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Abstract

Histopathology image datasets frequently suffer from artifacts such as out-of-focus blur
due to inconsistent microscopy procedures, significantly compromising the reliability of
downstream analysis. While identifying and segmenting these artifacts is essential for
robust quality control, the development of supervised detection models is hindered by the
scarcity of pixel-level annotations for blurred regions. To address this data limitation, we
introduce a novel framework for synthesizing realistic blur artifacts utilizing deep generative
modeling. Unlike conventional statistical approaches, which fail to capture the stochastic
and spatially variant nature of optical aberrations, our approach leverages Conditional
Generative Adversarial Networks (cGANs) (Mirza et al., 2014) and Conditional Denoising
Diffusion Probabilistic Models (cDDPMs) (Dhariwal et al., 2021). These models are
trained to translate sharp histological images into their blurred counterparts, preserving
the textural semantics of the tissue. We demonstrate that segmentation networks trained on
this synthetically generated data exhibit superior generalization in identifying blur artifacts
compared to models trained on statistically degraded data or limited data.

Keywords: Histopathology, Diffusion Models, Artifact Detection, Synthetic Data Gener-
ation, Image Segmentation

1. Introduction

With the advancement of new and better imaging techniques, digital pathology has seen
an unprecedented rise in the last few years. It makes getting a second opinion easy and
quick, thereby decreasing the turn around times by a considerable amount. The most cru-
cial requirement for an accurate diagnosis is the clarity and sharpness of the images and
the visibility of the tissue on the slide. This is the reason why quality control plays such an
important role in digital histopathology.

The Whole Slide Images (WSI) often suffer from different types of artifacts that degrade
the quality of the tissue. These artifacts sometimes render the WSI completely useless for
any meaningful diagnosis requiring a re-scan. WSIs can have artifacts due to a number of
reasons, such as human error: while placing the tissue on the slide or during scanning the
slide, systematic error: defect in the equipment, or random error: uneven tissue thickness.
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Of all the different kinds of artifacts, blur is the most common and most detrimental be-
cause it has a very wide variety and at times can be very hard to detect.

The primary reasons for blur artifacts being introduced in the WSI are uneven tissue thick-
ness, folding of tissue regions (while preparing the slide) or the scanner being out of focus.
Although the blur artifact is most commonly occurring artifact, there is still not enough
annotated data across different tissue morphologies, stains, scanners etc. to train a good
deep learning model. Since deep learning models require data annotated at a pixel level
for training it is imperative to use synthetically generated data to save costs and introduce
variety.

2. Literature Survey
2.1. Statistical methods

Traditional methods for simulating image degradation rely on applying deterministic, math-
ematically defined convolution kernels. While computationally efficient, these approaches
fundamentally model blur as a global, stationary process, failing to capture the complexities
of real-world microscopy optics.

Gaussian blur is the most frequently employed statistical method for simulating general
out-of-focus artifacts. It approximates the Point Spread Function (PSF) of a simple optical
system.The sharp image I(z,y) is convolved with a 2D Gaussian kernel G(u, v) to yield the
blurred image I'(x,y).The 2D Gaussian kernel is defined by
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where o is the standard deviation.The degree of blur is controlled almost entirely by the
standard deviation o. A larger o results in a wider kernel and a more pronounced, smooth,
isotropic defocusing effect.

Radial blur simulates motion or focusing errors originating from or directed toward a
central point, making it a simple model for certain types of field curvature or rotational
artifacts. Instead of uniform convolution, the kernel is applied along lines or arcs extending
from a defined center point (x.,y.) in the image. This results in a degradation where
the blur is strongest near the periphery and often minimal near the center, or vice-versa.
In histopathology, it can crudely simulate a scenario where the microscope stage is slightly
tilted, causing focus to drop off radially, or a slight rotational movement during the scanning
process.

Lens blur attempts to model the shape of the physical lens aperture (the bokeh effect)
rather than simple diffusion. This method uses a kernel shaped like a polygon or a simple
disk, rather than a Gaussian curve. This kernel is applied via convolution. The kernel is
often based on a Pillbox function or a shape corresponding to the iris of the camera system.
The resulting blur is distinct from Gaussian blur, featuring sharper edges and highlights
that take on the shape of the aperture, which is a closer approximation to the true Airy
disk or aberration function of real optical systems.
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2.2. GAN

As shown by Goodfellow et al. (2014), the GAN framework consists of a Generator (G)
and a Discriminator (D) trained in a zero-sum game. G learns to map a latent noise vector
(z) to data samples that mimic the training distribution, while D is trained to distinguish
between real data and G’s synthetic output. The training minimizes the Jensen-Shannon
Divergence (JSD) between the real data distribution (pgats) and the generated distribution
(pg). This is framed as a minimax objective:

min max By, l0g D(%)] + Eznp. [log(1 — D(G(2)))]

Early GANs were applied to medical tasks like data augmentation for rare diseases and un-
conditional image synthesis to increase dataset size and diversity. Standard GANs primarily
focus on generating samples from noise (z). For blur synthesis, we need an image-to-image
translation framework where the input is the sharp image, and the output is the blurred im-
age, a capability that requires conditioning. cGANs extend the original GAN framework by
feeding conditioning information (c) into both the Generator and the Discriminator. This
allows for controlled image generation based on a specific input or label. The loss function
is modified to include the conditioning vector c:
min max By, [l0g D(x|e)] + By log(1 — D(G(z[c)))]

Architectures like Pix2Pix (Isola et al., 2021) formalized cGANs for pixel-to-pixel mapping,
making them highly relevant for our task.cGANs have been widely used in digital pathol-
ogy for stain normalization (HE to Masson’s Trichrome), virtual staining (HE to IHC), and
super-resolution. Despite their success, cGANs trained with the JSD-based loss often suffer
from mode collapse (failing to capture the full diversity of target blur patterns) and training
instability (oscillating loss and difficulty converging to Nash Equilibrium), which leads to
generated images that lack fine, high-frequency details. To address the stability and quality
issues of traditional GANs, Wasserstein GANs were introduced, replacing the JSD diver-
gence with the Earth Mover’s (EM) distance or Wasserstein-1 distance. The EM distance
provides a cost metric that is continuous and differentiable almost everywhere, even when
the distributions are disjoint. This provides a more stable and meaningful gradient signal
to the Generator throughout training.The original WGAN required weight clipping on the
Discriminator, which limited the model’s capacity. WGAN-GP (Gulrajani et al., 2017),
replaced weight clipping with a Gradient Penalty term (Agp):

Lp = Expy |(IV3D(X)]2 — 1)

where X is sampled from between the real and generated distributions. WGAN-GP enforces
the Lipschitz constraint on the Critic via this penalty, leading to minimizing the chances
of catastrophic mode collapse and the robust loss helps the Generator produce sharper,
more realistic textures, which is essential for synthesizing the subtle, complex structure of
histopathology blur. WGAN-GP has been successfully employed in diverse medical image-
to-image tasks, including super-resolution reconstruction in MRI and synthetic retinal image
generation, specifically because of its ability to generate medically plausible and visually
sharp results. Our work leverages WGAN-GP’s stability within the cGAN framework to
ensure the generated blur is not just present, but realistic and diverse.
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2.3. DDPM

DDPMs (Ho et al., 2020) define a Markov chain process that first corrupts a normal im-
age by adding noise to it via a fixed forward diffusion process and then denoises it by a
learned reverse denoising process. The forward process gradually adds Gaussian noise (€)
to the clean image (xg) over T time steps until the image becomes pure isotropic Gaussian
noise (xp ~ N(0,I)). A deep neural network (often a U-Net) learns to reverse this noise
process. The network is trained to predict the noise ¢ added at any given step ¢, allowing it
to iteratively recover the image from noise. The training loss is an L2-loss (or equivalent)
that minimizes the difference between the actual noise added (¢) and the noise predicted by
the network (eg): Lpppm = Exq e [He — eH(xt,t)HQ] This simple, non-adversarial objective
is the source of DDPMs’ superior training stability compared to GANSs.

DDPMs are uniquely suited for complex medical image synthesis as they excel at modeling
complex, high-dimensional probability distributions, resulting in synthetic images with high
perceptual quality and fine textural details mimicking subtle blur patterns. Unlike GANs,
which can suffer from mode collapse, DDPMs utilize the Gaussian noise space to ensure
greater coverage of the target data distribution, leading to more diverse synthetic artifacts.
Similar to how ¢cGANs enabled image-to-image mapping, conditioning is applied to DDPMs
to enable the Sharp Image — Blurred Image translation required for our approach.

In Conditional DDPMs (¢cDDPMs), the conditioning input (the sharp image Xgharp) is con-
catenated or encoded and injected into the noise prediction network (ef) at every reverse
diffusion step t. The noise prediction is then conditioned on the input: €(x¢, ¢, Xgharp). This
guides the network to denoise the input noise into a blurred image that corresponds to the
given sharp image.

The UNIT-DDPM (Sasaki et al., 2021) architecture provides image translation, particu-
larly when annotation pairs may not be perfect. It employs two coupled diffusion processes,
one for each domain, with a loss function that encourages the latent representations to
be shared. The generative process is then conditioned on the input image using a denois-
ing Markov Chain Monte Carlo approach. UNIT-DDPM formalizes the use of a DDPM
backbone to learn the mapping between image characteristics (e.g., texture, contrast, blur
level) between two related domains using the shared-latent space assumption of the earlier
UNIT framework (Liu et al., 2017). It assumes that images from both the source domain
(Sharp) and the target domain (Blurred) can be mapped to a common, domain-invariant
latent representation. This assumption is crucial to translate a sharp histopathology image
into its intricate, realistic and stochastic blurred counterparts that defy simple statistical
modeling.

3. Methodology

3.1. Data

The training of the generative synthesis framework and the subsequent evaluation of the
downstream segmentation network relies on three distinct image datasets: a clean source
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Figure 1: Examples from real world dataset

domain, target domain and a manually annotated set for testing. The source domain
Dsparp comprises the high-quality, artifact-free histological images used as the input for our
statistical and generative models providing the tissue context that must be preserved during
the blur synthesis process. The target domain Dpjy;req is used to teach the generative models
the characteristics and distribution of real-world blur. This set consists histopathology
which are > 90% blurred. The test set Dy is reserved exclusively for the evaluation of
the downstream segmentation network. Crucially, these images feature mixed regions of
sharp and blurred tissue, reflecting real-world clinical data. Pixel-level ground truth masks
are manually annotated and used to compute quantitative metrics for the segmentation
networks trained on the synthetically augmented data.

3.2. Statistical Methods

To establish a quantitative baseline for comparison against our deep generative framework,
we implemented three standard statistical methods for image degradation. For all statistical
methods, the blur was applied globally to the clean images from the source domain (Dsharp)
to create blurred images. Gausian simulates isotropic defocusing by convolving the image
with a 2D Gaussian kernel, approximating a simple point spread function (PSF). The sharp
tile Igharp is convolved with the kernel G(o). Radial blur models focus degradation or
motion that is non-uniform and often centered around a single point.The blur is applied
along concentric circles or radial lines originating from a pre-defined center point (x., y.).
This simulates a gradient of focus across the image field. Lens blur is used to model the
physical shape of the lens aperture, providing a PSF with sharper edges than the Gaussian
distribution. The sharp tile is convolved with a disk-shaped kernel (a Pillbox function),
which simulates the out-of-focus effect of an idealized circular aperture. These statistical
methods, whether Gaussian, Radial, or Lens-based, are fundamentally constrained by their
assumption of stationarity and uniformity. Real blur includes noise from ambient light,
sensor imperfections, and vibrations, which are inherently stochastic (random) and cannot
be accurately replicated by simple deterministic convolution.
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3.3. GAN

To overcome the limitations of statistical methods, we utilized a robust Conditional Gen-
erative Adversarial Network (cGAN) architecture for image-to-image translation, map-
ping sharp histological tiles (Xgharp € Dsharp) to their synthetically blurred counterparts
(G(Xsharp))-The cGAN framework is based on the Pix2Pix architecture, adapted for histopathol-
ogy.We employed a U-Net based architecture for G. This ensures that the generated blurred
image retains the semantic context of the input sharp image while the decoder layers model
the complex blur transformation. Discriminator is used to classify patches as real or fake.
To mitigate the well-known issues of GAN instability and mode collapse, which are particu-
larly severe when generating realistic medical images, we incorporated several stabilization
techniques.

We used WGAN with gradient penalty, this replaces the unstable standard GAN loss
based on Jensen-Shannon Divergence, we adopted the Wasserstein-1 distance objective.This
involved re-formulating the discriminator as a Critic and integrating a Gradient Penalty
(Agp) term into the Critic’s loss function. This penalty enforces the 1-Lipschitz continuity
constraint without requiring restrictive weight clipping. WGAN-GP provides a more stable
loss metric, leading to more consistent convergence, reduced mode collapse, and higher
fidelity in the generated blur textures. We set the penalty coefficient A\gp = 10.

To explicitly constrain the Generator to only perform the required blur transformation
and preserve the structural content, we introduced an identity mapping loss. When an image
Xplurred from the target domain (Dplyrred) is passed through the Generator, the output is
encouraged to remain close to the input. The ¢; loss is computed:

['Identity<G) = Exl)lurredNDBlurred [HXblurred - G(Xblurred) H 1]

This penalty discourages the Generator from making unnecessary color or structural
changes, focusing its learning capacity entirely on the difference between the sharp and
blurred domains. The training was initiated with a fixed learning rate a«=0.0002 for the
first 100 epochs. This was followed by a linear decay of a to zero over the remaining 100
epochs.The initial high rate facilitates rapid convergence, while the decay helps the model
settle into a fine-tuned, stable solution space, optimizing for the subtle textural details of
the blur.

We used pretraining to give the Generator a robust initial mapping before subjecting
it to the adversarial pressure of the Discriminator.The Generator was initially trained in-
dependently using only the ¢; reconstruction loss (Ly1). This required the creation of a
temporary, simple statistical paired dataset in which random pixels are dropped, to define
the initial mapping. This pretraining ensures the Generator can accurately map the input
to the output space structurally, making the subsequent adversarial training phase more
stable and accelerating convergence towards the realistic blur distribution.

3.4. DDPM

We implemented the UNIT-DDPM architecture to perform unpaired image-to-image trans-
lation from the sharp domain A(Dsharp) to the blurred domain B (Dgiyrrea). UNIT-DDPM
operates on the fundamental assumption that images from both the source (sharp) and tar-
get (blurred) domains share a common, domain-invariant latent representation. This allows
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Figure 2: Original Images and their synthetically generated blurry counterparts

the model to learn the intrinsic characteristics of the tissue independent of the artifact type.
This framework has two translation models and two cDDPM models. Translation models
translate images from A to B and B to A. cDDPM generators (64, 0p) are trained to predict
the noise added in the forward diffusion step for their respective domains, conditioned on
the latent code z derived from the opposite domain. Unlike GANs which generate an im-
age in one forward pass, generating a synthetically blurred image requires the full iterative
reverse diffusion process. During sampling, the generative process is conditioned on the
input source domain images that are perturbed by the forward process from t = T until
an arbitrary timtestep ¢, [1, T]. This is then re-generated by the reverse process from this
timestep, which we denote as the release time. The case of transferring from domain A x%
to domain B :%% is described as:

Xy = pgn (X7, %1 1) + g (x4, 1)e”

A \ Ak + /T — Gpae? (t>t)
X1 =

HoA ()2247 XtB7 t) + EGA (Xfa t)eB (t < tT’)

B A B~ N(0,1)

4. Results

We used the GAN to generate blurry images from existing sharp images (without blur).
Next we created random polygon masks using opencv functions. Using these polygons we
replace some parts of the sharp images with the blurry image. Now using the mask as the
ground truth for blurry regions in the image we train a segmentation model and then test
it on annotated real world data.

Qualitative analysis as well as the model performance metrics showed that the synthetic
data generated by out approach successfully covered multiple modes of the real data dis-
tribution, leading to superior performance as compared to the synthetic data generated via
statistical methods.
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Generation type Blur Dice
Statistical methods 23.45
GAN 38.33

Table 1: Performance Comparison of Synthetic data generation techniques

5. Conclusion

This study addressed the critical data scarcity challenge in digital histopathology quality
control by introducing a novel framework for synthesizing realistic, spatially-variant blur
artifacts. Our approach successfully demonstrated the necessity of transitioning from tra-
ditional, deterministic degradation methods to deep generative modeling to achieve robust
downstream task performance.
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