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ABSTRACT

Machine learned partial differential equation (PDE) solvers trade the reliability
of standard numerical methods for potential gains in accuracy and/or speed.
The only way for a solver to guarantee that it outputs the exact solution is to
use a convergent method in the limit that the grid spacing ∆x and timestep ∆t
approach zero. Machine learned solvers, which learn to update the solution at
large ∆x and/or ∆t, can never guarantee perfect accuracy. Some amount of error
is inevitable, so the question becomes: how do we constrain machine learned
solvers to give us the sorts of errors that we are willing to tolerate? In this
abridged version of a full-length paper, we design more reliable machine learned
PDE solvers by preserving discrete analogues of the continuous invariants of
the underlying PDE. Examples of such invariants include conservation of mass,
conservation of energy, the second law of thermodynamics, and/or non-negative
density. Our key insight is simple: to preserve invariants, at each timestep apply
an error-correcting algorithm to the update rule. Though this strategy is different
from how standard solvers preserve invariants, it is necessary to retain the flexibil-
ity that allows machine learned solvers to be accurate at large ∆x and/or ∆t. This
strategy can be applied to any autoregressive solver for any time-dependent PDE
in arbitrary geometries with arbitrary boundary conditions. Although this strategy
is very general, the specific error-correcting algorithms need to be tailored to the
invariants of the underlying equations as well as to the solution representation and
time-stepping scheme of the solver. The error-correcting algorithms we introduce
have two key properties. First, by preserving the right invariants they guarantee
numerical stability. Second, in closed or periodic systems they do so without
degrading the accuracy of an already-accurate solver.

1 INTRODUCTION AND MAIN IDEA

Scientists and engineers are interested in solving partial differential equations (PDEs). Many PDEs
cannot be solved analytically, and must be approximated using discrete numerical algorithms. We
refer to these algorithms as ‘PDE solvers.’ The fundamental challenge for PDE solvers is to balance
between two competing objectives: first, to find an accurate approximation to the solution of the
equation, and second, to do so with as few computational resources as possible.

Decades of research into discrete numerical algorithms have resulted in reliable solvers for most
PDEs of interest. For time-dependent PDEs, these so-called ‘standard numerical methods’ use
hand-crafted rules to update the solution at each timestep. Successful hand-crafted update rules
have two key properties. First, the property of convergence. Convergent methods converge to the
exact solution in the limit that the grid spacing ∆x and the timestep ∆t approach zero. Second,
the property of invariant preservation. Time-dependent PDEs often have one or more invariants.
Examples of such invariants include conservation of energy, non-decreasing entropy, and/or non-
negative density. Invariant preserving PDE solvers satisfy discrete analogues of these continuous
invariants when ∆x and ∆t are positive. As a result, they are numerically stable and do not violate
qualitatively important properties.
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In recent years, scientists and engineers have attempted to use machine learning (ML) to design new
and better PDE solvers (Tompson et al., 2017; Bar-Sinai et al., 2019; Zhuang et al., 2021; Mohan
et al., 2020; Hsieh et al., 2019; Wang et al., 2019; Beck et al., 2019; Um et al., 2020). The goal of
these machine learned PDE solvers is as follows. Suppose there is a PDE we would like to find an
approximate solution to for many different initial or boundary conditions (ICs or BCs) or on a very
large domain. We use training data to produce a learned update rule that can find an approximate
solution faster than the best-performing standard solvers. This machine learned solver can then
be used to amortize the initial cost of training over many different ICs or BCs or a much larger
domain, by finding sufficiently accurate solutions at reduced computational cost. To do so, machine
learned solvers use a radically different approach from standard PDE solvers. Instead of designing
hand-crafted update rules that converge as ∆x → 0 and ∆t → 0, machine learned solvers learn
an update rule from data that is accurate at some large value(s) of ∆x and/or ∆t (Kochkov et al.,
2021; Stachenfeld et al., 2021; Li et al., 2020; Greenfeld et al., 2019; Luz et al., 2020; Dresdner
et al., 2022; List et al., 2022; Um et al., 2020; Pathak et al., 2020). Ideally, this update rule would
be faster than standard methods while being equally as accurate.

Because the only way for a numerical method to guarantee perfect accuracy is (except in trivial
cases) to use a convergent method in the limit ∆x → 0 and ∆t → 0, there is no way to guarantee
that machine learned solvers give an accurate approximation while using large ∆x and/or ∆t. Some
amount of error is inevitable, so the question becomes: how can we constrain machine learned
solvers to give us the sorts of errors that we are willing to tolerate? In other words, how can we
build more reliable machine learned PDE solvers? One approach to building more reliable machine
learned PDE solvers is to change the ML model and training procedure. This approach is quite nat-
ural to students of ML. Improving the model (Brandstetter et al., 2022b), increasing the dataset size
(Brandstetter et al., 2022a), changing the loss function (Um et al., 2020), and adding regularization
(Kaptanoglu et al., 2021; Erichson et al., 2019) are all examples of this approach. To some extent,
these techniques have been successful at improving robustness and numerical stability. However,
none of these ML-based techniques are capable of guaranteeing numerical stability. While these
solvers may give reliable results for some inputs, on other inputs the solution might blow up or be
nonsensical.

The purpose of this paper is to introduce a different and mutually compatible approach to building
more reliable machine learned PDE solvers: preserving discrete invariants. This approach is quite
natural to students of computational physics, as so much of the theory and development of standard
numerical methods is related to ensuring those methods preserve the right invariants. This approach
can be used with any solver that uses an update rule (including standard solvers) and is otherwise
agnostic to the details of the solver.

Why do we want our machine learned solvers to preserve invariant quantities? A simple but in-
complete explanation is that ML models that use physical knowledge as an inductive bias tend to
outperform models that don’t. Invariant preservation is, when done correctly, free lunch. We know
that for a given PDE our solution should preserve certain invariants, so by enforcing those invariants
at each timestep we improve the solution. A second reason has to do with numerical stability. By
preserving the right combination of invariants, we can design machine learned PDE solvers which
are numerically stable by construction. These solvers, like well-designed standard solvers, are guar-
anteed not to blow up as t → ∞. A third reason has to do with trust. People are unlikely to use
solvers they do not trust. People are more likely to trust a numerical method if it preserves the
correct set of invariants.

Our key insight is simple: to preserve discrete invariants in machine learned PDE solvers, at each
timestep apply an error-correcting algorithm to the machine learned update rule. Let us now sketch
how this works. Suppose that I represent the continuous solution u(x, t) ∈ Rm to the PDE ∂u

∂t +
N [u] = 0 with a discrete solution û(x, t) ∈ Rm which is a linear sum of N basis functions
ϕk(x) ∈ Rm and N coefficients ck(t) ∈ Rm, such that ûj(x, t) =

∑N
k=1 cjk(t)ϕjk(x) for j ∈

[1, . . . ,m]. Suppose also that the machine learned update rule predicts that û will change at a rate
∂û
∂t at time t. Suppose also that we would like the solution to satisfy L discrete invariants Iℓ(û, ∂û

∂t )

for ℓ = [1, . . . , L] satisfying either equalities (Iℓ = 0) or inequalities (Iℓ ≥ 0). If ∂û
∂t does not

already satisfy these discrete invariants, then we use an error correcting algorithm to modify ∂û
∂t to

ensure that each of the invariants is satisfied. We repeat this process each timestep. This process is
meant to used at inference, though it could also be used while training.
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In this abridged version of our full-length paper (McGreivy & Hakim, 2023), we only consider scalar
hyperbolic PDEs and only consider a single solver type in 1D. In section 2 we review the theory of
invariant preservation for scalar hyperbolic PDEs. In section 3 we introduce an invariant-preserving
error-correcting algorithm which can be used to preserve non-linear invariants in machine learned
PDE solvers for scalar hyperbolic PDEs. Doing so improves reliability and guarantees numerical
stability without degrading the accuracy of an already-accurate solver. The strategy we introduce –
applying an error-correcting algorithm to a machine learned update rule – can be applied to a range of
other solver types, to other invariant-preserving PDEs, as well as to PDEs with non-invariant terms.

2 SCALAR HYPERBOLIC PDES

Scalar hyperbolic PDEs can be written as follows. u(x, t) ∈ R, x ∈ Ω, Ω ∈ Rd, and f ∈ C1(Rd).

∂u

∂t
+∇ · f(u) = 0. (1)

Continuous Invariants: Scalar hyperbolic PDEs have one linear invariant which is constant in time
and three non-linear invariants which are non-increasing in time: (1) Total mass

∫
Ω
u dx, which is

conserved in time. (2) The ℓp-norm
∫
Ω
|u|p dx for p > 1, which is non-increasing in time. (3)

The ℓ∞-norm maxxu(x, t), which is non-increasing in time. (4) The total variation, which for
continuous u in 1D is

∫ L

0

∣∣∂u
∂x

∣∣ dx. The total variation is non-increasing in time. This is usually
called the total variation diminishing (TVD) property.

Finite volume (FV) method: A common approach for solving hyperbolic PDEs is by using a finite
volume (FV) method. FV methods divide the spatial domain Ω into a number of discrete cells
Ωj , then use a scalar value to represent the solution average within each cell. For example, on
the 1D domain x ∈ [0, L] with uniform cell width, a FV method divides the domain into N cells
of width ∆x = L/N where the left and right boundaries of the jth cell for j = 1, . . . , N are
xj−1/2 = (j − 1)∆x and xj+1/2 = j∆x respectively. FV methods use a scalar value uj(t) to
represent the solution average within each cell where uj(t) :=

∫ xj+1/2

xj−1/2
u(x, t) dx. The 1D FV

update equations for uj are simply discrete versions of eq. (1): ∂uj/∂t + (f
j+1

2
−f

j− 1
2
)/∆x = 0.

Discrete Invariants: FV schemes conserve a discrete analogue of the continuous linear invari-
ant

∫
Ω
u dx by construction. In 1D, we can see this with a short proof: d/dt

∑N
j=1 uj∆x =

∆x
∑N

j=1
∂uj/∂t = −

∑N
j=1(fj+1/2 − fj−1/2) = f1/2 − fN+1/2. The rate of change of the dis-

crete mass is equal to the flux of u through the boundaries; in a periodic system this equals 0.

Although FV schemes preserve a discrete analogue of conservation of mass by construction, they
do not automatically preserve discrete analogues of any of the non-linear invariants of the con-
tinuous PDE. Instead, FV methods preserve non-linear invariants through careful choice of flux.
The only known way of inheriting discrete analogues of all three non-linear invariants of eq. (1)
(non-increasing ℓp-norm, non-increasing ℓ∞-norm, and TVD) is to use a consistent monotone flux
function while satisfying a CFL condition (Mishra et al., 2019). Unfortunately, Godunov’s famous
theorem from 1959 implies that monotone schemes can be at most first-order accurate (Godunov
& Bohachevsky, 1959). This means that while monotone schemes preserve all the invariants of the
underlying PDE, they are usually not very accurate. For scalar hyperbolic PDEs, it turns out that
it is possible to design accurate and stable numerical solvers by preserving just one of the three
non-linear invariants of eq. (1) (Durran, 1999). One such scheme is the TVD-preserving MUSCL
scheme, introduced in a seminal paper by van Leer (1979).

3 INVARIANT-PRESERVING MACHINE LEARNED PDE SOLVERS

We introduce and demonstrate an error-correcting algorithm for scalar hyperbolic PDEs which can
be used to design invariant-preserving machine learned PDE solvers. Unlike standard solvers, which
put local constraints on the flux, this algorithm puts global constraints on the flux. It preserves
discrete analogues of two continuous invariants: mass conservation and non-increasing ℓ2-norm.

We consider a machine learned PDE solver which uses the 1D FV update equation with periodic
boundary conditions. ML can be used to predict the flux at cell boundaries fj+1/2. Doing so pre-
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Figure 1: While there are various ways of designing invariant preserving machine learned PDE
solvers, only the error-correction strategy we propose (black dotted line) preserves invariants without
degrading the accuracy of an already-accurate machine learned solver (black line, N = 16 and
N = 32 where N is the number of spatial grid cells). Here we compare seven different methods for
solving the 1D advection equation. Three are standard numerical methods (centered flux, upwind
flux, and MUSCL flux) while four are machine learned solvers. We train all the ML models with
the same setup (see appendix A).

serves a discrete analogue of conservation of mass d/dt
∑N

j=1 uj∆x = 0. A discrete analogue of the
non-increasing ℓ2-norm invariant is

d

dt

N∑
j=1

∆xj

2
u2
j =

N∑
j=1

uj
∂uj

∂t
∆xj = −

N∑
j=1

uj(fj+ 1
2
− fj− 1

2
) =

N∑
j=1

fj+ 1
2

(
uj+1 − uj

)
≤ 0. (2)

Let us now define dℓold
2 /dt :=

∑N
j=1 fj+ 1

2
(uj+1 − uj) as the original rate of change of the discrete

ℓ2-norm, and dℓnew
2 /dt as the desired rate of change of the discrete ℓ2-norm. To ensure non-increasing

ℓ2-norm, we want dℓnew
2 /dt ≤ 0. We also define uj := {uj}Nj=1 as a vector representation of the

discrete solution. We can change the time-derivative of the discrete ℓ2-norm from dℓold
2 /dt to dℓnew

2 /dt
by making the following transformation to fj+1/2:

fj+ 1
2
⇒ fj+ 1

2
+

(dℓ
new
2 /dt − dℓold

2 /dt)Gj+1/2(uj)∑N
k=1 Gk+1/2(uk)(uk+1 − uk)

(3)

for any scalar dℓnew
2 /dt and any non-constant, finite function Gj+1/2(uj) for which∑N

k=1 Gk+1/2(uk)(uk+1 − uk) ̸= 0. As the reader can verify by plugging eq. (3) into eq. (2),
eq. (3) modifies fj+1/2 in a way that adds a constant (dℓnew

2 /dt − dℓold
2 /dt) to eq. (2) via cancellation

of the denominator. Note that Gj+1/2(uj) is a hyperparameter that determines how each fj+1/2 is
modified and dℓnew

2 /dt is a user-defined quantity which sets the rate of change of the discrete ℓ2-norm.
Setting Gj+1/2(uj) = (uj+1 − uj) corresponds to the addition of a spatially constant diffusion
coefficient everywhere in space. To design an invariant-preserving machine learned PDE solver, at
each timestep if dℓold

2 /dt > 0, modify fj+1/2 so that dℓnew
2 /dt = 0.

We train a machine learned solver to output fj+1/2 to solve the 1D advection equation ∂u/∂t +
c∂u/∂x = 0 and integrate in time using a standard Runge-Kutta integration scheme. See appendix A
for details. In fig. 1, we compare the accuracy of a naive machine learned solver (black solid line)
and an error-corrected invariant-preserving machine learned solver (black dotted line) with standard
solvers and standard approaches to preserving invariants applied to machine learned solvers. There
are three key takeaways from fig. 1. First, standard approaches to preserving invariants (red and
green dotted lines) degrade the accuracy of machine learned solvers too much to be accurate at large
∆x. Second, the invariant-preserving algorithm we introduce does not degrade the accuracy of an
already-accurate machine learned solver (N = 16 and N = 32, black lines). Third, by preserving
invariants we improve the reliability of machine learned solvers (N = 8 and N = 64, black lines).

Different PDEs have different invariants. While this algorithm is designed to work for any scalar hy-
perbolic PDE, invariant-preserving algorithms for other PDEs must be tailored to the specific PDE.
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3. The MUSCL flux with a Monotonized Central (MC) limiter. This flux is TVD.
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All three standard numerical methods (solvers 1, 2, 3) preserve one or more of the non-linear in-
variants and are thus numerically stable. The MUSCL scheme (solver 3) is the most accurate of the
three standard numerical methods we consider. The other four methods are flux-predicting machine
learned PDE solvers:

4. A machine learned solver which outputs fj+1/2. This solver is not guaranteed to conserve
any non-linear invariants.

5. An upwind-biased flux-predicting solver which outputs αj+1/2 ≥ 0 where fj+1/2 =

αj+1/2f
Upwind
j+1/2 + (1− αj+1/2)f

Centered
j+1/2 . This solver decays the ℓ2-norm.

6. The same as solver 4, except with an MC flux limiter. This solver is TVD.
7. The same as solver 4, but using the error-correcting algorithm eq. (3) with dℓnew

2 /dt ≤ 0 to
ensure that the discrete ℓ2-norm is non-increasing.

The upwind-biased solver (solver 5) and the flux-limited solver (solver 6) are examples of how
standard approaches can be used to preserve invariants in machine learned PDE solvers. The error-
corrected solver (solver 7) is an example of the approach proposed in this paper. In fig. 1, we plot
the normalized mean squared error (MSE) for all seven solvers averaged over time from t = 0 to
t = 1 averaged over 25 samples drawn from the training distribution. We compare solvers with N
grid cells, where N = 8, 16, 32, and 64.

The machine learned solver uses the continuous-time 1D FV update equation. We use a SSPRK3
ODE integrator Gottlieb et al. (2001). We choose the timestep ∆t using a CFL condition with a CFL
number of 0.3. The initial condition is drawn from a sum-of-sines distribution

u0(x) =

Nmodes∑
i=1

Ai sin
(
2πkix+ ϕi

)
where Nmodes ∼ {1, 2, 3, 4, 5, 6} and ki ∼ {1, 2, 3, 4} are uniform draws from a set while Ai ∼
[−1.0, 1.0] and ϕi ∼ [0, 2π] are draws from uniform distributions. The loss function L is given by
computing the mean squared error (MSE) between the predicted time-derivative and the so-called
‘exact’ time-derivative

L =
1

Nx

Nx∑
j=1

(
duj(t)

dt
−

duexact
j (t)

dt

)2

.

Both the ‘exact’ solution uexact
j (t) and the ‘exact’ time-derivative duexact

j /dt are coarse-grained versions
of a high-resolution simulation uexact, i.e., uexact

j (t) =
∫ xj+1/2

xj−1/2
uexact(x, t)dx. For each sample from

the distribution of initial conditions, we take 50 snapshots evenly spaced in time from t ∈ [0, 1]. We
draw 100 samples, for a total of 5000 snapshots in our training dataset. For each snapshot we store
the exact trajectory uexact

j and the exact time-derivative duexact
j /dt. Our machine learning models are

periodic convolutional neural networks (CNNs) which are given the downsampled exact trajectories
uexact
j (t) as inputs. Solvers 4, 6, and 7 output the flux fj+1/2, while solver 5 outputs αj+1/2. These

outputs are then used to compute the predicted time-derivative duj(t)/dt. All models train with a
batch size of 32 and use the ADAM optimizer Kingma & Ba (2014) for 100 epochs over the training
dataset with a learning rate of 1 × 10−3, followed by another 100 epochs with a learning rate of
1× 10−4. Solver 7 uses Gj+1/2(uj) = uj+1 − uj .
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