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Abstract

Real-time recurrent learning (RTRL) for sequence-processing recurrent neural net-1

works (RNNs) offers certain conceptual advantages over backpropagation through2

time (BPTT). RTRL requires neither caching past activations nor truncating con-3

text, and enables online learning. However, RTRL’s time and space complexity4

makes it impractical. To overcome this problem, most recent work on RTRL fo-5

cuses on approximation theories, while experiments are often limited to diagnostic6

settings. Here we explore the practical promise of RTRL in more realistic settings.7

We study actor-critic methods that combine RTRL and policy gradients, and test8

them in several subsets of DMLab-30, ProcGen, and Atari-2600 environments. On9

DMLab memory tasks, our system is competitive with or outperforms well-known10

IMPALA and R2D2 baselines trained on 10 B frames, while using fewer than 1.2 B11

environmental frames. To scale to such challenging tasks, we focus on certain well-12

known neural architectures with element-wise recurrence, allowing for tractable13

RTRL without approximation. We also discuss rarely addressed limitations of14

RTRL in real-world applications, such as its complexity in the multi-layer case.115

1 Introduction16

There are two classic learning algorithms to compute exact gradients for sequence-processing recur-17

rent neural networks (RNNs): real-time recurrent learning (RTRL; [1, 2, 3, 4]) and backpropagation18

through time (BPTT; [5, 6]) (reviewed in Sec. 2). In practice, BPTT is the only one commonly used19

today, simply because BPTT is tractable while RTRL is not. In fact, the time and space complexities20

of RTRL for a fully recurrent NN are quadratic and cubic in the number of hidden units, respectively,21

which are prohibitive for any RNNs of practical sizes in real applications. Despite such an obvious22

complexity bottleneck, RTRL has certain attractive conceptual advantages over BPTT. BPTT requires23

to cache activations for each new element of the sequence processed by the model, for later gradient24

computation. As the amount of these past activations to be stored grows linearly with the sequence25

length, practitioners (constrained by the actual memory limit of their hardware) use the so-called trun-26

cated BPTT (TBPTT; [7]) where they specify the maximum number of time steps for this storage,27

giving up gradient components—and therefore credit assignments—that go beyond this time span. In28

contrast, RTRL does not require storing past activations, and enables computation of untruncated29

gradients for sequences of any arbitrary length. In addition, RTRL is an online learning algorithm30

(more efficient than BPTT to process long sequences in the online scenario) that allows for updating31

weights immediately after consuming every new input (assuming that the external error feedback to32

the model output is also available for each input). These attractive advantages of RTRL still actively33

motivate researchers to work towards practical RTRL (e.g., [8, 9, 10, 11, 12]).34

1Upon acceptance, we will add a GitHub link to our public code here.
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The root of RTRL’s high complexities is the computation and storage of the so-called sensitivity35

matrix whose entries are derivatives of the hidden activations w.r.t. each trainable parameter of the36

model involved in the recurrence (see Sec. 2). Most recent research on RTRL focuses on introducing37

approximation methods into the computation and storage of this matrix. For example, Menick38

et al. [11] introduce sparsity in both the weights of the RNN and updates of the temporal Jacobian39

(which is an intermediate matrix needed to compute the sensitivity matrix). Another line of work40

[8, 9, 10] proposes estimators based on low-rank decompositions of the sensitivity matrix that are less41

expensive to compute and store than the original one. Silver et al. [12] explore random projections42

of the sensitivity. The main research question in these lines of work is naturally focused around the43

quality of the proposed approximation method. Consequently, the central goal of their experiments is44

typically to test hyper-parameters and configurational choices that control the approximation quality45

in diagnostic settings, rather than evaluating the full potential of RTRL in realistic tasks. In the end,46

we still know very little about the true empirical promise of RTRL. Also, assuming that a solution is47

found to the complexity bottleneck, what actual applications or algorithms would RTRL unlock? In48

what scenarios would RTRL be able to replace BPTT in today’s deep learning?49

Here we propose to study RTRL by looking ahead beyond research on approximations. We explore50

the full potential of RTRL in the settings where no approximation is needed, while at the same time,51

not restricting ourselves to toy tasks. For that, we focus on special RNN architectures with element-52

wise recurrence, that allow for tractable RTRL without any approximation. In fact, the quadratic/cubic53

complexities of the fully recurrent NNs can be simplified for certain neural architectures. Many well-54

known RNN architectures, such as Quasi-RNNs [13] and Simple Recurrent Units [14], and even55

certain Linear Transformers [15, 16, 17], belong to this class of models (see Sec. 3.1). Note that the56

core idea underlying this observation is technically not new: Mozer [18, 19] already explore an RNN57

architecture with this property in the late 1980s to derive his focused backpropagation, and Javed58

et al. [20, 21] also exploit this in the architectural design of their RNNs (even though the problematic59

multi-layer case is ignored; we discuss it in Sec. 5). While such special RNNs may suffer from60

limited computational capabilities on certain tasks (i.e., one can come up with a synthetic/algorithmic61

task where such models fail; see Appendix B.1), they also often perform on par with fully recurrent62

NNs on many tasks (at least, this is the case for the tasks we explore in our experiments). For the63

purpose of this work, the RTRL-tractability property outweighs the potentially limited computational64

capabilities: these architectures allow us to focus on evaluating RTRL on challenging tasks with a65

scale that goes beyond the one typically used in prior RTRL work, and to draw conclusions without66

worrying about the quality of approximation. We study an actor-critic algorithm [22, 23, 24] that67

combines RTRL and recurrent policy gradients [25], allowing credit assignments throughout an68

entire episode in reinforcement learning (RL) with partially observable Markov decision processes69

(POMDPs; [26, 27]). We test the resulting algorithm, Real-Time Recurrent Actor-Critic method70

(R2AC), in several subsets of DMLab-30 [28], ProcGen [29], and Atari 2600 [30] environments, with71

a focus on memory tasks but also including reactive ones. In particular, on two memory environments72

of DMLab-30, our system is competitive with or outperforms the well-known IMPALA [31] and73

R2D2 [32] baselines, demonstrating certain practical benefits of RTRL at scale. Finally, working74

with concrete real-world tasks also sheds lights on further limitations of RTRL that are rarely (if not75

never) discussed in prior work. These observations are important for future research on practical76

RTRL. We highlight and discuss these general challenges of RTRL (Sec. 5).77

2 Background78

Here we first review real-time recurrent learning (RTRL; [1, 2, 3, 4]), which is a gradient-based79

learning algorithm for sequence-processing RNNs—an alternative to the now standard BPTT.80

Preliminaries. Let t, T , N , and D be positive integers. We describe the corresponding learning81

algorithm for the following standard RNN architecture [33] that transforms an input x(t) ∈ RD to an82

output h(t) ∈ RN at every time step t as83

s(t) = Wx(t) +Rh(t− 1) ; h(t) = σ(s(t)) (1)

where W ∈ RN×D and R ∈ RN×N are trainable parameters, s(t) ∈ RN , and σ denotes the84

element-wise sigmoid function (we omit biases). For the derivation, it is convenient to describe each85
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component sk(t) ∈ R of vector s(t) for k ∈ {1, ..., N},86

sk(t) =

D∑
n=1

Wk,nxn(t) +

N∑
n=1

Rk,nσ(sn(t− 1)) (2)

In addition, we consider some loss function Ltotal(1, T ) =
∑T

t=1 L(t) ∈ R computed on an arbitrary87

sequence of length T where L(t) ∈ R is the loss at each time step t, which is a function of h(t)88

(we omit writing down explicit dependencies over the model parameters). Importantly, we assume89

that L(t) can be computed solely from h(t) at step t (i.e., L(t) has no dependency on any other past90

activations apart from h(t− 1) which is needed to compute h(t)).91

The role of a gradient-based learning algorithm is to efficiently compute the gradients of the loss92

w.r.t. the trainable parameters of the model, i.e.,
∂Ltotal(1, T )

∂Wi,j
∈ R for all i ∈ {1, ..., N} and93

j ∈ {1, ..., D}, and
∂Ltotal(1, T )

∂Ri,j
∈ R for all i, j ∈ {1, ..., N}. RTRL and BPTT differ in the way94

to compute these quantities. While we focus on RTRL here, for the sake of completeness, we also95

provide an analogous derivation for BPTT in Appendix A.3.96

Real-Time Recurrent Learning (RTRL). RTRL can be derived by first decomposing the total97

loss Ltotal(1, T ) over time, and then summing all derivatives of each loss component L(t) w.r.t. inter-98

mediate variables sk(t) for all k ∈ {1, ..., N}:99

∂Ltotal(1, T )

∂Wi,j
=

T∑
t=1

∂L(t)
∂Wi,j

=

T∑
t=1

(
N∑

k=1

∂L(t)
∂sk(t)

× ∂sk(t)

∂Wi,j

)
(3)

In fact, unlike BPTT that can only compute the derivative of the total loss Ltotal(1, T ) efficiently,100

RTRL is an online algorithm that computes each term
∂L(t)
∂Wi,j

through the decomposition above.101

The first factor
∂L(t)
∂sk(t)

can be straightforwardly computed through standard backpropagation (as102

stated above, we assume there is no recurrent computation between s(t) and L(t)). For the second103

factor
∂sk(t)

∂Wi,j
, which is an element of the so-called sensitivity matrix/tensor, we can derive a forward104

recursion formula, which can be obtained by directly differentiating Eq. 2:105

∂sk(t)

∂Wi,j
= xj(t)1k=i +

N∑
n=1

Rk,nσ
′(sn(t− 1))

∂sn(t− 1)

∂Wi,j
(4)

where 1k=i denotes the indicator function: 1k=i = 1 if k = i, and 0 otherwise, and σ′ denotes the106

derivative of the sigmoid, i.e, σ′(sn(t − 1)) = σ(sn(t − 1))(1 − σ(sn(t − 1))). The derivation107

is similar for
∂L(t)
∂Ri,j

where we obtain a recurrent formula to compute
∂sk(t)

∂Ri,j
. As this algorithm108

requires to store
∂sk(t)

∂Wi,j
and

∂sk(t)

∂Ri,j
, its space complexity is O((D +N)N2) ∼ O(N3). The time109

complexity to update the sensitivity matrix/tensor via Eq. 4 is O(N4). To be fair with BPTT, it should110

be noted that O(N4) is the complexity for one update; this means that the time complexity to process111

a sequence of length T is O(TN4).112

Thanks to the forward recursion, the update frequency of RTRL is flexible: one can opt for the113

fully online learning, where we update the weights using
∂L(t)
∂W

at every time step, or accumulate114

gradients for several time steps. It should be noted that frequent updates may result in staleness of115

the sensitivity matrix, as it accumulates updates computed using old weights (Eq. 4).116

Note that algorithms similar to RTRL have been derived from several independent authors (see, e.g.,117

[3, 18], or [34, 35] for the continuous-time version).118
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3 Method119

Our main algorithm is an actor-critic method that combines RTRL with recurrent policy gradients,120

using a special RNN architecture that allows for tractable RTRL. Here we describe its main com-121

ponents: an element-wise LSTM with tractable RTRL (Sec. 3.1), and the actor-critic algorithm that122

builds upon IMPALA [31] (Sec. 3.2).123

3.1 RTRL for LSTM with Element-wise Recurrence (eLSTM)124

The core RNN architecture we use in this work is a variant of long short-term memory (LSTM; [36])125

RNN with element-wise recurrence. Let ⊙ denote element-wise multiplication. At each time step t,126

it first transforms an input vector x(t) ∈ RD to a recurrent hidden state c(t) ∈ RN as follows:127

f(t) = σ(Fx(t) +wf ⊙ c(t− 1)) ; z(t) = tanh(Zx(t) +wz ⊙ c(t− 1)) (5)
c(t) = f(t)⊙ c(t− 1) + (1− f(t))⊙ z(t) (6)

where f(t) ∈ RN , z(t) ∈ RN are activations, F ∈ RN×D and Z ∈ RN×D are trainable weight128

matrices, and wf ∈ RN and wz ∈ RN are trainable weight vectors. These operations are followed129

by a gated feedforward NN to obtain an output h(t) ∈ RN as follows:130

o(t) = σ(Ox(t) +W oc(t)); h(t) = o(t)⊙ c(t) (7)

where O ∈ RN×D and W o ∈ RN×N are trainable weight matrices. This architecture can be seen as131

an extension of Quasi-RNN [13] with element-wise recurrence in the gates, or Simple Recurrent Units132

[14] without depth gating, and also relates to IndRNN [37]. While one could further discuss myriads133

of architectural details [38], most of them are irrelevant to our discussion on the complexity reduction134

in RTRL; the only essential property here is that “recurrence” is element-wise. We use this simple135

architecture above, an LSTM with element-wise recurrence (or eLSTM), for all our experiments.136

Furthermore, we restrict ourselves to the one-layer case (we discuss the multi-layer case later in Sec. 5),137

where we assume that there is no recurrence after this layer. Based on this assumption, gradients for138

the parameters O and W o in Eq. 7 can be computed by the standard backpropagation, as they are139

not involved in recurrence. Hence, the sensitivity matrices we need for RTRL (Sec. 2) are:
∂c(t)

∂F
,140

∂c(t)

∂Z
∈ RN×N×N , and

∂c(t)

∂wf
,
∂c(t)

∂wz
∈ RN×N . Through trivial derivations, we can show that each141

of these sensitivity matrices can be computed using a tractable forward recursion formula (we provide142

the full derivation in Appendix A.1). For example for
∂c(t)

∂F
, we have, for i, j, k ∈ {1, ..., N},143

f̂i(t) = (ci(t− 1)− zi(t))fi(t)(1− fi(t)) (8)
∂ci(t)

∂Fi,j
= (fi(t) +wf

i f̂i(t))
∂ci(t− 1)

∂Fi,j
+ f̂i(t)xj(t) ; and

∂ck(t)

∂Fi,j
= 0 for all k ̸= i. (9)

where we introduce an intermediate vector f̂(t) ∈ RN with components f̂i(t) ∈ R for convenience.144

Consequently, the gradients for the weights can be computed as:145

∂L(t)
∂Fi,j

=

N∑
k=1

∂L(t)
∂ck(t)

× ∂ck(t)

∂Fi,j
=

∂L(t)
∂ci(t)

× ∂ci(t)

∂Fi,j
(10)

Finally, we can compactly summarise these equations using the standard matrix operations. By146

introducing notations F̂ (t) ∈ RN×N with F̂i,j(t) =
∂ci(t)

∂Fi,j
∈ R, and e(t) ∈ RN with ei(t) =147

∂L(t)
∂ci(t)

∈ R for i ∈ {1, ..., N} and j ∈ {1, ..., D}, Eqs. 8-10 above can be written as:148

f̂(t) = (c(t− 1)− z(t))⊙ f(t)⊙ (1− f(t)) (11)

F̂ (t) = diag
(
f(t) +wf ⊙ f̂(t)

)
F̂ (t− 1) + f̂(t)⊗ x(t) ;

∂L(t)
∂F

= diag(e(t))F̂ (t) (12)
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where, for notational convenience, we introduce a function diag : RN → RN×N that constructs149

a diagonal matrix whose diagonal elements are those of the input vector; however, in practical150

implementations (e.g., in PyTorch), this can be directly handled as vector-matrix multiplications with151

broadcasting (this is an important note for complexity analysis). ⊗ denotes outer-product.152

Analogously, we can derive compact update equations of sensitivity matrices and gradient computa-153

tions for other parameters Z, wf and wz (as well as biases which are omitted here). The complete154

list of these equations is provided in Appendix A.1.155

The RTRL algorithm above requires maintaining sensitivity matrices F̂ (t) ∈ RN×N , and analogously156

defined Ẑ(t) ∈ RN×N , ŵf (t) ∈ RN , and ŵz(t) ∈ RN (see Appendix A.1); thus, the space157

complexity is O(N2). The per-step time complexity is O(N2) (see Eqs. 8-10). This is all tractable.158

Importantly, these equations 11-12 can be implemented as simple PyTorch code (just like the forward159

pass of the same model; Eqs. 5-7) without any non-standard logics. Note that many approximations of160

RTRL often involve computations that are not well supported yet in the standard deep learning library161

(e.g., efficiently handling custom sparsity), which is an extra barrier for scaling RTRL in practice.162

Note that the derivation of RTRL for element-wise recurrent nets is not novel: similar methods can be163

found in Mozer [18, 19] from the late 1980s. This result itself is also not very surprising, since element-164

wise recurrence introduces obvious sparsity in the temporal Jacobian (which is part of the second165

term in Eq. 4). Nethertheless, we are not aware of any prior work pointing out that several modern166

RNN architectures such Quasi-RNN [13] or Simple Recurrent Units [14] yield tractable RTRL (in the167

one-layer case). Also, while this is not the focus of our experiments, we show an example of Linear168

Transformers/Fast Weight Programmers [15, 16, 17] that have tractable RTRL (details can be found in169

Appendix A.2), which is another conceptually interesting result. We also note that the famous LSTM-170

algorithm [36] (companion learning algorithm for the LSTM architecture) is a diagonal approximation171

of RTRL, so is the more recent SnAp-1 of Menick et al. [11]. Unlike in these works, the gradients172

computed by our RTRL algorithm above are exact for our eLSTM architecture. This allows us173

to draw conclusions from experimental results without worrying about the potential influence of174

approximation quality. We can evaluate the full potential of RTRL for this specific architecture.175

Finally, this is also an interesting system from the biological standpoint. Each weight in the weight176

matrix/synaptic connections (e.g., F ∈ RN×N ) is augmented with the corresponding "memory"177

(F̂ (t) ∈ RN×N ) tied to its own learning process, which is updated in an online fashion, as the model178

observes more and more examples, through an Hebbian/outer product-based update rule (Eq. 12/Left).179

3.2 Real-Time Recurrent Actor-Critic Policy Gradient Algorithm (R2AC)180

The main algorithm we study in this work, Real-Time Recurrent Actor-Critic method (R2AC), com-181

bines RTRL with recurrent policy gradients. Our algorithm builds upon IMPALA [31]. Essentially,182

we replace the RNN archicture and its learning algorithm, LSTM/TBPTT in the standard recurrent183

IMPALA algorithm, by our eLSTM/RTRL (Sec. 3.1). While we refer to the original paper [31] for184

basic details of IMPALA, here we recapitulate some crucial aspects. Let M denote a positive integer.185

IMPALA is a distributed actor-critic algorithm where each actor interacts with the environment for a186

fixed number of steps M to obtain a state-action-reward trajectory segment of length M to be used by187

the learner to update the model parameters. M is an important hyper-parameter that is used to specify188

the number of steps M for M -step TD learning [39] of the critic, and the frequency of weight updates.189

Given the same number of environmental steps used for training, systems trained with a smaller M190

apply more weight updates than those trained with a higher M . For recurrent policies trained with191

TBPTT, M also represents the BPTT span (i.e., BPTT is carried out on the M -length trajectory seg-192

ment; no gradient is propagated farther than M steps back in time; while the last state of the previous193

segment is used as the initial state of the new segment in the forward pass). In the case of RTRL, there194

is no gradient truncation, but since M controls the update frequency, the greater the M , the less fre-195

quently we update the parameters, and it potentially suffers less from sensitivity matrix staling. This196

setting allows for comparing TBPTT and RTRL in the setting where everything is equal (including the197

number of updates) except the actual gradients applied to the weights: truncated vs. untruncated ones.198

Note that for R2AC with M = 1, one could obtain a fully online recurrent actor-critic method.199

However, in practice, it is known that M > 1 is crucial (for TD learning of the critic) for optimal200

performance. In all our experiments, we have M > 1. The main focus of this work is to evaluate201

learning with untruncated gradients, rather than the potential for online learning.202
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4 Experiments203

4.1 Diagnostic Task204

Since the main focus of this work is to evaluate RTRL-based algorithms beyond diagnostic tasks, we205

only conduct brief experiments on a classic diagnostic task used in recent RTRL research work focused206

on approximation methods [8, 9, 10, 11, 12]: the copy task. Since our RTRL algorithm (Sec. 3.1)207

requires no approximation, and the task is trivial, we achieve 100% accuracy provided that the RNN208

size is large enough and that training hyper-parameters are properly chosen. We confirm this for209

sequences with lengths of up to 1000. Additional experimental details can be found in Appendix B.1.210

4.2 Memory Tasks211

Here we present the main experiments of this work: RL in POMDPs using realistic game environments212

requiring memory.213

DMLab Memory Tasks. DMLab-30 [28] is a collection of 30 first-person 3D game environ-214

ments, with a mix of both memory and reactive tasks. Here we focus on two well-known environ-215

ments, rooms_select_nonmatching_object and rooms_watermaze, which are both categorised216

as “memory” tasks according to Parisotto et al. [40]. The mean episode lengths of these tasks are217

about 100 and 1000 steps, respectively. As we apply an action repetition of 4, each “step” corre-218

sponds to 4 environmental frames here. We refer to Appendix B.2 for further descriptions of these219

tasks, and experimental details. Our model architecture is based on that of IMPALA [31]. Both RTRL220

and TBPTT systems use our eLSTM (Sec. 3.1) as the recurrent layer with a hidden state size of 512.221

Everything is equal between these two systems except that the gradients are truncated in TBPTT222

but not in RTRL. To reduce the overall compute needed for the experiments, we first pre-train one223

TBPTT model for 50 M steps for rooms_select_nonmatching_object, and for 200 M steps for224

rooms_watermaze. Then, for all main training runs in this experiment, we initialise the parameters225

of the convolutional vision module from the same pre-trained model, and keep these parameters frozen226

(and thus, only train the recurrent layer and everything above it). For these main training runs, we227

train for 30 M and 100 M steps for rooms_select_nonmatching_object and rooms_watermaze,228

respectively; resulting in the total of 320 M and 1.2 B environmental frames. We compare RTRL229

and TBPTT for different values of M ∈ {10, 50, 100} (Sec. 3.2). We recall that M influences: the230

frequency of weight updates, M -step TD learning, as well as the backpropagation span for TBPTT.231

Table 1 shows the corresponding scores, and the left part of Figure 1 shows the training curves. We232

observe that for select_nonmatching_object which has a short mean episode length of 100 steps,233

the performance of TBPTT and RTRL is similar even with M = 50. The benefit of RTRL is only234

visible in the case with M = 10. In contrast, for the more challenging rooms_watermaze task with235

a mean episode length of 1000 steps, RTRL outperforms TBPTT for all values of M ∈ {10, 50, 100}.236

Furthermore, with M = 50 or 100, our RTRL system outperforms the IMPALA and R2D2 systems237

from prior work [32], while trained on fewer than 1.2 B frames. Note that R2D2 systems [32] are238

trained without action repetitions, and with a BPTT span of 80. This effectively demonstrates the239

practical benefit of RTRL in a realistic task requiring long-span credit assignments.240

ProcGen. We test R2AC in another domain: ProcGen [29]. Most ProcGen environments are solv-241

able using a feedforward policy even without frame-stacking [29]. There is a so-called memory-mode242

for certain games, making the task partially observable by making the world bigger, and restricting243

agents’ observations to a limited area around them. However, in our preliminary experiments, we ob-244

serve that even in these POMDP settings, both the feedforward and LSTM baselines perform similarly245

(see Appendix B.3). Nevertheless, we find one environment in the standard hard-mode, Chaser, which246

shows clear benefits of recurrent policies over those without memory. Chaser is similar to the classic247

game “Pacman,” effectively requiring some counting capabilities to fully exploit power pellets valid248

for a limited time span. The mean episode length for this task is about 200 steps, where each step is249

an environmental frame as we apply no action repeat for ProcGen. Unlike in the DMLab experiments250

above, here we train all models from scratch for 200 M steps without pre-training the vision module251

(since training the vision parameters using RTRL is intractable, they are trained with truncated gradi-252

ents, i.e., only the recurrent layer is trained using RTRL; we discuss this further in Sec. 5). We com-253

pare RTRL and TBPTT with M = 5 or 50. The training curves are shown in the right part of Figure 1.254
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Figure 1: Training curves on DMLab-30 rooms_select_nonmatching_object (Non-matching)
and rooms_watermaze (Watermaze), and Procgen Chaser environments.

Table 1: Final game scores on two memory environments of DMLab-30:
rooms_select_nonmatching_object and rooms_watermaze. Numbers on the top part are
copied from the respective papers for reference. We report mean and standard deviation computed
over 3 training seeds (each using 3 sets of 100 test episodes; see Appendix B.2). “frames” indicates the
number of environmental frames used for training. M is the hyper-parameter that controls weight up-
date frequency, M -step TD learning, and backpropagation span for TBPTT in IMPALA (see Sec. 3.2).

frames M select_nonmatching_object watermaze

IMPALA ([31]) 1 B 100 7.3 26.9
IMPALA ([32]) 10 B 100 39.0 47.0

R2D2 ([32]) 10 B - 2.3 45.9
R2D2+ ([32]) 10 B - 63.6 49.0

TBPTT < 1.2B 10 54.5 ± 1.1 15.8 ± 0.9
RTRL 61.8 ± 0.5 40.2 ± 5.6

TBPTT < 1.2B 50 61.4 ± 0.5 44.5 ± 1.5
RTRL 62.0 ± 0.4 52.3 ± 1.9

TBPTT < 1.2B 100 61.7 ± 0.1 45.6 ± 4.7
RTRL 62.2 ± 0.3 54.8 ± 4.3

Similar to the rooms_select_nonmatching_object case above, with a sufficiently large M = 50,255

there is no difference between RTRL and TBPTT, while we observe benefits of RTRL when M = 5.256

4.3 General Evaluation257

Here we evaluate R2AC more broadly, including environments which are mostly reactive.258

Atari. Apart from some exceptions (such as Solaris [32]), many of the Atari game environments are259

considered to be fully observable when observations consist of a stack of 4 frames [41, 42]. However,260

it is also empirically known that, for certain games, recurrent policies yield higher performance261

than the feedforward ones having only access to 4 past frames (see, e.g., [43, 32, 44]). Here our262

general goal is to compare RTRL to TBPTT more broadly. We use five Atari environments: Breakout,263
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(b) Gravitar
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(c) MsPacman
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(e) Seaquest

Figure 2: Learning curves on five Atari environments

Table 2: Scores on Atari and DMLab-reactive (rooms_keys_doors_puzzle) environments.

Breakout Gravitar MsPacman Q*bert Seaquest keys_doors

Feedforward 234 ± 12 1084 ± 54 3020 ± 305 7746 ± 1356 4640 ± 3998 26.6 ± 1.1
TBPTT 305 ± 29 1269 ± 11 3953 ± 497 11298 ± 615 12401 ± 1694 26.1 ± 0.4

RTRL 275 ± 53 1670 ± 358 3346 ± 442 12484 ± 1524 12862 ± 961 26.1 ± 0.9

Gravitar, MsPacman, Q*bert, and Seaquest, following Kapturowski et al. [32]’s selection for ablations264

of their R2D2. Here we use M = 50, and train for 200 M steps (with the action repeat of 4) from265

scratch. The learning curves are shown in Figure 2. With the exception of MsPacman (note that,266

unlike ProcGen/Chaser above, 4-frame stacking is used) where we observe a slight performance267

degradation, RTRL performs equally well or better than TBPTT in all other environments.268

DMLab Reactive Task. Finally, we also test our system on one environment of DMLab-30,269

room_keys_doors_puzzle, which is categorised as a reactive task according to Parisotto et al. [40].270

We train with M = 100 for 100 M steps (with the action repeat of 4). The mean episode length is271

about 450 steps. Table 2/right shows the scores. Effectively, all feedforward, TBPTT, and RTRL272

systems perform nearly the same (at least within 100 M steps/400 M frames). We note that these273

scores are comparable to the one reported by the original IMPALA [31] which is 28.0 after training274

on 1 B frames, which is much worse than the score reported by Kapturowski et al. [32] for IMPALA275

trained using 10 B frames (54.6). We show this example to confirm that RTRL is effectively not276

helpful on a reactive task, unlike in the memory tasks above.277

5 Limitations and Discussion278

Here we discuss limitations of this work, which also sheds light on more general challenges of RTRL.279

Multi-layer case of our RTRL. The most crucial limitation of our tractable-RTRL algorithm280

for element-wise recurrent nets (Sec. 3.1) is its restriction to the one-layer case. By stacking two281

such layers, the corresponding RTRL algorithm becomes intractable as we end up with the same282

complexity bottleneck as in fully recurrent networks. This is simply because by composing two such283

element-wise recurrent layers, we obtain a fully recurrent NN as a whole. This can be easily seen by284

writing down the following equations. By introducing extra superscripts to denote the layer number,285

in a stack of two element-wise LSTM layers of Eqs. 5-6 (we remove the output gate), we can express286
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the recurrent state c(2)(t) of the second layer at step t as a function of the recurrent state c(1)(t− 1)287

of the first layer from the previous step as follows:288

c(2)(t) = f (2)(t)⊙ c(2)(t− 1) + (1− f (2)(t))⊙ z(2)(t) (13)

f (2)(t) = σ(F (2)c(1)(t) +wf(2) ⊙ c(2)(t− 1)) (14)

= σ(F (2)
(
f (1)(t)⊙ c(1)(t− 1) + (1− f (1)(t))⊙ z(1)(t)

)
+ ...) (15)

= σ(F (2)f (1)(t)⊙ c(1)(t− 1) + F (2)(1− f (1)(t))⊙ z(1)(t) + ...) (16)
By looking at the first term of Eq. 13 and that of Eq. 16, one can see that there is full recurrence289

between c(2)(t) and c(1)(t − 1) via F (2), which brings back the quadratic/cubic time and space290

complexity for the sensitivity of the recurrent state in the second layer w.r.t. parameters of the first291

layers. This limitation is not discussed in prior work [18, 19].292

Complexity of multi-layer RTRL in general. Generally speaking, RTRL for the multi-layer case is293

rarely discussed (except Meert and Ludik [45]; 1997). This case is important in modern deep learning294

where stacking multiple layers is a standard. There are two important remarks to be made here.295

First of all, even in an NN with a single RNN layer, if there is a layer with trainable parameters whose296

output is connected to the input of the RNN layer, a sensitivity matrix needs to be computed and stored297

for each of these parameters. A good illustration is the policy net used in all our RL experiments298

where our eLSTM layer takes the output of a deep (feedforward) convolutional net (the vision stem)299

as input. As training this vision stem using RTRL requires dealing with the corresponding sensitivity300

matrix, which is intractable, we train/pretrain the vision stem using TBPTT (Sec. 4.2;4.3). This is an301

important remark for RTRL research in general. For example, approximation methods proposed for302

the single-layer case may not scale to the multi-layer case; e.g., to exploit sparsity in the policy net303

above, it is not enough to assume weight sparsity in the RNN layer, but also in the vision stem.304

Second, the multi-layer case [45] introduces more complexity growth to RTRL than to BPTT. Let305

L denote the number of layers. We seemlessly use BPTT with deep NNs, as its time and space306

complexity is linear in L. This is not the case for RTRL. With RTRL, for each recurrent layer, we need307

to store sensitivities of all parameters of all preceding layers. This implies that, for an L-layer RNN,308

parameters in the first layer require L sensitivity matrices, L−1 for the second layer, ..., etc., resulting309

in L+(L− 1)+ (L− 2)+ ...+2+1 = L(L+1)/2 sensitivity matrices to be computed and stored.310

Given that multi-layer NNs are crucial today, this remains a big challenge for practical RTRL research.311

Principled vs. practical solution. Another important aspect of RTRL research is that many realis-312

tic memory tasks have actual dependencies/credit assignment paths that are shorter than the max-313

imum BPTT span we can afford in practice. In our experiments, with the exception of DMLab314

rooms_watermaze (Sec. 4.2), no task actually absolutely requires RTRL in practice; TBPTT with a315

large span suffices. Future improvements of the hardware may give a further advantage to TBPTT;316

the practical (simple) solution offered by TBPTT might be prioritised over the principled (complex)317

RTRL solution for dealing with long-span credit assignments. This is also somewhat reminiscent of318

the Transformer vs. RNN discussion regarding sequence processing with limited vs. unlimited context.319

Sequence-level parallelism. While our study focuses on evaluation of untruncated gradients,320

another potential benefit of RTRL is online learning. For most standard self/supervised sequence-321

processing tasks such as language modelling, however, modern implementations are optimised to322

exploit access to the “full” sequence, and to leverage parallel computation across the time axis (at323

least for training). While some hybrid RTRL-BPTT approaches [46] may still be able to exploit such324

a parallelism, fast online learning remains open engineering challenge even with tractable RTRL.325

6 Conclusion326

We demonstrate the empirical promise of RTRL in realistic settings. By focusing on RNNs with327

element-wise recurrence, we obtain tractable RTRL without approximation. We evaluate our rein-328

forcement learning RTRL-based actor-critic in several popular game environments. In one of the329

challenging DMLab-30 memory environments, our system outperforms the well-known IMPALA330

and R2D2 baselines which use many more environmental steps. We also highlight general important331

limitations and further challenges of RTRL rarely discussed in prior work.332
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