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Abstract
This paper presents LEMR (Label-Efficient001
Model Ranking) and introduces the MoraBench002
Benchmark. LEMR is a novel framework that003
minimizes the need for costly annotations in004
model selection by strategically annotating in-005
stances from an unlabeled validation set. To006
evaluate LEMR, we leverage the MoraBench007
Benchmark, a comprehensive collection of008
model outputs across diverse scenarios. Our009
extensive evaluation across 23 different NLP010
tasks in semi-supervised learning, weak super-011
vision, and prompt selection tasks demonstrates012
LEMR’s effectiveness in significantly reduc-013
ing labeling costs. Key findings highlight the014
impact of suitable ensemble methods, uncer-015
tainty sampling strategies, and model commit-016
tee selection in enhancing model ranking accu-017
racy. LEMR, supported by the insights from018
MoraBench, provides a cost-effective and ac-019
curate solution for model selection, especially020
valuable in resource-constrained environments.021

1 Introduction022

Model selection plays a central role in building ro-023

bust predictive systems for Natural Language Pro-024

cessing (NLP) (Awasthy et al., 2020; Lizotte, 2021;025

Zhang et al., 2022b; Han et al., 2023), which un-026

derpins numerous application scenarios including027

feature engineering (Severyn and Moschitti, 2013),028

algorithm selection (Yang et al., 2023b), and hyper-029

parameter tuning (Liu and Wang, 2021). Typically,030

in a standard machine learning pipeline, a held-out031

validation set is utilized for the model selection032

purpose, which often contains massive labeled data.033

Under a more practical low-resource setting, how-034

ever, creating a large set of validation data is no035

longer feasible (Perez et al., 2021; Bragg et al.,036

2021) due to the additional annotation cost (Zhang037

et al., 2023) as well as the reliance on domain ex-038

pertise (Hu et al., 2023). The resolution of this039

challenge is vital for the deployment of model se-040

lection techniques under real application scenarios.041

Facilitating model selection under the true 042

resource-limited scenarios can be challenging. Ex- 043

isting approaches often adopt fixed parameter (Liu 044

et al., 2022), or early stopping (Mahsereci et al., 045

2017; Choi et al., 2022) for model selection, yet 046

it can suffer from the training instability issue un- 047

der the low-resource settings and does not reliably 048

choose better-than-average hyperparameters (Blier 049

and Ollivier, 2018; Perez et al., 2021). There are 050

also several works (Zhou et al., 2022; Lu et al., 051

2022) that focus on unsupervised model selection, 052

which creates pseudo-validation sets for ranking 053

different models. Nevertheless, without labeled 054

data, there often exists a significant disparity be- 055

tween the ranking results produced by these meth- 056

ods and the true model rankings. In summary, 057

model ranking remains challenging and under- 058

explored under low-resource scenarios. 059

In this work, we propose LEMR (Label-Efficient 060

Model Ranking), a framework that significantly 061

reduces the need for costly annotations. Our frame- 062

work operates without presuming the availability 063

of ground-truth clean labels. Instead, we aim to 064

strategically annotate instances from an unlabeled 065

validation set for model ranking. The framework 066

can be divided into four steps. First, an ensemble 067

method with a selected model committee generates 068

pseudo-labels for examples from the validation set, 069

reducing the labeling cost (Step-I in Section 4.1). 070

Subsequently, we address the inherent noise in 071

these pseudo-labels through two strategies: We first 072

use uncertainty sampling to acquire ground-truth 073

labels (Step-II in Section 4.2)., and then utilize 074

a Z-score mechanism to dynamically adjust the 075

model committee based on these updated labels, 076

further refining the labeling process (Step-III in 077

Section 4.3). Finally, LEMR ranks all models us- 078

ing the refined pseudo-label and ground-truth label 079

sets (Step-IV in Section 4.4). This framework al- 080

lows us to create a design space for model ranking, 081

facilitating a systematic exploration of the efficacy 082
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across different selection metrics and identifying083

optimal strategies for each stage.084

Specifically, we first organize the intersection085

for our framework LEMR by proposing an explicit086

design space centered around disentangling the fol-087

lowing key methodological considerations:088

• Pseudo labels generation (Section 4.1): How to089

generate pseudo-labels? We adopt an ensemble090

method based on our model committee to obtain091

the pseudo-labels. Two variants, soft ensemble,092

and hard ensemble (Krogh and Vedelsby, 1994;093

Hansen and Salamon, 1990), are considered for094

this purpose.095

• Label Acquiring (Section 4.2): Which of the096

pseudo-labels needs to be acquired? Given the097

presence of noise in pseudo-labels, acquiring098

ground-truth labels is sometimes necessary. We099

employ uncertainty sampling strategies to iden-100

tify which pseudo-labels to replace. Our ap-101

proach includes uncertainty, classification mar-102

gin, entropy, and random sampling strategies.103

• Model Committee Selection (Section 4.3): How104

to select a model committee reasonably? Se-105

lecting an appropriate model committee is cru-106

cial. We propose two methods: Z-score and107

All-model. The choice between them depends108

on balancing the desire for precision (favoring109

the Z-score method) and the need for diversity110

and comprehensive coverage (favoring the All-111

model approach).112

With our design space, we can organize differ-113

ent methods and modularly generate a variety of114

methods. To evaluate these methods and facili-115

tate future research in model ranking, we intro-116

duce the MoraBench (Model Ranking Benchmark)117

in Section 5. It covers diverse scenarios, includ-118

ing semi-supervised learning (Section 6.1), weak119

supervision (Section 6.2), and prompt selection120

(Section 6.3) tasks with 23 different tasks. The121

experiments on MoraBench lead to the following122

observations:123

• With a suitable combination of methods within124

the design space, our framework can dramati-125

cally reduce the labeling cost for model selec-126

tion. For instance, in the semi-supervised learn-127

ing scenario (AGNews task), labeling just 387128

samples suffices for model selection, compared129

to the conventional need for 2000 samples.130

• In Pseudo-label Generation Step (Section 4.1), 131

under a limited budget, we find that soft ensem- 132

ble yields a higher quality model ranking if the 133

model in the model set performs poorly, other- 134

wise hard ensemble is a better choice. 135

• In Active Label Acquisition Step (Section 4.2), 136

our findings underline the superiority of uncer- 137

tainty sampling over random acquisition in all 138

tasks. 139

• In Model Committee Selection Step (Sec- 140

tion 4.3), We observe that a high-quality com- 141

mittee crucially influences the quality of model 142

ranking. For this reason, a Z-score-based selec- 143

tion method is designed, which outperforms the 144

All-model strategy on all datasets. 145

2 Related Work 146

2.1 Pseudo-labeling 147

Lately, pseudo-labeling has marked a significant 148

progression in deep learning, utilizing models to 149

predict unlabeled data samples (Lee et al., 2013; 150

Chen et al., 2021; Xu et al., 2023; Yang et al., 151

2023a; Zhang et al., 2022a). Zhu et al. (2023) 152

explore self-adaptive pseudo-label filtering, aiming 153

to refine the selection process for pseudo-labels 154

to boost learning performance. Another popular 155

technique is ensemble distillation (Bachman et al., 156

2014; Hinton et al., 2015; Hu et al., 2023), which 157

means distilling knowledge in an ensemble into a 158

single model. 159

2.2 Model Selection 160

Model selection (Kohavi, 1995; Kayali and Wang, 161

2022; Zhang et al., 2023) refers to determining the 162

best from a set of candidate models based on their 163

performance on a given dataset. In the domain 164

of this area, current research encompasses a vari- 165

ety of innovative methodologies, especially in the 166

field of natural language processing (Yang et al., 167

2023b; Han et al., 2023; Du et al., 2021). Lu et al. 168

(2022) leverage the entropy statistics to select the 169

best prompt orders for in-context learning. Zhou 170

et al. (2022) propose an unsupervised model se- 171

lection criterion that encourages consistency but 172

simultaneously penalizes collapse. 173

3 Preliminaries 174

In this work, we consider a C-way classification 175

task T . For task T , there exists K trained models, 176

denoted asM = {mk}k∈[K]. Our objective is to 177
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rank these models so that top-ranked models will178

achieve better performance on T . Importantly, we179

work under the constraint of having no access to180

the original training data, instead relying on an181

unlabeled validation set DV = {xi}i∈[N ], along182

with a limited annotation budget B.183

Our primary goal is to optimize the annotation184

process for the validation set in the context of185

model selection. To this end, we systematically186

study the effectiveness of our framework across dif-187

ferent selection metrics and determine the optimal188

methods and timing for its utilization.189

4 Methodology190

To rank the trained models, we propose a novel191

framework LEMR, which comprises four pri-192

mary steps. Step-I (Pseudo-label generation, Sec-193

tion 4.1): Generate pseudo-labels for the unlabeled194

validation set based on a model committee selected195

from the model setM. Step-II (Active label ac-196

quisition, Section 4.2): Select samples from the197

validation set and acquires their ground-truth labels198

to replace the pseudo-labels. Step-III (Model com-199

mittee selection, Section 4.3): Select a subset of200

models based on the updated pseudo-label to form201

a model committee that would be used to generate202

pseudo-labels in the next iteration. After T rounds203

of iteration for these three steps, we obtain our fi-204

nal pseudo labels, based on which we perform our205

Step-IV (Model Ranking, Section 4.4). These four206

steps are detailed in Figure 1 and the pseudocode207

of LEMR is shown in Appendix A.208

4.1 Step-I: Pseudo-label Generation209

Our first step is to generate pseudo-labels based on210

a subset of trained models referred to as the model211

committee, which will be introduced soon. As the212

trained models usually have a certain level of capa-213

bility on the task, it is natural to leverage their en-214

semble to obtain reasonable pseudo-labels (Krogh215

and Vedelsby, 1994; Hansen and Salamon, 1990).216

In particular, we denoteMt
C as the model commit-217

tee at t-th iteration, and explore two design choices218

of pseudo-label generation:219

• Hard ensemble: For xi ∈ DV , hard ensem-220

ble uses the average of the one-hot label pre-221

diction vectors generated by all models in222

Mt
C as its pseudo-label distribution ŷ

(t)
i .223

• Soft ensemble: For xi ∈ DV , soft ensemble224

employs the average of the label probability225

simplex generated by all models inMt
C as its 226

pseudo-label distribution ŷ
(t)
i . 227

Therefore, at t-th iteration, we generate the 228

pseudo-label for the i-th sample via: 229

ŷ
(t)
i ← g(xi,Mt

C). (1) 230

where the function g(·) could be either hard or 231

soft ensemble. These pseudo-labels will be used 232

to select high-quality models to form the model 233

committee. 234

4.2 Step-II: Active Label Acquisition 235

In the second step of the LEMR framework, we 236

actively acquire labels for a subset of samples from 237

the pseudo-label set. We explore several existing 238

active sampling strategies in the literature: 239

• Random: Although the random sampling is 240

not part of the uncertainty sampling strategies, 241

as a classical acquisition strategy (Bergstra 242

and Bengio, 2012; Rawat et al., 2021), we 243

also put it into our framework for reference. 244

• Uncertainty (Culotta and McCallum, 2005): 245

We define the value of 1 minus probabilities 246

of the top predicted class as the uncertainty 247

value for a pseudo-label. 248

• Margin (Schröder et al., 2022): Here, we tar- 249

get pseudo-labels with the smallest margin 250

between the probabilities of the top two pre- 251

dicted classes. 252

• Entropy (Holub et al., 2008): This strategy 253

calculates the entropy for each pseudo-label. 254

With higher entropy indicating higher infor- 255

mation, we prioritize acquiring labels with the 256

highest entropy values. 257

Utilizing these strategies, we produce a set S(t) of 258

b samples at each iteration t: 259

S(t) ← l(Lp, b), (2) 260

where l(·) represents a certain acquiring strategy 261

(Uncertainty, Margin, Entropy, or Random) and Lp 262

is the current set of pseudo-labels. We then acquire 263

ground-truth labels for the selected set S(t). 264

We denote the set consisting of all ground-truth 265

labels we have acquired as Lg. For each sample 266

in S(t), we add its ground-truth label to Lg and 267

remove the corresponding pseudo-label from Lp. 268

This enhances the reliability of our pseudo-labels 269

and refines subsequent steps, such as model com- 270

mittee selections. 271
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Figure 1: The illustration of the overall procedure of LEMR.

4.3 Step-III: Model Committee Selection272

The process of Model Committee Selection in our273

LEMR framework is a critical step to ensure the274

appropriate models are chosen to produce pseudo-275

labels for the next iteration. In our framework, we276

explore two distinct methods for model committee277

selection: Z-score and All-model:278

• All-model: All-model approach involves uti-279

lizing every model in the existing setM as280

part of the model committee. It operates on281

the principle that the ensemble of diverse mod-282

els can lead to a more generalized and com-283

prehensive understanding, contributing to the284

robustness of the pseudo-labels generated.285

• Z-score: The Z-score method assesses a286

model’s performance relative to the median287

performance of the entire model setM, aid-288

ing in the identification and filtering of outlier289

models with extremely low performance. It290

starts by calculating the accuracy ak of the k-291

th model against the latest pseudo label set Lp292

and ground-truth label set Lg. Then, we calcu-293

late the Z-score for each model. Specifically,294

the Z-score zk of the model mk is determined295

as follows:296

zk ← δ×(ak−am)

Median({|a
k
′−am|:k′∈[K]}) , (3)297

where am is the median of the {ak}k∈[K].298

Subsequently, models with Z-score exceed-299

ing a certain threshold, τ , are selected for the300

next iteration’s committee. This ensures that301

only the most predictive and reliable models302

contribute to the pseudo-label generation.303

Therefore, at the end of t-th iteration, we select 304

the model committee for the (t+ 1)-th iteration as: 305

M(t+1)
C ← s(Lp, Lg,M), (4) 306

where the function s(·) could be either Z-score 307

or All-model. Notably, with the updates of Lp and 308

Lg, each time we choose the model committee from 309

all models, not from the last model committee. This 310

prevents the early exclusion of potentially valuable 311

models, ensuring a robust and dynamic selection 312

process throughout the iterations. 313

4.4 Step-IV: Model Ranking 314

Step-IV in the LEMR framework is dedicated to 315

ranking the models in the setM. This step utilizes 316

the final pseudo-label set Lp and the ground-truth 317

label set Lg to evaluate each model’s accuracy. The 318

rank rp is determined as: 319

rp ← r(Lp, Lg,M), (5) 320

where r(·) is the ranking function. It ranks the 321

models in M according to their accuracy on Lp 322

and Lg. 323

5 The MoraBench Benchmark 324

To advance research in model ranking and eval- 325

uate various design choices in our LEMR frame- 326

work, we introduce MoraBench (Model Ranking 327

Benchmark). This benchmark comprises a col- 328

lection of model outputs generated under diverse 329

scenarios. The description of all model sets within 330

MoraBench and its generation configuration are 331

given in Appendix C. We then perform model selec- 332

tion based on these outputs. Our code and related 333
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection

IMDB (20) AGNews (40) Amazon Review (250) Yelp Review (250) Yahoo! Answer (500) Avg.

0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50%

Hard Ensemble

Random
All-model 0.98 0.97 1.09 0.76 5.38 5.35 5.31 0.69 9.47 9.50 9.48 9.47 14.27 14.27 14.27 0.62 7.11 7.01 6.82 0.93 6.19

Z-score 0.98 0.97 1.09 0.76 5.38 5.35 5.31 0.69 9.47 9.50 9.48 9.47 14.27 14.27 14.27 0.62 7.11 7.01 6.82 0.93 6.19

Uncertainty
All-model 0.98 0.84 0.77 0.12 5.38 4.81 0.21 0.01 9.47 9.48 9.54 6.90 14.27 14.27 14.28 0.44 7.11 6.37 1.06 0.02 5.32

Z-score 0.98 0.24 0.00 0.00 5.38 4.41 0.24 0.01 9.47 9.45 9.38 5.66 14.27 14.30 14.28 0.60 7.11 6.36 0.99 0.04 5.16

Margin
All-model 0.98 0.84 0.77 0.12 5.38 4.79 0.23 0.01 9.47 9.50 9.56 7.34 14.27 14.27 14.28 0.45 7.11 6.69 1.13 0.03 5.36

Z-score 0.98 0.24 0.00 0.00 5.38 4.57 0.22 0.01 9.47 9.45 9.38 6.52 14.27 14.31 14.26 0.59 7.11 6.56 1.24 0.02 5.23

Entropy
All-model 0.98 0.84 0.77 0.12 5.38 4.72 0.20 0.01 9.47 9.50 9.56 4.03 14.27 14.27 14.29 0.45 7.11 6.44 0.87 0.02 5.17

Z-score 0.98 0.24 0.00 0.00 5.38 4.59 0.19 0.01 9.47 9.45 9.43 3.65 14.27 14.31 14.20 0.57 7.11 6.04 0.81 0.02 5.04

Soft Ensemble

Random
All-model 1.13 1.18 1.03 0.76 5.41 5.35 5.31 0.57 9.45 9.46 9.46 9.46 14.26 14.27 14.27 1.51 7.11 7.01 6.77 0.93 6.24

Z-score 1.13 1.18 1.03 0.76 5.41 5.35 5.31 0.57 9.45 9.46 9.46 9.46 14.26 14.27 14.27 1.51 7.11 7.01 6.77 0.93 6.24

Uncertainty
All-model 1.13 0.82 0.63 0.12 5.41 4.70 0.22 0.02 9.45 9.47 9.48 7.78 14.26 14.27 14.28 0.48 7.11 6.42 1.17 0.03 5.36

Z-score 1.13 0.34 0.02 0.00 5.41 4.51 0.23 0.01 9.45 9.45 9.40 7.91 14.26 14.27 14.27 0.59 7.11 6.45 1.24 0.02 5.30

Margin
All-model 1.13 0.82 0.63 0.12 5.41 4.82 0.25 0.03 9.45 9.47 9.49 8.09 14.26 14.27 14.28 0.44 7.11 6.50 1.15 0.03 5.39

Z-score 1.13 0.34 0.02 0.00 5.41 4.29 0.21 0.00 9.45 9.45 9.45 8.09 14.26 14.30 14.24 0.64 7.11 6.55 1.12 0.04 5.31

Entropy
All-model 1.13 0.82 0.63 0.12 5.41 4.61 0.20 0.03 9.45 9.45 9.49 7.10 14.26 14.27 14.27 0.51 7.11 6.31 0.97 0.00 5.31

Z-score 1.13 0.34 0.02 0.00 5.41 4.59 0.17 0.01 9.45 9.45 9.45 7.15 14.26 14.31 14.28 0.64 7.11 6.30 0.94 0.03 5.25

Table 1: Semi-supervised learning setting: This table illustrates the changes in optimal gap values within our
design space. These changes are observed across different budget ratios, specifically at 0%, 10%, 20%, and 50%.
The number in brackets after the dataset indicates the number of labels used in model training stage.

Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection

IMDB (100) AGNews (200) Amazon Review (1000) Yelp Review (1000) Yahoo! Answer (2000) Avg.

0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50%

Hard Ensemble

Random
All-model 0.96 0.96 0.91 0.86 4.85 4.90 4.85 2.17 7.25 7.24 7.23 7.20 8.64 8.65 8.65 7.33 5.83 5.77 5.71 0.70 5.03

Z-score 0.96 0.96 0.91 0.86 4.85 4.90 4.85 2.17 7.25 7.24 7.23 7.20 8.64 8.65 8.65 7.33 5.83 5.77 5.71 0.70 5.03

Uncertainty
All-model 0.96 0.66 0.65 0.06 4.85 4.28 0.05 0.01 7.25 7.17 7.14 2.60 8.64 8.63 8.66 0.36 5.83 5.39 0.70 0.01 3.70

Z-score 0.96 0.67 0.04 0.00 4.85 4.47 0.04 0.00 7.25 7.24 7.03 2.70 8.64 8.71 8.67 0.34 5.83 5.26 0.66 0.01 3.67

Margin
All-model 0.96 0.66 0.65 0.06 4.85 4.48 0.07 0.01 7.25 7.19 7.10 2.62 8.64 8.65 8.70 0.39 5.83 5.24 0.87 0.00 3.71

Z-score 0.96 0.67 0.04 0.00 4.85 4.44 0.05 0.00 7.25 7.26 7.17 2.83 8.64 8.69 8.69 0.31 5.83 5.21 0.85 0.00 3.69

Entropy
All-model 0.96 0.66 0.65 0.06 4.85 3.92 0.04 0.01 7.25 7.18 7.04 1.86 8.64 8.65 8.67 0.42 5.83 5.40 0.60 0.01 3.63

Z-score 0.96 0.67 0.04 0.00 4.85 3.92 0.04 0.00 7.25 7.26 7.08 2.37 8.64 8.70 8.64 0.34 5.83 5.30 0.60 0.01 3.63

Soft Ensemble

Random
All-model 0.99 0.94 0.95 0.91 4.88 4.87 4.88 2.29 7.25 7.25 7.25 7.24 8.68 8.69 8.67 8.16 5.83 5.82 5.67 0.66 5.09

Z-score 0.99 0.94 0.95 0.91 4.88 4.87 4.88 2.29 7.25 7.25 7.25 7.24 8.68 8.69 8.67 8.16 5.83 5.82 5.67 0.66 5.09

Uncertainty
All-model 0.99 0.68 0.60 0.08 4.88 4.37 0.05 0.01 7.25 7.18 7.12 4.74 8.68 8.66 8.67 0.36 5.83 5.41 0.86 0.01 3.82

Z-score 0.99 0.67 0.16 0.00 4.88 4.39 0.05 0.02 7.25 7.25 7.12 4.72 8.68 8.69 8.70 0.31 5.83 5.42 0.86 0.01 3.80

Margin
All-model 0.99 0.68 0.60 0.08 4.88 4.52 0.05 0.00 7.25 7.23 7.16 5.28 8.68 8.67 8.69 0.35 5.83 5.29 0.90 0.00 3.86

Z-score 0.99 0.67 0.16 0.00 4.88 4.47 0.04 0.02 7.25 7.24 7.18 5.11 8.68 8.70 8.73 0.29 5.83 5.29 0.98 0.01 3.83

Entropy
All-model 0.99 0.68 0.60 0.08 4.88 4.30 0.05 0.01 7.25 7.18 7.13 4.85 8.68 8.66 8.64 0.41 5.83 5.54 0.61 0.00 3.82

Z-score 0.99 0.67 0.16 0.00 4.88 4.35 0.03 0.02 7.25 7.19 7.15 4.55 8.68 8.72 8.70 0.35 5.83 5.56 0.58 0.00 3.78

Table 2: Semi-supervised learning setting: This table illustrates the changes in optimal gap values within our
design space. These changes are observed across different budget ratios, specifically at 0%, 10%, 20%, and 50%.
The number in brackets after the dataset indicates the number of labels used in model training stage.

sources can be found in the Software and Data334

part of the ARR supplement system.335

5.1 Evaluation Metrics336

We define two metrics used to evaluate the effec-337

tiveness of model selection results, namely Optimal338

Gap and Ranking Correction.339

Optimal Gap. The Optimal Gap is defined as340

the difference in test accuracy between the best341

model chosen by the fully-labeled validation set,342

and the best model identified by the methods to be343

assessed.344

Ranking Correction. Ranking Correction mea-345

sures the similarity between the model rankings346

based on the fully-labeled validation set and those347

obtained by methods to be assessed. This similar-348

ity is assessed using the Spearman rank correlation349

coefficient1 , a common non-parametric method350

1http://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.spearmanr.html

evaluating the monotonic relationship between two 351

ranked variables. 352

6 Experiments 353

We test our LEMR with MoraBench in detail un- 354

der three scenarios, i.e., semi-supervised learning 355

(Section 6.1), weak supervision (Section 6.2), and 356

prompt selection (Section 6.3). Corresponding im- 357

plementation details and design space are described 358

in Appendix B. 359

6.1 Semi-supervised Learning Setting 360

Here, we evaluate the LEMR framework under a 361

semi-supervised learning setting. For clarity, we 362

first introduce the concept of ’budget ratio’, defined 363

as the proportion of our budget relative to the size 364

of the complete unlabeled validation set. We exam- 365

ined the performance of LEMR at different budget 366

ratios (0%, 10%, 20% and 50%), and relevant re- 367

sults are detailed in Tables 1 and 2. The impact 368

of varying budget ratios on ranking correction is 369

5
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection

IMDB AGNews Amazon Review Yelp Review Yahoo! Answer Avg.

20 100 40 200 250 1000 250 1000 500 2000

Hard Ensemble

Random All-model 396 399 1442 1321 4230 4511 4363 3740 6865 7806 3507.7

Z-score 396 399 1442 1321 4230 4511 4363 3740 6865 7806 3507.7

Uncertainty
All-model 239 277 672 393 3984 3495 3959 3285 3304 3829 2344.1

Z-score 57 97 668 392 3896 3355 3941 3107 3301 3829 2264.7

Margin
All-model 239 277 667 396 4057 3385 4137 3349 3336 3819 2366.8

Z-score 57 97 671 391 3914 3369 3954 3124 3326 3879 2278.4

Entropy
All-model 239 277 668 387 3969 3586 3902 3382 3194 3813 2342.1

Z-score 57 97 665 393 3881 3318 3919 3202 2959 3906 2240.0

Soft Ensemble

Random
All-model 396 399 1392 1291 4236 4523 4394 3860 7306 7805 3560.5

Z-score 396 399 1392 1291 4236 4523 4394 3860 7306 7805 3560.5

Uncertainty
All-model 219 277 709 395 4078 3546 3964 3369 3342 3950 2385.3

Z-score 89 99 650 395 4026 3486 3961 3247 3320 3970 2324.6

Margin
All-model 219 277 692 394 4110 3511 4152 3364 3397 3902 2402.1

Z-score 89 99 669 393 3968 3652 3979 3249 3364 3907 2337.2

Entropy
All-model 219 277 683 395 4006 3448 3952 3422 3272 3907 2358.6

Z-score 89 99 673 394 3943 3604 3924 3272 3261 3975 2323.8

Size of Unlabeled Validation Set DV 400 400 2000 2000 5000 5000 5000 5000 10000 10000 -

Table 3: Semi-supervised learning setting: This table illustrates the minimum labeling budget necessary to achieve
an optimal gap of zero in our framework. The number under the dataset indicates the number of labels used in
model training stage.
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Figure 2: Semi-supervised learning setting: This figure illustrates the changes in ranking correction values within
our design space. These changes are observed across budget ratios from 0 to 1. The number after the dataset
indicates the number of labels under the model training stage.

shown in Figure 2. Additionally, Table 3 highlights370

the minimum budget needed to achieve an optimal371

gap of 0. The number in brackets after the dataset372

indicates the number of labels used in the model373

training stage. The model set generation setups can374

be found in Appendix C.1.375

From the results, we have the following findings:376

First, LEMR significantly minimizes labeling costs377

for model selection. For instance, in setting AG-378

News (200), we only need to label 387 samples to379

select the same model as labeling the entire vali-380

dation set of 2000 samples (see Table 3). Second,381

our results consistently show the superiority of un-382

certainty sampling over random sampling. Table 3383

illustrates that random sampling typically requires384

a significantly larger budget compared to uncer-385

tainty sampling. This trend is evident in Table 1386

and Table 2 as well. Additionally, the curves repre-387

senting the random strategy in Figure 2 consistently 388

lie below of other uncertainty sampling strategies. 389

Finally, the model committee selected by Z-score 390

is better than All-model under our design space. 391

For example, in Table 1 and 2, the Z-score has a 392

smaller optimal gap than All-model in all cases. 393

6.2 Weak Supervision Setting 394

In this section, we employed the WRENCH (Zhang 395

et al., 2021b) to evaluate our LEMR framework 396

within a weak supervision setting. we first evaluate 397

LEMR in a low-budget setting. Specifically, we 398

test our framework with budget ratios of 0%, 10%, 399

20%, and 50%. The corresponding optimal values 400

are displayed in Table 4. Additionally, Figure 2 401

illustrates the variation in ranking correction as the 402

budget ratio increases from 0 to 1. The model set 403

generation setups can be found in Appendix C.2. 404
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection

Yelp SMS IMDB AGNews Trec Avg.

0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50% 0% 10% 20% 50%

Hard Ensemble

Random
All-model 22.27 21.50 20.56 13.50 0.49 0.52 0.39 0.29 14.55 14.12 14.07 11.23 1.76 1.73 1.50 0.22 8.49 8.02 6.91 2.99 8.25

Z-score 22.27 21.50 20.56 13.50 0.49 0.52 0.39 0.29 14.55 14.12 14.07 11.23 1.76 1.73 1.50 0.22 8.49 8.02 6.91 2.99 8.25

Uncertainty
All-model 22.27 18.75 14.67 0.04 0.49 0.00 0.00 0.00 14.55 10.74 5.64 1.26 1.76 0.14 0.11 0.00 8.49 5.01 4.18 1.24 5.47

Z-score 22.27 17.64 12.75 0.20 0.49 0.00 0.00 0.00 14.55 11.22 5.43 0.51 1.76 0.13 0.10 0.00 8.49 4.63 2.94 0.52 5.18

Margin
All-model 22.27 18.75 14.67 0.04 0.49 0.00 0.00 0.00 14.55 10.74 5.64 1.26 1.76 0.13 0.04 0.00 8.49 5.01 4.15 1.01 5.45

Z-score 22.27 17.64 12.75 0.20 0.49 0.00 0.00 0.00 14.55 11.22 5.43 0.51 1.76 0.13 0.08 0.00 8.49 4.38 2.89 0.32 5.16

Entropy
All-model 22.27 18.75 14.67 0.04 0.49 0.00 0.00 0.00 14.55 10.74 5.64 1.26 1.76 0.04 0.12 0.00 8.49 5.62 4.68 1.20 5.52

Z-score 22.27 17.64 12.75 0.20 0.49 0.00 0.00 0.00 14.55 11.22 5.43 0.51 1.76 0.09 0.14 0.00 8.49 4.90 3.17 0.66 5.21

Soft Ensemble

Random
All-model 22.16 21.17 20.09 13.30 0.49 0.52 0.39 0.29 14.19 13.67 13.54 11.33 1.76 1.74 1.53 0.24 8.86 8.69 7.79 3.61 8.27

Z-score 22.16 21.17 20.09 13.30 0.49 0.52 0.39 0.29 14.19 13.67 13.54 11.33 1.76 1.74 1.53 0.24 8.86 8.69 7.79 3.61 8.27

Uncertainty
All-model 22.16 18.24 13.69 0.41 0.49 0.01 0.00 0.00 14.19 10.21 5.53 0.25 1.76 0.14 0.14 0.00 8.86 4.98 4.10 0.87 5.30

Z-score 22.16 16.89 12.96 0.07 0.49 0.01 0.00 0.00 14.19 10.76 6.44 0.63 1.76 0.14 0.14 0.00 8.86 4.77 3.63 0.85 5.24

Margin
All-model 22.16 18.24 13.69 0.41 0.49 0.01 0.00 0.00 14.19 10.21 5.53 0.25 1.76 0.05 0.14 0.00 8.86 4.97 3.35 1.18 5.27

Z-score 22.16 16.89 12.96 0.07 0.49 0.01 0.00 0.00 14.19 10.76 6.44 0.63 1.76 0.05 0.14 0.00 8.86 4.77 2.90 0.97 5.20

Entropy
All-model 22.16 18.24 13.69 0.41 0.49 0.01 0.00 0.00 14.19 10.21 5.53 0.25 1.76 0.06 0.10 0.00 8.86 6.04 4.50 1.07 5.38

Z-score 22.16 16.89 12.96 0.07 0.49 0.01 0.00 0.00 14.19 10.76 6.44 0.63 1.76 0.10 0.14 0.00 8.86 5.00 3.73 0.83 5.25

Table 4: Weak supervision setting: This table illustrates the changes in optimal gap values within our design space.
These changes are observed across different budget ratios, specifically at 0%, 10%, 20%, and 50%.
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Figure 3: Weak supervision setting: This figure illustrates the changes in ranking correction values within our
design space. These changes are observed across budget ratios from 0 to 1.

Some interesting observations are shown as fol-405

lows: First, LEMR, when combined with an appro-406

priate selection of methods, significantly lowers the407

labeling cost for validation sets: As shown in Table408

4, only 10% of the labeling cost suffices to select409

the same model that would be chosen with a fully410

labeled validation set. Then, compared to random411

sampling, uncertainty sampling strategies consis-412

tently exhibit superior performance. This is evident413

in Table 4, where the optimal gap for random sam-414

pling is highest across all budgets. Moreover, from415

Figure 2, we notice the random strategy has a curve416

below all uncertainty sampling strategies, which417

further supports our conclusion. Finally, adopt-418

ing the Z-score method generally reduces labeling419

costs as evidenced by the lower optimal gap values420

in Table 4. This suggests that removing the model421

that contains noise helps to reduce the labeling cost.422

6.3 Prompt Selection Setting423

In this section, we employ the T0 benchmark (Sanh424

et al., 2022) to test LEMR under the prompt selec-425

tion task. With a large language model, denoted as426

M , and a set of prompts {pk}k∈[K], we can analo-427

gize M(pk) to mk and refer to Step-I (Section 4.1)428

to Step-IV (Section 4.4) to get the model rank. The429

experimental results, including the optimal gap for 430

budget ratios of 0%, 10%, and 30%, are summa- 431

rized in Table 5. Additionally, Figure 4 visually 432

represents the changes in ranking correction as bud- 433

get ratios vary from 0 to 1. The setups for model 434

set generation can be found in Appendix C.3. 435

First, in Figure 4, we find that under a limited 436

budget, soft ensemble yields higher quality model 437

rank if the model in the model set performs poorly, 438

whereas hard ensemble is the superior solution. For 439

example, in the low-budget case, hard ensemble is a 440

better choice in tasks RTE, Story, and WSC, where 441

models generally perform better. While in tasks 442

WIC, ANL1, ANL2, and ANL3, where models per- 443

form worse, soft ensemble works better. A similar 444

situation can be found in the Yelp (250), Amazon 445

(100), Amazon (250), Yahoo (500), and Yahoo 446

(2000) datasets in the semi-supervised setting (in 447

Figure 2) as well as in the AGNews dataset and 448

Trec dataset in the weakly supervised setting (in 449

Figure 3). An intuitive explanation is that when the 450

model’s performance in the model set is poor, soft 451

ensemble can utilize all the model’s uncertainty in- 452

formation about the data, while hard ensemble may 453

rely too much on some wrong prediction results, 454

so soft ensemble will be more suitable in this case. 455
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection

WSC Story CB RTE WiC ANLI1 ANLI2 ANLI3 Avg.

0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30%

Hard Ensemble

Random
All Model 1.16 0.95 1.04 0.03 0.02 0.01 2.84 2.67 1.82 0.40 0.38 0.50 1.14 0.86 0.82 0.05 0.06 0.06 0.46 0.48 0.40 0.81 0.80 0.82 0.77

Z-score 1.16 0.95 1.04 0.03 0.02 0.01 2.84 2.67 1.82 0.40 0.38 0.50 1.14 0.86 0.82 0.05 0.06 0.06 0.46 0.48 0.40 0.81 0.80 0.82 0.77

Uncertainty
All Model 1.16 0.64 0.03 0.03 0.03 0.01 2.84 1.60 0.40 0.40 0.07 0.40 1.14 1.05 0.04 0.05 0.07 0.46 0.46 0.33 0.44 0.81 0.86 0.85 0.59

Z-score 1.16 0.00 0.03 0.03 0.00 0.00 2.84 0.00 0.00 0.40 0.00 0.00 1.14 1.19 0.17 0.05 0.13 0.57 0.46 0.26 0.45 0.81 0.81 0.83 0.47

Margin
All Model 1.16 0.64 0.03 0.03 0.03 0.01 2.84 1.64 0.27 0.40 0.07 0.40 1.14 1.05 0.04 0.05 0.23 0.55 0.46 0.33 0.49 0.81 0.94 0.85 0.60

Z-score 1.16 0.00 0.03 0.03 0.00 0.00 2.84 0.00 0.00 0.40 0.00 0.00 1.14 1.19 0.17 0.05 0.11 0.51 0.46 0.27 0.42 0.81 0.77 0.75 0.46

Entropy
All Model 1.16 0.64 0.03 0.03 0.03 0.01 2.84 1.42 0.31 0.40 0.07 0.40 1.14 1.05 0.04 0.05 0.10 0.51 0.46 0.31 0.45 0.81 0.66 0.85 0.57

Z-score 1.16 0.00 0.03 0.03 0.00 0.00 2.84 0.00 0.00 0.40 0.00 0.00 1.14 1.19 0.17 0.05 0.08 0.56 0.46 0.31 0.43 0.81 0.83 0.76 0.47

Soft Ensemble

Random
All Model 2.12 2.01 1.33 0.04 0.04 0.02 2.84 2.71 1.91 1.40 1.33 1.02 0.19 0.10 0.16 0.20 0.22 0.08 0.55 0.54 0.57 1.18 1.17 1.13 0.95

Z-score 2.12 2.01 1.33 0.04 0.04 0.02 2.84 2.71 1.91 1.40 1.33 1.02 0.19 0.10 0.16 0.20 0.22 0.08 0.55 0.54 0.57 1.18 1.17 1.13 0.95

Uncertainty
All Model 2.12 1.10 0.04 0.04 0.01 0.00 2.84 1.29 0.36 1.40 2.64 2.00 0.19 0.52 0.14 0.20 0.22 0.58 0.55 0.44 0.37 1.18 0.99 0.80 0.83

Z-score 2.12 0.00 0.04 0.04 0.00 0.00 2.84 0.00 0.00 1.40 0.00 0.00 0.19 0.77 0.16 0.20 0.20 0.43 0.55 0.47 0.33 1.18 0.88 0.97 0.53

Margin
All Model 2.12 1.10 0.04 0.04 0.01 0.00 2.84 1.20 0.04 1.40 2.64 2.00 0.19 0.52 0.14 0.20 0.36 0.55 0.55 0.50 0.31 1.18 1.07 0.90 0.83

Z-score 2.12 0.00 0.04 0.04 0.00 0.00 2.84 0.00 0.00 1.40 0.00 0.00 0.19 0.77 0.16 0.20 0.32 0.56 0.55 0.48 0.41 1.18 1.04 0.91 0.55

Entropy
All Model 2.12 1.10 0.04 0.04 0.01 0.00 2.84 1.42 1.07 1.40 2.64 2.00 0.19 0.52 0.14 0.20 0.03 0.30 0.55 0.44 0.59 1.18 0.94 1.02 0.87

Z-score 2.12 0.00 0.04 0.04 0.00 0.00 2.84 0.00 0.00 1.40 0.00 0.00 0.19 0.77 0.16 0.20 0.02 0.27 0.55 0.44 0.27 1.18 0.81 1.07 0.52

Table 5: Prompt selection setting: This table illustrates the changes in optimal gap values within our design space.
These changes are observed across different budget ratios, specifically at 0%, 10%, and 30%.
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Figure 4: Prompt selection setting: This figure illustrates the changes in ranking correction values within our
design space. These changes are observed across budget ratios from 0 to 1. The number after the dataset indicates
the number of labels under the semi-supervised learning setting.

When the model’s performance in the model set456

is relatively high, hard ensemble can filter out the457

noisy information, which is more conducive to ob-458

taining a high quality rank. When the models in the459

model set all perform exceptionally well (SMS task460

of weak supervision setting in Figure 3) or when461

the model predictions in the model set are relatively462

consistent (CB tasks of prompt selection), the re-463

sults of the hard ensemble and the soft ensemble464

will remain consistent. Moreover, our framework465

exhibits a substantial reduction in the labeling costs466

for validation sets. For example, as demonstrated467

in Table 5, for the SMS task, achieving an optimal468

gap value of 0 necessitates only 10% budget ratio.469

Besides, we find that when the sampling strategy is470

random, the optimal gap of the random strategy is471

the largest regardless of the budget ratio in Table 5.472

Lastly, we observe that using Z-score reduces the473

budget required for all tasks. On average, the Z-474

score method yields a lower optimal gap value in475

Table 5. This suggests that a high-quality commit-476

tee can generate a high-quality model ranking. 477

7 Conclusion 478

In this paper, we introduce LEMR, a novel frame- 479

work that significantly reduces labeling costs for 480

model selection tasks, particularly under resource- 481

limited settings. To evaluate LEMR, we pro- 482

pose the MoraBench Benchmark, a comprehen- 483

sive collection of model outputs across diverse sce- 484

narios. Demonstrated across 23 tasks, including 485

semi-supervised learning, weak supervision, and 486

prompt selection, LEMR significantly reduces vali- 487

dation labeling costs without compromising accu- 488

racy. Key results show that, in certain tasks, the 489

required labeling effort is reduced to below 10% 490

compared to a fully labeled dataset. Our findings 491

emphasize the importance of selecting suitable en- 492

semble methods based on model performance, the 493

superiority of uncertainty sampling over random 494

strategies, and the importance of selecting suitable 495

modes to compose the model committee. 496
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A Pseudocode of LEMR887

The pseudocode of LEMR is shown:888

Algorithm 1: LEMR
Input :model setM = {mk}k∈[K],

unlabeled validation set
DV = {xi}i∈[N ], budget B,
iteration budget b.

Output :rank rp ofM.
1 // Initialization

2 M← {mk}k∈[K],M
(1)
C ←M, T ← ⌊Bb ⌋,

Lg ← ∅, DV ← {xi}i∈[N ]

3 for t = 1to T do
4 // Initialize the set of pseudo-labels

5 Lp ← ∅
// Step I: Pseudo-label decided by model committee

6 for xi to DV do
7 ŷ

(t)
i ← g(xi,M(t)

C )

8 Lp ← Lp + {ŷ(t)i }

9 // Step II: Active label acquisition

10 S(t) ← l(Lp, b)

11 for xj to S(t) do
12 y

(t)
j ← ground-truth label

13 Lg ← Lg + {y(t)j }
14 Lp ← Lp − {ŷ(t)i }
15 DV ← DV − {xj}

16 // Step III: Model committee selection

17 M(t+1)
C ← s(Lp, Lg,M)

18 // Step-IV: Model Ranking

19 rp ← r(Lp, Lg,M)

20 return rp

B Experiments Setup889

Here, we show the implementation details and de-890

sign space of our paper.891

B.1 Implementation Details892

Our experimental environment is configured on a893

high-performance computing setup, comprising an894

Intel (R) Xeon (R) Platinum 8358P CPU clocked895

at 2.60GHz, backed by a substantial 512GB of896

memory. The computational muscle is provided by897

eight NVIDIA A40 GPUs, each with a hefty 48GB898

of memory. For model set generation (detailed in899

Appendix C), models are evaluated on validation900

and test datasets at regular intervals during train-901

ing, with all outputs saved. These outputs are then902

divided using a 2:8 ratio to create validation and903

test sets for model selection. This process is re- 904

peated across 50 different splits, and the resulting 905

data is averaged, ensuring a reliable and consistent 906

foundation for our model selection analysis. 907

B.2 Design Space 908

Based on Step-I (Section 4.1), Step-II (Section 4.2) 909

and Step-III (Section 4.3), our design space D can 910

be defined as: 911

D = {Hard ensemble, Soft ensemble}
× { Uncertainty, Margin, Entropy, Random}
× { Z-score, All-model}.

(6) 912

Therefore, there will be a total of 2×4×2 = 20 913

method combinations within our framework. 914

C Model Set Generation Setups 915

The statistics of all model sets within MoraBench 916

are shown in Table 6. 917

C.1 Generation Setups for Semi-supervised 918

Learning Setting 919

Leveraging the USB benchmark2 Wang et al. 920

(2022), model outputs were obtained from 12 921

semi-supervised methods across five datasets: 922

IMDB (Maas et al., 2011), Amazon Re- 923

view (McAuley and Leskovec, 2013), Yelp Re- 924

view (yel), AGNews (Zhang et al., 2015) and Ya- 925

hoo! Answer (Chang et al., 2008). More details of 926

these datasets are provided in Appendix E.1. 927

Specially, we use 14 common semi-supervised 928

methods: Π model (Rasmus et al., 2015), Pseudo 929

Labeling (Lee et al., 2013), Mean Teacher (Tar- 930

vainen and Valpola, 2017), VAT (Miyato et al., 931

2018), MixMatch (Berthelot et al., 2019b), ReMix- 932

Match (Berthelot et al., 2019a), UDA (Xie et al., 933

2020), FixMatch (Sohn et al., 2020), Dash (Xu 934

et al., 2021), CoMatch (Li et al., 2021), CR- 935

Match (Fan et al., 2021), FlexMatch (Zhang et al., 936

2021a), AdaMatch (Berthelot et al., 2022) and 937

SimMatch (Zheng et al., 2022) to generate our 938

model sets in semi-supervised learning setting with 939

dataset we mentioned above. For detailed train- 940

ing configurations, refer to this website3. We save 941

the model’s output every 256 steps. Eventually, 942

each method will get 400 outputs. This means that 943

for each dataset we will have 400 × 14 = 5600 944

2http://github.com/microsoft/
Semi-supervised-learning

3http://github.com/microsoft/
Semi-supervised-learning/tree/main/config/usb_
nlp

13

http://github.com/microsoft/Semi-supervised-learning
http://github.com/microsoft/Semi-supervised-learning
http://github.com/microsoft/Semi-supervised-learning/tree/main/config/usb_nlp
http://github.com/microsoft/Semi-supervised-learning/tree/main/config/usb_nlp
http://github.com/microsoft/Semi-supervised-learning/tree/main/config/usb_nlp


Training Setting Task Type Dataset Model/Prompt Number # Data

Weak Supervision

Sentiment Classification Yelp 480 3800

IMDB 480 2500

Spam Classification SMS 480 500

IMDB 480 2500

Topic Classification AGNews 480 12000

Question Classification Trec 480 500

Semi-supervised Learning

Sentiment Classification

IMDB 20 400 2000

100 400 2000

Yelp Review 250 400 25000

1000 400 25000

Amazon Review 250 400 25000

1000 400 25000

Topic Classification

Yahoo! Answer 500 400 50000

2000 400 50000

AGNews 40 400 10000

200 400 10000

Prompt Selection

Coreference Resolution WSC 10 104

Word Sense Disambiguation WiC 10 638

Sentence Completion Story 6 3742

Natural Language Inference

CB 15 56

RTE 10 277

ANLI1 15 1000

ANLI2 15 1000

ANLI3 15 1200

Table 6: The initial model set included in MoraBench and the total size of the validation set plus the test set,
i.e., # Data. The number after the dataset of Semi-supervised Learning indicates the number of labels used in
semi-supervised training stage. The description of datasets and generation configuration for each model set are
given in the Appendix E and Appendix C. We plan to add more model set soon.

model outputs. In this paper, we randomly selected945

10% of the models from each dataset for model946

selection.947

C.2 Generation Setups for Weak Supervision948

Setting949

Utilizing the WRENCH4 (Zhang et al., 2021b)950

framework, we generated model outputs within951

a weak supervision setting. We generate model952

outputs across 48 distinct weak supervision con-953

figurations on five datasets: SMS (Almeida et al.,954

2011), AGNews (Zhang et al., 2015), Yelp (Zhang955

et al., 2015), IMDB (Maas et al., 2011), Trec (Li956

and Roth, 2002). Specifics on datasets are in Ap-957

pendix E.1.958

Specifically, we follow the training configuration959

of WRENCH for model training for the model set,960

involving an array of label models, label types,961

model backbones, and varied learning rates.962

4http://github.com/JieyuZ2/wrench

Label Models: Incorporating Snorkel (Rat- 963

ner et al., 2017), majority voting, weighted ma- 964

jority voting (Penrose, 1946), and generative 965

model (Bach et al., 2017), each offering unique 966

approaches to producing weak labels. 967

Label Types: Utilization of both soft and hard 968

labels for pseudo-label generation. 969

Model Backbones: Adoption of bert-base and 970

roberta-base backbones, known for their efficacy 971

in natural language processing. 972

Learning Rates: Training across three learning 973

rates (10−1, 10−3, and 10−5) to generate model for 974

model set. 975

For detailed configuration, refer to the 976

WRENCH repository5. This setup aims to test 977

model selection methods extensively by leveraging 978

a comprehensive and diverse approach to model 979

generation. 980

5http://github.com/JieyuZ2/wrench/tree/main
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection Yelp SMS IMDB AGNews Trec Avg.

Hard Ensemble

Random
All-model 522 88 482 1463 99 530.8

Z-score 522 88 482 1463 99 530.8

Uncertainty
All-model 378 7 386 210 59 208.0

Z-score 340 7 295 211 56 181.8

Margin
All-model 378 7 386 211 60 208.4

Z-score 340 7 295 211 57 182.0

Entropy
All-model 378 7 386 220 59 210.0

Z-score 340 7 295 215 55 182.4

Soft Ensemble

Random
All-model 529 88 482 1445 99 528.6

Z-score 529 88 482 1445 99 528.6

Uncertainty
All-model 415 8 283 210 66 196.4

Z-score 379 8 297 210 66 192.0

Margin
All-model 415 8 283 219 66 198.2

Z-score 379 8 297 220 66 194.0

Entropy
All-model 415 8 283 219 67 198.4

Z-score 379 8 297 214 66 192.8

Size of Unlabeled Validation Set DV 760 100 500 2400 100 -

Table 7: Weak supervision setting: This table illustrates the minimum labeling budget necessary to achieve an
optimal gap of zero in our framework.

C.3 Generation Setups for Prompt Selection981

Setting982

We employed large language models like GPT-983

4 (OpenAI, 2023) and various prompts to gener-984

ate diverse outputs, assessed using the T0 bench-985

mark6 (Sanh et al., 2022). This process cov-986

ered eight tasks, with further information in Ap-987

pendix E.2. In particular, we adopt the T0 bench-988

mark with eight different datasets. The prompts we989

use for prompt selection all come from the prompt-990

source7.991

D Optimal Gap with Different Budget992

Ratio993

Our analysis, illustrated in Figures 5, 6, and 7, ex-994

plores the optimal gap in varying budget ratios,995

which span from 0 to 1. This investigation across996

diverse scenarios establishes a key insight: the ex-997

isting practice of fully labeling the validation set is998

wasteful, and we do not need to label the entire val-999

idation set in the process of model selection. This1000

finding further demonstrates the value of LEMR,1001

highlighting its ability to optimize resource uti-1002

lization while maintaining high model selection1003

performance.1004

6http://github.com/bigscience-workshop/T0
7http://github.com/bigscience-workshop/

promptsource

E Datasets Details 1005

E.1 Model Selection Datasets 1006

SMS (Almeida et al., 2011) . This dataset con- 1007

tains 4,571 text messages labeled as spam/not- 1008

spam, out of which 500 are held out for vali- 1009

dation and 2719 for testing. The labeling func- 1010

tions are generated manually by (Awasthi et al., 1011

2020), including 16 keyword-based and 57 regular 1012

expression-based rules. 1013

AGNews (Zhang et al., 2015) . This dataset is a 1014

collection of more than one million news articles. 1015

It is constructed by (Ren et al., 2020) choosing 1016

the 4 largest topic classes from the original corpus. 1017

The total number of training samples is 96K and 1018

both validation and testing are 12K. The labeling 1019

functions are also generated by (Ren et al., 2020), 1020

including 9 keyword-based rules. 1021

Yelp (Zhang et al., 2015) . This dataset is a 1022

subset of Yelp’s businesses, reviews, and user data 1023

for binary sentiment classification. It is constructed 1024

by (Ren et al., 2020), including 30.4K training 1025

samples, 3.8K validation samples, and 3.8K testing 1026

samples. The labeling functions are also generated 1027

by (Ren et al., 2020), including 7 heuristic rules on 1028

keywords and 1 third-party model on polarity of 1029

sentiment. 1030

IMDB (Maas et al., 2011) . This is a dataset 1031

for binary sentiment classification containing a set 1032
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Method Dataset

Pseudo-label
Generation

Active Label
Acquisition

Model Committee
Selection WSC Story CB RTE WiC ANLI1 ANLI2 ANLI3 Avg.

Hard Ensemble

Random
All Model 19 216 10 11 102 44 194 237 105.03

Z-score 19 216 10 11 102 44 194 237 105.03

Uncertainty
All Model 3 216 5 4 36 20 166 201 81.79

Z-score 1 44 1 4 43 12 192 232 67.05

Margin
All Model 3 216 4 4 36 6 166 201 79.84

Z-score 1 44 1 4 43 18 192 232 67.74

Entropy
All Model 3 216 5 4 36 20 168 206 82.60

Z-score 1 44 1 4 43 22 194 228 67.66

Soft Ensemble

Random
All Model 18 748 10 52 30 57 194 237 168.20

Z-score 18 748 10 52 30 57 194 237 168.20

Uncertainty
All Model 5 142 6 32 43 184 184 225 102.54

Z-score 2 59 1 4 50 194 188 225 90.67

Margin
All Model 5 142 3 32 43 184 186 228 102.34

Z-score 2 59 1 4 50 194 186 225 90.54

Entropy
All Model 5 142 6 32 43 12 184 225 81.06

Z-score 2 59 1 4 50 12 188 225 67.83

Size of Unlabeled Validation Set DV 20 748 11 55 127 200 200 240 -

Table 8: Prompt selection setting: This table illustrates the minimum labeling budget necessary to achieve an
optimal gap of zero in our framework.

of 20,000 highly polar movie reviews for train-1033

ing, 2,500 for validation and 2,500 for testing. It1034

is constructed by (Ren et al., 2020). The label-1035

ing functions are also generated by (Ren et al.,1036

2020), including 4 heuristic rules on keywords and1037

1 heuristic rules on expressions.1038

Amazon Review (McAuley and Leskovec, 2013).1039

This dataset is a sentiment classification dataset.1040

There are 5 classes (scores). Each class (score)1041

contains 600,000 training samples and 130,000 test1042

samples. For USB, we draw 50,000 samples and1043

5,000 samples per class from training samples to1044

form the training dataset and validation dataset re-1045

spectively. The test dataset is unchanged.1046

Yelp Review (yel) This sentiment classification1047

dataset has 5 classes (scores). Each class (score)1048

contains 130,000 training samples and 10,000 test1049

samples. For USB, we draw 50,000 samples and1050

5,000 samples per class from training samples to1051

form the training dataset and validation dataset re-1052

spectively. The test dataset is unchanged.1053

Trec (Li and Roth, 2002) . This dataset contains1054

4,965 labeled questions in the training set, 500 for1055

the validation set, and another 500 for the testing1056

set. It has 6 classes. The labeling functions are1057

generated by (Awasthi et al., 2020), including 681058

keyword-based rules.1059

Yahoo! Answer (Chang et al., 2008). This1060

dataset has 10 categories. Each class contains1061

140,000 training samples and 6,000 test samples. 1062

For USB, we draw 50,000 samples and 5,000 sam- 1063

ples per class from training samples to form the 1064

training dataset and validation dataset respectively. 1065

The test dataset is unchanged. 1066

E.2 Prompt Selection Datasets 1067

We follow the T0 benchmark (Sanh et al., 1068

2022). Specifically, the test tasks include nat- 1069

ural language inference (RTE (Dagan et al., 1070

2006), CB (De Marneffe et al., 2019), ANLI/R1- 1071

R3 (Nie et al., 2020)), sentence completion (Sto- 1072

ryCloze (Mostafazadeh et al., 2017)), word sense 1073

disambiguation (WiC (Pilehvar and Camacho- 1074

Collados, 2019)), and coreference resolution 1075

(WSC (Levesque et al., 2012)). 1076

F Minimum Budget to achieve an optimal 1077

gap of zero in other Cases 1078

We further explored the minimal budget necessary 1079

to achieve a zero optimal gap in weak supervision 1080

and prompt selection setting, with findings pre- 1081

sented in Table 7 and Table 8. We can conclude 1082

consistent with the text. 1083

To be specific, Firstly, our framework, combined 1084

with an appropriate selection of methods, signifi- 1085

cantly lowers the labeling cost for validation sets. 1086

As seen in 7, for the AGNews task, where only 210 1087

samples need labeling as opposed to labeling 2400 1088

samples of the entire validation set. This efficiency 1089

is further evidenced in the Story task, where se- 1090
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lecting the optimal model entails labeling a mere1091

44 samples instead of the full 748, as shown in1092

Table 8.1093

Then, we can find uncertainty sampling strategy1094

is much better than random strategy. This is evident1095

in Table 7 and Table 8, where uncertainty sampling1096

consistently requires a smaller budget across all1097

tasks.1098

Finally, adopting the Z-score method generally1099

reduces labeling costs. Table 7 demonstrates that1100

the Z-score method requires a lesser budget to1101

select the equivalent model as the All-model ap-1102

proach. This trend is also evident in Table 8, where1103

the Z-score variant requires less budget to achieve1104

an optimal gap of 0 compared to the All-model1105

scenario.1106

G Limitations and Potential Risks1107

Our evaluations primarily focus on NLP tasks. Al-1108

though LEMR shows promising results in these1109

areas, its effectiveness and adaptability to other1110

domains, such as computer vision or audio process-1111

ing, remain to be thoroughly investigated. Different1112

domains may exhibit unique challenges, including1113

higher dimensional data or different notions of un-1114

certainty, which could affect the performance of our1115

proposed methods. Besides, the models selected1116

by frameworks like LEMR are often deployed in1117

applications with wide-reaching societal impacts.1118

From enhancing educational tools and healthcare1119

diagnostics to improving environmental monitor-1120

ing, the potential for positive societal impact is vast.1121

However, careful consideration of the implications1122

of these applications, including ethical, social, and1123

environmental impacts, is essential to ensure that1124

they contribute positively to society.1125
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Figure 5: Weak supervision setting: This figure illustrates the changes in optimal gap values within our design
space. These changes are observed across budget ratios from 0 to 1.
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Figure 6: Semi-supervised learning setting: This figure illustrates the changes in optimal gap values within our
design space, under a semi-supervised learning setting. These changes are observed across budget ratios from 0 to 1.
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Figure 7: Prompt selection setting: This figure illustrates the changes in optimal gap values within our design
space. These changes are observed across budget ratios from 0 to 1.
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