) = 1− |Ae|+ t(Te, k) + s(Se, Bt)

|Ae|+ |Te|+ |Se|+ |M |
210

where k is the maximum transposition distance, 211

|M | is the number of matching boundary pairs 212

between the two segmentations, Bt is the set of 213

boundary types, and t and s are functions that re- 214

turn the weighted sums of Te (transpositions) and 215

Se (substitutions). The normalization factor in B 216

produces behavior that aligns more closely with 217

human judgement than in S. 218

When comparing the scores generated by Win- 219

dowDiff, Pk, S, and B on a handful of key exam- 220

ples, Fournier argues that B produces behavior that 221

is more correct. B is further shown on one dataset 222

to produce more reliable inter-annotator agreement 223

3

scores when compared to S, which over-estimates,224

and also to overcome WindowDiff’s bias towards225

segmentations with few or tightly-clustered bound-226

aries when evaluating three segmenters.227

As we will demonstrate Section 4, however, B228

(and WindowDiff) disregards the impact of individ-229

ual mistakes on the surrounding segments, which230

leads to scores that do not align well with human231

judgement in key scenarios.232

3 An Alignment-Based Approach to233

Segmentation Similarity Scoring234

In Section 1, Figure 2, we presented an example235

that showcased the importance of weighing bound-236

ary differences in terms of the impact they have237

on their corresponding segments. None of the cur-238

rent metrics attempt to do this, and they can not be239

easily modified to do so.240

We propose to measure similarity between a pair241

of segmentations by comparing the segments de-242

fined in them. The intuition is straightforward:243

two segmentations are similar iff the segments de-244

fined by them are similar. Inspired by alignments245

from machine translation and string comparison,246

our approach measures segmentation similarity by247

finding the maximum likelihood segment alignment248

and scoring its correctness.249

The concept of the most likely alignment is250

based on two key observations. First, it only makes251

sense to align overlapping segments. Second, the252

overlap between two segments is a good indicator253

for their “closeness”, which tells us if they should254

be aligned. Thus, the maximum likelihood align-255

ment (MLA) is one where every segment is aligned256

to its closest other segment.257

h1

h2

Figure 6: Sample maximum likelihood alignment.

Consider the example alignment in Figure 6: h2258

has fuzzily merged the first two segments in h1 into259

a single segment, which results in the third segment260

from h1 having a slightly shifted boundary in h2.261

Here, it does not make sense to align the third262

segment in h1 with the first segment in sh; even263

if they overlap, the third segment in sh overlaps264

mainly with the second segment in sh.265

The MLA can be found greedily in O(m1+m2) 266

time, where m1 and m2 are the number of segments 267

in h1 and h2, respectively. We only need to find 268

the closest segment for any given segment. Figure 269

7 shows pseudocode for generating the MLA5. 270

MLA(h1,h2,fn: c):
for each segment p in h1:
for each segment q in h2, overlapping p:

closeness = c(p,q)
r = segment in h2 with max c(p,r)
align p (source) to r (target)

repeat for h2
return list of alignment edges

Figure 7: Maximum likelihood alignment algorithm.
271

The MLA depends on the closeness function c. 272

For a generic alignment, where all elements in the 273

element sequence are considered equal, we recom- 274

mend a simple intersect ratio function i between 275

two segments, x and y: 276

i(x, y) =
intersect(x, y)

|x|
277

The MLA explains the differences between a 278

pair of segmentations in terms of boundaries: in 279

Figure 8, missing/extra boundaries are indicated 280

by the existence of segments with more than one 281

aligned segment. The first segment in h3 is aligned 282

to two segments in h4 because h4 contains an ex- 283

tra boundary; similarly, the third segment in h4 is 284

aligned to two segments in h3 because the third 285

segment in h4 is missing a boundary present in h3. 286

Furthermore, the existence of pairs of aligned seg- 287

ments with no alignments to any other segments 288

are indicators of matches or transpositions, such as 289

the last segments in h3 and h4. 290

h3

h4

Figure 8: Maximum likelihood alignment.

Once the MLA has been generated, a function 291

should be chosen to map the MLA to a similarity 292

score. A simple approach is to assign a weight 293

to every alignment edge, using a function g, and 294

5This version is not strictly O(m1 +m2) but is presented
for brevity.

4

normalize by the number of edges in the MLA.295

This generic similarity score A is defined as296

A(h1, h2, c, g) =

∑
edge∈MLA(h1,h2,c)

g(edge)

edges in MLA(h1, h2, c)
297

A variety of edge weighting functions can be298

used: clustering similarity functions such as the299

rand index, or set similarity metrics such as the300

overlap coefficient, the Sørensen–Dice coefficient,301

or the Jaccard index6. Both symmetric and asym-302

metric weighting functions can be used, as the303

edges generated by the MLA function are directed;304

we recommend the Jaccard index, since it guaran-305

tees a symmetrical segmentation similarity score.306

Further, the Jaccard version of A can be easily307

modified to distinguish between “soft” and “hard”308

mistakes by penalizing edges with weights under309

some threshold t. The Jaccard index, J ∈ [0, 1],310

between two sets S and T is defined as311

J(S, T) =
|intersect(S, T)|
|union(S, T)|

312

The MLA approach with similarity score func-313

tion A compares favorably to WindowDiff, B, and314

similar metrics in terms of error analysis, as the315

MLA structure and edge weights provide informa-316

tion about segmentation differences in terms of317

both boundaries and segments.318

Further, the separation between the MLA algo-319

rithm and the similarity score function A makes our320

approach quite versatile, as the MLA may instead321

be scored with a different, task-specific similarity322

scoring function. Consider the reference segmen-323

tation r and candidate segmentations h1 and h2324

in Figure 9: h1 and h2 produce the same score325

under A with Jaccard (0.58), B, and WindowDiff.326

However, for a task like topic segmentation, h2327

may be preferred, as it contains “meta” topics that328

consistently match two topics each in r, whereas329

h1 contains two correct topics, but one really bad330

third topic, which is a mixture of four topics in r.331

Conversely, for a task like sentence segmentation,332

h1 may be preferred, as it correctly identifies two333

sentences, where h2 contains only incorrect sen-334

tences. The MLA could be used in conjunction335

with a similarity scoring function that imposes ex-336

ponentially increasing penalties on segments with337

many alignments to favor h2, while a scoring func-338

tion that considers only the highest weighted edge339

for any given segment would favor h1.340

6Different weight functions for each reference segment
type could be used to score multi-type segmentations.

r

h1

h2

Figure 9: Reference segmentation and two candidates.

Finally, as we show in the following section, a 341

straightforward implementation of A using the in- 342

tersect ratio i as the closeness function and the Jac- 343

card index J as the edge weight function behaves 344

favorably compared to current metrics in a key set 345

of examples, as it takes into account the impact of 346

boundary differences on surrounding segments. 347

4 Similarity Metric Behavior 348

In this section, we outline three erratic behaviors 349

from B and WindowDiff, and compare these met- 350

rics against A in a series of example segmentations. 351

4.1 Cross-Boundary Transpositions 352

Since B and WindowDiff look at each boundary 353

in isolation, they consider all boundary shifts with 354

the same distance to be equally bad, resulting in a 355

pseudo-transposition, where one boundary crosses 356

over another, being penalized the same as a stan- 357

dard transposition. It is easy to argue against this, 358

as a boundary shift that crosses another boundary 359

is not a true transposition, but rather a pair of over- 360

and under-segmentations. This is illustrated in Fig- 361

ure 10, where h1 is clearly closer to the reference 362

segmentation r than is h2. h1 transposes the left- 363

most boundary of r two units to the right, while 364

h2 pseudo-transposes the rightmost boundary two 365

units to the left, crossing over the middle boundary. 366

h2 results in an oversegmentation of the second 367

segment and undersegmentation of the third and 368

fourth segments of r. A correctly identifies this 369

behavior because it works on segment alignments; 370

B and WindowDiff, however, incorrectly score h1 371

and h2 as being equally close to r. 372

4.2 Constant Cost Transpositions 373

B and WindowDiff measure the cost of a trans- 374

position based on its absolute distance, without 375

considering the impact it has on the surrounding 376

segments. This quickly leads to problematic behav- 377

ior, as any given pair of segmentations that contain 378

transpositions with the same distance will get the 379

same score (assuming all other boundary opera- 380

tions are the same). Figure 11 illustrates this prob- 381

5

r

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h1) 0.83 0.50 0.67
(r, h2) 0.60 0.50 0.67

Figure 10: Cross-boundary pseudo-transposition.

r

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h1) 0.91 0.83 0.83
(r, h2) 0.79 0.83 0.83

Figure 11: Constant cost transpositions.

lem: B and WindowDiff scores both segmentations382

equally, even though the impact of the transposed383

boundaries is not the same. Both h1 and h2 trans-384

pose a boundary by one unit, but in h1 this results in385

a single extra/missing token in segments originally386

of size five, while in h2, the extra/missing token387

affects segments originally of size two, impacting388

them more significantly. A produces proper behav-389

ior here, weighing the distance of the transposition390

in relation to the corresponding segment sizes.391

4.3 Vanishing Transpositions392

Unlike A, the sensitivity of B and WindowDiff393

to “near-misses” (transpositions) is regulated by394

constants. B defines a maximum transposition395

distance, while WindowDiff utilizes a fixed win-396

dow size. This causes problematic behavior, as397

boundary shifts beyond the maximum transposi-398

tion distance for each metric look the same, which399

is compounded with the disregard for segment sizes400

mentioned in the previous subsection.401

The five segmentation pairs in Figure 12 illus-402

trate this behavior. Although the pairs are ordered403

by increasing similarity, B and WindowDiff score404

three out of five pairs equally using their default405

maximum transposition distance values of 1. The406

behavior of B is particularly concerning, as it407

jumps from a relatively high score of 0.75 for the408

fourth pair, to a very low score of 0.33 for the409

third pair. In contrast, A correctly matches the first410

h1a

h1b

h2a

h2b

h3a

h3b

h4a

h4b

h5a

h5b

Pair A B (k=1) 1− WD (k=2)
(h1a, h1b) 0.70 0.33 0.69
(h2a, h2b) 0.76 0.33 0.69
(h3a, h3b) 0.83 0.33 0.69
(h4a, h4b) 0.91 0.75 0.85
(h5a, h5b) 1 1 1

Figure 12: Vanishing Transpositions

segments and second segments in each pair and 411

considers the relative impact of the transposition 412

given the size of the segments involved. 413

5 Error Quantification 414

We quantify the likelihood of WindowDiff and B 415

behaving erroneously through simulation7. For the 416

three main error types described in Section 4, we 417

first instantiate every possible reference segmen- 418

tation r for sequences of length n ∈ [3, 20]. We 419

then try to find two alternate segmentations h1 and 420

h2 that B or WindowDiff score as equally simi- 421

lar to r, but in fact are not. Finally, for both B 422

and WindowDiff, we present the ratio of reference 423

segmentations r of length n for which such error- 424

producing pairs h1 and h2 exist. 425

To simplify our analysis, we use the Lamprier- 426

corrected version of WindowDiff (Lamprier et al., 427

2007), which pads the beginning and end of the 428

sequence with k − 1 elements. The number of er- 429

rors produced by this version is a lower bound on 430

the number of errors produced by the original Win- 431

dowDiff, which penalizes boundary mismatches at 432

7We use the implementation of B from the segeval Python
3 package (Fournier, 2013) and WindowDiff from the Python
3 NLTK package (Bird et al., 2009).

6

the edges less than those at the center.433

5.1 Cross-Boundary Transpositions434

We consider B and WindowDiff to behave erro-435

neously if a pair of segmentations h1 and h2 are436

judged equally similar to r, where h2 pseudo-437

transposes a boundary by x units, crossing an exist-438

ing boundary from r, and h1 performs a standard439

transposition of a boundary, also by x units. For440

fairness, we only consider h1 where the two seg-441

ments on either side of the transposed boundary442

have Jaccard > 0.5 with the corresponding orig-443

inal segments from r, i.e. the transposition can444

reasonably be considered a “soft" mistake where445

the affected segments are still more similar to446

the originals than not, in contrast to the pseudo-447

transposition in h2, where, by crossing a boundary,448

h2 effectively oversegments one reference segment449

and undersegments another (Figure 10).450

Figure 13: Ratio of potential cross-transposition errors
for B and WindowDiff.

Figure 13 shows the percentage of the reference451

segmentation space for which such erroneous pairs452

h1 and h2 exist, for both B and WindowDiff with453

various sequence lengths n. Varying the number454

of segmentations m for a given n, we notice an in-455

teresting trend: when the number of segmentations456

is too low or too high, it is impossible to construct457

erroneous pairs. For example, it is impossible for458

m = 2 because there is no other boundary to trans-459

pose across; similarly, when the m approaches n,460

segments become unit-sized, and can no longer be461

involved either pseudo- or standard transpositions.462

5.2 Vanishing Transpositions463

Here, B and WindowDiff behave erroneously if a464

pair of segmentations h1 and h2 are judged equally465

similar to r, where h1 transposes a boundary by 466

x units and h2 transposes the same boundary by 467

x+ 1 units. Again, we only consider “soft” trans- 468

positions, where the two segments on either side of 469

the transposed boundary have Jaccard > 0.5 with 470

the corresponding original segments from r. 471

Figure 14: Ratio of potential vanishing transposition
errors for B and WindowDiff.

Figure 14 differs from Figures 13 and 15 in that 472

WindowDiff and B behave differently. In fact, it 473

is Figures 13 and 15 that are unusual; as we have 474

seen in previous examples, B and WindowDiff of- 475

ten behave differently. In this case, WindowDiff 476

calculates its window size and maximum transpo- 477

sition range based on the reference segmentation, 478

while B has a fixed maximum transposition range 479

of one unit by default. Thus, the maximum dis- 480

tance beyond which transpositions “vanish" varies 481

for WindowDiff, but not for B. 482

5.3 Constant Cost Transpositions 483

Finally, B and WindowDiff behave erroneously if a 484

pair of segmentations h1 and h2 are judged equally 485

similar to r, where h1 “soft” transposes a boundary 486

by one unit, and h2 “hard”transposes a different 487

boundary by one unit, i.e. the segments on either 488

side of the hard-transposed boundary have Jaccard 489

< 0.5 with the corresponding original r segments. 490

The trend in Figure 15 is as follows: if the ra- 491

tio between the number of segments m and the 492

sequence length n is two low, the segments are so 493

large that it is hard to find a pair of segments such 494

that transposing their boundary results in a “hard” 495

error; conversely, when the ratio is too high, all 496

segments are small, and it is hard to find a pair 497

such that transposing by one unit is still “soft." 498

7

Figure 15: Ratio of potential “hard” transposition errors
for B and WindowDiff.

6 Limitations499

While we have seen that A performs favorably500

when compared to B and WindowDiff, more in-501

vestigation may be warranted on the general MLA502

approach. First, the space of potential alignments503

for a given pair of segmentations can be quite large,504

and while a simple greedy intersection ratio ap-505

proach generates sensible alignments, there may506

very well exist edge cases that exhibit undesirable507

behavior for specific applications.508

r

hz

h1

h2

Pair A B (k=1) 1− WD (k=2)
(r, h0) 0.67 0.50 0.88
(r, h1) 0.79 0.75 0.88
(r, h2) 0.58 0.33 0.62

Figure 16: Intricate Behavior of A.

Consider Figure 16. h0 deletes a boundary from509

r, while h1 and h2 transpose it different distances.510

However, A gives h2 a worse score than h0; this511

behavior is explained by the MLA between r and512

h2 containing a diagonal alignment between the513

first segment in h2 and the second segment in r,514

due to the first segment in r being very small — so515

small that transposing its boundary by two units516

is considered worse than deleting it. The intersect517

ratio closeness function in A uses segment size to518

distinguish “soft” and “hard” transpositions; as we519

saw in Figure 12, when the segments are longer, 520

A will match the left and right segments of a two- 521

unit transposition with the original segments in r, 522

resulting in a similarity score greater than h0. 523

However, it may be that application-specific re- 524

quirements push in the direction of favoring of soft 525

transpositions over deletions regardless of segment 526

size, which would require a) a different segment- 527

to-segment closeness function c, or b) maximizing 528

some global MLA function, such as Maximum 529

Spanning Tree or another graph algorithm. 530

Second, in Figure 9, we presented a reference 531

segmentation r and two different candidate seg- 532

mentations h1 and h2 that are scored equally by A, 533

B, and WindowDiff. Here, the fact that A can not 534

distinguish between them is not due to the MLA, 535

as there is only one possible alignment between 536

each candidate and r. Thus, it may be of inter- 537

est to develop more sophisticated ways of scoring 538

the MLA, rather than simply averaging utilizing 539

Jaccard-weighted edges, in order to be able to dis- 540

tinguish between h1 and h2. 541

7 Conclusion 542

In this paper, we present a new alignment-based 543

approach to text segmentation similarity scoring 544

and present a new similarity metric A. We com- 545

pare A with the most commonly used existing met- 546

rics in text segmentation, B and WindowDiff, and 547

explain key scenarios where they do not produce 548

correct behavior, unlike A. We comment on the 549

potential versatility of alignment-based approaches 550

when paired with different alignment-generating 551

and alignment-scoring functions, and show that 552

A, B, and WindowDiff exhibit intricate behaviors 553

that should be carefully explored in the future. We 554

make our implementation of A publicly available 555

and hope that it encourages the NLP community 556

to explore more sophisticated approaches for text 557

segmentation similarity scoring. 558

References 559

Doug Beeferman, Adam Berger, and John Lafferty. 560
1999. Statistical models for text segmentation. Ma- 561
chine learning, 34(1):177–210. 562

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat- 563
ural language processing with Python: analyzing text 564
with the natural language toolkit. " O’Reilly Media, 565
Inc.". 566

Abraham Bookstein, Vladimir A. Kulyukin, and Timo 567

8

Raita. 2002. Generalized hamming distance. Inf.568
Retr., 5(4):353–375.569

Fred J. Damerau. 1964. A technique for computer de-570
tection and correction of spelling errors. Commun.571
ACM, 7(3):171–176.572

Chris Fournier. 2013. Evaluating text segmentation us-573
ing boundary edit distance. In Proceedings of the574
51st Annual Meeting of the Association for Compu-575
tational Linguistics (Volume 1: Long Papers), pages576
1702–1712, Sofia, Bulgaria. Association for Compu-577
tational Linguistics.578

Chris Fournier and Diana Inkpen. 2012. Segmentation579
similarity and agreement. In Proceedings of the 2012580
Conference of the North American Chapter of the581
Association for Computational Linguistics: Human582
Language Technologies, pages 152–161, Montréal,583
Canada. Association for Computational Linguistics.584

Sylvain Lamprier, Tassadit Amghar, Bernard Levrat,585
and Frederic Saubion. 2007. On evaluation method-586
ologies for text segmentation algorithms. In 19th587
IEEE International Conference on Tools with Artifi-588
cial Intelligence(ICTAI 2007), volume 2, pages 19–589
26.590

Vladimir I. Levenshtein. 1966. Binary codes capable591
of correcting deletions, insertions and reversals. In592
Soviet Physics Doklady, volume 10, page 707.593

Lev Pevzner and Marti A. Hearst. 2002. A critique594
and improvement of an evaluation metric for text595
segmentation. Computational Linguistics, 28(1):19–596
36.597

Martin Scaiano and Diana Inkpen. 2012. Getting more598
from segmentation evaluation. In Proceedings of599
the 2012 Conference of the North American Chap-600
ter of the Association for Computational Linguis-601
tics: Human Language Technologies, pages 362–366,602
Montréal, Canada. Association for Computational603
Linguistics.604

9

https://doi.org/10.1023/A:1020499411651
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://doi.org/10.1145/363958.363994
https://aclanthology.org/P13-1167
https://aclanthology.org/P13-1167
https://aclanthology.org/P13-1167
https://aclanthology.org/N12-1016
https://aclanthology.org/N12-1016
https://aclanthology.org/N12-1016
https://doi.org/10.1109/ICTAI.2007.22
https://doi.org/10.1109/ICTAI.2007.22
https://doi.org/10.1109/ICTAI.2007.22
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://doi.org/10.1162/089120102317341756
https://aclanthology.org/N12-1038
https://aclanthology.org/N12-1038
https://aclanthology.org/N12-1038

