
Published in Transactions on Machine Learning Research (05/2023)

Agent-State Construction with Auxiliary Inputs

Ruo Yu Tao1, Adam White 1, 2, Marlos C. Machado1, 2
1 Department of Computing Science, University of Alberta
2 Canada CIFAR AI Chair, Alberta Machine Intelligence Institute (Amii)
{rtao3,amw8,machado}@ualberta.ca

Reviewed on OpenReview: https://openreview.net/forum?id=RLYkyucU6k

Abstract

In many, if not every realistic sequential decision-making task, the decision-making agent is not
able to model the full complexity of the world. The environment is often much larger and more
complex than the agent, a setting also known as partial observability. In such settings, the
agent must leverage more than just the current sensory inputs; it must construct an agent state
that summarizes previous interactions with the world. Currently, a popular approach for tack-
ling this problem is to learn the agent-state function via a recurrent network from the agent’s
sensory stream as input. Many impressive reinforcement learning applications have instead
relied on environment-specific functions to aid the agent’s inputs for history summarization.
These augmentations are done in multiple ways, from simple approaches like concatenating
observations to more complex ones such as uncertainty estimates. Although ubiquitous in the
field, these additional inputs, which we term auxiliary inputs, are rarely emphasized, and it is
not clear what their role or impact is. In this work we explore this idea further, and relate these
auxiliary inputs to prior classic approaches to state construction. We present a series of ex-
amples illustrating the different ways of using auxiliary inputs for reinforcement learning. We
show that these auxiliary inputs can be used to discriminate between observations that would
otherwise be aliased, leading to more expressive features that smoothly interpolate between dif-
ferent states. Finally, we show that this approach is complementary to state-of-the-art meth-
ods such as recurrent neural networks and truncated back-propagation through time, and acts
as a heuristic that facilitates longer temporal credit assignment, leading to better performance.

1 Introduction

In reinforcement learning, an agent must make decisions based only on the information it observes from the
environment. The agent interacts with its environment in order to maximize a special numerical signal called
the reward. This problem formulation is quite general and has been used in several high-profile success stories,
such as agents capable of achieving impressive performance controlling fusion reactors (Degrave et al., 2022),
beating Olympians in curling (Won et al., 2020), and when navigating balloons in the stratosphere (Bellemare
et al., 2020). An important feature of these problems is that the environment the agent is in—the real world—
is much bigger than the agent itself. In this setting, the current observation from the data stream the agent
experiences does not contain all the relevant information for the agent to act on, making the environment
partially observable.

In such settings, the agent must leverage more than just its current observations, it must construct an internal
state that summarizes its previous interactions with the world, sometimes known as history summarization.
We refer to this internal state as the agent state. One way to learn agent-state functions is to leverage
recurrent neural network architectures (Hausknecht & Stone, 2015; Vinyals et al., 2019; Degrave et al., 2022)
to summarize an agent’s history. These recurrent functions calculate latent states (also called hidden states),
and learn the function used to summarize history. Another approach that has been used in real-life use cases
of reinforcement learning to help resolve partial observability is to model predictive information about the

1

https://openreview.net/forum?id=RLYkyucU6k

Published in Transactions on Machine Learning Research (05/2023)

agent’s uncertainty over its effectiveness (Won et al., 2020) or observations (Bellemare et al., 2020); allowing
the agent to reason about what information the agent does not know. Explicitly learning and leveraging pre-
dictions (Rafols et al., 2005b) is another approach that has been considered for history summarization. Two
popular approaches to this are predictive state representations (Littman et al., 2001) and general value func-
tions (Sutton et al., 2011), which represent agent state with future predictions. All these different approaches
for constructing agent-state functions have different limitations and assumptions, but the same purpose:
embedding necessary information from observations by expanding the feature space into a richer class of
features with auxiliary inputs to ameliorate the issues of partial observability for better decision making.

Feature expansion has been considered in many different contexts, and has been widely used and investigated
for neural networks over the years. Early incarnations of neural networks used random projections in the first
layer of the neural network as “associator features” to map inputs to random binary features and expand
the input space (Block, 1962). Expanding the input space to specifically tackle time-series data has been
considered in the prediction context, where a convolution over the history of inputs (Mozer, 1996) has been
proposed as an approach to incorporating simple, non-adaptive forms of memory for neural networks. In
reinforcement learning, feature space engineering and expansion for agent-state construction was widely used
before the advent of deep reinforcement learning. Techniques range from tile coding (Sutton & Barto, 2018)
to radial and fourier basis functions (Sutton & Barto, 2018; Konidaris et al., 2011), having even been applied
to Atari games (Liang et al., 2016). The largest drawback of these feature expansion techniques is the fact
that they are static—they do not adapt to the problem setting at hand.

In this work we consider how we might resolve different forms of partial observability by augmenting the inputs
to a function approximator (i.e. a deep neural network) with feature expansion techniques for reinforcement
learning. We revisit earlier formulations of explicit history summarization (Mozer, 1996), and connect these
ideas with modern approaches to agent-state functions. We look to combine the simplicity and performance
of simple feature expansion techniques with the natural adaptivity and flexibility of neural network function
approximation.

In this paper, we explore the idea that many approaches to tackle partially observable problems can be viewed
as a form of auxiliary input. In the context of agent-state construction for reinforcement learning in partially
observable environments, we define auxiliary inputs as additional inputs, beyond environment observations,
that incorporate or model information regarding the past, present and/or future of a reinforcement learning
agent. Auxiliary inputs have been ubiquitous across recent, real-world applications of reinforcement learning.
Recent work in stratospheric superpressure balloon navigation with deep reinforcement learning has explored
using not only the average magnitude and direction of the observed (or predicted) wind columns over time as
input features, but also the variance of this wind column as an auxiliary input for successfully navigating
balloons (Bellemare et al., 2020). In robotic curling, distance errors from previous throws were used as features
to help mitigate the partial observability induced by environment conditions such as changing ice sheets over
time (Won et al., 2020). In biomedical applications, both a time-decayed trace of joint activity (Pilarski
et al., 2012) and future predictions of prosthesis signals (Pilarski et al., 2013) were used as additional input
features for controlling or aiding in the control of robotic prostheses. All these approaches were successful
due to carefully thought out auxiliary inputs that were fitting for their respective domains.

We present the following contributions in this work: (1) we survey auxiliary input techniques used for
resolving partial observability in successful real-world reinforcement learning applications. (2) We unify
these approaches under a single formalization for auxiliary inputs. (3) We demonstrate empirically, through
illustrative examples, how a practitioner might leverage this formalism to create auxiliary inputs, and the
efficacy of these approaches in de-aliasing states for better value function learning and policy representation.

We first introduce a formalism for the auxiliary inputs used throughout reinforcement learning. This formalism
gives practictioners a mechanism to parse the aspects of a partially observable environment an agent may need
to consider for both learning a value function and a successful policy, and as well as the type of auxiliary input
to use in a given partially observable domain. We use a simple partially observable environment to elucidate
how few simple, fast, and general instantiations of auxiliary inputs (a decaying trace of observations, particle
filters, and likelihoods as predictions) summarizes history, as well as general trajectory information needed for
decision making. Through demonstrations on this environment, we show that auxiliary inputs allow an agent

2

Published in Transactions on Machine Learning Research (05/2023)

to discriminate between observations that would otherwise be aliased, and also allow for a smooth interpolation
in the value function between different states. Next, we demonstrate the efficacy of uncertainty-based auxiliary
inputs on two classic, partially observable environments. Finally, we show that particular auxiliary inputs
(specifically exponential decaying traces) can integrate well with recurrent neural networks trained with
truncated backpropagation through time (T-BPTT), potentially allowing for a significant performance increase
as compared to using only one or the other. Code and implementation for this work is publically available1.

To summarize, auxiliary inputs can be simple, performant, and should likely be the first approach most
reinforcement learning practitioners take to tackle partial observability. In many cases, simple auxiliary inputs
may be good enough if not better than more complex approaches such as recurrent function approximation,
and they can also be easily combined with these approaches for better performance.

2 Background and Notation

We model the agent’s interaction with the world as a sequential decision-making problem. On each time
step t, the agent takes an action at ∈ A and receives an observation of the environment ot ∈ O. Partially
in response to the agent’s taken action, the environment transitions into a new state st+1 ∈ S and receives
a reward rt+1 ∈ R, both according to the dynamics function p : R × S × A × S → [0, 1]. The agent does
not observe the state, only the current observation, which we specify as a vector in this work2 ot ∈ O ⊂ Rn.
This observation vector is constructed from the underlying state St according to an unobservable function
o : S → O, where o(St)

.= Ot. Periodically the environment enters a terminal state SL = ⊥ resetting the
environment to a start state S0. The agent’s interaction is thus broken into a sequence of episodes.

The agent’s primary goal is to learn a way of behaving that maximizes future reward. In our setting, the
policy is defined over the history of interactions because the agent cannot observe the underlying state.
Let ht

.= {O0, A0, O1, ..., Ot} ∈ T where T denotes the space of all possible trajectories of observations
and actions of all possible lengths. The return from timestep t is the discounted sum of rewards Gt

.=
Rt+1 +γRt+2 +...+γL−1RL, where γ ∈ [0, 1) is the discount and L is the (stochastic) time of termination. The
goal is to find a policy π : T ×A → [0, 1] that maximizes the expected return, in expectation across start states
Eπ[G0]. In this paper, we focus on methods that estimate a value function, qπ(s, a) .= Eπ [Gt | St = s, At = a],
in order to incrementally improve the agent’s current policy π.

In our work we primarily focus on the Sarsa (Rummery & Niranjan, 1994) algorithm to learn estimates qπ

from the agent’s interaction with the environment for control. Our policy π is defined by two cases: either we
choose a greedy action with respect to qπ or we choose a random action with probability ϵ to ensure sufficient
exploration. After sampling and taking an action At ∼ π(· | St), we receive the next reward and next state
Rt+1, St+1 ∼ p(·, · | St, At), and pick the next action At+1 ∼ π(· | St+1). In the more general, function
approximation case, the estimate q̂π is parameterized by θt ∈ Rk and is updated with the semi-gradient
Sarsa update θt+1

.= θt + α [Rt+1 + γq̂π(St+1, At+1, θt) − q̂π(St, At, θt)] ∇q̂π(St, At, θt), where α > 0 is the
step size, and ∇ is the gradient of the function q̂ with respect to the parameters θt.

In many problems, learning policies over full histories is not tractable and the agent must make use of an
agent-state function to summarize the history. The agent-state function maps a given ht to an agent state
vector xt ∈ X . In most approaches to agent-state construction, including recurrent neural networks and
general value function networks (Schlegel et al., 2021), the agent-state function has a recursive form:

xt+1
.= uϕ(xt, at, ot+1) ∈ Rk, (1)

where ϕ ∈ Rb are the parameters of the parametric agent-state function uϕ. We can easily extend Sarsa to
approximate the value function from agent state: q̂(xt, at, θt)

.= θT xt ≈ qπ(st, at). Thus, the estimated value
is a linear function of the agent-state, which itself is a recurrent, potentially non-linear, function of xt, at, and
ot+1. Semi-gradient Sarsa simply adapts θ and ϕ from the agent’s interaction with the environment in order
to improve reward maximization, as before. The aim of this work is to investigate how including auxiliary
inputs in agent-state construction (as input to u) can improve value-based reinforcement learning agents.

1https://github.com/taodav/aux-inputs
2We denote random variables with capital letters, and vectors with bolded symbols.

3

https://github.com/taodav/aux-inputs

Published in Transactions on Machine Learning Research (05/2023)

3 Auxiliary Inputs

In our work, we investigate the use of auxiliary inputs as an input into the agent-state function, and its
implications in the different types of partially observability. As opposed to only summarizing the past history
of experiences, auxiliary inputs also allows agents to summarize the present and/or future for decision-
making. To do this, auxiliary inputs must summarize entire trajectories, which also includes potential future
interactions, rather than only the agent’s history. We denote these trajectory of an agent at time t as
Tt

.= {O0, A0, O1, ..., Ot, At, . . . , OL} ∈ T , where L denotes the terminal time step of the trajectory. At the
time step t, an agent will have only a partially realized trajectory, Tt

.= {o0, a0, ..., ot, at, Ot+1, . . . , OL},
where observations including and before t are actualized variables (denoted with lower case letters), whereas
all future observations from t + 1 to L are still random variables.

Let M : T → RN denote an auxiliary input as a function of the trajectory of the agent, which maps the
trajectory Tt to a fixed-length vector. As the input of this function is variable with respect to trajectory
length, and the output is of fixed length, the auxiliary input function acts as a summarizing function which
maps entire trajectories into some fixed-length vector that summarizes particular aspects of the trajectory.
For an auxiliary input at time t, we denote this as M(Tt)

.= Mt. With these additional auxiliary inputs, we
re-define our agent-state function to include these auxiliary inputs:

xt+1
.= uϕ(xt, at, ot+1, Mt+1) ∈ Rk. (2)

We visualize this auxiliary input function, as well as the overall agent-environment interface in Appendix A.
Since trajectories T are likely to include future, unobserved random variables, it is sometimes helpful to
define auxiliary inputs as functions that explicitly separate observed events from the past and unobserved
random variables from the future:

Mt
.= M({o0, a0, ..., ot, at, Ot+1, . . . , OL}) (3)
= Mh({o0, a0, ..., ot, at}) + EMf

[{Ot+1, . . . , OL}] . (4)

Where Mh and Mf are history summarizing and future summarizing functions respectively. EMf
denotes the

expectation of future trajectories, summarized by the function Mf . We explicitly consider expectations here
due to the unobserved random variables (future observations, actions, and terminal time step) past the current
time step, in order to consider concrete auxiliary inputs that do not depend on unobserved, future random
variables. Equation (4) makes the distinction between the actualized, observed time steps, and the random
variables of the trajectory clear: from 0 to t our auxiliary input function maps over observed, actualized
variables, and from t + 1 to L we take the expectation with respect to the sampling distribution over all
potential future observations and actions. We also present a further specified formulation of auxiliary inputs
as a convolution operation in Appendix B for correctness and further clarity. Finally, we note that while the
function uϕ is described as a recurrent function in the general case, most of the control algorithms used in
this work (besides the agents explicitly using an LSTM with auxiliary inputs in Section 5) do not leverage
recurrency. This is because in most cases in practice, this is not done since auxiliary inputs are enough in terms
of de-aliasing state and adding enough state information. Furthermore, in this study, we do this to isolate
and understand the affects of these auxiliary inputs on state de-aliasing for value function learning by itself.

Many auxiliary inputs can be defined by the function M . To clarify how this formulation might be used, we
show how frame stacking (Mnih et al., 2015), widely used in algorithms that succeed in the Arcade Learning
Environment (Bellemare et al., 2013; Machado et al., 2018), fits into this formalism.

Frame Stacking. As an auxiliary input, frame stacking only considers the past four observations the agent
has seen. This means that the auxiliary input is only defined by the function Mt = Mh, where Mh is the
function that concatenates the past 3 observations and the current observation together:

Mh({o0, a0, ..., ot, at}) .= ot−3 ⊗ ot−2 ⊗ ot−1 ⊗ ot

where the ⊗ operation represents the concatenation operation. This auxiliary input function produces a
fixed-length vector Mt ∈ R4n, where n is the size of the observations. This is exactly the frame stacking
technique ubiquitous throughout Atari-2600 experiments.

4

Published in Transactions on Machine Learning Research (05/2023)

RightL1 Left L2

 r(L1) visible r(L2) visible

RightLeft L0

RightLeft

Collect

Collect Collect

(a)

ot
.=



0. Is the agent in location 0?
1. Is the agent in location 1?
2. Is the agent in location 2?
3. Is the reward in location 1 observable and missing?
4. Is the reward in location 1 observable and present?
5. Is the reward in location 1 unobservable?
6. Is the reward in location 2 observable and missing?
7. Is the reward in location 2 observable and present?
8. Is the reward in location 2 unobservable?


(b)

Figure 1: (a): The Lobster environment. (b) Binary questions representing the binary observation vector
emitted by the environment at time t, ot.

Resolution and Depth. Viewing frame stacking as a form of auxiliary inputs elucidates an interesting
property of our formalization: auxiliary inputs defined by Equation 3 represent differing depths and resolutions
of the information you retain with regards to your trajectory. We define depth to be at what temporal length
these auxiliary inputs retain information with regards to the agent’s trajectory, and resolution to be the
extent that information regarding individual observation-action pairs are preserved by the auxiliary inputs.
Frame stacking is a form of auxiliary inputs that is low in depth (as we only see 3 time steps before the
current time step), but high in resolution (since we retain all the relevant information of these 3 observations).

Incremental Functions. One important factor we focus on is the space and time complexity of calculating
these auxiliary inputs. While we define these auxiliary inputs to be a function of history, we focus on
algorithms that are incremental update functions for producing auxiliary inputs: Mt

.= h(Mt−1, Ot, At).
With this framework in place, we describe three auxiliary inputs in this section. Before we do so, we describe
the minimal partially observable environment we use to illustrate the benefits of our auxiliary inputs on: the
Lobster environment.

3.1 The Lobster Environment

We now introduce the Lobster environment: a simple partially observable environment we leverage to show the
state de-aliasing properties of auxiliary inputs. The environment is shown in Figure 1a. In this environment,
a fishing boat has to travel between 3 locations—represented as nodes in the graph—to collect lobsters
from lobster pots. Only locations L1 and L2 have lobster pots, which refill randomly over time after being
collected. The environment starts with both pots filled. The observations emitted by the environment
include both the position of the agent, and whether or not a pot is filled if the agent is in the corresponding
location. This observation vector is shown in Figure 1b. An agent in this environment has 3 actions:
A .= {left, right, collect}. The agent receives a reward of +1 if it takes the collect action to collect the
lobster pots at a location with full lobster pots. We fully specify the details of this environment in Appendix C.

3.2 Instantiations of Auxiliary Inputs

With this environment in place, we describe three techniques popular throughout reinforcement learning
literature for auxiliary inputs with the formalism introduced in Section 3 that incorporate or model information
from the past, present and/or the future. We consider these three techniques throughout our work. Through the
demonstration of these auxiliary inputs in a small, partially observable domain called the Lobster environment,
in this section we look to investigate and understand how these auxiliary inputs help with decision making in a
simple and controlled setting. We look to compare the performance of each form of auxiliary input to two agents:
one using only the observations described in Figure 1b, another using the fully observable environment state.

5

Published in Transactions on Machine Learning Research (05/2023)

3.2.1 Exponential Decaying Traces

To incorporate information from the past of the agent, we consider exponential decaying traces of history as
auxiliary inputs to agent-state. Decaying traces simply keep an exponentially decaying weighted sum of our
observations and actions:

Mt
.=

t∑
τ=0

λt−τ g(oτ , aτ) (5)

with λ < 1, and g is a preprocessing function for the observation, action pair. Written in an incremental
form, we have Mt

.= λMt−1 + g(oτ , aτ).

This form of auxiliary input acts as a model of the past by acting as an exponential timer for events in the
observation. When used as an auxiliary input to the agent-state function, an exponential decaying trace of
observations allows the agent to take into consideration the time in which events occur in the observation
vector o or action a. This particular form of history summarization is high in depth, but low in resolution,
since g(oτ , aτ) is aggregated together across time steps.

3.2.2 Approximate Belief State with Particle Filters

We now consider a classic approach to auxiliary inputs for resolving partial observability: constructing approx-
imate belief states. In this section, we investigate the use of uncertainty as auxiliary inputs—approximating
a distribution over all states at every time step. In order to get a measure of uncertainty of the environment
state, we leverage a few assumptions with regards to available transition dynamics and known state struc-
ture for the particle filtering approach for approximating a distribution over possible states, or a belief state
(Kaelbling et al., 1998).

To construct these belief states, we consider a Monte-Carlo-based approach with particle filtering (Kitagawa,
1996) to approximate a distribution over states (Thrun, 1999; Pineau & Gordon, 2007) as auxiliary inputs for
agent state. With this approach, we maintain an approximate distribution over possible states by incorporating
statistics of the current observation and action into this distribution. We do this by approximating this
distribution with particles and corresponding weights, and updating these particles with the emission
probabilities and dynamics function through a particle filtering update. We begin with k particles, which we
denote by a vector of particle states ŝ0 ∈ {1, . . . , |S|}k, initialized according to the start state distribution of
the environment, and instantiate a vector of weights w0 ∈ Rk. At every step t + 1, and for every particle
∀j ∈ {1, . . . , k}, with the dynamics function p, we update the particles and weights by first propagating all
particles forward with the action taken:

ŝt+1[j] ∼ p(· | ŝt[j], At), (6)

and updating each particle’s weight according to the probability of emitting the observation (emission
probability) received:

wt+1[j] .= P{Ot = ot | St = ŝt[j]} · wt[j]. (7)
This produces the unnormalized weights of all particles. We get our new set of weights by simply normalizing:
wt+1

.= wt+1∑k

i=1
wt+1

. These weights are essentially the mechanism in which we summarize our past trajectory.

With this mechanism to update particles and weights, we form our auxiliary inputs based on these weights.
These auxiliary inputs calculate our approximate distribution of states at time step t + 1, Mt+1, by summing
over weights for each particle for a given state:

Mt+1
.=

k∑
j=0

wt+1[j] ⊙ 1[ŝt[j]]. (8)

Where the bolded 1[s] corresponds to the one-hot encoding of length |S|, with a 1 at state s. In this case,
our auxiliary inputs Mt+1 are our agent-state function, and we have xt+1

.= Mt+1.

At every step, the auxiliary input function M is defined by Equation 8. Our current action and observation
are incorporated into our auxiliary input by both the propagation of particles forward given an action, and

6

Published in Transactions on Machine Learning Research (05/2023)

0.0 1.0 2.0 2.5
Environment steps 1e5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Re

tu
rn

s o
ve

r 2
00

 st
ep

s
(a

vg
. 3

0
ru

ns
)

Observations
Trace

PF
LikelihoodGround-truth

(a) (b) (c)

Figure 2: The impact of auxiliary inputs for agent states in the Lobster environment. Fig. 2 (a): Online
returns in the Lobster environment for four different agents, in comparison to the optimal policy given
the ground-truth state. Dotted line represents the optimal policy given states. See text for details. (b)
Normalized action-values for an agent with decaying trace auxiliary inputs in location L0 for the left action.
Each [r(L1), r(L2)] combination represents a possible input for the exponential decaying trace agent state.
The values for the ground-truth state (crosses) and for using only the observation (diamond) are overlaid for
comparison. See Appendix C for similar plots for particle filter and general value function auxiliary inputs.
Fig. (c) Action-values for both left (yellow) and right (blue) actions in location L0.

the re-weighting of our particles through the emission probability of the current observation given the par-
ticle. The actions at are incorporated into the particle updates for ŝt[j] and observations ot are incorporated
into the weight updates for wt+1. Put together, Mt resolves partial observability through the counterfactual
updates of the particles and their corresponding weights at the present time step with the current observation
and action. This approach has low resolution because individual observations are incorporated into the ap-
proximate belief state through its emission probabilities. Its depth depends on the number of particles used.

3.2.3 Likelihoods for Incorporating Future Predictions and Past Information

We now consider how to incorporate future predictions together with past information for auxiliary inputs. In
the reinforcement learning setting, one popular choice of predictions are general value functions (Sutton et al.,
2011). These predictions take on the form of a discounted sum over cumulants (which can be a function over
observations and actions), with some cumulant termination function. These can both be represented by our
definition of auxiliary input functions M .

We describe auxiliary inputs that incorporate both future predictions and past information for the Lobster
environment. Let i ∈ {1, 2} be the indices for both our two auxiliary inputs and our rewarding locations.
These auxiliary inputs predict whether or not a reward at a given location Li will be present if the agent
takes the expected number of steps to that location. These auxiliary inputs essentially amount to answering
the question: “Given that I saw r(Li) missing (r(Li) = 0) some steps ago, if I take the mean number of steps
to reach Li, what is the likelihood that r(Li) will be regenerated (r(Li) = 1)?” We calculate these likelihoods
by counting the number of time steps since seeing each reward, and the expected number of time steps to
reach Li. We describe the full implementation of this auxiliary input in Appendix C.3.5.

Because this approach summarizes its history and future predictions with likelihood functions, it is low in
resolution and high in depth. It is low in resolution because these likelihoods summarize its history into
a probability distribution, and would be hard to recover individual observations. It is high in depth as ex-
ponential decaying traces are also high in depth: the likelihood probability distribution is also an exponential
function of time steps, and so will have depth depending on the Poisson process rate.

7

Published in Transactions on Machine Learning Research (05/2023)

3.3 Results on the Lobster Environment

We summarize the performance of the agents that leverage auxiliary inputs in Figure 2a. The policy learned
with any of the three auxiliary inputs converges to a higher return than the agent using only observations.
We can see this in the learned policies of our auxiliary-input agents versus the observations-only agent: when
using only observations, the agent dithers between location L0 and location L1 or L2, but not both. On the
other hand, the agent that leverages additional auxiliary inputs collects the reward from one of the rewarding
locations, and then traverses to the other rewarding location depending on the value of the inputs.

Comparing the performance of all three auxiliary inputs in Figure 2a, we see the similarities in the converged
average returns across the three algorithms. From all the visualizations of the action-value functions seen
for the three auxiliary input approaches in Figures 2c, 7a, and 7b, we can see similarities in the learnt value
functions between the three auxiliary inputs that incorporate or model different kinds of information. Learn-
ing a value function over these features result in similar policies. This implies that these auxiliary inputs
all help resolve partial observability in one way or another. All hyperparameters swept and algorithmic
details are fully described in Appendix C.2.

Value Function Geometry of Auxiliary Inputs To get a better idea of how auxiliary inputs impact our
policy, we consider the value function learnt over these auxiliary inputs. Specifically, since our value function
is approximated with linear function approximation, we visualize and compare how the auxiliary inputs of
exponential decaying traces affect the value function geometry of our learnt policy in Figs. 2b, and 2c. In
these plots, we compare action-values when the agent is at location L0 between the three algorithms: the
agent using observations only (the single diamond-shaped point), the agent using ground-truth environment
states (the crosses), and finally the agent with exponential decaying traces as auxiliary inputs (the small
circular points). We fully describe the details behind this 3D plot in Appendix C.4. We also show similar
value function plots for both the particle filtering and likelihood auxiliary inputs in Figure 7 in Appendix C.3.

We first consider Fig. 2b; in this plot we calculate and visualize all possible input features mentioned above for
the three algorithms over the normalized action-values of the left action, given the agent is at location L0.
We can see that augmenting the agent state with auxiliary inputs expands the state space of the agent over
two dimensions of time: one dimension for each reward observation that we have our exponential decaying
trace over. The four vertices of this expanded state space represent and coincide with the four ground-truth
states when the agent is at location L0.

Learning a value function with these exponential decaying traces allows the agent to smoothly interpolate
between the values of the actual ground-truth states. The agent does this through resolving (checking out a
location) or accumulating (waiting in another location) the decaying trace observations. Learning a value
function with such agent states essentially allows the agent to disentangle and discriminate states that would
otherwise be mapped to the same observation. This expansion in the state space allows for more expressivity
in the value function.

This additional expressivity is also reflected in the policy. This is depicted in Figure 2c; in addition to the
action-value function for the left action, we also visualize the action-value function for the right action of
the agent with exponential decaying traces. By overlaying the action-values of both actions we can see how
the decaying trace agent, as well as the agent using the ground-truth states, learn action-values that in some
corners are greater for the right action and in other corners are greater for the left action, actually leading to
a sensible greedy policy. Alternatively, the agent that uses only the environment observations has no choice but
to collapse the action-values of both actions into the same value. Finally, we present results in Appendix C.5 on
these same auxiliary inputs, but with a base control algorithm that can represent stochastic policies - Proximal
Policy Optimization (Schulman et al., 2017). We show that while stochastic policies help in partially observable
settings, auxiliary inputs resolve partial observability that is unresolvable by stochastic policies alone.

In this section, we have presented results and visualizations to help elucidate why these techniques help with
decision making in partial observability. We have shown that auxiliary inputs expand the input space to
de-alias states, and allow for more fine-grained policy representations and ultimately better performance.
With these definitions in place, in this manuscript we further investigate two of these approaches for auxiliary
inputs: present (particle filters) and past (exponential decaying traces) modelling.

8

Published in Transactions on Machine Learning Research (05/2023)

4 Particle Filtering for Auxiliary Inputs

We first consider the case with stronger assumptions: particle filtering for auxiliary inputs. We know that
this form of auxiliary input adds the maximal amount of relevant information (Kaelbling et al., 1998) to our
agent state in the partially observable setting. With this approach, we look to answer the following in this
section: how much can auxiliary inputs help? How does it compare to using recurrent neural networks for
function approximation?

In this section, we look at auxiliary inputs which explicitly represent uncertainty. Uncertainty as auxiliary
inputs has been used in many real-world reinforcement learning use cases, including wind-column uncertainty
for stratospheric superpressure balloon navigation (Bellemare et al., 2020), and positional entropy as features
for robotic navigation with reinforcement learning (Roy & Thrun, 1999). In this section, we consider particle-
filtering-based uncertainty features for auxiliary inputs as described in Section 3.2.2. We evaluate this approach
on classic partially observable environments: A modified version of the Compass World (Rafols et al., 2005a)
environment and the RockSample (Smith & Simmons, 2004) environment. We compare this approach to agents
using LSTMs for agent-state construction (Bakker, 2001). We begin by describing these two environments.

4.1 Compass World and RockSample

Modified Compass World is a 9 × 9 partially observable environment where the agent can only see
the color of the square directly in front of it. The goal of the agent is to face the green square.
The agent is initialized in a random position that is not the goal position. The agent has 3 actions:
{move forward, turn left, turn right}. Due to this form of partial observability, the goal location, and
the random start position and pose, the agent has to resolve both its x and y coordinates in order to reach
the goal and receive a reward of +1. This environment is modified from the original Compass World environ-
ment in that the goal location is in the middle of the west blue wall, as opposed to the top of the west blue
wall. This is to add difficulty to this environment; in the original environment, the agent would only need to
traverse up to the north facing orange wall (resolve its y-position) and head west, until it reached the goal.
In this modified version, the agent needs to resolve both coordinates for it to reach the goal. A visualization
of this environment is shown in Figure 10a in Appendix D.

RockSample(7, 8) is another partially observable environment where the goal of the agent is to collect as many
good rocks as possible before exiting to the eastern border of the gridworld. In this environment, we have a
7 × 7 gridworld with 8 rocks randomly scattered throughout the environment. At the start of an episode, each
rock is randomly assigned to be either good or bad. The agent is unaware of whether or not a rock is good or
bad, but has individual actions to check the goodness of each rock with an imperfect sensor that gets noisier
the farther away the agent is to each rock. Besides these check actions, the agent also has the move actions
{up, right, down, left}. Collecting a good rock gives a positive reward of +10, and exiting to the right
also gives a positive reward of +10. Collecting a bad rock gives a reward of −10. A visualization of the Rock-
Sample environment is shown in Figure 10b in Appendix D, along with further details of both environments.

4.2 Results and Discussion

We compare our particle-filter-based auxiliary inputs to other agent-state functions for Modified Compass
World and RockSample in Figures 3a and 3b respectively. The particle filtering-based agent (orange, labelled
as “Auxiliary Inputs”) is compared to three baseline agents: An agent using only observations (teal, labelled
as “Observations”), an agent which uses an LSTM to learn its agent-state function (yellow, labelled as
“LSTM”), and an agent that uses the ground-truth environment state (blue, labelled as “Ground-truth”).

In these figures, we plot the online returns during training over environment steps. All experimental results
shown report the mean (solid lines) and standard error to the mean (shaded region) over 30 runs. Standard
error to the mean is shaded but too small to be visible. Hyperparameters for each algorithm were selected
based on a sweep. In these experiments, all agents utilize similar neural network architectures as their
function approximator. Further details of the experimental setup and hyperparameters swept can be found in
Appendix D. Further details of the particle filter and the agent-state function for each environment in this

9

Published in Transactions on Machine Learning Research (05/2023)

0.0 0.5 1.0
Environment steps 1e6

0.00

0.25

0.50
Ep

iso
di

c
re

tu
rn

s
(3

0
ru

n
av

er
ag

e)

Observations

Particle Filter
Aux. Inputs

LSTM

Ground-truth

(a)

0.0 0.5 1.0 1.5
Environment steps 1e6

0

10

20

30

Ep
iso

di
c

re
tu

rn
s

(3
0

ru
n

av
er

ag
e)

Observations

Particle Filter
Aux. Inputs

LSTM

Ground-truth

(b)

Figure 3: Online discounted returns over environment steps for agents in both the Modified Compass World
(3a) and RockSample(7, 8) (3b) environments. Colors in both plots correspond to the same class of agents.

section can be found in Appendix D.2. We also perform ablation studies over the RockSample half efficiency
distance and LSTM-input action concatenation in Appendix D.3.

The agents acting on observations (and not ground-truth state) must first resolve their partial observability
in both environments. We first consider the learnt policies from both the LSTM and particle filter agent
states in Modified Compass World. The agents first move forward until they see a wall color. Seeing this wall
color resolves one of their position coordinates, and allows the agent to navigate towards the west wall. The
agent then traverses either up or down, periodically checking the color of the west wall until they can resolve
the other position coordinate, and get to the goal. This resolving of coordinates is implicitly represented
as elements of the distribution over state going to 0. In RockSample, using an approximate belief state as
auxiliary inputs is particularly useful because these auxiliary inputs allow the agent to learn a policy that
takes into account the uncertainty of the rocks in the current time step. The agent will traverse closer to a
rock before checking whether the rock is good or bad since accuracy of the check decreases with distance.

The particle filter auxiliary input approach (with the additional assumptions that approximate belief states
afford) also consistently outperforms the agent using an LSTM agent-state function. Not only do these
auxiliary inputs converge faster, but also converges to a higher average return. This implies that these auxiliary
inputs are able to represent and add privileged information into the agent state that may be hard to learn and
represent in recurrent neural network approaches, and are also beneficial for faster value function learning.

Incorporating trajectory information with particle filtering allowed the agent to leverage knowledge of the
dynamics of the environment. This results in auxiliary inputs that were highly relevant for decision making.
While the particle filtering approximate belief state assumptions may be strong assumptions to make, it is
the case in many real-world use cases that this information (or approximations thereof) are not completely
unreasonable (e.g., Bellemare et al., 2020). In these experiments, we have shown that in the ideal case,
auxiliary inputs are able to add complex, relevant information to the agent state given a model of the
environment. We now consider the case where we do not have these assumptions available and investigate
modelling the past for auxiliary inputs.

5 Scaling Up Auxiliary Inputs and Integration with RNNs

With the efficacy of auxiliary inputs demonstrated in smaller environments, in this section we now consider
how to scale up approaches to auxiliary inputs, as well as the role of auxiliary inputs in gradient-based agent-
state functions. Specifically, in this section we investigate ways in which to scale up exponential decaying
traces described in Section 3.2.1 to larger, pixel-based environments, and how these traces integrate with
recurrent neural networks as an agent-state function. We begin by describing the two variations of the
partially observable environments we test on.

10

Published in Transactions on Machine Learning Research (05/2023)

(a) Fishing 1.

0 1 2
Environment steps 1e6

10

20

30

Re
tu

rn
s (

1K
 st

ep
s)

Observations

Exp Trace

LSTM
LSTM + Exp Trace

Ground truth

(b) Fishing 1 results. (c) Fishing 2.

0.00 0.25 0.50 0.75 1.00 1.25
Environment steps 1e7

15

20

25

30

35

40

Re
tu

rn
s o

ve
r 1

K
st

ep
s

(a
vg

. 3
0

se
ed

s)

Observations

Ground-truth

Exp
Trace
LSTM

LSTM + Exp Trace

(d) Fishing 2 results.

Figure 4: (a, c) The Fishing Boat environments. At every time step the agent receives a map with the
5 × 5 area around itself updated. This map includes obstacles, currents and rewards. Currents labelled with
multiple directions represent stochastic currents. Dark blue grids represent obstacles, whereas light blue grids
represent obstacles the agent is able to see through. (b, d) Results for the first and second Fishing Boat
environments respectively, averaged over 30 runs. Standard errors are shaded for each curve.

5.1 The Fishing Environments

We first introduce the Fishing environments — two pixel-based stochastic and partially observable environ-
ments, visualized in Figures 4a and 4c. This environment is reminiscent of a scaled-up version of the Lobster
environment, in that it was designed to test an agent’s ability to reason about partial observability and time,
except in a scaled-up setting. In both of these foraging environments, the goal of the agent (a fishing boat) is to
continually navigate around the stochastic currents and obstacles to collect fish from fishing locations (denoted
by the green circles). Currents push the agent one step in the direction it is facing. After collecting the fish from
a net, the net is re-cast and fills up over a random amount of time. Partial observability in the domain comes
from a few sources: the first source of partial observability is the environment map. At every step, the position
of the agent is given and a map of the environment is accumulated into a larger map, much like in robot naviga-
tion and mapping (e.g., Elfes, 1987; Thrun, 1998). In a given step, the map is only updated with a potentially
occluded 5×5 area around the agent’s current position. This 5×5 area contains information on the direction of
the currents, obstacles and rewards at the current time step. As the agent traverses the environment, current
and reward information on the accumulated map unobserved by the agent begins to “stale” since currents and
rewards change stochastically with time. Further details of this environment are elucidated in Appendix E.1.

Due to the stochasticity of the currents and rewards, the degree of partial observability of each environment
is dictated by the number of stochastic elements throughout the map, and the rate at which these random
variables change. In Fishing 1 (Figure 4a), we have an environment with low levels of partial observability
and stochasticity. There is a sparse number of currents throughout the map, with most currents acting as a
gateway to the rewarding areas. Rewards and currents in this environment also have a relatively slow rate
of change. Fishing 2 (Figure 4c) is an environment that is much more partially observable, with several
fast-changing currents throughout the environment. Specifics of the stochasticity in each environment are
detailed in Appendix E.1.2.

5.2 Exponential Decaying Traces For Robot Mapping

To encode information with regards to the past history of the agent as an auxiliary input for these environments,
we use exponential decaying traces (as per Section 3.2.1) over the past observable regions in the environment
map. In this case we have auxiliary inputs that are all updated at once as a matrix, which we define as
Mt ∈ Rd×d, where d is the width and height of the map. Our auxiliary input is then:

Mt
.=

t∑
τ=0

λt−τ
1(oτ). (9)

1(oτ) ∈ {0, 1}d×d is a d × d binary map which indicates which areas of the global map are observable from oτ

at time τ . At each step, all the locations that are not currently observable are decayed by a factor of λ < 1.
This auxiliary input encodes the time since the agent has observed a particular location as an exponentially

11

Published in Transactions on Machine Learning Research (05/2023)

decaying timer. The incremental version of this auxiliary input is simply Mt
.= max(λMt−1 + 1(ot), 1),

where 1 is a d × d matrix of ones.

Results and Discussion We show our results for both environments in Figures 4b and 4d. Experimental
details including hyperparameters swept, algorithmic details, and environment details are included in
Appendix E. Results shown here are offline evaluation returns over environment steps, where we evaluate
our agent after every fixed number (10K) of steps. We compare our exponential decaying trace auxiliary
inputs (orange) to a few baselines: an LSTM-based agent with action concatenation (yellow), and an agent
with only the observation map as described before as input (teal), and a combination of both the trace
auxiliary inputs combined with an LSTM agent-state function (purple). In both environments, exponential
decaying traces as auxiliary inputs are comparable to, or performs slightly better than the LSTM-based agent.
In the simpler Fishing 1, using exponential decaying traces matches the performance of the LSTM agent,
as shown in Figure 4b. While the LSTM agent performs temporal credit assignment by using additional
compute with T-BPTT and TD error propagation, our exponential decaying trace can be seen as a simple
way of performing temporal credit assignment by only propagating TD error through the input features,
reminiscent of eligibility traces (Sutton & Barto, 2018). Doing so requires much less computation per time
step as compared to T-BPTT. In the Fishing 2 environment, the additional stochasticity seems to harm the
performance of the LSTM agent as compared to the agent using exponential decaying traces as auxiliary
inputs, with the decaying trace agent slightly outperforming the LSTM agent in this case.

Exponential decaying traces are also able to integrate with LSTMs. One might expect no increase in
performance when combining the two approaches, since LSTMs are able to exactly model an exponential
decaying trace of observation features. But from the results, we see that in both environments, combining
decaying trace auxiliary inputs with LSTM function approximation increased the performance of the agent by
quite a large margin in these environments. This implies that when combined, the trace features and LSTM
hidden states are modelling different, but complementary, aspects of the partially observable environment for
even better performance. As pointed out by Rafiee et al. (2022), adding an exponential decaying trace as
input to an LSTM learning through T-BPTT seems to add robustness to the truncation window length. In
our case, for control, it seems to both increase the rate of learning and to also increase the average returns of
the learnt policy. This example suggests that auxiliary inputs can integrate well with gradient-based agent-
state construction.

To conclude, in this section we have demonstrated the the ability of a decaying trace as an auxiliary input to
scale to a larger environment, and the ability of this auxiliary input to integrate well with RNN agent-state
functions.

6 Conclusion and Discussion

To conclude, auxiliary inputs are helpful tools for reinforcement learning practitioners to resolve partial
observability which also have the potential to integrate well with existing gradient-based agent-state functions.

In this work we advocate for the general principle of auxiliary inputs as an addition to agent-state construction,
and evaluate different instantiations of auxiliary inputs for reinforcement learning. We first introduce auxiliary
inputs as a unifying framework for input augmentation, as well as consider three different instantiations of
these inputs in Section 3. Using the Lobster environment introduced in Section 3.1, we demonstrate the
efficacy of these auxiliary inputs in resolving partial observability, as well as how these auxiliary inputs allow
us to expand the input feature space of the agent to allow us to interpolate between ground-truth states, and
for a more fine-grained policy. With this formalism in place, we investigate the performance of the particle
filtering approach to auxiliary inputs on a few classic partially observable environments in Section 4. We show
the efficacy of approximate belief states as auxiliary inputs in these hard, partially observable environments.
Finally, in Section 5, we investigate the use of simple exponential decaying traces of observation features
as auxiliary inputs on the scaled-up pixel-based Fishing environment. Besides showing matching or better
performance of these trace features in this environment as compared to LSTMs, we also show how this
auxiliary input can integrate with recurrent neural network agent-state functions, and improve performance.

12

Published in Transactions on Machine Learning Research (05/2023)

As for future work, the most immediate extension of our investigation would be an empirical study on the
relative efficacies of different auxiliary inputs on different forms of partial observability and different learning
algorithms on potentially larger environments. This extension could also consider a more fined-grained
comparison of auxiliary inputs to learnt recurrent representations (e.g. LSTMs vs exponential decaying
traces). Along this vein, another, tangential direction of future work would be to utilize the formalism of
auxiliary inputs developed here as a guide for the (potentially automatic) selection of auxiliary inputs for a
particular domain. Another avenue for future work would be to use more complex predictions as auxiliary
inputs. In terms of using future predictions to resolve partial observability, general value functions (Sutton
et al., 2011) and predictive state representations (Littman et al., 2001) are two promising approaches for
using predictions for resolving partial observability as an auxiliary input.

While a promising area of research, future predictions have their limitations: in the context of using future
predictions for next-step predictions as well as for control, general value functions have been shown to be
effective in only a very limited scope of environments and predictions (Schlegel et al., 2021). Another very
promising direction for future work would be to integrate and combine different forms of auxiliary inputs,
which leverage information from all parts of the trajectory, from both past and future. Another promising
direction for future work is to leverage auxiliary inputs for better exploration. While techniques to estimate the
uncertainty of an agent for exploration are near ubiquitous throughout reinforcement learning, an interesting
avenue for exploration is learning policies over altered inputs of an agent for more robust exploration.

Acknowledgments

We would like to thank Martha White for the support with computational resources, ideas, and feedback.
We would also like to thank Matthew Schlegel for the continued support throughout this project, especially
in their help in developing predictive algorithms for the Lobster environment. We would like to thank Patrick
Pilarski for the many insightful comments and suggestions that have improved this work. Finally, we would
like to thank Marc G. Bellemare and Taylor W. Killian for early discussions on what is now auxiliary inputs.

13

Published in Transactions on Machine Learning Research (05/2023)

References
Bram Bakker. Reinforcement Learning with Long Short-Term Memory. In T. Dietterich, S. Becker, and

Z. Ghahramani (eds.), Advances in Neural Information Processing Systems, 2001.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado, Subhodeep
Moitra, Sameera S. Ponda, and Ziyun Wang. Autonomous Navigation of Stratospheric Balloons Using
Reinforcement Learning. Nature, 588(7836):77–82, 2020.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):679–684, 1957.

H. D. Block. The Perceptron: A Model for Brain Functioning. Reviews of Modern Physics, 34:123–135, 1962.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese, Timo
Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie Fritz, Cristian
Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret,
Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval,
Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic
Control of Tokamak Plasmas Through Deep Reinforcement Learning. Nature, 602(7897):414–419, 2022.

A. Elfes. Sonar-based Real-world Mapping and Navigation. The Institute of Electrical and Electronics
Engineers Journal on Robotics and Automation, 3(3):249–265, 1987.

Matthew J. Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable MDPs. In
Association for the Advancement of Artificial Intelligence Fall Symposia, 2015.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and Acting in Partially
Observable Stochastic Domains. Artificial Intelligence, 101:99–134, 1998.

Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models.
Journal of Computational and Graphical Statistics, 5(1):1–25, 1996.

George Konidaris, Sarah Osentoski, and Philip Thomas. Value Function Approximation in Reinforcement
Learning Using the Fourier Basis. In Association for the Advancement of Artificial Intelligence Conference,
pp. 380–385. AAAI Press, 2011.

Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael H. Bowling. State of the Art Control of Atari
Games Using Shallow Reinforcement Learning. In International Conference on Autonomous Agents &
Multiagent Systems, 2016.

Long-Ji Lin. Self-improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching.
Machine Learning, 8(3):293–321, 1992.

Michael L. Littman, Richard S. Sutton, and Satinder Singh. Predictive Representations of State. In Advances
in Neural Information Processing Systems, 2001.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael
Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for
General Agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level Control Through Deep Reinforcement Learning. Nature, 518:529–533, 2015.

Michael C. Mozer. Neural Net Architectures for Temporal Sequence Processing, volume 265, pp. 243–264.
Addison-Wesley, 1996.

14

Published in Transactions on Machine Learning Research (05/2023)

Patrick Pilarski, Travis Dick, and Richard Sutton. Real-Time Prediction Learning for the Simultaneous
Actuation of Multiple Prosthetic Joints. In IEEE International Conference on Rehabilitation Robotics, 2013.

Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Jason P. Carey, and Richard S. Sutton. Dynamic
Switching and Real-Time Machine Learning for Improved Human Control of Assistive Biomedical Robots.
In IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 296–
302, 2012.

Joelle Pineau and Geoffrey J. Gordon. POMDP Planning for Robust Robot Control. In Robotics Research, 2007.

Banafsheh Rafiee, Zaheer Abbas, Sina Ghiassian, Raksha Kumaraswamy, Richard S Sutton, Elliot A Ludvig,
and Adam White. From Eye-blinks to State Construction: Diagnostic Benchmarks for Online Representation
Learning. Adaptive Behavior, 2022.

Eddie Rafols, Anna Koop, and Richard S Sutton. Temporal Abstraction in Temporal-difference Networks. In
Advances in Neural Information Processing Systems, 2005a.

Eddie J. Rafols, Mark B. Ring, Richard S. Sutton, and Brian Tanner. Using Predictive Representations
to Improve Generalization in Reinforcement Learning. In International Joint Conferences on Artificial
Intelligence, 2005b.

Nicholas Roy and Sebastian Thrun. Coastal Navigation with Mobile Robots. In Advances in Neural
Information Processing Systems, pp. 1043–1049, 1999.

G. A. Rummery and M. Niranjan. On-line Q-learning Using Connectionist Systems. Technical Report TR
166, Cambridge University Engineering Department, Cambridge, England, 1994.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam White, and Martha White.
General Value Function Networks. Journal of Artificial Intelligence Research, 70:497—-543, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Optimization
Algorithms. Computing Research Repository, 2017.

Trey Smith and Reid Simmons. Heuristic Search Value Iteration for POMDPs. In Conference on Uncertainty
in Artificial Intelligence, 2004.

Richard Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick Pilarski, Adam White, and Doina
Precup. Horde : A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor
Interaction Categories and Subject Descriptors. In International Conference on Autonomous Agents and
Multiagent Systems, 2011.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, USA, 2018.

Sebastian Thrun. Learning Metric-topological Maps for Indoor Mobile Robot Navigation. Artificial Intelligence,
99(1):21–71, 1998.

Sebastian Thrun. Monte Carlo POMDPs. In Advances in Neural Information Processing Systems, 1999.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster Level in StarCraft II Using Multi-Agent
Reinforcement Learning. Nature, 575:350–354, 2019.

Dong-Ok Won, Klaus-Robert Müller, and Seong-Whan Lee. An Adaptive Deep Reinforcement Learning
Framework Enables Curling Robots with Human-like Performance in Real-world Conditions. Science
Robotics, 5(46):eabb9764, 2020.

15

Published in Transactions on Machine Learning Research (05/2023)

A Auxiliary Input Function in the Agent Environment Interface

(Potentially Recurrent)
Agent-State
Function

Value Func.
/Policy

Agent EnvironmentObservation

Action

Reward

Action

Agent State

Auxiliary 
Input Func.

M

Figure 5: The agent-environment interface, with the auxiliary input function visualized within the agent.

B Auxiliary Inputs as Convolutions Over Trajectories

Another useful formulation and further specification of auxiliary inputs is to view them as a convolution
operation over trajectories. While previous work has viewed history summarization as a convolution operation
(Mozer, 1996), in this work we formulate the convolution over trajectories as auxiliary inputs which summarize
both histories and potential futures.

In the more specified form, we can have multiple functions mi, i ∈ {0, . . . , N − 1} which correspond to each
of our auxiliary inputs over our history. For the ith auxiliary input at time t, we denote this as mi(ht)

.= mi
t.

The set of auxiliary inputs at time t is then written as the tuple Mt
.= (m0

t , . . . , mN−1
t).

We further specify the function m to allow us to formalize our different approaches to auxiliary inputs.
Without loss of generality, we modify our definition of history to be a sequence of (o, a) ∈ O × A observation-
action tuples (we can simply append the next action At or the empty set ∅ to the final observation):
ht

.= {(O0, A0), (O1, A1), ..., (Ot, At)} ∈ T . With this, our ith auxiliary input at time t, mi
t, can be seen as a

convolution over the history of preprocessed observation-action pairs:

mi
t

.=
t∑

τ=0
ki(τ)gi(Oτ , Aτ) (10)

where ki is the ith kernel function c : N → R of the convolution, and g is the preprocessing function applied
to the observation-action pair before convolving with the rest of the history. Many auxiliary inputs and
memory mechanisms can be defined by the function m.

B.1 Frame Stacking as an Auxiliary Input with Convolutions

As an auxiliary input, the number of previous frames to stack corresponds to the number of auxiliary inputs
(N = 3, as the current frame is accounted for). Our preprocessing function g for frame stacking is simply the
function that just returns the observation: g(ot, at)

.= ot. The kernel function for i ∈ {0, . . . , 2} is defined as

ki(τ) .= 1[τ=t−i−1],

where 1[cond] is the indicator function, which is 1 if cond is true, 0 otherwise. With these definitions in
place, Equation (10) defines 3 auxiliary inputs at time t, Mt

.= (m0
t , . . . , m2

t). Furthermore, based on the
convolution of this time-indicator function, each of these inputs correspond to the observation Ot−i−1 — or
the previous 3 observations seen by the agent. Mt defines the stack of the last 3 observations, which, in
addition to the current observation, is frame stacking as described by Mnih et al. (2015).

16

Published in Transactions on Machine Learning Research (05/2023)

B.2 Exponential Decaying Traces with Convolutions

Decaying traces written as a convolution over a trajectory simply keep an exponentially decaying weighted
sum of our trajectory observations and actions:

mi
t

.=
t∑

τ=0
λt−τ gi(oτ , aτ), (11)

with λ < 1. The kernel function ki(τ) in this case is a simple exponential function over past time steps:

ki(τ) .=
{

λt−τ if τ ≤ t,

0 otherwise.
(12)

Our decaying trace auxiliary inputs are simply convolutions over time with this kernel function. Written in
an incremental form, we have mi

t
.= λmi

t−1 + gi(oτ , aτ).

B.3 Particle Filtering with Convolutions

Given the mechanism to update particles and weights in Section 3.2.2, we form our convolution-based auxiliary
inputs based on these weights. In this approach, we only have a single auxiliary input vector where N = 1,
which we simply denote as mt.

In this case, our convolution-based auxiliary inputs are the same as our simplified auxiliary inputs, with
mt = Mt, with the kernel function defined as:

k(τ) .=
{

1 if τ = t,

0 otherwise.
(13)

The preprocessing function g is defined by g(ot, at)
.=

∑k
j=0 wt+1[j] ⊙ 1[ŝt[j]].

B.4 Likelihoods as Convolutions

To represent likelihoods and general value functions as convolutions, we simply represent our cumulant
as a function of observations and actions like our preprocessing function gi, with some separate cumulant
termination function which is represented with our kernel function ki.

C Lobster Fishing Environment and Experiment Details

C.1 Environment Details

As this environment is partially observable, we now detail the observation vector ot ∈ {0, 1}9 the agent
receives at every time step. We list out 9 ordered true or false questions which correspond to the elements
(either 0 or 1 respectively) in the observation vector:

ot
.=



0. Is the agent in location 0?
1. Is the agent in location 1?
2. Is the agent in location 2?
3. Is the reward in location 1 observable and missing?
4. Is the reward in location 1 observable and present?
5. Is the reward in location 1 unobservable?
6. Is the reward in location 2 observable and missing?
7. Is the reward in location 2 observable and present?
8. Is the reward in location 2 unobservable?


(14)

We now detail the sources of stochasticity in the Lobster environment. Actions that try to transition between
locations in the Lobster environment succeed with probability pslip = 0.6; if the transition fails, the agent

17

Published in Transactions on Machine Learning Research (05/2023)

Right

2
Left

Collect
3

RightLeft 1

RightLeft

Collect

Right

Collect

8

Right, Collect

Left 9

7

Right

Collect

Collect

Left, Collect

Right5

Left

Right, Collect

6

4

Left

Left

Collect

Collect

11 12

Left, Right, Collect

10

RightLeft
Collect

Collect

Right

Collect

Left,

Right,

Collect

RightLeft

RightLeft Left Right

Left, Collect

Right Left

Figure 6: The Lobster Environment MDP. “Slippery” transitions at certain states are not pictured. Green
nodes represent states where performing the collect action will yield a reward. Particular to only this figure,
solid lines are deterministic transitions, whereas dotted lines are stochastic transitions.

18

Published in Transactions on Machine Learning Research (05/2023)

“slips” and stays in the same location. At every time step, if a reward is not present, it regenerates according
to its own Poisson processes, with an expected number of steps for regeneration of Λ .= 10 for each reward.
We also visualize the full MDP as nodes and edges in Figure 6

C.2 Hyperparameters and Experimental Setup

We now detail the experimental setup and hyperparameters swept for all agents mentioned in Section 3. We
first detail all the shared settings and swept hyperparameters between all algorithms:

• Learning algorithm: Sarsa(0)
• Function approximator: Linear

• Optimizer: Adam

• Discount rate: γ = 0.9

• Environment train steps: 250K
• Max episode steps: 200
• Step sizes: [10−2, 10−3, 10−4, 10−5]

Because this environment is a continuing task, we evaluate our agents based on the undiscounted returns
over 200 time steps, with no terminal time steps. All hyperparameter sweeps were done over 30 seeds, with
the best hyperparameters decided for each algorithm based on mean undiscounted returns over these 200
time steps over these 250K steps and 30 seeds. The results reported are over 30 different additional seeds,
with each additional seed run on the selected hyperparameters. We now briefly describe the two baselines
that we employ as comparisons to the auxiliary input techniques we introduce, as well as minor details of the
auxiliary input algorithms used in this section.

C.3 Algorithmic Details and Additional Results

C.3.1 Observations only

As a baseline for performance, we consider the observations-only agent. This agent simply uses the Sarsa(0)
algorithm to learn a policy over the observations described in Equation 14. This agent is labelled in teal as
"Observations".

C.3.2 Value Iteration with Environment States

We also consider an optimal agent acting on the fully-observable version of this task, with full knowledge of
the transition dynamics. We use this agent to see how close to optimal our partially observable agents can
perform. We use the transition probabilities over the 12 possible states to perform value iteration (Bellman,
1957) to calculate the optimal value functions for control. We iterate through all states until our maximum
change in value function over all states ∆ is less than the threshold value θ = 10−10, ∆ < θ. We use this
optimal value function over the 12 states together with the transition probabilities to get the optimal policy.
We evaluate this optimal policy over 200 steps and collect 1000 runs to get both the mean and standard error
to the mean as the shaded dotted line in all learning rate plots.

C.3.3 Exponential Decaying Trace

To use decaying traces as an auxiliary input for the Lobster environment, we take decaying traces of the
elements in the observation vector that indicate whether or not each reward is collected. With the indexing
and observations from Equation 14, our decaying trace for the Lobster environment is defined as:

mi
t+1

.=
{

λmi
t−1 if reward i is unobservable,

ot[3i] otherwise.
(15)

for each auxiliary input i ∈ {1, 2} that corresponds to rewards in locations 1 and 2, respectively. Note
that each auxiliary input here is a vector of size R1. As a reminder, ot[3i] corresponds to the boolean that
answers the question “Is the reward in location i observable and missing?” Within our Lobster environment
experiments, we use a decay rate of λ = 0.9.

19

Published in Transactions on Machine Learning Research (05/2023)

(a) (b)

Figure 7: (a): The action-values for both left (yellow) and right (blue) actions for the value function
learnt over particle filtering auxiliary inputs. Again, the observation-only agent is represented by overlapping
diamonds in this plot. (b): The same plots for the action-values for the likelihood auxiliary inputs.

Put together, our auxiliary inputs are defined as Mt
.= (m1

t , m2
t), which we use as part of our agent-state

function. Our agent state for trace decay auxiliary inputs in the Lobster environment is the concatenation of
the observation and the two auxiliary inputs in Mt: xt

.= [ot, Mt] ∈ R11. The dimension of this agent state
is the number of dimensions of the observation, plus two dimensions from the two auxiliary inputs 9 + 2 = 11.

For the agents described in this section, we use the Sarsa (Rummery & Niranjan, 1994) algorithm to learn a
control policy (with the exception of the ground-truth state agent, which uses value iteration to learn the
optimal policy). We also use linear function approximation for all agents. For this trace decay agent, a step size
of α

.= 10−3 was selected from a hyperparameter sweep, with an epsilon of ϵ
.= 0.1 for the epsilon-greedy policy.

C.3.4 Particle Filtering

With particle filtering, our approximate belief state becomes more accurate with more particles. In this
environment, we instantiate the particle filter with 100 particles to begin with. In the rare case of particle
depletion, where there are no particles in the current environment state, we reset all particle weights to be
uniform and re-weight them from that time step onwards.

For this particle filtering approach in the Lobster environment, we approximate a distribution over the 12
underlying ground-truth states (as per Figure 6), based on the approximated distribution over state over
nparticles = 100 particles. At every step, we follow the steps in Section 3.2.2 to get our approximate belief
state as our auxiliary input. In this case, since we only have a single auxiliary input vector, we have that
Mt

.= mt. In addition to this, our auxiliary inputs in this case define the entire agent state, since we already
incorporate both observations and actions at each step in the particle filter update: xt

.= Mt. For this
particle filtering agent, once again we leverage the Sarsa control algorithm as well as a selected step size of
α

.= 10−3 (from a hyperparameter sweep) and an epsilon of ϵ
.= 0.1.

We also show similar value function geometry plots to Fig. 2c, except for the belief distribution features in
Fig. 7a. In this case, the bottom two x—y axes correspond to, for each reward i ∈ {1, 2}:

P (r(Li) = 1) .=
∑
s∈S

m ⊙ 1[s where reward r(Li) = 1 & s where the agent is in location 0],

which is the sum of the probabilities over environment states where the agent is in location 0 and the reward
in location i is present. In this particular visualization, we visualize all the features collected from multiple
rollouts of the policy learnt by the particle filtering agent.

20

Published in Transactions on Machine Learning Research (05/2023)

C.3.5 Likelihood Predictions

To predict the ground-truth reward regeneration likelihoods, we assume we know the ground-truth rates of
our Poisson processes for both rewards, which in this case is 1

Λ
.= 1

10 for both rewards (on average, 1 reward
regeneration every 10 steps). With this rate of reward, we calculate the likelihood of a reward being present.

We now describe how we model this future prediction for the Lobster environment as a likelihood. We do this
through calculating, in closed form, the likelihood that r(Li) is present, given that some number of steps have
elapsed with r(Li) as unobservable. In this auxiliary input scheme, those number of steps will depend on the
number of steps since the agent has seen r(Li) missing and the average number of steps needed to reach Li.
In this approach, we assume we have the privileged information of the rate r at which either rewards are
regenerated. Let Ei

τ be the event that the reward at location Li is regenerated within τ steps, and Ei′

τ be the
complementary event, where the reward does not regenerate after τ steps. Since this is a Poisson process,
this means that the likelihood of a reward at location Li regenerating after τ steps is:

P (Ei
τ) = 1 − P (Ei′

τ) = 1 − exp{τ · r}, (16)

where Equation (16) is simply the probability that at least one Poisson process occurs after τ steps. To
calculate this prediction for our auxiliary inputs, we need the total number of steps in our trajectory between
last observing r(Li) as missing, and the average number of steps to reach Li from the current location. We find
this total number of steps by summing these two number of steps, and finding the corresponding likelihood.
Our auxiliary input is then defined as:

mi
t

.= 1 − exp
{

t∑
τ=0

1[(oτ has r(Li) missing) & (τ>last observed r(Li) missing)]

+ Eπi

[∞∑
τ=t+1

1[oτ [3i+2]=1]

]}
,

(17)

where πi corresponds to the policy of going to location Li (for L1 that is simply the policy that always goes
left, for L2 this policy always goes right). oτ [3i + 2] is the observation feature that answers the question “Is
the reward at Li unobservable?”. Each auxiliary input defined here corresponds to a future prediction about
the reward. In this case, our kernel function is simply a function which filters time steps based on if the step
was in the past/present or future. Our preprocessing function is then defined by the function that returns
the two element vector with the two predicates defined in Equation 17. Put together we get our likelihoods
(one for each reward) which we use as auxiliary inputs for our agent.

Similar to our previous two auxiliary inputs, this approach also uses the Sarsa algorithm for control, with a
step size of α

.= 10−3 selected based on a hyperparameter sweep. The epsilon used here was also ϵ
.= 0.1.

C.4 Results and Plotting Details

We now describe the axis and plotting details in Figures 2b and 2c. The x—y axes (bottom two axes) capture
two input features that represent the likelihood of each reward being present. For the ground-truth environment
states, these features simply represent whether or not the rewards are present or not. Since we have two rewards
in locations L1 and L2, this corresponds to four possible environment states at location L0: one for each possible
state of the two rewards (since they can be either present or not present). For the observation-only agent, both
of these corresponding features can only take on a single value due to partial observability: both features are 0
since at location L0 this agent will only ever see 0 elements for the features which correspond to whether or not
the rewards in each location are there. We now describe how we plot the exponential decaying trace features.

From Equation 15, our exponential decaying traces decrease the more time elapsed since last observing each
reward was missing. This means that our trace features for each reward should be inversely proportional to
the likelihood of each reward being present. Given this, we plot the complement (1 − mi) of each exponential
decaying trace input in Figures 2b and 2c.

21

Published in Transactions on Machine Learning Research (05/2023)

0.0 1.0 2.0 2.5
Environment steps 1e5

10

12

14

16

18

20

Re
tu

rn
s o

ve
r 2

00
 st

ep
s

(a
vg

. 1
00

 ru
ns

)

Observations

Trace

PF

LikelihoodGround-truth

Figure 8: Results for a PPO agent on the Lobster environment.

C.5 Stochastic Policies with Auxiliary Inputs

We show results for an agent that is able to learn stochastic policies in the Lobster environment in Figure 8.
The agent utilizes the Proximal Policy Optimization (PPO, Schulman et al., 2017) algorithm, which is
policy-gradient-based algorithm that explicitly learns policy parameters to represent stochastic policies. The
observation-only agent here (in teal) performs significantly better than the Sarsa-based observation-only
agent (also teal, in Figure 2a) due to the ability of the agent to learn a stochastic policy. The stochastic
policy learnt by the observation-only PPO agent goes left or right at L0 with equal probability 0.5, allowing
the agent to potentially seek out the reward that was not visited most recently, and is more likely to have
regenerated. This stochastic policy achieves a much higher return as compared to the ϵ-greedy policy learnt
by the Sarsa algorithm, which will almost always dither between L0 and either L1 or L2, but not both. This
means the agent essentially has to wait for the reward at either L1 or L2 to regenerate. These results also
reflect the consensus that policy gradient algorithms generally perform better under partial observability
than value-based algorithms—this is most likely due to the fact that stochastic policies allow an agent to
perform better in partially observable environments.

From these results, the auxiliary input agents still outperforms the observation-only agent. While the increase
may be more marginal as compared to the Sarsa algorithm, auxiliary inputs still increases performance
over leveraging observations only. This implies that not all of the gains achieved by auxiliary inputs can be
achieved by just switching to PPO or stochastic policies—there is additional information agents can utilize in
auxiliary input features.

Results were run over 100 seeds as opposed to 30 seeds used in the other results in this paper due to the
increased stochasticity from the stochastic policy. A λ parameter of 0.95 was used, with n-step returns of
n = max. episode length used. A 1-layer neural network was used as the function approximator. Learning
rates and hidden sizes were swept over 10 seeds, with values swept over {10−5, 10−4, 10−3, 10−2, 10−1} and
{5, 10} respectively. The 100 seeds were run over a learning rate of 10−2 and hidden size of 10 selected from
the best performance (average reward over max. episode length) over the aforementioned sweep. No replay
buffer was used for this agent, with the agent making an update after the roll-out of each episode.

D Particle Filtering Environment and Experimental Details

D.1 Environment Details

Below we consider all the details of the RockSample environment. We do not provide further details of the
Modified Compass World environment here because the description in Section 4.1 together with Figure 10a
fully specifies the environment.

22

Published in Transactions on Machine Learning Research (05/2023)

0 5 10
L2 distance

0.50

0.75

1.00

Pr
ob

ab
ilit

y

hed = 20

hed = 5

Figure 9: Half efficiency distance function plots: probability of a correct sensor reading as a function of
distances for different half efficiency distances (δhed = 5, 20).

D.1.1 RockSample Environment Details

We now consider the environment and implementation details of the RockSample environment not considered
in Section 4.1.

The position of each rock is determined in this environment based on a uniform sampling (without replacement)
of 8 positions out of all possible 7 × 7 positions in the grid. This position is deterministically defined by the
seed which the experiment is run on, and these positions do not change for each agent trained on a particular
seed. The initial goodness and badness of rocks is determined based on a uniform Bernoulli distribution for
every rock at every environment reset.

As mentioned when introducing this environment, the sensor available to the agent for checking the goodness
and badness of rocks has noise proportional to the L2 distance between the agent and the rock in question,
which we denote as δ. This noise is essentially based on another Bernoulli distribution, where with probability
p(δ) the sensor returns the correct sensor reading of the rock, and with probability 1 − p(δ) the agent receives
an incorrect reading. The probability function p is defined by the half efficiency distance δhed of the sensor.
Overall, this probability function is defined by the function:

p(δ) .= 0.5 × (1 + 2− δ
δhed). (18)

We plot this function in Figure 9. We also discuss results for different agents introduced in Section 4 in
RockSample for different half efficiency distances in Section D.3. In our results in Section 4.2, we use a half
efficiency distance of 5.

D.2 Environment-Specific Algorithmic Details and Hyperparameters

We now detail the environment-specific algorithmic details and hyperparameters swept for all agents pertaining
to Modified Compass World and RockSample.

D.2.1 Modified Compass World Experimental Setup and Hyperparameters

For our Modified Compass World experiments, we use and sweep the following hyperparameters:

• Learning algorithm: Sarsa(0)
• Function approximator: Neural Network
• Layers: 1
• Hidden units: 100
• Optimizer: Adam

• Discount rate: γ = 0.9
• Environment train steps: 1M
• Max episode steps: 1000
• Step sizes: [10−3, 10−4, 10−5]
• Number of particles: 1 for each possible start

state (9 × 9 × 4 − 1 = 323)

23

Published in Transactions on Machine Learning Research (05/2023)

(a) Modified Compass World (b) RockSample(7, 8)

Figure 10: (a) Modified Compass World and (b) RockSample(7, 8) environments for evaluating approximate
belief states as auxiliary inputs.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(a) Half efficiency distance δhed = 20 results.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(b) Half efficiency distance δhed = 5 results.

Figure 11: RockSample results for both δhed = 5, 20. In (a) and (b) mean and standard error to the mean are
shown over 10 seeds. We use δhed

.= 5 for the results in our work.

All hyperparameter sweeps were done over 10 seeds, with the best hyperparameters decided for each algorithm
based on mean discounted returns over these 200 time steps and 10 seeds. We then use these selected
hyperparameters and run experiments for 30 different seeds to obtain the results presented in Figure 3a. For the
LSTM agents in this environment, the agents all use one-hot action concatenation (Schlegel et al., 2021) with
its input features to the LSTM cell. An ablation study for this action concatenation is done in Appendix D.3.2.

Ground-truth Agent In Modified Compass World, the ground-truth agent converges to a much higher
return than the other agents. This is because it is fully observable and has more information available to it
in its data stream than the other agents—namely the position and orientation of the agent. The learnt policy
for this agent traverses directly to the green goal state, without having to localize first.

Observations Only With the observations-only baseline, our observation vector is defined by a vector of
size 5, where each feature corresponds to whether or not the color directly in front of the agent is being
observed. An all zero vector represents no color being shown in front of the agent.

24

Published in Transactions on Machine Learning Research (05/2023)

Particle Filtering We use particle filtering to approximate a belief state over the possible pose and position
of the agent. Our feature vector for this approach is of size 7 × 7 × 4, where these features represent all
possible combinations of positions and poses of the agent. This position and pose belief state is approximated
through the particle filtering approach described in Section 3.2.2, where emission probabilities are simply
binary variables representing whether or not each position and pose combination can emit the given color.
For this environment, we use one particle for each possible starting position and pose combination, 7 × 7 × 4,
since the environment dynamics are deterministic outside of the initial start state.

Recurrent Neural Network Finally, our RNN-based approach uses the same observations as described in
Appendix D.2.1, except with an LSTM as the function approximator. In addition to using a recurrent neural
network for function approximation, we also use action conditioning (Schlegel et al., 2021). In our setting,
actioning conditioning simply consists of concatenating a one-hot encoding of the previous time step’s action
to the observation vector fed into the RNN. As a point of clarification, the LSTM-based agent conditions on
both the observation and action at every time step.

D.2.2 RockSample(7, 8) Experimental Setup and Hyperparameters

In our RockSample(7, 8) experiments, we leverage a replay buffer (Lin, 1992) for all of our experience. We
use and/or sweep the following hyperparameters:

• Learning algorithm: Sarsa(0)
• Function approximator: Neural Network
• Layers: 1
• Hidden units: 100
• Optimizer: Adam

• Discount rate: γ = 0.99

• Environment train steps: 1.5M
• Max episode steps: 1000
• Step sizes: [10−3, 10−4, 10−5]
• Buffer size: [10K, 100K]
• Number of particles: 100

All hyperparameter sweeps were done over 10 seeds, with the best hyperparameters decided for each algorithm
based on mean discounted returns over these 200 time steps. We then use these selected hyperparameters
and run experiments for 30 different seeds to obtain the results presented in Figure 3b. For the LSTM agents
in this environment, the agents also use one-hot action concatenation (c.f. Appendix D.3.2).

Ground-truth Agent For the RockSample ground-truth agent, all the actual moralities (goodness or
badness) of the rock are available to the ground-truth agent at the start of an episode. The learnt policy for
this agent traverses directly to the good rocks, collects them, then exits to the right.

Observations Only With the observations-only baseline, our observation vector is defined by a vector of
size 7 + 7 + 8 = 22, where the first 7 + 7 features represent one-hot encodings of the x and y coordinates of
the agent respectively, and the final 8 features represent the most recently observed rock moralities (goodness
or badness). In our implementation of RockSample, these observed rock moralities are initialized at 0.5, and
take on values depending on the most recent check of each rock. So if rock number 1 was checked and seen as
good 5 steps ago, and this was the most recent check of rock 1, then the feature representing this rock would
be a 1 feature, representing a good rock.

Particle Filtering To approximate a belief distribution over state, we leverage particle filtering as mentioned
in Section 3.2.2. In this approach, our input feature vector is also defined as a vector of length 7 + 7 + 8. The
first 7 + 7 features are once again a one-hot encoding of the x and y coordinates for the first and second 7
features respectively. The final 8 features are an approximate belief state of the current state of the rock
moralities, instead of the underlying state of the environment. This is to reduce the dimensionality of the
input features. These last 8 features are simply the normalized sum over the weights over all particles. For
this particle filtering algorithm, we start with 100 particles as well.

25

Published in Transactions on Machine Learning Research (05/2023)

Recurrent Neural Network Finally, our RNN-based approach uses the same observations as Ap-
pendix D.2.2, except with an LSTM as the function approximator. Similarly to the Modified Compass World
LSTM agent, we also use action conditioning here.

Since we use a replay buffer with LSTMs for this algorithm, to fix a truncation length for T-BPTT, we sample
trajectories from our replay buffer of length truncation length, and roll our trajectories out and propagate
gradients backwards across the sampled trajectory. This requires us to store and sample hidden states from
our LSTM in our replay buffer. Similarly to the Compass World LSTM agent, this agent also conditions on
both the observation and action at every time step.

D.3 Ablation Studies

Here we list the ablation studies we performed over both our environments and select algorithms.

D.3.1 RockSample(7, 8) Half Efficiency Distance Experiment

We perform a small experiment to see the effect of the half efficiency distance δhed on the performance of our
algorithms in Figures 11a and 11b. From these learning curves we can conclude that a lower δhed (or a less
accurate sensor over distance to rocks) does not significantly affect the performance of the particle filtering
auxiliary input, nor does it affect the performance of the ground-truth agent. This parameter seems to affect
the LSTM-based agent and observations-only-based agent the most, decreasing performance for both. The
results presented in the main body of this work use δhed

.= 5.

D.3.2 LSTM Action Concatenation Ablation

We conduct another small ablation study on action concatenation with the LSTM agent on both Modified
Compass World and RockSample(7, 8). Results are shown in Figure 12. Action conditioning seems to generally
help the LSTM agent in both environments—this is because we are conditioning on and providing more
information than the LSTM agent not conditioned on actions. We note that the degree in which this action
conditioning helps varies from environment to environment. In Modified Compass World, action conditioning
is vital to the performance of the LSTM agent, whereas in RockSample(7, 8) we observe only potential
marginal performance increases (potential since we have overlapping standard error bars). This reveals a
further point with regards to action conditioning for RNNs: actioning conditioning will help depending on
how much knowledge of the action resolves partial observability. In Modified Compass World, where the
state is extremely partially observable, knowing the previous action resolves a big portion of the partial
observability of the environment, whereas in RockSample, the previous action does not reveal too much about
the environment state.

E Fishing Environment and Experimental Details

E.1 Fishing Environment Details

In this section, we describe the specifics for both Fishing environments, as well as the environment parameters
for both Fishing 1 and 2, including the rates of change for currents and the rates of regeneration for rewards.

There are 4 actions in both environments, each corresponding to moving in one of the cardinal directions.
Both environments are represented by an 11 × 11 image with 4 locations that emit non-zero rewards, as
denoted by the green points. Like in the Lobster environment (c.f. Section 3.1), in these environments the
four rewards regenerate stochastically after being collected. Once collected, the rewards stay and do not
disappear without being collected, and the agent receives a reward of +1. Currents in these environments
also change stochastically over time. The multi-directional arrows represent these shifting currents for each
given position, and the directions in which they might be in. In addition to these sources of stochasticity, the
agent also has a chance of “slipping” at every time step and remaining in the same position. Beyond this,
there are also walls throughout the environment, denoted by the dark blue tiles, that block the agent from
traversing to or through. Bumping into a wall results in a no-op. Finally, Fishing 2 in Figure 4c also has a
glass wall denoted by the blue tiles, which the agent can see through, but cannot traverse through. We now

26

Published in Transactions on Machine Learning Research (05/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.1

0.2

0.3

0.4

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

LSTM (no cond)
LSTM (with cond)

Ground-truth

(a) Modified Compass World LSTM action conditioning ablation.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

Ground-truth

(b) RockSample(7, 8) LSTM action conditioning ablation.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

LSTM (no cond)

LSTM (with cond)

(c) Fig. (b), but comparing only action conditioning vs no
action conditioning.

Figure 12: Action conditioning ablation for LSTM. Results are over 10 seeds for both Modified Compass
World and RockSample(7, 8).

27

Published in Transactions on Machine Learning Research (05/2023)

describe the observations that the agent sees at every step. As for starting position, the agent starts in the
(x, y) position (5, 5) in both environments.

E.1.1 Mapping and Observations

One part of the partial observability of this environment is the limited observation an agent receives at every
step. The agent receives a 5×5 agent-centric observation vector at every step. All agents view an accumulated
(over time) agent-centric map of these observation vectors, which we call the agent map. For our 11 × 11 grid
world, this amounts to a square observation of length 11+11−1 = 21—the dimensions beyond the length 11 of
the grid world account for the agent-centric view when the agent is at the edges of the grid world. At every step,
the 5×5 observable area is updated on the agent map with the given coordinates of the agent. Hence, with every
additional step, since rewards and currents change stochastically over time, previously observed (but currently
unobserved) missing rewards and currents on the agent map are less and less accurate as time progresses.

The agent’s view is also obstructed by the walls in the environment. If an agent is next to a wall, then
everything behind the wall is obstructed, even if the area was meant to be observable. This is true for all
walls except for glass obstacles, denoted in blue in Fishing 2. These glass obstacles act as walls, except that
the agent is able to see through them, unlike normal walls. Glass walls are placed here so that the agent is
able to see the direction that the currents are facing within the tunnel to the reward.

The agent observes a tensor of shape 21 × 21 × 6, where the last dimension indicates the channels for different
aspects of the environment/observation. The agent is able to see obstacles (walls and glass walls, 1st channel),
currents and their direction (next 4 channels), and finally the locations of rewards if they are present (last
channel).

E.1.2 Stochasticity in the Environment

Both rewards and currents in both environments are defined by Poisson processes, with potentially different
rates corresponding to each reward and each current. We now describe these rates for both environments. All
currents depicted with a single-direction arrow denote a current that is static and does not change direction.
Note for all currents, when a current is sampled to change, we sample uniformly at random from the remaining
current directions, excluding the original current direction.

Besides the stochasticity from the Poisson processes, the agent also has a 0.1 probability of “slipping” for a
move, when the agent takes an action, there is a probability 0.1 the agent simply stays in place.

Fishing 1 Poisson Processes In Fishing 1, all our stochastic processes have equal rates of regeneration or
current flipping. This rate is 60—or on average, these Poisson processes will activate in expectation over
after 60 steps. This larger rate is such that the agent is more incentivized to go collect other rewards, rather
than staying at one particular reward and waiting for regeneration.

Fishing 2 Poisson Processes In Fishing 2, rates of reward generation are all set to 50, except for (y, x)
coordinates (8, 9), which has a rate of regeneration of 100. Note, from here onwards we will list positions as
tuples of coordinates of (x, y). As for our currents, we group our currents based on their reward regeneration
rates (in order from left to right, top to bottom in the grid world):

10: (0, 6), (0, 7), (2, 5), (2, 6), (4, 1), (5, 7), (5, 8), (5, 10), (8, 7), (9, 7).
20: (1, 3), (1, 4), (7, 0), (7, 1), (8, 5), (9, 5), (10, 2), (10, 3), (10, 4).
30: (5, 2), (5, 3), (5, 4).
40: (0, 2), (2, 0), (2, 1), (3, 9), (3, 10), (6, 2), (6, 3), (6, 4), (9, 8), (10, 8).

E.2 Fishing-Specific Algorithmic Details and Hyperparameters

We now detail the algorithmic details and hyperparameters swept for all agents on the Fishing environments. In
both our Fishing experiments, we leverage a replay buffer (Lin, 1992) for training. We list the hyperparameters
swept for all our algorithms below:

28

Published in Transactions on Machine Learning Research (05/2023)

For the Fishing experiments, we use a convolutional neural network to parse our agent map tensor. We use
and/or sweep the following hyperparameters:

• Learning algorithm: Sarsa(0)
• Function approximation: Convolutional Neu-

ral Network
• Layers: 1
• Hidden size: 64
• Batch size: 64
• Optimizer: Adam

• Discount rate: γ = 0.99
• Environment train steps: 2M for Fishing 1,

12M for Fishing 2
• Max episode steps: 1000
• Step sizes: [10−4, 10−5, 10−6, 10−7]
• Buffer size: 100K

• Evaluation frequency: 2K for Fishing 1, 10K
for Fishing 2

All hyperparameter sweeps were done over 5 seeds, with the best hyperparameters decided for each algorithm
based on mean discounted returns over the last 100 evaluation steps. Results in this section use offline
evaluation returns over environment steps. Offline evaluations are conducted every evaluation frequency steps
(as listed above). We run 5 test episodes per offline evaluation, and also average over these test episodes as
well as seeds for a final average return for a given evaluation step at a certain training step. We then use
these selected hyperparameters and this offline evaluation to run experiments for 30 different seeds to obtain
the results presented in Figures 4b and 4d.

E.2.1 Convolutional Neural Network Architecture

We now detail the architecture for our convolutional neural network. All our convolutional layers use a stride
of 1 and no padding:

• Conv2D(output channels = 32, kernel size = 10)
• Relu activation
• Conv2D(output channels = hidden size, kernel size = 7)
• Relu activation
• Conv2D(output channels = hidden size, kernel size = 1)
• Linear layer with output nactions

E.2.2 Convolutional Neural Network LSTM Architecture

Our LSTM implementation is a convolutional neural network with an LSTM layer after the convolutional layers:

• Conv2D(output channels = 32, kernel size = 10)
• Relu activation
• Conv2D(output channels = hidden size, kernel size = 7)
• Relu activation
• Conv2D(output channels = hidden size, kernel size = 1)
• Relu activation
• Linear layer with output hidden size
• LSTM(hidden state size = hidden size)
• Linear layer with output nactions

E.2.3 Exponential Trace Implementation Details

While we describe the approach to using exponential decaying traces for the Fishing environment in Section 5.2,
we go into detail here with regards to implementation details and hyperparameters swept.

Our exponential decaying traces are simply another channel in our agent map tensor, with the same size of
15 × 15. It is a tensor of elements in the range of [0, 1], with each element denoting how long it has been

29

Published in Transactions on Machine Learning Research (05/2023)

since observing that particular position (where 1 denotes the agent is currently observing this area, and 0
denoting it has never observed this position).

As for the decay rates, we swept the following rates: [1, 0.95, 0.85, 0.65].

E.2.4 Recurrent Neural Network Implementation Details

With our RNN implementation, we simply use the same technique of training an LSTM with a replay buffer
as in Appendix D.2.2, where we sample trajectories of length truncation length for T-BPTT. We swept the
following truncation lengths for both Fishing environment hyperparameter sweeps: [1, 5, 10].

30

	Introduction
	Background and Notation
	Auxiliary Inputs
	The Lobster Environment
	Instantiations of Auxiliary Inputs
	Exponential Decaying Traces
	Approximate Belief State with Particle Filters
	Likelihoods for Incorporating Future Predictions and Past Information

	Results on the Lobster Environment

	Particle Filtering for Auxiliary Inputs
	Compass World and RockSample
	Results and Discussion

	Scaling Up Auxiliary Inputs and Integration with RNNs
	The Fishing Environments
	Exponential Decaying Traces For Robot Mapping

	Conclusion and Discussion
	Auxiliary Input Function in the Agent Environment Interface
	Auxiliary Inputs as Convolutions Over Trajectories
	Frame Stacking as an Auxiliary Input with Convolutions
	Exponential Decaying Traces with Convolutions
	Particle Filtering with Convolutions
	Likelihoods as Convolutions

	Lobster Fishing Environment and Experiment Details
	Environment Details
	Hyperparameters and Experimental Setup
	Algorithmic Details and Additional Results
	Observations only
	Value Iteration with Environment States
	Exponential Decaying Trace
	Particle Filtering
	Likelihood Predictions

	Results and Plotting Details
	Stochastic Policies with Auxiliary Inputs

	Particle Filtering Environment and Experimental Details
	Environment Details
	RockSample Environment Details

	Environment-Specific Algorithmic Details and Hyperparameters
	Modified Compass World Experimental Setup and Hyperparameters
	RockSample(7, 8) Experimental Setup and Hyperparameters

	Ablation Studies
	RockSample(7, 8) Half Efficiency Distance Experiment
	LSTM Action Concatenation Ablation

	Fishing Environment and Experimental Details
	Fishing Environment Details
	Mapping and Observations
	Stochasticity in the Environment

	Fishing-Specific Algorithmic Details and Hyperparameters
	Convolutional Neural Network Architecture
	Convolutional Neural Network LSTM Architecture
	Exponential Trace Implementation Details
	Recurrent Neural Network Implementation Details

