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ABSTRACT

Diffusion Posterior Sampling (DPS) provides a principled Bayesian approach to
inverse problems by sampling from p(x0 | y). While posterior sampling is valu-
able for capturing uncertainty and multi-modality, many classical and practical
inverse problem settings ultimately prioritize accurate point estimation—most no-
tably the MAP estimator, which has long served as a standard reconstruction ob-
jective in imaging and scientific applications. We introduce Local MAP Sam-
pling (LMAPS), a new inference framework that iteratively solving local MAP
subproblems along the diffusion trajectory. This perspective clarifies their con-
nection to global MAP and DPS, offering a unified probabilistic interpretation for
optimization-based methods. Building on this foundation, we develop practical
algorithms with a covariance approximation motivated by Gaussian prior assump-
tion, a reformulated objective for stability and interpretability. Across a broad
set of image restoration and scientific tasks, LMAPS achieves the state-of-the-art
performance.

1 INTRODUCTION

Diffusion Posterior Sampling (DPS) is a recently proposed framework that extends diffusion gen-
erative models to Bayesian inference (Chung et al., 2022; Song et al., 2023c). This framework is
particularly powerful for a wide range of applications, ranging from combined guidance and style
transfer (Ye et al., 2024) to inverse problems such as medical imaging (Chung & Ye, 2022), image
restoration (Chung et al., 2022), and scientific data reconstruction (Zheng et al., 2025), where it
enables high-quality reconstructions while also providing principled uncertainty quantification (Ye
et al., 2024). DPS conditions the generative process on observed measurements, enabling efficient
sampling from posterior distributions over clean data p(x0 | y). This group of approaches and vari-
ants includes but not limited to TMPD (Boys et al., 2023), DDNM (Wang et al., 2022), ΠGDM
(Song et al., 2023b), TFG (Guo et al., 2025).

While posterior sampling is fundamentally important in Bayesian inverse problems—capturing
multi-modality, providing calibrated uncertainty, and supporting downstream decision making
through credible intervals and risk-sensitive criteria—there is a parallel and long-standing line of
work that emphasizes point estimation, and in particular MAP, as an equally central objective. Clas-
sical treatments of Bayesian inverse problems show that the MAP estimator often coincides with the
solution of a variationally regularized optimization problem and is widely used as a practical recon-
struction rule in imaging, medical, and geophysical applications (Stuart, 2010; Kaipio & Somersalo,
2005; Tarantola, 2005).

Optimization-based approaches—such as Resample (Song et al., 2023a), DiffPIR (Zhu et al., 2023),
DCDP (Li et al., 2024), and DMPlug (Wang et al., 2024)—have shown strong performance by alter-
nating between denoising, optimization, and resampling to address inverse problems. Unlike DPS,
which attempts to sample from the posterior distribution p(x0 | y), optimization-based approaches
prioritize reconstruction performance over distributional faithfulness. Nevertheless, it’s still unclear
if the iterative procedure converges to the global MAP solution, i.e., argmax p(x0 | y), would it
still be consistent with DPS? Clarifying this foundation could provide both a principled interpreta-
tion and a stronger theoretical basis for optimization-based methods.

In this work, we argue that the optimization steps in these methods inherently solve a local MAP
problem. But the resulting solutions neither converge to the global MAP nor equivalent to posterior
sampling. Instead, they are more likely to reflect a trade-off between the two.
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Figure 1: Comparison of LMAPS with other methods. (a). The relationship between different
alignment approaches; (b). The generation process of unconditional diffusion model; (c). The
generation process of LMAPS.

Our main contributions are summarized as follows:

• Theoretical. We formulate Local MAP Sampling (LMAPS), a new inference framework that
iteratively solves local maximum-a-posteriori subproblems along the diffusion trajectory. We
analyze its relationship to global MAP and DPS, and show that LMAPS unifies Tweedie Moment
Projected Diffusion (TMPD) and optimization-based inverse problem methods under a single
framework. The relationship between LMAPS and existing methods are presented in Figure 1.

• Methodological. To address inverse problems, we introduce a covariance approximation mo-
tivated by Gaussian prior assumption. In addition, we propose an objective reformulation that
improves interpretability and enhances numerical stability.

• Empirical. LMAPS is validated on 10 image restoration tasks (linear, nonlinear, non-
differentiable) and 3 scientific inverse problems. It achieves the best results in 43/60
FFHQ/ImageNet cases, while being more efficient than DAPS. On scientific tasks, LMAPS
consistently attains the highest PSNR, including > 1.5 dB gains on 3 linear inverse scattering
tasks.

2 BACKGROUND

Unconditional diffusion models. The goal of diffusion model is to sample from an unknown distri-
bution π0(x0) given a training dataset D = {xi

0}Ni=1. Given a data point x0 ∼ π0 and a time step t,
a noisy datapoint is sampled from the transition kernel: pt(xt | x0) = N (xt;αtx0, σ

2
t I). Diffusion

process is built by mixture of densities: pt(xt) =
∫
pt(xt | x0)π0(x0)dx0, and DDIM samples

π0(x0) by running an iterative process pt(xt) from time t = T to t = 0 with the initial condition
xT ∼ p(xT ):

xt−∆t = g(m0|t(xt), xt, ϵ), ϵ ∼ N (0, I) (1)

where ϵ ∼ N (0, I) is the fresh noise added at the inference time, m0|t(t, x) = E[x0 | xt] is the ideal
denoiser, and we define:

g(ξ, xt, ϵ) := αt−∆tξ + σt−∆t(
√

1− ρ2t
xt − αtξ

σt
+ ρtϵ), (2)

The goal of posterior sampling is to generate samples under some condition y, i.e., sample x0 from
a posterior distribution, π0|y(x0 | y), where y could be class labels, measurements or text infor-
mation, for example. In this paper, we focus on two representative lines of posterior sampling ap-
proaches with diffusion priors: (i) the family of diffusion posterior sampling (DPS) methods based
on Tweedie’s formula, and (ii) Decoupled Annealing Posterior Sampling (DAPS).

Diffusion Posterior Sampling (DPS) family. DPS generate x0 ∼ π0|y(x0 | y) by running an
iterative process pt|y(xt | y) from time t = T to t = 0 with the initial condition xT ∼ p(xT | y):

xt−∆t = g(m0|t,y(t, xt, y), xt, ϵ), ϵ ∼ N (0, I), (3)
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Algorithm 1 DPS

1: Input: xtN ∼ πT

2: for k = N to 1 do
3: x̃0 = E[x0 | xtk , y]
4: ϵ ∼ N (0, I)
5: xtk−1

= g(x̃0, xtk , ϵ)

6: end for
7: return x0

Algorithm 2 DAPS

1: Input: xtN ∼ πT

2: for k = N to 1 do
3: x̃0 ∼ p(x0 | xtk , y)
4: ϵ ∼ N (0, I)
5: xtk−1 ∼ N (αtk−1x0, σ

2
tk−1

I)
6: end for
7: return x0

Algorithm 3 LMAPS

1: Input: xtN ∼ πT

2: for k = N to 1 do
3: x̃0 = argmax p(x0 | xtk , y)
4: ϵ ∼ N (0, I)
5: xtk−1 = g(x̃0, xtk , ϵ)
6: end for
7: return x0

Figure 2: Comparison of inference algorithm between DPS, DAPS and LMAPS.

where m0|t,y(t, xt, y) = E[x0 | xt, y] is the conditional denoiser. According Tweedie’s formula,

E[x0 | xt, y] = m0|t +
σ2
t

αt
∇xt log p(y | xt). (4)

Eq. (4) connects the conditional denoiser E[x0 | xt, y] with the unconditional denoiser E[x0 | xt].
However, the additional term ∇xt log p(y | xt) is still intractable. One can train a neural network
to approximate ∇xt

log p(y | xt), like classifier guidance (Dhariwal & Nichol, 2021). Training-free
guidance, such as in (Chung et al., 2022), usually approximates ∇xt

log p(y | xt) by a convenient
single-sample approximation, p(y | xt) ≈ p(y | m0|t(xt)), according to chain rule:

∇xt log p(y | xt) ≈ ∇xtm0|t(t, xt)∇m0|t log p(y | m0|t(t, xt)). (5)

Decoupled Annealing Posterior Sampling (DAPS) (Zhang et al., 2025a). Alternatively, DAPS
developed a new framework to sample x0 ∼ π0|y(x0 | y), which is given by the following iterations:

x0|t,y ∼ p(x0 | xt, y)

xt−∆t ∼ N (αt−∆tx0, σ
2
t−∆tI).

(6)

Approximate posterior samples x0|t,y are obtained at each diffusion step using Langevin dynamics.

3 LOCAL MAP SAMPLING

3.1 LOCAL MAP AND GLOBAL MAP

Global MAP. In Bayesian inference, the maximum a posteriori (MAP) estimate is defined as the
single configuration that maximizes the posterior probability,

xMAP
0 := argmax

x0

p(x0 | y). (7)

We refer to this as the global MAP, since it directly targets the mode of the full posterior distribution
after conditioning on the observation y. Unlike posterior sampling methods (e.g., DPS or DAPS),
which produce diverse draws from p(x0 | y), global MAP yields a point estimate corresponding
to (one of) the maximizers of the posterior. This estimate prioritizes fidelity and certainty over
diversity, offering a principled way to recover a solution that best aligns with both the diffusion prior
and the measurement model.

Local MAP. Directly solving for xMAP
0 in high-dimensional, non-convex posteriors can be compu-

tationally intractable. Instead, we consider a sequence of local MAP problems, which implemented
by DDIM-like iteration from time t = T to t = 0 with the initial condition xT ∼ p(xT | y):

x∗
0(t, xt, y) := argmax p(x0 | xt, y), (8a)

xt−∆t = g(x∗
0, xt, ϵ), ϵ ∼ N (0, I). (8b)

Eq. (8a) and Eq. (8b) correspond to the local MAP step and the DDIM update step, respectively. In
particular, the local MAP step is equivalent to:

x∗
0(t, xt, y) = argmin{− log p(x0 | xt)− log p(y | x0)}. (9)

This optimization problem can be solved via gradient descent if log p(x0 | xt) and log p(y | x0) are
known and differentiable, although in practice we approximate p(x0 | xt) as discussed in Sec. 4.
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Figure 3: Comparison of LMAPS, DPS, DAPS and Global MAP on 2D synthetic data, here we
assume p(x0 | y) is a Gaussian mixture which have analytical expression (see App. A). LMAPS is
less likely to generate samples in the between-mode regions or low-density regions.

3.2 THE DIFFERENCE BETWEEN DPS, LOCAL MAP AND GLOBAL MAP

One might expect that the iteration in Eq. (8) can be used to sample from the posterior p(x0 | y) or
converge to global MAP argmax p(x0 | y). Unfortunately, this is generally not the case.

DPS vs. local MAP. DPS evolves xt by using the conditional mean m0|t,y(t, xt, y) = E[x0 | xt, y]
inside the DDIM update (Eq. (3)), whereas local MAP replaces the mean with the conditional mode:
x∗
0(t, xt, y) = argmax p(x0 | xt, y), and then plugs x∗

0 into the same g(·) transition (Eq. (8)).
Consequently, replacing E[x0 | xt, y] with argmax p(x0 | xt, y) alters the forward operator acting
on pt|y(xt) and does not preserve the posterior marginals pt|y .

When are DPS and local MAP equivalent? These two coincide if and only if E[x0 | xt, y] =
argmax p(x0 | xt, y), for example if p(x0 | xt, y) is (uni-variate or multi-variate) Gaussian. The
condition holds, e.g., in linear-Gaussian inverse problems with a Gaussian diffusion prior approxi-
mation (quadratic negative log-density), with detailed discussion in Sec. 4. Outside of this setting
(nonlinear forward models, heavy-tailed likelihoods, mixture-like priors), the posterior p(x0 | xt, y)
is non-Gaussian and the two updates generally differ. With non-Gaussian p(x0 | xt, y), local MAP
introduces a mode-seeking bias and does not reproduce posterior sampling.

Local MAP vs. global MAP. a global MAP solution is any maximizer of xMAP
0 = argmax p(x0 |

y). Local MAP instead solves, at each time t, a conditioned optimization (Eq. (9)): x∗
0(t, xt, y) =

argmax p(x0 | xt, y). Because xt itself depends on the entire past trajectory (initialization, noise
schedule, and random seeds), the sequence of local maximizers need not approach the global maxi-
mizer of p(x0 | y) as t ↓ 0.

In summary, DPS targets p(x0 | y), and LMAPS targets argmax p(x0 | xt, y) at each step. Local
MAP equals DPS only in Gaussian conditional settings; outside them, local MAP generally does not
sample the posterior and can fail to reach the global MAP. We visualize a toy example in Figure 3.
Compared to DPS and DAPS, LMAPS is less likely to generate samples in between-mode regions
or low-density regions.

4 LOCAL MAP SAMPLING FOR INVERSE PROBLEM

The primary goal of solving an inverse problem is to recover an unknown image or signal x0 ∈ Rn

from a prior distribution, π(x0), and noisy measurement y ∈ Rm. Mathematically, the unknown
signal and the measurements are related by a forward model:

y = H(x0) + z (10)

where H(·) : Rn → Rm (with m < n) represents the linear or non-linear forward operator, z ∈ Rm

denotes the noise in the measurement domain. We assume the added noise z is sampled from a
Gaussian distribution N (0, σ2

yI), where σy > 0 denotes the noise level. The forward operator and
Eq. (10) define the likelihood p(y | x0) for both the global or local MAP problems in Sec. 3.1.

The final ingredient for constructing a local posterior and solving the resulting MAP problem is
the choice of prior p(x0 | xt). While the true transition kernel of a diffusion model prior requires
simulation, we can proceed as in previous work (Boys et al., 2023; Song et al., 2023b) by projecting

4
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onto the first two moments using a Gaussian approximation, p(x0 | xt) ≈ N (x0;m0|t,Σ0|t), where
m0|t(xt) := E[x0 | xt]. While Boys et al. (2023) show that ΣTMPD

0|t (xt) := E[(x0 − m0|t)(x0 −

m0|t)
T | xt] =

σ2
t

αt
∇xt

m0|t, we will consider flexible choices of Σ0|t. Finally, the local MAP
problem amounts to solving

x∗
0 = argmin(x0 −m0|t)

TΣ−1
0|t (x0 −m0|t) +

1

σ2
y

∥y −H(x0)∥2. (11)

We will develop methodology for approximately solving the local MAP problem for general non-
linear inverse problems in Sec. 4.1, before discussing the case of linear inverse problems in Sec. 4.2.

4.1 APPROXIMATED SOLUTION FOR NONLINEAR INVERSE PROBLEMS

Isotropic approximation of Σ0|t. For nonlinear H(·), there is no explicit solution for x∗
0 and it

would be more expensive to adopt the moment projection covariance Σ0|t = ∇TMPD
0|t =

σ2
t

αt
∇xt

m0|t.

For a Gaussian prior x0 ∼ N (µ0,Σ0), the exact posterior covariance under the forward noising
process xt = αtx0 + σtϵ, ϵ ∼ N (0, I) is

Σ0|t =
(
Σ−1

0 +
α2

t

σ2
t
I
)−1

=
σ2
t

α2
t

I+O
((σ2

t

α2
t

)2) ⪯ σ2
t

α2
t

I, (12)

so the leading term is isotropic and all anisotropy appears only as higher–order corrections as t → 0
(i.e., σ2

t → 0 and αt → 1). More generally, even for non-Gaussian priors p(x0) with a smooth
log-density, the Hessian satisfies

∇2
x0

[
− log p(x0 | xt)

]
=

α2
t

σ2
t

I+∇2
x0

[
− log p(x0)

]
. (13)

As σ2
t → 0, the isotropic data term α2

t

σ2
t
I dominates the prior curvature, implying that the local

Gaussian approximation to p(x0 | xt) is asymptotically isotropic. We provide a formal statement
and proof in Appendix B. Motivated by the above analysis, we approximate the conditional covari-
ance by an isotropic form Σ0|t ≈ 1

SNR I, where SNR := α2
t /σ

2
t . This approximation captures the

leading-order behavior of the true posterior covariance as t → 0. In practice, we further introduce a
tunable parameter k that adjusts the relative influence between the denoising estimate m0|t and the
measurement y. With this modification, the MAP objective becomes

x∗
0 = argmin

x0

{
SNR

k
∥x0 −m0|t∥2 +

1

σ2
y

∥y −H(x0)∥2
}
. (14)

Objective Reformulation. In the implementation, the weighting of the two terms in Eq. (14) de-
pends on raw signal-to-noise ratios, which can vary drastically with t, which makes it difficult to
choose the appropriate learning rate. For analysis and implementation it is convenient to reformulate
Eq. (14) in a scale-invariant way. Multiplying the objective by a positive constant (which does not
change the minimizer) and introducing parameters k1, k2 > 0 such that 2k2/k21 = k/(α2

tσ
2
y) , we

obtain the equivalent problem

x∗
0 = argmin

{(
1− σ2

t

σ2
t + k21

)
1

2
∥x0 −m0|t∥2 +

σ2
t

σ2
t + k21

k2∥y −H(x0)∥2
}
. (15)

This reformulation has several advantages:

• Convex-combination interpretation. The weights can be written as (1− µt) and µt with
µt = σ2

t /(σ
2
t + k21) ∈ (0, 1). Thus the cost is a convex combination of the prior and data

fidelity terms.

• Automatic annealing. As σ2
t decreases over time, µt gradually shifts the objective from

measurement-driven µt ≈ 1 to prior-driven (µt ≈ 0).

5
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Algorithm 4 Local MAP Sampling (LMAPS) for inverse problems.

1: Input: measurement y, forward operatorH(·), pretrained DM ϵθ(·), number of diffusion step N , diffusion
schedule αt and σt, number of gradient updates K, objective parameters k1, k2, learning rate η.

2: Initialization: xN ∼ N (0, I)
3: for n = N to 1 do
4: x̂0 ← [xn − σnϵθ(xn, n)]/αn ▷ Obtain predicted data
5: r ← σ2

n/(σ
2
n + k2

1 + 10−6)
6: Initialization: x′

0 ← x̂0

7: for k = K to 1 do
8: grad← (x′

0 − x̂0)(1− r) + rk2∇x′
0
∥y −H(x′

0)∥2 ▷ Calculate gradient in Eq. (15)
9: x′

0 = x′
0 − η · grad

10: end for
11: xn−1 ∼ N (αn−1x

′
0, σn−1I) ▷ Forward diffusion step

12: end for
13: Output x0

• Interpretable parameters. The scale k1 plays the role of a trust-region parameter bal-
ancing prior and measurement, while k2 is a scale factor for the consistency loss to the
measurement.

• Numerical stability. Keep weights in [0, 1] avoids extreme scaling from SNR values,
improving conditioning and optimizer robustness.

In the implementation, we adopt gradient descent to solve x∗
0 in Eq. (15), the algorithm of LMAPS

for inverse problems is provided in Algorithm 4.

Relationship to optimization-based methods. Previous optimization-based approaches (Song
et al., 2023a; Li et al., 2024; Zhu et al., 2023) solve for x∗

0 through the following objective:

x∗
0 = argmin ∥x0 −m0|t∥2 + λt∥y −H(x0)∥2, (16)

where λt is a hyperparameter, often chosen heuristically without a principled basis. These methods
can be viewed as special cases of our framework by setting Σ0|t = λtσ

2
yI in Eq. (11).

While the objectives in Eq. (16) and Eq. (15) are indeed equivalent, we found that empirical perfor-
mance strongly depends on our objective reformulation and choices of weighting terms as motivated
above. Further, our local MAP interpretation provides a probabilistic perspective for these objec-
tives and suggests the connection with TMPD in the case of linear inverse problems, as discussed in
Sec. 4.2.

4.2 EXACT SOLUTION FOR LINEAR INVERSE PROBLEMS

As discussed in Sec. 3.2, the local MAP solution matches the posterior mean for Gaussian posteriors
p(xt | x0, y) arising from linear inverse problems p(y | x0) = N (Hx0, σ

2
yI) with a Gaussian

assumption on the prior p(x0 | xt) = N (x0;m0|t,Σ0|t). Solving in closed form for the posterior
mean as in (Boys et al., 2023), we have

x∗
0 = m0|t +Σ0|tH

T (HΣ0|tH
T + σ2

yI)−1(y −Hm0|t).

= m0|t +
σ2
t

αt
∇xt

log p(y | xt)
(17)

We recover Tweedie Moment-Projected Diffusion (Boys et al., 2023) as a special case for ΣTMPD
0|t =

σ2
t

αt
∇xt

m0|t(xt), which is expensive since it requires the gradient with respect to the denoiser m0|t.
Thus, Local MAP Sampling reduced to DPS.

When applying LMAPS to linear inverse problems, we assume Σ0|t = k
SNRt

I as in Sec. 4.1, and
optimize with K steps of gradient descent at each timestep despite the availability of the closed
form in Eq. (17). We include solving LMAPS with analytical solution in App. E.3.

6
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Figure 4: Ablation study on optimization steps vs. diffusion steps (NFEs) for Gaussian Deblurring.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Inverse problems. We evaluate our method on image restoration and scientific inverse problems.
For linear image restoration, we consider (1) super-resolution, (2) Gaussian deblurring, (3) motion
deblurring, (4) inpainting (with a box mask), and (5) inpainting (with a 70% random mask). For
nonlinear image restoration, we consider (1) phase retrieval, (2) high dynamic range (HDR) re-
construction, (3) nonlinear deblurring, (4) JPEG restoration, (5) quantization, where HDR, JPEG
restoration and quantization are nonlinear inverse problems with non-differentiable operators. For
scientific inverse problems, we adopt the benchmark from InverseBench (Zheng et al., 2025), which
includes Linear Inverse Scattering (LIS), Compressed sensing MRI (CS-MRI) and Black Hole Imag-
ing. More details are provided in the App. D.

Dataset and Pretrained models. For image restoration, we evaluated our method on FFHQ (Karras
et al., 2019) 256 × 256 and ImageNet 256 × 256 datasets (Deng et al., 2009). Following DAPS,
we test the same subset of 100 images for both datasets. For scientific inverse problems, we adopt
the same dataset as InverseBench (Zheng et al., 2025). For image restoration tasks, we utilize the
pre-trained checkpoint (Chung et al., 2022) on the FFHQ dataset and the pre-trained checkpoint
(Dhariwal & Nichol, 2021) on the ImageNet dataset. For scientific inverse problems, we adopt the
pre-trained checkpoints from InverseBench.

Baselines. We compare our method with the following baselines: DDNM (Wang et al., 2022),
DDRM (Kawar et al., 2022), ΠGDM (Song et al., 2023b), DPS (Chung et al., 2022), LGD (Song
et al., 2023c), PnP-DM (Wu et al., 2024), FPS (Dou & Song, 2024), MCG-diff (Cardoso et al., 2023),
RedDiff (Mardani et al., 2023), DAPS (Zhang et al., 2025a), DiffPIR (Zhu et al., 2023), DCDP (Li
et al., 2024), SITCOM (Alkhouri et al., 2024), DMPlug (Wang et al., 2024), MGDM (Janati et al.,
2025), MAP-GA (Gutha et al., 2025), MMPS (Rozet et al., 2024).

Metrics. For image restoration tasks, we report Peak Signal-to-Noise Ratio (PSNR), Structural
SIMilarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018). For scientific inverse problems, we primarily present PSNR in the main text, while additional
task-specific metrics are provided in the App. E.

5.2 MAIN RESULTS

Ablation studies. Figure 4 presents ablation studies on optimization steps across different diffusion
steps. The best performance is typically observed at NFE = 200–500, where increasing the number
of optimization steps per diffusion step. yields notable improvements. Compared to the baseline
SITCOM (600 NFEs with gradient computation through the U-Net), LMAPS attains similar perfor-
mance while requiring substantially fewer computational resources. We report runtime comparisons
for various methods on Deblurring task in Table 3 (App. C).

Image restoration. In Table 1, we present quantitative results for image restoration tasks on FFHQ
and ImageNet datasets. The table covers 10 tasks, 3 restoration quality metrics, and 2 datasets,
totaling 60 results. LMAPS achieves the best performance in 43 out of 60 cases. Generally, LMAPS
demonstrates superior performance than DAPS for most of the tasks with less computational cost.
LMAPS improves > 2dB PSNR across motion deblurring, JPEG restoration and quantization tasks.

Scientific inverse problems. In Table 2, we report quantitative results of solving scientific inverse
problems: Linear Inverse Scattering (LIS), CS-MRI, Black Hole Imaging. LMAPS demonstrates
the best PSNR across all tasks, improved more than 1.5 dB PSNR for 3 LIS tasks.
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Table 1: Quantitative evaluation of solving image restoration FFHQ (left) and ImageNet (right),
with Gaussian noise (σy = 0.05): 5 linear and 5 nonlinear tasks (3 non-differentiable). Results are
reported as mean PSNR, SSIM, and LPIPS across 100 images. Best results are highlighted in bold.
For phase retrieval, DAPS and LMAPS select the best result from 4 runs for each image.

Task Method FFHQ ImageNet
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SR 4×

DPS 25.86 0.753 0.269 21.13 0.489 0.361
DDRM 26.58 0.782 0.282 22.62 0.521 0.324
DDNM 28.03 0.795 0.197 23.96 0.604 0.475
DCDP 28.66 0.807 0.178 – – –
FPS-SMC 28.42 0.813 0.204 24.82 0.703 0.313
DiffPIR 26.64 – 0.260 23.18 – 0.371
DAPS 29.07 0.818 0.177 25.89 0.694 0.276
DMPlug 28.86 0.820 0.128 – – –
MMPS 28.45 0.811 0.106 – – –
SITCOM 30.55 0.864 0.154 27.07 0.746 0.228
MGDM 27.81 0.798 0.111 25.44 0.684 0.246
MAP-GA 29.97 0.844 0.178 26.00 0.708 0.267
LMAPS 30.74 0.869 0.165 26.72 0.739 0.242

Inpaint (Box)

DPS 22.51 0.792 0.209 18.94 0.722 0.257
DDRM 22.26 0.801 0.207 18.63 0.733 0.254
DDNM 24.47 0.837 0.235 21.64 0.748 0.319
DCDP 23.89 0.760 0.163 – – –
FPS-SMC 24.86 0.823 0.146 22.16 0.726 0.208
DAPS 24.07 0.814 0.133 21.43 0.725 0.214
SITCOM 24.95 0.849 0.131 19.72 0.784 0.164
MMPS 23.38 0.853 0.084 – – –
MAP-GA 24.77 0.850 0.123 20.71 0.802 0.198
LMAPS 25.17 0.876 0.108 21.25 0.803 0.204

Inpaint (Random)

DPS 25.46 0.823 0.203 23.52 0.745 0.297
DDNM 29.91 0.817 0.121 31.16 0.841 0.191
DCDP 30.69 0.842 0.142 – – –
FPS-SMC 28.21 0.823 0.261 24.52 0.701 0.316
DAPS 31.12 0.844 0.098 28.44 0.775 0.135
SITCOM 33.96 0.928 0.082 29.74 0.855 0.115
DMPlug 31.55 0.892 0.110 – – –
MMPS 31.91 0.905 0.041 – – –
MAP-GA 32.00 0.908 0.088 28.09 0.830 0.143
LMAPS 34.51 0.938 0.066 30.59 0.876 0.100

Gaussian Deblurring

DPS 25.87 0.764 0.219 20.31 0.598 0.397
DDRM 24.93 0.732 0.239 21.26 0.564 0.443
DCDP 27.50 0.699 0.304 – – –
FPS-SMC 26.54 0.773 0.253 23.91 0.601 0.387
DiffPIR 27.36 – 0.236 22.80 – 0.355
DAPS 29.19 0.817 0.165 26.15 0.684 0.253
SITCOM 29.93 0.846 0.172 26.39 0.716 0.260
MGDM 27.78 0.791 0.110 25.50 0.682 0.289
LMAPS 30.88 0.867 0.158 26.65 0.727 0.250

Motion Deblurring

DPS 24.52 0.801 0.246 18.96 0.629 0.423
DCDP 25.08 0.512 0.364 – – –
FPS-SMC 27.39 0.826 0.227 24.52 0.647 0.326
DiffPIR 26.57 – 0.255 24.01 – 0.366
DAPS 29.66 0.847 0.157 27.86 0.766 0.196
SITCOM 29.36 0.840 0.185 26.76 0.746 0.242
MMPS 31.15 0.870 0.075 – – –
MGDM 26.72 0.776 0.124 24.52 0.659 0.278
LMAPS 32.62 0.902 0.117 28.42 0.796 0.204

Phase Retrieval

DPS 17.64±2.97 0.441±0.129 0.410±0.090 16.81±3.61 0.427±0.143 0.447±0.099

RED-diff 15.60±4.48 0.398±0.195 0.596±0.092 14.98±3.75 0.386±0.057 0.536±0.129

MGDM 19.24±8.22 0.533±0.271 0.346±0.254 13.77±4.30 0.293±0.196 0.578±0.169

DAPS 30.63±3.13 0.851±0.072 0.139±0.060 21.39±6.59 0.473±0.226 0.372±0.166

LMAPS 31.56±3.02 0.867±0.057 0.126±0.052 22.86±7.50 0.596±0.267 0.313±0.176

Nonlinear Deblurring

DPS 23.39±2.01 0.263±0.082 0.278±0.060 22.49±3.20 0.591±0.101 0.306±0.081

RED-diff 30.86±0.51 0.795±0.028 0.160±0.034 30.07±1.41 0.754±0.023 0.211±0.083

DCDP 27.92±2.64 0.779±0.067 0.183±0.051 – – –
DAPS 28.29±1.77 0.783±0.036 0.155±0.032 27.73±3.23 0.724±0.048 0.169±0.056

DMPlug 27.65±2.98 0.795±0.080 0.181±0.056 – – –
SITCOM 29.19±2.35 0.785±0.093 0.190±0.014 28.55±3.87 0.798±0.092 0.149±0.050

MGDM 23.88±2.61 0.664±0.081 0.271±0.085 22.63±2.98 0.583±0.122 0.394±0.117

LMAPS 29.93±1.83 0.855±0.035 0.150±0.034 28.03±3.62 0.774±0.099 0.183±0.065

High Dynamic Range

DPS 22.73±6.07 0.591±0.141 0.264±0.156 19.23±2.52 0.582±0.082 0.503±0.106

DAPS 27.12±3.53 0.752±0.041 0.162±0.072 26.30±4.10 0.717±0.067 0.175±0.107

SITCOM 28.02±3.28 0.812±0.108 0.174±0.081 25.59±3.66 0.170±0.141 0.198±0.177

MGDM 25.73±4.28 0.796±0.151 0.100±0.096 23.43±4.68 0.754±0.165 0.173±0.152

LMAPS 28.87±3.39 0.884±0.082 0.141±0.074 27.02±4.00 0.860±0.096 0.158±0.090

JPEG Restoration (QF=5) ΠGDM 25.04±1.28 0.755±0.060 0.270±0.045 22.41±2.23 0.606±0.144 0.417±0.087

LMAPS 27.25±1.37 0.814±0.045 0.260±0.043 24.96±2.46 0.703±0.124 0.340±0.089

Quantization ΠGDM 25.82±1.29 0.789±0.063 0.255±0.046 22.34±2.26 0.425±0.110 0.605±0.156

LMAPS 29.51±1.14 0.844±0.467 0.229±0.474 26.92±2.25 0.748±0.114 0.307±0.099
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Table 2: Quantitative evaluation of solving scientific inverse problems is conducted using PSNR as
the evaluation metric. The tasks include: (i) three LIS settings with different numbers of receivers
(NR = 360, 180, 60); (ii) four CS-MRI settings with varying subsampling ratios (4×, 8×) and
measurement types (noiseless and raw); and (iii) three Black Hole Imaging settings with different
observation time ratios (3%, 10%, 100%).

Method LIS CS-MRI Black Hole

NR=360 NR=180 NR=60 4× noiseless 4× raw 8× noiseless 8× raw 100% 10% 3%

DDRM 32.13 28.08 20.44 – – – – – – –
DDNM 26.28 35.02 29.24 – – – – – – –
ΠGDM 27.93 26.40 20.07 – – – – – – –
DPS 32.06 31.80 27.37 26.13 25.83 20.82 23.00 25.86 24.36 24.20
LGD 27.90 27.84 20.49 – – – – 21.22 22.08 22.51
DiffPIR 34.24 34.01 26.32 28.31 27.60 26.78 26.26 25.01 23.84 24.12
PnP-DM 33.94 31.82 24.72 31.80 27.62 29.33 25.28 26.07 24.57 24.25
DAPS 34.64 33.16 25.88 31.48 28.61 29.01 27.10 25.60 23.99 23.54
RED-diff 36.56 35.41 27.07 29.36 28.71 26.76 27.33 23.77 22.53 20.74
FPS 33.24 29.62 21.32 – – – – – – –
MCG-diff 30.94 28.06 21.00 – – – – – – –
LMAPS 38.07 37.19 30.75 32.83 28.77 30.50 27.43 26.79 24.83 24.66

6 RELATED WORK

Recent advances in conditional generation have led to breakthroughs in text-to-image synthesis, se-
mantic editing, and domain-specific applications such as image-to-image translation and controlled
signal reconstruction (Song et al., 2023c; Ye et al., 2024; Skreta et al., 2025; Singhal et al., 2025;
Zheng et al., 2023). These methods have been especially impactful in solving inverse problems, in-
cluding image restoration and scientific reconstruction tasks (Wang et al., 2022; Zheng et al., 2025).
A wide range of approaches have been developed, spanning linear projection methods (Wang et al.,
2022; Kawar et al., 2022; Zhang et al., 2025b; Dou & Song, 2024), Monte Carlo sampling (Wu
et al., 2023; Phillips et al., 2024), variational inference (Feng et al., 2023; Mardani et al., 2023;
Janati et al., 2024), and optimization-based strategies (Song et al., 2023a; Zhu et al., 2023; Li et al.,
2024; Wang et al., 2024; Alkhouri et al., 2024; He et al., 2023).

Among these, Diffusion Posterior Sampling (DPS) and its variants (Zhang et al., 2025a; Chung
et al., 2022; Song et al., 2023c; Yu et al., 2023; Rout et al., 2024; Yang et al., 2024; Bansal et al.,
2023; Boys et al., 2023; Song et al., 2023b; Ho & Salimans, 2022) have gained wide adoption due
to their strong empirical performance and interpretability, as they directly sample from the posterior
distribution p(x0 | y). More recently, attention has shifted toward maximum a posteriori (MAP)
estimation with diffusion priors. Xu et al. (2025) argued that DPS is in fact more consistent with the
principle of MAP estimation rather than true posterior sampling, although their proposed sampling
algorithm differs from ours. Finally, Gutha et al. (2025) proposed sampling from the global MAP
solution, argmax p(x0 | y), though their approach is largely restricted to linear inverse problems.

7 CONCLUSION

We presented Local MAP Sampling (LMAPS), a new inference framework that that iteratively
solves local maximum-a-posteriori subproblems along the diffusion trajectory. By introducing a
principled covariance approximation, an objective reformulation, and a gradient strategy for non-
differentiable operators, LMAPS provides both theoretical clarity and practical effectiveness. Ex-
periments across diverse image restoration and scientific inverse problems show that LMAPS con-
sistently improves reconstruction quality, particularly on challenging tasks such as Box Inpainting,
Phase Retrieval, JPEG restoration, and HDR.

Future work. In Bayesian inference, the global MAP plays a critical role and offers valuable in-
sights contrasted with posterior sampling. Yet its utility has been largely overlooked, and efficiently
solving the global MAP with diffusion priors remains an open challenge. Advancing in this direction
could enable more probable reconstructions and make contributions to solving inverse problems.
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A GAUSSIAN MIXTURE TOY EXAMPLE

To gain intuition about posterior mean and MAP estimates in diffusion models, we consider a
tractable toy prior π0(x0) given by a Gaussian mixture:

π0(x0) =

K∑
k=1

πk N (x0; µk,Σk), (18)

where πk > 0 and
∑

k πk = 1.

Forward kernel. As in the unconditional diffusion model, the forward corruption is

pt(xt | x0) = N (xt; αtx0, σ
2
t I). (19)

Thus the marginal pt(xt) =
∫
pt(xt | x0)π0(x0) dx0 is itself a Gaussian mixture.

Posterior distribution. By Bayes’ rule,

p(x0 | xt) ∝ pt(xt | x0)π0(x0). (20)

Conditioned on mixture component k, the posterior remains Gaussian:

p(x0 | xt, k) = N (x0; mk, Sk), (21)

Sk =
(
Σ−1

k +
α2

t

σ2
t
I
)−1

, (22)

mk = Sk

(
Σ−1

k µk + αt

σ2
t
xt

)
. (23)

The responsibilities are

rk(xt) =
πk N (xt; αtµk, α

2
tΣk + σ2

t I)∑
j πj N (xt; αtµj , α2

tΣj + σ2
t I)

. (24)

Hence the full posterior is itself a Gaussian mixture:

p(x0 | xt) =

K∑
k=1

rk(xt)N (x0; mk, Sk). (25)

Posterior mean. The ideal denoiser in this case has a closed form:

m0|t(xt) := E[x0 | xt] =

K∑
k=1

rk(xt)mk. (26)

For a fixed xt, the posterior mean is a responsibility-weighted average of the component-wise pos-
terior means, and can fall between mixture modes when the conditional posterior is multimodal.

Local MAP. Each component posterior has its mode at mk. A local MAP predictor is obtained by
selecting the component with the highest posterior peak density,

k⋆(xt) = argmax
k

rk(xt)√
(2π)d detSk

, x∗
0(t, xt) = mk⋆(xt). (27)

Unlike the posterior mean, this estimate is mode-seeking and stays in high-density regions.

DDIM iteration. Replacing the generic denoiser m0|t(xt) in the DDIM update with either the
posterior mean, local MAP yields 2 distinct variants of the reverse process:

xt−∆t = g(m0|t(xt), xt, ϵ) (posterior mean) (28)

xt−∆t = g(x∗
0(t, xt), xt, ϵ) (local MAP) (29)

This toy setup makes explicit the distinction between mean-based denoising and MAP-based de-
noising.
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Bias toward high-posterior modes. The above construction allows us to make precise in which
sense local MAP is biased toward high-density regions of the posterior. For clarity, consider the
special case where all mixture components share the same covariance, Σk = Σ, so that Sk and
detSk are independent of k. In this setting, the local MAP predictor simplifies to

k⋆(xt) = argmax
k

rk(xt), x∗
0(t, xt) = mk⋆(xt), (30)

that is, it selects the component with the largest responsibility. Equivalently, x∗
0(t, xt) is the maxi-

mizer of the joint posterior over the discrete–continuous pair (k, x0),

(k⋆, x⋆
0) = argmax

k,x0

p(x0, k | xt) = argmax
k

p(k | xt), (31)

where the maximizer over x0 within each component is mk. Thus local MAP coincides with
the MAP estimator of the latent mixture index k (under 0–1 loss), followed by the corresponding
component-wise posterior mode mk.

Let Rk = {xt : k
⋆(xt) = k} denote the region of the diffusion state space where component k is

selected. If we draw xt ∼ pt(xt) and then apply local MAP, the probability that LMAPS outputs a
sample associated with component k is

qt(k) := P
[
k⋆(xt) = k

]
=

∫
Rk

pt(xt) dxt. (32)

By definition of Rk, each xt ∈ Rk satisfies rk(xt) ≥ rj(xt) for all j ̸= k, so Rk collects those
diffusion states where component k dominates the posterior responsibilities. Consequently, qt(k) is
concentrated on modes with large posterior weight: whenever a component has small responsibilities
rk(xt) for almost all xt, its region Rk has small measure and qt(k) is correspondingly small.

In the well-separated mixture regime, where the means {µk} are far apart relative to Σ and the
diffusion noise, the posterior responsibilities rk(xt) are nearly 0–1 valued. In this case, each region
Rk is essentially the basin of attraction of mode k, and

qt(k) ≈
∫

basin(k)
pt(xt) dxt, (33)

which is dominated by components with the highest posterior mass. Thus, even though LMAPS
does not sample from the exact posterior mixture

∑
k rk(xt)N (mk, Sk), its outputs are systemati-

cally biased toward high-posterior modes and avoid low-density regions between them. In contrast,
posterior mean denoising yields mode-averaging estimates that may lie in low-density areas, and lo-
cal posterior sampling explores all mixture components proportionally to their posterior mass. This
toy example therefore formalizes the intuition that LMAPS interpolates between global MAP and
posterior sampling by producing samples that concentrate on highly likely regions of the posterior
while remaining stochastic along the diffusion trajectory.

B POSTERIOR COVARIANCE AND ASYMPTOTIC ISOTROPY

Proposition 1 (Gaussian prior). Consider the forward noising process

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), (34)

and a Gaussian prior x0 ∼ N (µ0,Σ0) with Σ0 ≻ 0. Then the posterior p(x0 | xt) is Gaussian with
covariance

Σ0|t =
(
Σ−1

0 +
α2

t

σ2
t
I
)−1 ⪯ σ2

t

α2
t

I. (35)

Moreover, as σ2
t /α

2
t → 0, the covariance admits the asymptotic expansion

Σ0|t =
σ2
t

α2
t

I+O
((σ2

t

α2
t

)2)
, (36)

so the leading term is isotropic and any anisotropy appears only in higher–order corrections.
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Proof. Since (x0, xt) is jointly Gaussian under the model

x0 ∼ N (µ0,Σ0), xt | x0 ∼ N (αtx0, σ
2
t I), (37)

the posterior p(x0 | xt) is Gaussian. Equivalently, we can view xt as a linear observation of x0 with
observation matrix H = αtI and noise covariance R = σ2

t I. The standard linear Gaussian posterior
formula (or Kalman update) yields

Σ−1
0|t = Σ−1

0 +H⊤R−1H = Σ−1
0 +

α2
t

σ2
t

I, (38)

so
Σ0|t =

(
Σ−1

0 +
α2

t

σ2
t
I
)−1

. (39)

For the Loewner-order upper bound, note that Σ−1
0 ⪰ 0, so

Σ−1
0 +

α2
t

σ2
t
I ⪰ α2

t

σ2
t
I. (40)

For positive definite matrices, the matrix inverse is order-reversing: if A ⪰ B ≻ 0, then A−1 ⪯
B−1. Applying this with A = Σ−1

0 +
α2

t

σ2
t
I and B =

α2
t

σ2
t
I gives

Σ0|t = A−1 ⪯ B−1 =
σ2
t

α2
t

I. (41)

For the asymptotic expansion, factor out the isotropic term:

Σ0|t =
(
Σ−1

0 +
α2

t

σ2
t
I
)−1

=
σ2
t

α2
t

(
I+ σ2

t

α2
t
Σ−1

0

)−1

. (42)

Let εt :=
σ2
t

α2
t

. For εt → 0 we may use the Neumann series(
I+ εtΣ

−1
0

)−1
= I− εtΣ

−1
0 +O(ε2t ), (43)

which yields

Σ0|t = εt

(
I− εtΣ

−1
0 +O(ε2t )

)
= εt I+O(ε2t ) =

σ2
t

α2
t

I+O
((σ2

t

α2
t

)2)
. (44)

The leading term is therefore isotropic, and any anisotropy is of order
(σ2

t

α2
t

)2
.

Proposition 2 (General prior and asymptotic isotropy). Assume the forward noising process

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), (45)

and an arbitrary prior density p(x0) such that − log p(x0) is twice continuously differentiable. Then
the negative log-posterior is

− log p(x0 | xt) = − log p(x0) +
1

2σ2
t

∥xt − αtx0∥2 + const, (46)

and its Hessian with respect to x0 satisfies

∇2
x0

[
− log p(x0 | xt)

]
=

α2
t

σ2
t

I+Hprior(x0), (47)

where Hprior(x0) := ∇2
x0

[
− log p(x0)

]
. If Hprior(x0) is bounded in operator norm on the region of

interest, then as σ2
t → 0 (and αt → 1), the local Gaussian (Laplace) approximation to p(x0 | xt)

has covariance

ΣLaplace
0|t (x0) =

σ2
t

α2
t

I+O
((σ2

t

α2
t

)2)
, (48)

and is therefore asymptotically isotropic as t → 0.
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Table 3: Sampling time of LMAPS on Deblurring tasks with FFHQ 256. The non-parallel single-
image sampling time on the FFHQ 256 dataset using one NVIDIA A6000 GPU. NFE refers to
diffusion timesteps, while optimization steps refer to inner loop optimizations in respective methods.

Configuration ODE Steps Optimization Steps NFE Second/Image LPIPS

DAPS 5 100 200 110 0.165
SITCOM – 30 600 73 0.172

DPS – – 1000 138 0.219

MAPS

– 100 200 61 0.158
– 10 100 6 0.190
– 100 20 6 0.156
– 20 100 6 0.176
– 20 20 2 0.180

Proof. The expression for − log p(x0 | xt) follows directly from Bayes’ rule and the Gaussian
likelihood:

p(xt | x0) ∝ exp

(
− 1

2σ2
t

∥xt − αtx0∥2
)
. (49)

Taking the Hessian with respect to x0 gives

∇2
x0

[
1

2σ2
t

∥xt − αtx0∥2
]
=

α2
t

σ2
t

I, (50)

while the prior contributes
∇2

x0

[
− log p(x0)

]
= Hprior(x0). (51)

Therefore,

Hpost(x0) := ∇2
x0

[
− log p(x0 | xt)

]
=

α2
t

σ2
t

I+Hprior(x0). (52)

Assume ∥Hprior(x0)∥op ≤ C for some constant C. Then, in the regime σ2
t → 0 and αt → 1, the

dominant term in Hpost(x0) is the isotropic matrix α2
t

σ2
t
I. Define again εt :=

σ2
t

α2
t

and write

Hpost(x0) =
α2
t

σ2
t

(
I+ εtHprior(x0)

)
. (53)

The local Gaussian (Laplace) approximation uses ΣLaplace
0|t (x0) = Hpost(x0)

−1. Applying the Neu-

mann series to
(
I+ εtHprior(x0)

)−1
for small εt yields(

I+ εtHprior(x0)
)−1

= I− εtHprior(x0) +O(ε2t ), (54)

so

ΣLaplace
0|t (x0) = εt

(
I− εtHprior(x0) +O(ε2t )

)
= εt I+O(ε2t ) =

σ2
t

α2
t

I+O
((σ2

t

α2
t

)2)
. (55)

Thus the leading term of the local covariance is isotropic, and any anisotropy is of strictly higher
order in σ2

t /α
2
t .

C SAMPLING EFFICIENCY

We present a comparison of sampling times among LMAPS, DAPS, and SITCOM. Among them,
SITCOM and DAPS achieve the third- and second-best results, respectively, while LMAPS demon-
strates the best performance with lower computation time.
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D EXPERIMENT DETAILS

D.1 DATASET DETAILS

For scientific inverse problems, we adopt fluorescence microscopy images from InverseBench
(Zheng et al., 2025) on linear inverse scattering tasks, General Relativistic MagnetoHydroDynamic
(GRMHD) (Mizuno, 2022) on black hole imaging, and multi-coil raw k-space data from the fastMRI
knee dataset (Zbontar et al., 2018) on CS-MRI.

D.2 INVERSE PROBLEM DETAILS

Baselines from DAPS (Zhang et al., 2025a). For image restoration tasks include: (1) super-
resolution, (2) Gaussian deblurring, (3) motion deblurring, (4) inpainting (with a box mask), and
(5) inpainting (with a 70% random mask), (6) phase retrieval, (7) high dynamic range (HDR) recon-
struction, (8) nonlinear deblurring, we follow the same experimental setup as in DAPS.

InverseBench (Zheng et al., 2025). For scientific inverse problems, we adopt the setting introduced
in InverseBench.

JPEG Restoration. We address JPEG restoration with quality factors of QF = 5.

Quantization. We model quantization by discretizing the measurement into 2nbits uniformly spaced
levels. Formally, the forward operator is defined as

H(x) =
⌊x · (2nbits − 1) + 0.5⌋

2nbits − 1
, (56)

which rounds the input x to the nearest quantization level. In this work, we focus on the challenging
case of 2-bit quantization, where only four distinct measurement levels are available, significantly
reducing precision and making accurate reconstruction more difficult.

D.3 BASELINE DETAILS

For SITCOM (Alkhouri et al., 2024), we use the hyperparameter configuration recommended in the
original paper, with N = 20 and K = 30, resulting in 600 NFEs and requiring gradient computation
with respect to the U-Net.

For DMPlug (Wang et al., 2024), we set epoch = 1000 for SR, Inpainting (Random) and Nonlinear
Deblurring, other parameters are the same as suggested in the original paper.

For MMPS (Rozet et al., 2024), we set steps as 100, the maximum number of iterations N = 5.

For non-differentiable inverse problems, we use ΠGDM (Song et al., 2023b) as our baseline ap-
proaches, we adopt NFE = 100 as suggested in the original paper.

Other baselines we adopt the same reported results as in DAPS (Zhang et al., 2025a) and In-
verseBench (Zheng et al., 2025).

D.4 COMPLETE LIST OF HYPER-PARAMETERS

We provide complete lost of hyper-paramers of LMAPS for different inverse problems in Table 4.

E ADDITIONAL EXPERIMENT RESULTS

E.1 SCIENTIFIC INVERSE PROBLEMS

We present additional evaluation metrics on linear inverse scattering in Table 5, compressed sensing
MRI in Table 6, and black hole imaging in Table 7.

E.2 ADDITIONAL VISUALIZATION

Additional visualization are presented in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.
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Tasks Annealing step Gradient step Learning rate η k1 k2

SR 4× 200 100 0.05 0.15 20
Inpaint (Box) 200 100 0.02 0.5 50

Inpaint (Random) 200 100 0..01 0.22 100
Gaussian Deblurring 200 100 0.01 0.22 100
Motion Deblurring 200 100 0.01 0.25 100

Phase Retrieval 200 100 0.1 10 0.3
Nonlinear Deblurring 200 100 0.02 0.05 1
High Dynamic Range 200 100 0.04 0.2 10

JPEG Restoration 200 100 0.2 0.5 5
Quantization 200 20 0.2 0.5 5

LIS (NR=360) 200 50 1 0 5000
LIS (NR=180) 200 50 1 0 10000
LIS (NR=60) 200 50 1 0 30000

CS-MRI (4×, noiseless) 200 100 0.01 0 100
CS-MRI (4×, raw) 200 100 0.01 0.4 150

CS-MRI (8×, noiseless) 200 100 0.01 0.4 150
CS-MRI (8×, raw) 200 100 0.01 0.4 150

Black Hole (ratio=100%) 100 200 0.01 0.1 0.01
Black Hole (ratio=10%) 100 200 0.005 0.1 0.03
Black Hole (ratio=3%) 100 200 0.01 0.05 0.05

Table 4: Complete List of hyper-parameters of LMAPS for different inverse problems.

Table 5: Results on Linear inverse scattering. PSNR and SSIM of different algorithms on linear
inverse scattering. Noise level σy = 10−4.

Number of receivers 360 180 60
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Traditional
FISTA-TV 32.126 (2.139) 0.979 (0.009) 26.523 (2.678) 0.914 (0.040) 20.938 (2.513) 0.709 (0.103)

PnP diffusion prior
DDRM 32.598 (1.825) 0.929 (0.012) 28.080 (1.516) 0.890 (0.019) 20.436 (1.210) 0.545 (0.037)
DDNM 36.381 (1.098) 0.935 (0.017) 35.024 (0.993) 0.895 (0.027) 29.235 (3.376) 0.917 (0.022)
IIGDM 27.925 (3.211) 0.889 (0.072) 26.412 (3.430) 0.816 (0.114) 20.074 (2.608) 0.540 (0.198)
DPS 32.061 (2.163) 0.846 (0.127) 31.798 (2.163) 0.862 (0.123) 27.372 (3.415) 0.813 (0.133)
LGD 27.901 (2.346) 0.812 (0.037) 27.837 (3.031) 0.803 (0.034) 20.491 (3.031) 0.552 (0.077)
DiffPIR 34.241 (2.310) 0.988 (0.006) 34.010 (2.269) 0.987 (0.006) 26.321 (3.272) 0.918 (0.028)
PnP-DM 33.914 (2.054) 0.988 (0.006) 31.817 (2.073) 0.981 (0.008) 24.715 (2.874) 0.909 (0.046)
DAPS 34.641 (1.693) 0.957 (0.006) 33.160 (1.704) 0.944 (0.009) 25.875 (3.110) 0.885 (0.030)
RED-diff 36.556 (2.292) 0.981 (0.005) 35.411 (2.166) 0.984 (0.004) 27.072 (3.330) 0.935 (0.037)
FPS 33.242 (1.602) 0.870 (0.026) 29.624 (1.651) 0.710 (0.040) 21.323 (1.445) 0.460 (0.030)
MCG-diff 30.937 (1.964) 0.751 (0.029) 28.057 (1.672) 0.631 (0.042) 21.004 (1.571) 0.445 (0.028)

LMAPS 38.074 (1.905) 0.994 (0.001) 37.188 (1.815) 0.990 (0.001) 30.759 (3.539) 0.967 (0.211)

E.3 COMPARISON BETWEEN ANALYTICAL SOLUTION AND GRADIENT DESCENT FOR
SOLVING LMAPS

We present the comparison between analytical solution and gradient descent for solving LMAPS in
Table 8. The results demonstrate that the analytical solution closely matches the gradient-descent-
based optimizer, with only minor differences in reconstruction metrics. This confirms that our ana-
lytical formulation is a reliable and efficient approximation for solving the LMAPS objective.

E.4 ADDITIONAL RESULTS ON NONLINEAR DEBLURRING

For Nonlinear Deblurring, the forward operator call is relatively expensive. The results on solving
Nonlinear Deblurring with different annealing step and gradient step are shown in Table 9. LMPAPS
can achieve competitive performance with only 100 annealing steps and 20 gradient steps.
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Table 6: Results on compressed sensing MRI. Mean and standard deviation are reported over 94 test
cases. Underline: the best across all methods. Bold: the best across PnP DM methods.

Methods ×4 Simulated (noiseless) ×4 Raw ×8 Simulated (noiseless) ×8 Raw
PSNR ↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓

Traditional
Wavelet+ℓ1 29.45 (1.776) 0.690 (0.121) 0.306 (0.049) 26.47 (1.508) 0.598 (0.122) 31.601 (15.286) 25.97 (1.761) 0.575 (0.105) 0.318 (0.042) 24.08 (1.602) 0.511 (0.106) 22.362 (10.733)
TV 27.03 (1.635) 0.518 (0.123) 5.748 (1.283) 26.22 (1.578) 0.509 (0.123) 32.269 (15.414) 24.12 (1.900) 0.432 (1.112) 5.087 (1.049) 23.70 (1.857) 0.427 (0.112) 23.048 (10.854)

End-to-end
Residual UNet 32.27 (1.810) 0.808 (0.080) – 31.70 (1.970) 0.785 (0.095) – 29.75 (1.675) 0.750 (0.088) – 29.36 (1.746) 0.733 (0.100) –
E2E-VarNet 33.40 (2.097) 0.836 (0.079) – 31.71 (2.540) 0.756 (0.102) – 30.67 (1.761) 0.769 (0.085) – 30.45 (1.940) 0.736 (0.103) –

PnP diffusion prior
CSGM 28.78 (6.173) 0.710 (0.147) 1.518 (0.433) 25.17 (6.246) 0.582 (0.167) 31.642 (15.382) 26.15 (6.383) 0.625 (0.158) 1.142 (1.078) 21.17 (8.314) 0.425 (0.192) 22.088 (10.740)
ScoreMRI 25.97 (1.681) 0.468 (0.087) 10.828 (1.731) 25.60 (1.618) 0.463 (0.086) 33.697 (15.209) 25.20 (1.526) 0.405 (0.079) 8.360 (1.381) 24.74 (1.481) 0.403 (0.080) 24.028 (10.663)
RED-diff 29.36 (7.710) 0.733 (0.131) 0.509 (0.077) 28.71 (2.755) 0.626 (0.126) 31.591 (15.368) 26.76 (6.969) 0.647 (0.124) 0.485 (0.068) 27.33 (2.441) 0.563 (0.117) 22.336 (10.838)
DiffPIR 28.31 (1.598) 0.632 (0.107) 10.545 (2.466) 27.60 (1.470) 0.624 (0.111) 34.015 (15.522) 26.78 (1.556) 0.588 (0.113) 7.787 (1.741) 26.26 (1.458) 0.590 (0.113) 24.208 (10.922)
DPS 26.13 (4.247) 0.620 (0.105) 9.092 (2.925) 25.83 (2.197) 0.548 (0.116) 35.009 (15.967) 22.82 (4.777) 0.536 (0.111) 6.737 (1.928) 23.00 (3.205) 0.507 (0.109) 24.842 (11.263)
DAPS 31.48 (1.988) 0.762 (0.089) 1.566 (0.390) 28.61 (2.197) 0.689 (0.102) 31.115 (15.497) 29.01 (1.712) 0.681 (0.098) 1.280 (0.301) 27.10 (2.034) 0.629 (0.107) 22.729 (10.926)
PnP-DM 31.80 (3.473) 0.780 (0.096) 4.701 (0.675) 27.62 (3.425) 0.679 (0.117) 32.261 (15.169) 29.33 (3.081) 0.704 (0.105) 3.421 (0.504) 25.28 (3.102) 0.607 (0.117) 22.879 (10.712)

LMAPS 32.83 (2.581) 0.740 (0.117) 3.500 (0.544) 28.77 (1.813) 0.656 (0.102) 32.476 (15.303) 30.50 (2.181) 0.660 (0.116) 2.565 (0.399) 27.43 (1.689) 0.600 (0.109) 23.021 (10.804)

Table 7: Results on black hole imaging. PSNR and Chi-squared of different algorithms on black
hole imaging. Gain and phase noise and thermal noise are added based on EHT library.

Methods 3% 10% 100%
PSNR Blur PSNR χ̃2

cp χ̃2
logca PSNR Blur PSNR χ̃2

cp χ̃2
logca PSNR Blur PSNR χ̃2

cp χ̃2
logca

Traditional
SMILI 18.51 (1.39) 23.08 (2.12) 1.478 (0.428) 4.348 (3.827) 20.85 (2.90) 25.24 (3.86) 1.209 (0.169) 21.788 (12.491) 22.67 (3.13) 27.79 (4.02) 1.878 (0.952) 17.612 (10.299)
EHT-Imaging 21.72 (3.39) 25.66 (5.04) 1.507 (0.485) 1.695 (0.539) 22.67 (3.46) 26.66 (3.93) 1.166 (0.156) 1.240 (0.205) 24.28 (3.63) 28.57 (4.52) 1.251 (0.250) 1.259 (0.316)

PnP diffusion prior
DPS 24.20 (3.72) 30.83 (5.58) 8.024 (24.336) 5.007 (5.750) 24.36 (3.72) 30.79 (5.75) 13.052 (43.087) 6.614 (26.789) 25.86 (3.90) 32.94 (6.19) 8.759 (37.784) 5.456 (24.185)
LGD 22.51 (3.76) 28.50 (5.49) 15.825 (16.838) 12.862 (12.663) 22.08 (3.75) 27.48 (5.09) 10.775 (21.684) 13.375 (56.397) 21.22 (3.64) 26.06 (4.98) 13.239 (17.231) 13.233 (39.107)
RED-diff 20.74 (2.62) 26.10 (3.35) 6.713 (6.925) 9.128 (19.052) 22.53 (3.02) 27.67 (4.53) 2.488 (2.925) 4.916 (13.221) 23.77 (4.13) 29.13 (6.22) 1.853 (0.938) 2.050 (2.361)
PnPDM 24.25 (3.45) 30.49 (4.93) 2.201 (1.352) 1.668 (0.551) 24.57 (3.47) 30.80 (5.22) 1.433 (0.417) 1.336 (0.478) 26.07 (3.70) 32.88 (6.02) 1.311 (0.195) 1.199 (0.221)
DAPS 23.54 (3.28) 29.48 (4.88) 3.647 (3.287) 2.329 (1.354) 23.99 (3.56) 30.16 (5.13) 1.545 (0.705) 2.253 (9.903) 25.60 (3.64) 32.78 (5.68) 1.300 (0.324) 1.229 (0.532)
DiffPIR 24.12 (3.25) 30.45 (4.88) 14.085 (14.105) 10.545 (8.860) 23.84 (3.59) 30.04 (5.03) 5.374 (3.733) 5.205 (5.556) 25.01 (4.64) 31.86 (6.56) 3.271 (1.623) 2.970 (1.202)

LMAPS 24.66 (4.02) 29.94 (5.17) 1.497 (0.394) 4.695 (1.420) 24.84 (3.695) 29.98 (5.144) 1.671 (0.521) 4.460 (1.555) 26.79 (3.78) 32.95 (5.41) 1.512 (0.474) 4.622 (1.455)

Table 8: Comparison between analytical solution and gradient descent for solving LMAPS,
LMAPS-GD represents solving LMAPS with gradient descent, LMAPS-A referes to solving
LMAPS with analytical solution.

Task Method FFHQ ImageNet
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SR 4× LMAPS-GD 30.74 0.869 0.165 26.72 0.739 0.242
LMAPS-A 30.31 0.860 0.161 26.39 0.723 0.252

Inpaint (Box) LMAPS-GD 25.17 0.876 0.108 21.25 0.803 0.204
LMAPS-A 25.35 0.871 0.120 21.15 0.796 0.216

Table 9: Solving Nonlinear Deblurring with different annealing step and gradient step.

Annealing steps Gradient steps FFHQ ImageNet
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

200 200 29.93±1.83 0.855±0.035 0.150±0.034 28.03±3.62 0.774±0.099 0.183±0.065

100 20 27.58±1.878 0.814±0.024 0.200±0.040 26.15±3.24 0.729±0.118 0.257±0.079

F LICENSES

FFHQ Dataset. We use the Flickr-Faces-HQ (FFHQ) dataset released by NVIDIA under the Cre-
ative Commons BY-NC-SA 4.0 license. The dataset is intended for non-commercial research pur-
poses only. More details are available at: https://github.com/NVlabs/ffhq-dataset.

ImageNet Dataset. The ImageNet dataset is used under the terms of its academic research license.
Access requires agreement to ImageNet’s data use policy, and redistribution is not permitted. More
information is available at: https://image-net.org/download.
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Figure 5: Visualization of CS-MRI restoration (4× raw).

Figure 6: Visualization of Linear Inverse Scattering (Number of receivers = 60).
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Figure 7: Visualization for solving JPEG restoration (QF=5, σy = 0.05). Top: degraded images;
bottom: generated images.

Figure 8: Visualization for solving Quantization (2 bit). Top: degraded images; bottom: generated
images.

Figure 9: Visualization for solving Inpaint (Box). Top: ground truth; middle: degraded images;
bottom: generated images.
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Figure 10: Visualization for solving HDR. Top: ground truth; middle: degraded images; bottom:
generated images.

Figure 11: Visualization for solving Deblurring. Top: ground truth; middle: degraded images;
bottom: generated images.

Figure 12: Visualization for solving Super-Resolution. Top: ground truth; middle: degraded images;
bottom: generated images.
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Figure 13: Visualization for solving Nonlinear Deblurring. Top: ground truth; middle: degraded
images; bottom: generated images.

Figure 14: Visualization for solving Phase retrieval.
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