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Abstract
We approach the well-studied problem of supervised group invariant and equivariant machine
learning from the point of view of geometric topology. We propose a novel approach using a
pre-processing step, which involves projecting the input data into a geometric space which
parametrises the orbits of the symmetry group. This new data can then be the input
for an arbitrary machine learning model (neural network, random forest, support-vector
machine etc). We give an algorithm to compute the geometric projection, which is efficient
to implement, and we illustrate our approach on some example machine learning problems
(including the well-studied problem of predicting Hodge numbers of CICY matrices), finding
an improvement in accuracy versus others in the literature.
Keywords: Group invariant, group equivariant, geometric deep learning, fundamental
domain, geometric topology

1. Introduction

Many tasks in machine learning can be understood as approximating a function α : X → Y
between a feature space and an output space. Typically, these may be subsets of Rn, but
could be more complicated like Riemannian manifolds. We consider the problem in the
presence of symmetries—more precisely, suppose a group G that acts on X on the left, and
α satisfies the invariance property

α(g · x) = α(x) for all x ∈ X, g ∈ G. (1)

A simple example is recognising a single handwritten digit which may have been rotated by
90◦, 180◦, or 270◦, so the problem is invariant under the action of Z4.

Machine learning models such as neural networks or random forests can approximate
α but the resulting function β will not generally be G-invariant. The key task is to define
machine learning algorithms producing functions β : X → Y which are necessarily invariant.
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1.1. Previous work

Machine learning models which are invariant (or equivariant) under the action of a group G
have been extensively studied in the literature. In (40), Yarotsky distinguishes two different
approaches to the problem: symmetrisation based and intrinsic approaches. The first involves
averaging some non G-invariant model over the action of G to produce an (approximately)
G-invariant model; whereas intrinsic approaches involve designing the model to be G-invariant
a priori by imposing conditions coming from the group action.

A standard symmetrisation based approach is data augmentation, which was used in early
works such as (25), and is surveyed in (7). It involves increasing the size of the training data
Dtrain = {(x, y) | x ∈ Xtrain ⊂ X, y = α(x) ∈ Y } by applying sample elements G0 ⊂ G to
the inputs. The new training data is then Daug

train := {(g · x, y) | (x, y) ∈ Dtrain and g ∈ G0}.
A similar approach is to take a machine learning architecture β and apply it to several
G-translates of an input, before applying a pooling map to these different outputs. This
yields a G-invariant map, and was studied in (2). A more sophisticated version of this pooling
technique was proposed in (1).

We now turn to examples of intrinsic approaches. For neural networks, one can impose
restrictions on the weights so that the resulting network is invariant under a group action on
the input. This was done using group equivariant hidden layers, for example, in (18; 41). The
same idea is also used in (29; 31; 32). Methods to determine all equivariant linear layers were
proposed in (10; 15). Convolutional layers in neural networks are a standard tool to impose
translational symmetry in image classification tasks. This idea has been generalised to group
equivariant CNNs in (9) for actions by arbitrary discrete groups. Another intrinsic approach
is proposed in (40, Section 2) based on the theory of polynomial invariants of G. All of these
approaches are concerned with discrete symmetries. The study of continuous symmetries was
initiated in (24) and expanded in (35; 11); and the case of Euclidean transformations has
received additional attention, for example in (16; 37). An analogue of polynomial invariants
that can handle some cases of continuous symmetries was proposed in (13).

1.2. Our contribution

Our approach to the problem is intrinsic, based on the fact that composing a G-invariant map
with any other map, results in a G-invariant map. More precisely, we suggest a G-invariant
pre-processing step to be applied to the input data that can then be composed with any
machine learning architecture. The resulting composition is a G-invariant architecture. We
provide a general framework to define the G-invariant preprocessing step for general group
actions and a concrete implementation for finite groups acting by coordinate permutations.

One way of getting a G-invariant self-map of the feature space is to map to a so-
called fundamental domain F , which preserves the local geometry of the feature space.
The set F ⊂ X comes with a G-invariant map π : X → F onto its closure. Let α be
the restriction of α to F , then by G-invariance α = α ◦ π. Instead of fitting a machine
learning model β : X → Y to the training data Dtrain, we train the model β : F → Y with
Dπ

train := {(π(x), y) | (x, y) ∈ Dtrain} ⊂ F × Y which approximates α. The resulting map
β = β ◦ π : X → Y is G-invariant. Figure 1 shows the difference between the pre-processing
approaches of augmentation and our method. This approach extends easily to G-equivariant
machine learning, as explained at the end of Section 2.1.

2



Group invariant machine learning by fundamental domain projections

Dtrain Daug
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Figure 1: Example training data for a problem
invariant under rotations by 120◦;
the training data after augmenta-
tion Daug

train; and our approach Dπ
train

(mapping all the data to the blue
fundamental domain).

More precisely, G-invariant maps from X
are parametrised by maps from the so-called
quotient space X/G of X, see Appendix A.
The set F ⊂ X locally models X/G and,
especially in the case X = Rn and G acts by
permuting coordinates, has the advantage of
being extremely easy to compute. Another
advantage our approach has is that it can be
applied directly to any supervised machine
learning model. In contrast, many existing
methods, such as (18; 41; 29; 31; 32; 15; 10)
only work for neural networks. The compu-
tational cost of data augmentation and many equivariant machine learning approaches scales
with the size of the symmetry group. This is not the case for our approach, which we
implement for groups of size 6 · 1020 in Section 3.2. In the case of small group sizes, our
approach makes no notable difference. That is for example the case in image recognition
tasks with a rotational symmetry, which is one of our examples.

The rest of the paper is organised as follows. Section 2 describes our approach in detail,
and compares it with other approaches from the literature. Section 3 discusses several
applications of our approach, and compares the accuracies of machine learning architectures
employing different approaches to G-invariant machine learning. Our main application is
the learning of Hodge numbers from CICY matrices, first studied in (20), and our method
improves on the state of the art (14).

2. Mathematical approach

In principle, our approach works in a very general setting, however we will restrict ourselves
to the case that the feature space X is a Riemannian manifold on which G acts discretely
by isometries. Recall an isometry is a map X → X which leaves the Riemannian metric
unchanged. Given x ∈ X, its orbit under the action of G is the set G · x = {g · x | g ∈ G}.
Recall an action is discrete if every orbit under G is a discrete subset of X. The reason for
these restrictions is that the group action preserves the geometry of X.

2.1. Fundamental domains

We want to approximate a G-invariant function α satisfying Equation (1). It follows that
α takes the same value on every element of any G-orbit. A set R ⊂ X is a set of orbit
representatives if for all x ∈ X, R ∩ (G · x) 6= ∅. Approximating α on a set of orbit
representatives essentially approximates it everywhere. A nice choice for R which takes into
account the geometry of the group action is given by a fundamental domain.

Definition 1 Let a group G act on X discretely by isometries. A subset F ⊂ X is called a
fundamental domain for G if (a) it is open and connected; (b) every G-orbit intersects F ,
the closure of F , in at least one point; and (c) whenever a G-orbit intersects F at a point in
F , then this is the unique point of intersection with F .
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Figure 2: Defining β
from β.

Given G acting on X we will find a G-invariant map π : X → F ,
defined as π(x) = φ(x) · x, where φ : X → G is some suitable function.
We call such a map a projection onto the fundamental domain F . We
can now apply any machine leaning architecture to approximate the
function α|F : F → Y trained on the data Dπ

train yielding a function
β. This can then be used to compute the G-invariant approximation
for α defined on the whole of X by defining β = β ◦ π, see Figure 2.

If β is a neural network, then the universal approximation property
is satisfied, namely β can approximate any continuous, G-invariant map α arbitrarily
closely. This follows from the standard universal approximation theorem and is proved in
Appendix E.1.

For generic x ∈ X and any g ∈ G, φ has the property

φ(g · x) = φ(x)g−1 (2)

from which we can show that β is indeed G-invariant:

β(g · x) = β(φ(g · x) · (g · x)) = β((φ(x)g−1) · (g · x)) = β((φ(x) · x) = β(x).

Our method of producing a G-invariant architecture can easily be modified to the G-
equivariant setting. Let G act on X and Y , then a G-equivariant map α : X → Y satisfies
α(g · x) = g · α(x) for all x ∈ X and g ∈ G. Let π : X → F be the fundamental domain
projection as above, and define φ : X → G be a function such that π(x) = φ(x) · x. Then we
define the β model via

β(x) := φ(x)−1 · β(π(x)) = φ(x)−1 · β(φ(x) · x).

As above, for a generic x ∈ X, Equation (2) implies that β is G-equivariant.

Remark 2 The projection π is continuous on F , but may fail to be continuous on the
boundary of F . Here φ does not necessarily satisfy Equation (2), and so the function β may
not be strictly G-invariant/equivariant. This only presents a problem if a significant portion
of Dπ

train lies on the boundary. An example is in Section 3.

Now we will describe two methods of finding a fundamental domain projection.

2.2. Dirichlet projections

The first method of computing a projection map follows from a classical proof of the existence
of a fundamental domain for a discrete group G acting by isometries on a metric space (X, d)
(every Riemannian manifold is automatically a metric space). The idea is to fix some point
x0 which is only fixed by elements of G which fix the whole of X point-wise, and define F to
be all points which are closer to x0 than any other points in the orbit G · x0, see for example
(36, §II.1.4). Such an F is called an Dirichlet fundamental domain. By its definition, we can
rephrase the problem of finding a projection π : X → F as a minimisation problem for the
metric on X: given x ∈ X find g ∈ G which minimises d(g · x, x0). In practice, this can be
approximated using a discrete gradient descent algorithm, see Appendix F.3. In the special
case that G acts on Rn by orthogonal matrices, equivalently one can minimise the inner
product 〈g · x, x0〉 instead of the distance.
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2.3. Combinatorial projections

Finding a projection onto a Dirichlet fundamental domain may not always be the best option
since the gradient descent algorithm must be applied to each input, and it cannot guarantee
finding the global minimum, and hence can only be used to approximate π.

A preferable approach would be to have an explicit and easy to compute description of a
projection π onto a fundamental domain. We give an algorithm to compute such a projection
for the rather general case that G < Sn is a subgroup of the permutation group, which acts
on X = Rn by permuting coordinates. More precisely, if x = (xi)i ∈ Rn and s ∈ Sn we say s
acts on the left by s · (xi)i =

(
xs−1(i)

)
i
. This induces an action of G on Rn which we call a

permutation action of G. This action is discrete (since G is finite) and by isometries since it
preserved the Euclidean metric.

Example 3 Let G = Sn be the full permutation group acting on Rn. Given a point
x = (x1, . . . , xn) ∈ Rn we can reorder the entries in any way by elements of Sn, and a funda-
mental domain corresponds to a consistent choice of reordering. One consistent choice would be
to have the entries in increasing order, so F = {(x1, . . . , xn) ∈ Rn | xi < xi+1 for all i < n}.
The projection π : Rn → F can be easily implemented using any sorting algorithm.

Another example of a simple group action is when G = Zn < Sn acts by cyclically per-
muting the coordinates. In this case we can make a consistent choice by ensuring that the
first entry is the smallest so F = {(x1, . . . , xn) ∈ Rn | x1 < xi for all i > 1}.

The algorithm to find a fundamental domain projection in general is based on (12) in
which the authors give an efficient algorithm to find a set of unique coset representatives
for an arbitrary subgroup G 6 Sn, this is summarised in Appendix D.3. A set of coset
representatives can be turned into a set of orbit representatives for the permutation action
of G on Rn. Appendix D details how we modify their algorithm so that this set of orbit
representatives is in fact a fundamental domain, and so that it outputs an explicit projection
map. This map is easy to implement and efficient to compute. In fact, here we will define the
ascending projection π↑, in Appendix B we discuss a few variations of this projection map
and compute an example. We have listed the outputs of the algorithm for several common
examples of groups G 6 Sn in Appendix C.

Finding a base Let N = {1, . . . , n}, which we identify with the set of indices for the
standard basis for Rn so Sn acting on Rn corresponds to the right action of Sn on N by
i · s = s−1(i). The first step of the algorithm is to find a base for G 6 Sn.

Definition 4 A base for G 6 Sn is an ordered subset B = (b1, . . . , bk) of N such that⋂k
i=1 StabG(bi) = {1}, where StabG(bi) = {g ∈ G | bi · g = bi} is the stabiliser of bi in G.

Given a base let G0 = G and for 1 6 i 6 k, define Gi = StabGi−1(bi) = Gi−1 ∩ StabG(bi).

It follows that Gk = {1}. One can always choose B = (1, . . . , n− 1) as a base, although
an algorithm to compute an efficient base is given in Appendix D.3. Given a base B and the
groups Gi, we will also define ∆i to be the orbit of bi under the action of Gi−1.

Example 5 Let G be the subgroup in S4 generated by the elements (1 2) and (3 4), where we
represent permutations using cycle notation: eg (1 2) swaps 1 and 2 and fixes 3 and 4. Then
B = (1, 3) is a base and we have stabilisers G0 = {e, (1 2), (3 4), (1 2)(3 4)}, G1 = {e, (3 4)},
G2 = {e}, and orbits ∆1 = {1, 2}, ∆2 = {3, 4}.
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Perturbing points in Rn We now need to define the map φ↑ : X → G used in the
definition of π↑. The map φ↑ will only be uniquely defined on points x = (xi)i ∈ Rn all of
whose entries are distinct. We first perturb x slightly to get a point with this property. Choose
a perturbation vector ε which has all distinct entries, for example ε = 1

2n(1, 2, . . . , n). Let
d = minxi 6=xj{|xi − xj |} (choose d = 1 if all entries of x are the same) and define x′ = x+ dε,
which is guaranteed to have all entries distinct. The entries of x′ have the same relative
order, ie if x′i 6 x

′
j then xi 6 xj , and φ↑ will depend only on this relative ordering of entries.

Then we define φ↑(x) = φ↑(x
′) where φ↑(x′) is defined below.

The ascending projection map We will define a sequence of permutations gi ∈ G for
1 6 i 6 k as follows. Assume g1, . . . , gi−1 have already been found. Gi−1 acts transitively on
∆i, choose j ∈ ∆i such that the jth entry of (gi−1 · · · g1) · x′ is minimal among those entries
indexed by ∆i. Choose gi ∈ Gi−1 such that j ·gi = g−1

i (j) = bi. Now define φ↑(x′) := gk · · · g1,
note the choice of the gi’s is not unique, but we will show in Appendix D.6 that φ(x′) is
uniquely defined. Appendix D is devoted to the proof of the following theorem which says
that the map we have defined is a projection onto a fundamental domain.

Theorem 6 Define π↑ : Rn → Rn by π↑(x) = φ↑(x) · x, and let F be the interior of its
image. Then F is a fundamental domain for G acting on Rn. Given a choice of base B and
perturbation vector ε, the projection π↑ is uniquely defined.

Example 3 (Continued) For G = Sn, then B = (1, 2, . . . , n− 1) is the smallest base we
can use, so Gi = Perm(i+ 1, . . . , n) and ∆i = {i, . . . , n}. Fixing x′ ∈ X and following
the algorithm above: g1 ∈ G0 = Sn is a permutation moving the smallest entry indexed by
∆1 = {1, . . . , n} to the entry indexed by b1 = 1. Repeating this for each i up to n − 1, gi
moves the ith smallest entry of x′ to the ith position. The result is that (gn−1 · · · g1) · x′ has
entries ordered from smallest to largest.

In a very similar way, applying the algorithm to G = Zn using the base B = (1) yields
the same projection onto a fundamental domain described at the start of Section 2.3.

In Appendix F.2 we discuss an algorithm to compute π↑ for arbitrary permutation groups,
and analyse the time and space complexity of this algorithm. The worse case runtime of the
algorithm depends only on the dimension n and the size of the base k < n, so in particular
the algorithm remains computationally tractable for very large groups. In general, the
time complexity is O(k2n3) (Theorem 27). For many groups this drops to O(n4(log logn)2)
(Theorem 33), and for the common groups discussed in Appendix C, it drops to O(n2).

2.4. Comparing approaches to invariant and equivariant machine learning

We can compare the various approaches to invariant machine learning discussed in Section 1.1
on a theoretical level; below we compare them experimentally. Augmentation is a data
pre-processing step and can be applied to any model. However, the resulting model need
not be G-invariant, and for large groups it is computationally impractical to augment by a
representative subset of the group.

As for intrinsic approaches, group equivariant neural networks like (9; 15; 29; 41) are
model-specific, and there are unavoidable limits on the universality while using low-order
tensors (28). Additionally, (9) requires the elements of G to be stored in memory, making
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it impractical for large groups. The approach in (40) using polynomial invariants. The
approach in (40) is not practical outside of small group actions owing, in part, to the need
to compute a basis of polynomial invariants. This basis will in general be large, increasing
the dimension of the feature space dramatically.

Fundamental domain projections are computationally easy to use, maintain the original
dimension and geometry of the data, and are compatible with any machine learning model.
The resulting model is G-invariant almost everywhere (see Remark 2).

3. Examples and results

We show how G-invariant pre-processing can be applied to examples of classification tasks
in group theory, string theory, and image recognition. In each case, the symmetry group
acts differently on the input space. We account for this by choosing appropriate projection
maps from the previous section. Experiments 3.1 and 3.3 are chosen as proof of concept,
not to reach the state of the art, the main application of our approach is experiment 3.2.
Implementation details may be found in Appendix F.1.

3.1. Cayley tables

Multiplication tables of groups are called Cayley tables. The following model problem was
introduced in (21, Section 3.2.3): up to isomorphism, there are 5 groups with 8 elements.
Separate their Cayley tables into two classes and apply random permutations until 20 000
tables in each class exist. The problem is to assign a given table to one of two classes. This
map is invariant under the action of S8×S8 acting on R8×8 by row and column permutations.

Let π↑ : R8×8 → R8×8 be the ascending projection map from Section 2.3, in particular as
defined in Appendices C.1 and C.6. This has an explicit description as follows: given a choice
of total order on the group elements, permute the columns so that the first row is ordered
smallest to biggest, and then permute the rows so that the first column is ordered smallest
to biggest. Then, π↑ is invariant under the action of S8 × S8 and can be efficiently computed
for Cayley tables. This pre-processing effectively ‘undoes’ the permutations, which makes
the machine learning problem trivial. Consequently, we achieve nearly perfect accuracy using
a linear support vector machine (SVM), see Table 1.

We compare our approach with the neural network from (21), with the Deep Sets
architecture from (41), and with the S8 × S8-invariant neural network from (18). The Deep
Sets architecture is invariant under the action of the full S8·8 = S64 on R8×8. As all Cayley
tables are in the same orbit under this group action, the performance of this architecture can
only be as good as random guessing. Note that the general purpose architectures described
in (29; 15) in this case are identical to (18). Other architectures from the literature, such
as (9), are difficult to apply to this problem, since they require keeping a non-sparse map
S8 × S8 → R in memory. This group has size 8! · 8! ≈ 1.6 · 109.

3.2. CICY

Hodge numbers are crucial for understanding and distinguishing Calabi-Yau manifolds.
Algebraic algorithms to compute them explicitly exist, and in (17), a dataset of complex
three-dimensional complete intersection Calabi-Yau manifolds (CICYs) and their Hodge

7



Aslan Platt Sheard

Table 1: Accuracy of predicting the group isomorphism type of a Cayley table.

Accuracy

MLP (21) 0.501± 0.015
Deep Sets (41) 0.504± 0.010
G-inv MLP (18; 29; 15) 0.498± 0.012
π↑+SVM 0.994± 0.008

numbers is given. Hodge numbers are expensive to compute, and it is not feasible to compute
all Hodge numbers explicitly on larger datasets. For applications in string theory, it is
important to have Calabi-Yau manifolds with large first Hodge number. In (20), it was
suggested to use a neural network to approximately compute (among other tasks) the first
Hodge number of a Calabi-Yau manifold, thereby quickly identifying the most promising
candidates without resorting to the expensive exact calculation.

For three-dimensional CICYs, the Hodge numbers have been computed, but it remains
the most commonly used benchmark for comparison of machine learning models in the field,
so we apply our algorithm to this problem. Here, CICYs are represented by matrices of size
up to 12× 15, and the first Hodge number is an integer. The same problem was subsequently
studied in (5; 6; 14), using more sophisticated machine learning models. The problem is
invariant under row and column permutations, ie an action of S12 × S15 on R12×15, but
none of the machine learning models which have been implemented previously for the Hodge
number classification satisfy this invariance.

We compare two pre-processing maps: the map πDir : R12×15 → R12×15 defined in
Section 2.2, which we computed by performing discrete gradient descent; and π↑ defined in
the same way as in Section 3.1. We found that composing πDir with existing neural networks
slightly improves performance, but not significantly. We also considered an alternative
training task in which input matrices first had their rows and columns randomly permuted.
In this case, our model outperforms models from the literature by a large margin. We also
compare our model with the group invariant model from (18) in both training tasks, see
Table 2. Again, the approaches of (29) and (15) reduce to (18). As for Cayley tables, the
approach in (9) is impractical due to the large group size 12! · 15! ≈ 6 · 1020.

As our approach is intrinsic it is well suited for problems with a large symmetry group.
For all networks but the G-invariant multi layer perceptron (MLP) the accuracy decreases
on the permuted dataset. This suggests that the rows and columns of the CICY matrices
are already systematically ordered in the original dataset. The map π↑ can be computed
efficiently but need not be G-invariant on the boundary of the fundamental domain by
Remark 2. This is a potential problem since the input data, which consists of integer-valued
matrices, is discrete. Indeed, a substantial proportion of the CICY matrices are very sparse
and do lie on the boundary, which could be the reason why π↑ performs relatively poorly
on the permuted data set. The projection map πDir can only be approximated but is fully
G-invariant which is a crucial advantage on the permuted dataset.
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Table 2: Accuracies for the task of predicting the second Hodge number of a CICY matrix.
Models are compared on the original training task and on randomly permuted input
matrices. The last three rows are group invariant models, the first three rows are
not group invariant models.

Original dataset Randomly permuted

MLP (20) 0.554± 0.015 0.395± 0.029
MLP+pre-processing (6) 0.858± 0.009 0.417± 0.086
Inception (14) 0.970± 0.009 0.844± 0.117
G-inv MLP (18; 29; 15) 0.895± 0.029 0.914± 0.023
πDir+Inception 0.975± 0.007 0.963± 0.016
π↑+Inception 0.969± 0.009 0.539± 0.020

3.3. Classifying rotated handwritten digits

As an instructional example, we use the MNIST dataset of handwritten images from (26), on
which Z4 rotates the images by multiples of 90◦. We use the ascending averaging projection
defined in Appendix B, π↑av : R28×28 → R28×28. This map rotates each image so that its
brightest quadrant is at the top-left. We then compare performance of a linear classifier, a
shallow neural network, and SimpNet (see (19)) which is among the top performers on the
original MNIST task; first on their own, then with data augmentation, and finally with the
projection map π↑av, but without data augmentation, see Table 3.

Table 3: Accuracy for the task of recognising handwritten digits. We use two different
degrees of data augmentation: either add every possible rotation of the input image
to the training data (Aug. ×4) or applying data augmentation until the training
data reaches 1.5 times its original size (Aug. ×1.5).

No pre-processing Aug. ×1.5 Aug. ×4 π↑av

Linear 0.677± 0.001 0.682± 0.001 0.682± 0.001 0.784± 0.001
MLP 0.939± 0.001 0.963± 0.002 0.963± 0.001 0.953± 0.003
SimpNet (19) 0.979 0.986 0.986 0.979

For linear classifiers, data augmentation does not improve accuracy substantially due
to their small number of parameters. Unsurprisingly, pre-processing with π↑av improves
performance because it is partially successful at rotating pictures into a canonical orientation.

For neural networks with more than one layer, data augmentation increases accuracy,
because the model now has sufficient parameters to include the information from the additional
training data. Pre-processing using π↑av yields better accuracy than no pre-processing, but
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worse accuracy than full data augmentation. If fewer training data points are added during
the data augmentation step, the benefit is comparable to applying the map π↑av.

This is one example of the fact that data augmentation may be the best pre-processing
option if the symmetry group G has few elements and one can augment by the full group.
If |G| is very large, this is not possible, and pre-processing using a fundamental domain
projection may be better than augmenting with a small, non-representative, subset of G.

4. Conclusion

The G-invariant pre-processing step proposed in this paper has a clear mathematical motiva-
tion. It respects the geometry of the input space and we show in Appendix A it naturally fits
into a larger framework of G-equivariant machine learning. There are also many practical
advantages of our approach: it can be applied to any machine learning architecture, it pre-
serves the dimension of the input space and in most cases it guarantees perfect G-invariance.
Furthermore, the computation cost is generally low even if |G| is very large. For the image
recognition task where |G| = 4, many of these advantages are only relevant for networks with
a small number of neurons. For Cayley tables however, |G| = 8! · 8! ≈ 1.6 · 109 is very large
and the G-invariance of our approach produces nearly perfect accuracy. The symmetry group
is even larger for CICY matrices even though both the action of the symmetry group as well
as the classification task itself are more complicated. Our approach significantly improves
the most accurate architecture known so far for this task.

While our experiments all fall into the category of finite groups acting by permutations
on Rn, our approach works in the much broader setting of (possibly infinite) groups acting
discretely by isometries on manifolds. Although not discussed in the paper, it also generalises
to continuous Lie group actions, with the fundamental domain replaced by a geometrically
nice set of orbit representatives.
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Appendix A. Unifying intrinsic approaches to equivariant machine
learning

In Sections 2 and 3 we approximated G-invariant functions by considering them as functions
on a fundamental domain. In this appendix we show that approximating a G-invariant
function is equivalent to approximating it on the quotient space. We then pick up two
approaches to G-invariant machine learning from the literature alongside our approach, and
explain in which sense they can be viewed as machine learning on quotient spaces. It will be
convenient to treat the G-invariant problem as a special case of the G-equivariant problem,
since an invariant function X → Y is an equivariant function where G acts trivially on
Y . We return to the setting that G acts by isometries on X and Y which are Riemannian
manifolds. To simplify the proof of Theorem 9 we make the stronger assumption that the
action is properly discontinuous, rather than discrete, which means that for any compact
subset K, the set {g ∈ G | g ·K ∩K 6= ∅} is finite.

A.1. Universality of quotient spaces

We begin by defining the quotient space of a group action, and discuss its properties.

Definition 7 Let G be a group acting on X, then the quotient space X/G is the set of all
G-orbits of points in X, {G · x | x ∈ X}. A quotient space is automatically equipped with
a G-invariant map πX : X → X/G : x 7→ G · x. If X is a subset of Rn and the action is by
isometries, X/G inherits a metric from the Riemannian metric on X, and πX is a local
isometry.

For us the key is that quotient spaces are universal with respect to G-equivariant maps.

X Y

X/G Y/G

α

πX πY

α

Universal property of quotient spaces Given two spaces
X and Y and a group G acting on both, let πX : X → X/G
and πY : Y → Y/G be the canonical projection maps. Then
for any G-equivariant map α : X → Y there is a unique map
α : X/G→ Y/G such that πY ◦ α = α ◦ πX (ie the diagram on
the right commutes).

If the action of G on X and Y is sufficiently ‘nice’, then the converse holds: equivariant
maps X → Y are parametrised by certain maps X/G → Y/G. Notice that for any G-
equivariant function α, point stabilisers in X and Y have the property that for any x ∈ X,
StabG(x) ⊂ StabG(α(x)).

Definition 8 Let X and Y be simply connected, a continuous map α : X/G→ Y/G is
compatible with the G actions if for any x ∈ X, the stabiliser StabG(x) is conjugate in G to
a subgroup of StabG(y), where y is a lift under πY of α(πX(x)).

It follows from the observation above that if α is the map coming from the universal
property, then α is automatically compatible with the G-action. In the special case that G
acts trivially on Y (ie the G-invariant case) then every continuous map α : X/G→ Y/G = Y
is compatible.
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Theorem 9 Any compatible function α : X/G → Y/G lifts to a G-equivariant function
α : X → Y . Suppose α′ is another such lift, and assume there is some x0 ∈ X such that
α′(x0) = α(x0) where StabG(α(x0)) fixes Y point-wise. Then α′(x) = α(x) for all x ∈ X.

We omit the proof, which can be deduced using (8, Theorem 4.1.6). This gives a
converse to the universal property, and shows that up to an isometry of Y there is a one-
to-one correspondence between G equivariant maps X → Y , and compatible maps of their
quotients.

Now suppose α : X → Y is a G-equivariant function we want to approximate using
a supervised machine learning algorithm. Using an intrinsic approach, as discussed in
Section 1.1, means approximating α by a function β which is a priori G-equivariant. By the
theorem above, this is equivalent to approximating α by a compatible function β. Below we
will discuss how different intrinsic approaches to the equivariant machine learning problem
fit into this framework.

A.2. Equivariant maps from polynomial invariants

We discuss briefly the approach proposed by Yarotsky in (40, Section 2) based on the theory
of polynomial invariants of a group G acting on X = Rn. A polynomial p(x) ∈ R[x1, . . . , xn]
is called a polynomial invariant if it satisfies Equation (1). Similarly, if G also acts on Rm,
then q(x) : Rn → Rm is a polynomial equivariant if q(g · x) = g · q(x) for all g ∈ G and
x ∈ Rn.

The following, proved in (30) in the invariant case, was generalised to compact Lie
groups in (38, Theorem 8.14.A). The equivariant case is proved in (39, Section 4). If
a finite group G acts on Rn and Rm, then there are finite sets of invariants {pi(x)}ki=1,
and equivariants {qj(x)}lj=1 such that any polynomial equivariant q(x) can be written as
q(x) =

∑l
j=1 qj(x)rj(p1(x), . . . , pk(x)) for some rj(x) ∈ R[x1, . . . , xk]. In the invariant case

we can take l = 1, and q1(x) = 1.
Yarotsky shows in (40, Proposition 2.4) that any continuous G-equivariant function

α : Rn → Rm can be approximated on a compact set by a G-equivariant neural network of
the form

β(x) =

l∑
j=1

qj(x)

d∑
h=1

ajh σ

(
k∑
i=1

bjhipi(x) + cjh

)
(3)

for some ajh, bjhi, cjh ∈ R, where d ∈ N, and σ is a continuous non-polynomial activation
function.

Notice that all the learnable parameters are contained in the inner two sums, which also
constitute the neural network in the G-invariant case

∑d
h=1 ah σ

(∑k
i=1 bhipi(x) + ch

)
, see

(40, Proposition 2.3). The relationship between this method and quotient spaces is shown by
the following result (33).

Theorem 10 The map p(x) := (p1(x), . . . , pk(x)) factors through Rn/G, and induces a
smooth embedding of Rn/G into Rk.

We can reinterpret the invariant version of Equation (3) as a fully-connected neural
network β. We then train this network on the data Dp

train = {(p(x), y) | (x, y) ∈ Dtrain}
which has been projected to the quotient space by p. Thus β learns the map α directly.
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A.3. Our approaches

Our approach of projecting onto a fundamental domain (whether by a combinatorial projection
or a Dirichlet projection) fits very naturally in this general framework. Like Yarotsky’s
approach, we want to try to approximate the function α rather than approximating α.
Instead of working directly with the quotient spaces, one can think of the map from the
fundamental domain to the quotient space πX |FX

: FX → X/G as a chart in the sense of
differential geometry, and so FX locally parametrises X/G.

In the invariant case, we can approximate α = α ◦ πX |FX
by approximating α. In the

equivariant case, we can also view πY |FY
: FY → Y/G as a chart, and because πY |FY

is a
bijection onto its image we can apply its inverse and approximate α = (πY |FY

)−1 ◦α◦ πX |FX

by approximating α. Note that πX |FX
and πY |FY

are not surjective in general, and there is
no canonical way to extend their domain to make them so. The fix for this is to perturb
points to lie in the preimage of FX as discussed in Section 2.3.

Remark 11 We do not work directly with the quotient spaces in our approach because the
quotient space of a vector space is not itself a vector space. It needs to be embedded first
in another vector space before being used as the input for a neural network, say. Finding
quotient space embeddings is an extremely difficult problem.

The approach in (40) is to use polynomial invariants, which can be found using an
algorithm. The problem, in addition to being computationally infeasible in practice (the target
dimension in the case of 28× 28 pixel images as in Section 3.3 would be of order 108), is
that they significantly distort the training data leading to low accuracy.

To avoid this one must find an isometric embedding which does not distort the data.
However, this is even more difficult, and likewise significantly increases the ambient dimension
of the training data. Further details on both the distortion of training data by polynomial
invariants and quotient space projections may be found in (34).

A.4. Equivariant layers in neural networks

On the face of it, the various approaches to equivariant neural networks such as (29; 9; 15)
bypass the compatible map α by approximation α directly, restricting the space of maps
which can be used. The central problem in these approaches is computing what the possible
equivariant maps are, and (15) gives a very general approach to this problem. The unified
approach we discuss above provides another possible approach to this problem based on
geometric methods as opposed to representation theory. We sketch this in Appendix E.2.

Appendix B. Other combinatorial projection maps

There are three natural variations of the combinatorial projection map π↑ we defined in
Section 2.3 which may be more suited to specific applications. We called that projection
an ascending projection. The variations are a descending projection π↓, and ascending and
descending averaging projections π↑av and π↓av. These projections each have their own
version of Theorem 6 whose proof is essentially identical.

The descending projection is defined via φ↓, which differs from φ↑ only when we define
gi. In this case Gi−1 acts transitively on ∆i, and we choose j ∈ ∆i such that the jth entry
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of (gi−1 · · · g1) · x̂ is maximal among those entries indexed by ∆i. Choose gi ∈ Gi−1 such
that j · gi = g−1

i (j) = bi. If the input data for the machine learning algorithm consisted of
vectors containing non-negative entries including many zeros, the descending projection in
some sense prioritises the non-zero entries, so may yield different results.

For the averaging projections, assume that G = H1 ×H2 is a direct product of groups
Hj 6 Snj which acts the space of n1 × n2 matrices, Rn1 ⊗ Rn2 , by letting H1 permute rows
and H2 permute columns. In this case, identify N with the set of pairs

{(l,m) | 1 6 l 6 n1, 1 6 m 6 n2}.

Define a transformation µ : Rn1 ⊗ Rn2 → Rn1 ⊗ Rn2 by

µ : (xlm)lm 7→
(

1

n1
(x1m + x2m + · · ·+ xn1m) +

1

n2
(xl1 + xl2 + · · ·+ xln2)

)
lm

.

Notice this is a G-equivariant linear map which replaces each entry of (xlm)lm by the sum of
the averages of the entries in its row and column. Now for any x ∈ Rn1 ⊗ Rn2 we define

φ↑av(x) = φ↑

(
µ̂(x)

)
and φ↓av(x) = φ↓

(
µ̂(x)

)
.

These definitions generalise in the obvious way to the case G =
∏r
j=1Hj acting on

⊗r
j=1 Rnj

component-wise, where Hj 6 Snj . One might wish to use an averaging projection if, for
example, one of the Hj ’s is trivial, in which case a non-averaging projection ignores most of
the entries, since they will not be in any of the orbits ∆i. This is the case in the application
discussed in Section 3.3.

Example 12 Let G = Z3 × S3 6 S3 × S3 act on R3 ⊗ R3, thought of as the set of 3 × 3
matrices, by cyclically permuting the rows and freely permuting the columns. In this case let
N = {(l,m) | 1 6 l 6 3, 1 6 m 6 3} and construct a base. Let b1 = (1, 1) whose stabiliser is
G1 = {1} × Sym({2, 3}), and the orbit of b1 under G0 = G is ∆1 = N . Now (2, 1) and (3, 1)
are both fixed by G1 and so should not be the next element of the base. Choose b2 = (1, 2).
Then G2 = {1} × {1} and the orbit of b2 under G1 is ∆2 = {(1, 2), (1, 3)}. Since G2

∼= {1}
we are done and B = ((1, 1), (1, 2)).

Let x′ = (x′lm)lm be a 3× 3 matrix whose entries are distinct, we want to compute φ↑(x′).
Let (p1, q1) ∈ ∆1 = N be the pair such that x′p1q1 = 1 is the minimal entry in x′. Then we
can choose g1 = (s1, (1 q1)) ∈ Z3 × S3 where

s1 =


(1) p1 = 1

(1 2 3) p1 = 2

(1 3 2) p1 = 3

∈ Z3

Now let g1 · x′ = (x′′lm)lm, and let (1, q2) ∈ ∆2 = {(1, 2), (1, 3)} minimise x′′1q2. Define
g2 = ((1), (2 q2)) ∈ G1 and φ↑(x′) = g2g1.

Combinatorially we can describe the projection π↑ as follows: transport the smallest entry
of x′ to the top left corner by cyclically permuting rows and freely permuting columns, and
then order columns 2 and 3 so that the entries in the first row increase.
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As an example, consider the matrix x and perturbation matrix ε

x =

5 3 3
4 0 0
3 5 1

 , ε =
1

18

1 2 3
4 5 6
7 8 9

 =⇒ x′ = x+ ε =
1

18

91 56 57
76 5 6
61 98 27

 .

We can now apply π↑(x) = φ↑(x
′) · x in the two step process described above:

x′ =
1

18

91 56 57
76 5 6
61 98 27

 g17−→ 1

18

 5 76 6
98 61 27
56 91 57

 g27−→ 1

18

 5 6 76
98 27 61
56 57 91

 = π↑(x
′)

x =

5 3 3
4 0 0
3 5 1

 g17−→

0 4 0
5 3 1
3 5 3

 g27−→

0 0 4
5 1 3
3 3 5

 = π↑(x).

Similarly

π↓(x) =

5 3 1
3 5 3
0 4 0

 .

We can also compute the averaging versions of these projections

µ(x) =
1

3

23 19 15
16 12 8
21 17 13

 =⇒ π↑av(x) =

0 0 4
1 5 3
3 3 5

 , and π↓av(x) =

5 3 3
4 0 0
3 5 1

 .

Appendix C. Examples of combinatorial projection maps

In this section we list combinatorial projection maps for several common examples of groups
G 6 Sn. Notice that in each of the four examples of concrete groups below, implementation
via a suitable sorting function circumvents the need to perturb inputs initially.

C.1. The symmetric group

If G = Sn, let N = {1, . . . , n} and we can choose the base B = (1, 2, . . . , n − 1). The
ascending projection π↑(x) permutes the entries so that they increase from left-to-right, and
the descending projection π↓(x) permutes the entries so that they decrease.

C.2. The alternating group

If G = An < Sn is the group of even permutations, we can choose B = (1, 2, . . . , n− 2) and
the ascending (resp. descending) projection permutes the entries of x so that the first n− 2
entries increase (resp. decrease) from left-to-right, and the last two entries are greater than
or equal to all the other entries. If x contains repeated entries then the last to entries can
also be ordered to be increasing (resp. decreasing); otherwise their relative order depends on
whether the permutation sx′ which maps i 7→ x′i for 1 6 i 6 n, is an even or odd permutation
(see Section 2.3 for the definition of x′i).
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C.3. The cyclic group

If G = Zn 6 Sn is the cyclic group generated by the permutation (1 2 · · · n), we can choose
the base B = (1). The ascending (resp. descending) projection cyclically permutes the entries
of x so that the first entry is less (resp. greater) than or equal to all other entries of x.

C.4. The dihedral group

If G = Dn 6 Sn is the dihedral group generated by

s1 = (1 2 · · · n) and s2 = (2 n)(3 (n− 1))(4 (n− 2)) · · · ,

we can choose base B = (1, 2). The ascending (resp. descending) projection cyclically
permutes the entries of x via s1 so that the first entry is less (resp. greater) than or equal to
all other entries of x, and then if the final entry is less (resp. greater) than the second entry,
it applies the permutation s2.

C.5. Products of groups acting on products of spaces

Suppose G =
∏r
j=1Hj where Hj 6 Snj acts on

⊕r
j=1 Rnj by each Hj acting by permutations

on the corresponding space Rnj and trivially everywhere else. Let

Bj =
(
b
(1)
j , . . . , b

(kj)
j

)
⊂ {1, . . . , nj} = Nj

be a base for Hj acting on Rnj , then

B =
(
b
(1)
1 , . . . , b

(k1)
1 , b

(1)
2 , . . . , b

(k2)
2 , . . . , b(1)

r , . . . , b(kr)
r

)
is a base for G. Let πj↑ : Rnj → Rnj be the ascending projection corresponding to Bj . Then
define π↑ =

⊕r
j=1 πj↑, to be the projection which equals πj↑ when restricted to Rnj . Similarly

π↓ =
⊕r

j=1 πj↓.

C.6. Products of groups acting on tensors of spaces

Suppose G =
∏r
j=1Hj where Hj 6 Snj acts on

⊗r
j=1 Rnj by each Hj acting by permutations

on the jth component of
⊗r

j=1 Rnj , and trivially on the other components. For each 1 6 j 6 r

let Bj =
(
b
(1)
j , . . . , b

(kj)
j

)
⊂ {1, . . . , nj} = Nj be a base for Hj acting on Rnj , and furthermore

(for convenience) assume that b(1)
j = 1. Then choose B ⊂

∏r
j=1Nj =: N to be

B =
(

(1, . . . , 1),
(
b
(2)
1 , 1, . . . , 1

)
, . . . ,

(
b
(k1)
1 , 1, . . . , 1

)
,

...
...(

1, . . . , 1, b(2)
r

)
, . . . ,

(
1, . . . , 1, b(kr)

r

))
,

where a 1 in the jth position of an element of B should be thought of as b(1)
j . Suppose

x = (xl1···lr)l1···lr ∈
⊗r

j=1 Rnj , and let x′ be as in Section 2.3. Choose (m1, . . . ,mr) ∈ N to
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be the index in the G-orbit of 1 = (1, . . . , 1) with minimal entry in x′. For 1 6 j 6 r define
x′j := (x′m1···lj ···mr

)16lj6nj
∈ Rnj , which is the restriction of x′ to the Rnj -vector containing

the entry x′m1···mj ···mr
. Then define

φ↑ :
⊗r

j=1 Rnj → G : x 7→ (φ1↑(x̂1), . . . , φr↑(x̂r)),

where φj↑ : Rnj → Hj is the function defined for Hj acting on Rnj , and similarly define φ↓(x).
Then as before, π↑(x) := φ↑(x) · x and π↓(x) := φ↓(x) · x.

Appendix D. Proof of Theorem 6

The idea of the proof is as follows. In Appendix D.1 we shall outline an equivalence
between subgroups of Sn acting on Rn by permuting coordinates, and them acting on Sn
by multiplication. This will provide a dictionary between certain combinatorially defined
fundamental domains and sets of coset representatives satisfying simple algebraic properties,
Theorem 17. We will then outline the work from (12) in Appendix D.3 which gives an
algorithm to find a set of coset representatives for an arbitrary subgroup of Sn. The
main work is then to show this algorithm, with modifications, can produce a set of coset
representatives with the desired algebraic properties so that it corresponds to a fundamental
domain, culminating in Theorem 24. Finally we will show in Theorem 25 that the algorithm
outlined in Section 2.3 indeed produces a projection onto this fundamental domain.

D.1. Actions on Rn and Sn

Recall we have the group Sn acting on Rn on the left by s · (xi)i =
(
xs−1(i)

)
i
. We also have

the normal action of Sn on itself on the left by group multiplication: s acts on t by s · t = st
for any s, t ∈ Sn. Here we shall show that in some sense these actions are equivalent. This
correspondence is known, at least to experts, so we will only outline the essential points.

Let x ∈ Rn be a point, all of whose entries are distinct, and notice the set of such points
is open and dense in Rn. Define a function which changes the ith entry xi of x to the integer
|{1 6 j 6 n | xj 6 xi}|. The result will be a list of the integers 1, . . . , n in the same relative
order as the entries of x, and we denote the set of all such points C. We can think of C
as a discrete subset of Rn, and the left action of Sn on Rn restricts to a left action on C.
Notice also that this map Rndist := {x ∈ Rn | all entries are distinct} → C is continuous.
In other words the set of connected components of Rndist is in one-to-one correspondence
with C, and indeed each component contains a point in C, its representative point. We
call these connected components chambers, and given c ∈ C we will write [c] ⊂ Rn for the
corresponding chamber. The following is easy to check.

Lemma 13 Each chamber is a fundamental domain for the action of Sn on Rn.

The action of Sn on Rn preserves an (n− 1)-simplex in the orthogonal complement of the
vector (1, . . . , 1). In Figure 3 we show the 3-simplex preserved by S4, and use it to visualise
the 24 = |S4| chambers in this case.

On the other hand, we can view each element of C as a permutation in Sn written in in-
line notation. This means if c = (ci)i, as a permutation it sends i to ci for each i ∈ {1, . . . , n}.
Thus Sn is in one-to-one correspondence with C. In fact, it is better in our situation to modify

20



Group invariant machine learning by fundamental domain projections

(2,1,3,4)

(1,2,3,4)(1,3,2,4)

(3,1,2,4)

(3,2,1,4) (2,3,1,4)

(2
,1
,4
,3
)

(1,2,4,3)(1,3,4,2)

(3
,1
,4
,2
)

(3,2,4,1) (2,3,4,1)

(2,4,1,3)

(1,4,2,3)(1,4,3,2)

(3,4,1,2)

(1,2,3,4) (2,4,3,1)

(4,2,1,3)

(4,1,2,3)(4,1,3,2)

(4,3,1,2)

(4,3,2,1) (4,2,3,1)

Figure 3: On the left is boundary of a 3-simplex, each small triangle corresponds to the
intersection of this with a chamber. On the right the picture has been stereograph-
ically projected to the plane for the purposes of illustration, and each chamber is
labelled by the representative element of C.

this correspondence by inverting elements of Sn via the map ρ : Sn → C : s 7→ (s−1(i))i. The
equivalence of the left action of Sn on Rn and the left action on itself comes in the following
form. Let s, t ∈ Sn, and consider the action of s on ρ(t):

s · ρ(t) = s · (t−1(i))i = (t−1(s−1(i)))i = ((st)−1(i))i = ρ(st) = ρ(s · t).

Given any subgroup G 6 Sn, the map ρ defines an equivalence between G acting on Rn,
which restricts to an action of G on C, and G acting on Sn by left multiplication. We can
use this equivalence to convert a set of right coset representatives for G in Sn into a complete
set of orbit representatives (defined in Section 2.1) for G acting on Rn.

Proposition 14 Let R be a set of right coset representatives for G 6 Sn, then the set
F =

⋃
r∈R [ρ(r)] is a complete set of orbit representatives for G acting on Rn, where [ρ(r)]

is the closure of the chamber containing ρ(r).

Proof Since Rndist is dense in Rn and G acts by continuous maps which leave Rndist invariant
as a set, it suffices to show that

⋃
r∈R[ρ(r)] is a complete set of orbit representatives for G

acting on Rndist. In fact G simply permutes the components of Rndist so it suffices to show
that

⋃
r∈R ρ(r) is a complete set of orbit representatives for the induced action of G on C.

But now, ρ is a bijection which exhibits an equivalence between the action of G on C and
the action of G on Sn so we just need to show that R is a complete set of orbit representatives
for G acting on Sn. The orbits of this action are precisely the right cosets of G, which
completes the proof.
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D.2. Gallery connectedness and fundamental domains

Given a set of right coset representatives R for G 6 Sn, the interior of F as defined in the
proposition will generally not be a fundamental domain because it will not be connected.
We can reinterpret connectedness in terms of algebraic properties of R. First some geometric
definitions.

Definition 15 Let c, c′ ∈ C be distinct, we say the chambers [c] and [c′] are adjacent if
[c] ∩ [c′] has codimension 1. A gallery is a sequence of chambers [c1], . . . , [ck] such that
consecutive chambers are adjacent. A set of chambers is called gallery connected if any two
distinct chambers in the set can be connected by a gallery which is completely contained in
the set. As a shorthand, we sometimes call a subset C ′ ⊂ C gallery connected if the set
{[c] | c ∈ C ′} is gallery connected.

It turns out that the decomposition of Rndist into chambers corresponds to the chamber
system of Sn acting on its Coxeter complex, about which we will not elaborate here, but the
interested reader should consult (4). The upshot of this viewpoint is two characterisations of
adjacency of chambers.

Lemma 16 Let c 6= c′ ∈ C and define s = ρ−1(c), s′ = ρ−1(c′). Then the following are
equivalent:

1. The chambers [c] and [c′] are adjacent

2. There is 1 6 j 6 n− 1 such that s′ = s(j j+ 1) where (j j+ 1) is a transposition in Sn
3. The vectors c and c′ differ by swapping exactly two entries which are consecutive integers

Proof The equivalence of (1) and (2) is proved in, for example, Theorem I.5A of (4). To
see the equivalence of (2) and (3), notice that ρ(s(j j + 1)) = ((s(j j + 1))−1(i))i =: (c′i)i.
For i 6∈ {j, j + 1}, c′i = s(i) = ci (where c := (ci)i), whereas c′j = cj+1 and c′j+1 = cj .

The equivalence of (1) and 3 for the example of S4 can be seen in (Figure 3). We will
use this characterisation to prove Theorem 23 which is key to showing that the image of
π↑ is connected. We are now in a position to upgrade Theorem 14 so that it produces a
fundamental domain for the action of G. To state this, we define a right transversal of
G 6 Sn to be a minimal set of right coset representatives (ie a set containing exactly one
element from every right coset).

Proposition 17 Let R ⊂ Sn be a right transversal for G 6 Sn such that ρ(R) is gallery
connected. Then F , the interior of

⋃
r∈R [ρ(r)], is a fundamental domain for G acting on

Rn.

Proof By the definition, if [c] and [c′] are adjacent, then the interior of [c] ∪ [c′] will be
connected. By induction on the length of galleries in {[ρ(r)] | r ∈ R} it follows that F is
connected. It is also open by definition.

By Theorem 14 we know that F is a complete set of orbit representatives for G. Finally,
suppose that some G-orbit meets F in at least two points, say x and x′ and g ∈ G is such
that g · x = x′. Since the G-action permutes the chambers, there are two possibilities:
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1. There are coset representatives r, r′ ∈ R such that x ∈ [ρ(r)] and x′ ∈ [ρ(r′)].

2. There are coset representatives r1 6= r2, r
′
1 6= r′2 ∈ R such that x ∈ [ρ(r1)] ∩ [ρ(r2)] and

x′ ∈ [ρ(r′1)] ∩ [ρ(r′2)].

In the first case we must have that g · [ρ(r)] = [ρ(r′)], in which case it follows from
Theorem 13 and the fact that g 6= 1, that r 6= r′. But then by the equivalence of the action
with the action on Sn, we have that g · r = gr = r′ and r and r′ represent the same right
coset of G. This contradicts the assumption that R is minimal. In the second case we can
similarly argue that {r1, r2} 6= {r′1, r′2} but g · {r1, r2} = {r′1, r′2}, again contradicting the
minimality of R. In either case g cannot exist.

D.3. An algorithm to find coset representatives

In this section we will summarise the main construction of (12) which gives an efficient
algorithm to compute a right transversal for an arbitrary subgroup G 6 Sn. The first step,
as it is to find a base B ⊂ N for G 6 Sn. Set B0 = (), the empty tuple. We will assume
that we have already constructed Bi−1 and computed Gi−1. If Gi−1 = {1}, B = Bi−1 is a
base and we are done. Otherwise, pick bi ∈ N with the largest orbit under Gi−1 and let Bi
be Bi−1 with bi appended.

Let B = (b1, . . . , bk) be a base and recall we define G0 = G and Gi = Gi−1 ∩ StabG(bi)
for 1 6 i 6 k. We also write ∆i = bi · Gi−1 for the orbit of bi under Gi−1. Recursively
construct a partition Πi of N , starting with Π0 = {N}. Denote by Γi the element of Πi−1

which contains bi. One can check by induction that Γi contains ∆i as a subset. Define Πi by
replacing Γi in Πi−1 by the non-empty subsets from the list: {bi}, ∆i − {bi}, and Γi −∆i.

Now let Ui be a right transversal for the group Sym(∆i) × Sym(Γi −∆i) in Sym(Γi),
where Sym(Ω) is the group of permutations of the set Ω (in the next section we will fix a
particular choice for Ui), and finally let

Hi =
∏

Γ∈Πi

Sym(Γ).

Then define R = HkUkUk−1 · · ·U1, where for subsets A,B ⊂ Sn, AB := {ab | a ∈ A, b ∈ B}.

Theorem 18 ((12) §4) The set R is a right transversal for G 6 Sn.

D.4. Gallery connected sets of coset representatives

We will now show how the method described above can be used to construct a right
transversal R for G such that ρ(R) is gallery connected. This is done by choosing a suitable
base B, possibly re-indexing the set N , and choosing appropriate right transversals Ui for
Sym(∆i) × Sym(Γi −∆i) in Sym(Γi). We will prove Theorem 6 assuming B and N have
been chosen in this way, and then in Appendix D.6 show that the assumptions on B and N
can be dropped.

We described how to find a base for G by appending more and more elements of N to
B = () until Gk = {1} in Appendix D.3. The first assumption we make is that each new bi
is minimal in the orbit bi ·Gi−1 with respect to the normal ordering on N . We will call such
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a base orbit minimal. We will use the following lemma to build gallery connected sets out of
other gallery connected sets.

Lemma 19 Let A1, . . . , Al be subsets of Sn so that each contains the identity permutation
(1), and ρ(Ai) is gallery connected for each i. Then ρ(A1A2 · · ·Al) is gallery connected.

Proof Notice that A1A2 contains (1)(1) = (1). Let a ∈ A1A2, and choose a1 ∈ A1 and
a2 ∈ A2 such that a = a1a2. Since ρ(A1) and ρ(A2) are gallery connected, there are galleries
pa1 ⊂ ρ(A1) and pa2 ⊂ ρ(A2) which connect ρ((1)) to ρ(a1) and ρ((1)) to ρ(a2) respectively.
Then a1 · pa2 connects ρ(a1) to ρ(a1a2) in ρ(a1A2), and the concatenation pa1 ∗ (a1 · pa2) is
a gallery which connects ρ((1)) to ρ(a) in ρ(A1A2). Call this gallery p̃a, its construction is
illustrated in Figure 4. Now given a, a′ in A1, A2 the gallery p̃−1

a ∪ p̃a′ (where p̃−1
a indicates p̃a

traversed in reverse) connects ρ(a) to ρ(a′) in ρ(A1A2), so ρ(A1A2) is gallery connected—the
claim follows by induction on l.

ρ
(A

1
A

2
)
ρ(A2)

ρ
(A

1
)

a1 · ρ(A2)

pa2

a1 · pa2

pa1

a2

(1)

a1
a1a2

Figure 4: Building a gallery
in ρ(A1A2).

From the definition of R in the previous section, if we show
that Hk and each of the Ui’s satisfy the hypotheses of this
lemma, then it will follow that R is gallery connected. We will
first consider Hk. Notice that in fact, if Πk = {N1, . . . , Nl}
then

Hk =
l∏

i=1

Sym(Ni) = Sym(N1)Sym(N2) · · · Sym(Nl)

can be written as a product of sets, again as in the lemma.
Each Sym(Ni) contains (1), so we just need ρ(Sym(Ni)) to
be gallery connected for each i. It follows immediately from
Theorem 16 that this is the case if and only if Ni is a sequence
of consecutive digits from N .

In general this will not be the case, however it can be readily achieved by re-indexing the
set N . In fact we can do this so that each part of each partition Πi is a set of consecutive
digits, which will subsequently aid in showing that ρ(Ui) is gallery connected.

Lemma 20 We can re-index N so that bi remains minimal in ∆i and each part of Πi is a
set of consecutive digits for 1 6 i 6 k.

Proof We do induction on i: note that in Π0 = {N} the only part is a set of consecutive
numbers. Assume that each element of Πi−1 is a set of consecutive digits, in particular
Γi ∈ Πi−1 is a set of consecutive digits. Assume one of the three subsets {bi}, ∆i − {bi}
or Γi −∆i is non-empty and does not consist of consecutive digits, then by the minimality
of bi both ∆i − {bi} and Γi −∆i must be non-empty and not consist of consecutive digits.
Re-index the elements of Γi so that overall the same set of digits is used, but now bi is the
smallest, the next smallest digits lie in ∆i − {bi}, and the remaining digits are in Γi −∆i.
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D.5. Choosing a right transversal Ui

Finally we want to choose the right transversals Ui for Sym(∆i)× Sym(Γi −∆i) in Sym(Γi).
Write ∆i = {d1, d2, . . . , dm}, and Γi − ∆i = {dm+1, dm+2, . . . , dm+m′}. For some integer
0 6 l 6 min{m,m′}, choose dj1 < dj2 < · · · < djl and dm+j′1

< dm+j′2
< · · · < dm+j′l

, and
consider the product of transpositions

(dj1 dm+j′1
)(dj2 dm+j′2

) · · · (djl dm+j′l
) ∈ Sym(Γi). (4)

Define Ũi to be the set of all such products for any choice of l, and indices jk and j′k.

Lemma 21 ((12) Lemma 2) Ũi is a right transversal for Sym(∆i) × Sym(Γi − ∆i) in
Sym(Γi).

Let ũ ∈ Ũi have the form given in Equation (4). If l = 0, then ũ is the identity and
thinking of it as an element of Sn > Sym(Γi), we get ρ((1)) = (1, . . . , n). More generally ρ(ũ)
will be the result of swapping each of the pairs djk ↔ dm+j′k

in this vector, for 1 6 k 6 l. Let
gũ ∈ Sym(∆i)× Sym(Γi −∆i) be the permutation such that ρ(gũ · ũ) has its first m entries
in increasing order, and its last m′ entries in increasing order. Define Ui = {gũ · ũ | ũ ∈ Ũi}.

Lemma 22 Ui is a right transversal for Sym(∆i)× Sym(Γi −∆i) in Sym(Γi).

Proof Ũi contains exactly one element from each right coset of Sym(∆i)× Sym(Γi −∆i)
in Sym(Γi). For ũ ∈ Ũi, the element gũ · ũ = gũũ lies in the same right coset as ũ since
gũ ∈ Sym(∆i)× Sym(Γi −∆i). Hence Ui contains exactly one element from each right coset
of Sym(∆i)× Sym(Γi −∆i) in Sym(Γi).

We want to show that ρ(Ui) is gallery connected, and for that we will use the re-indexing
of N provided by Theorem 20. Recall that bi is the ith element of the base B; it follows
from our construction of Ui that

ρ(Ui) = {(1, . . . ,bi − 1,

indexed by ∆i︷ ︸︸ ︷
c1, . . . , cm ,

indexed by Γi−∆i︷ ︸︸ ︷
cm+1, . . . , cm+m′ , bi +m+m′, . . . , n) |

cj ∈ Γi = {bi, bi + 1, . . . , bi +m+m′ − 1} for all 1 6 j 6 m+m′,

c1 < · · · < cm, and cm+1 < · · · < cm+m′} (5)

Since this is notationally rather cumbersome, we will abbreviate elements of ρ(Ui) by

(c1, . . . , cm | cm+1, . . . , cm+m′),

where the first ‘half’ consists of entries indexed by ∆i, and the second ‘half’ consists of entries
indexed by Γi −∆i.

Proposition 23 Let G 6 Sn, B be an orbit minimal base, and N indexed so that each part
of Πi is a set of consecutive digits. Then the set ρ(Ui) is gallery connected.
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Proof To help simplify notation, we will not distinguish between points in C and the cham-
bers they represent. We will show that ρ(Ui) is gallery connected by explicitly constructing
a gallery which joins an arbitrary chamber

c = (c1, . . . , cm | cm+1, . . . , cm+m′) ∈ ρ(Ui)

to the chamber corresponding to the identity in Ui,

ĉ = ρ((1)) = (bi, . . . , bi +m− 1 | bi +m, . . . , bi +m+m′ − 1).

Theorem 16 gives the condition for consecutive chambers in this gallery to be adjacent: they
must differ by swapping two entries which are consecutive integers. Furthermore we will
ensure this gallery remains in ρ(Ui) throughout. This implies that after swapping the two
entries, the two halves of c must remain properly ordered. Taken together, this implies that:

The only swaps we can perform must switch the position of an entry in the left
half with one in the right half, and these entries must be consecutive integers.

Let c ∈ ρ(Ui) be arbitrary, write ĉj = bi + j − 1 for the jth entry of ĉ, and define

δ(c) =

 m∑
j=1

cj − ĉj

−
 m+m′∑
j=m+1

cj − ĉj


which measures the degree to which c and ĉ differ.

Claim 1 δ(c) > 0.
Let j 6 m, then since the entries in the left half of c are ordered, distinct integers greater than
or equal to bi, cj > bi + (j − 1) = ĉj so each term in the first sum is non-negative. Similarly,
for j > m the entries in the right half of c are ordered, distinct integers less than or equal to
bi +m+m′ − 1, so cj 6 bi +m+m′ − 1− (m+m′ − j) = bi + (j − 1) = ĉj so each term in
the second sum is non-positive. �

As a remark, it follows from this claim that δ equals the L1 distance between c and ĉ.
We shall perform a sequence of swaps as described above which have the effect decreasing
the value of δ(c). Since δ(c) = 0 implies that c = ĉ, the required gallery can be constructed
by induction on δ(c). Assume c 6= ĉ, and let j be the minimal index such that cj 6= ĉj . Since
the two halves of c are ordered, cj is in the left half.

Claim 2 cj′ := cj − 1 is in the right half of c.
Indeed suppose it is in the left half, then by the ordering on c, j′ < j, and by the minimality
of j, cj′ = ĉj′ = bi + j′− 1. But then ĉj 6= cj = cj′ + 1 = bi + (j′+ 1)− 1 = ĉj′+1, so j 6= j′+ 1
since all entries of ĉ are distinct. But now cj′ < cj′+1 < cj (by the ordering on c), which
contradicts the fact that these entries are distinct integers, and cj − cj′ = 1. �

Thus, cj and cj − 1 are entries in different halves of c which are consecutive integers. Let
c′ be the result of swapping these two entries in c, then

δ(c)− δ(c′) = ((cj − ĉj)− (cj′ − ĉj′))− ((cj′ − ĉj)− (cj − ĉj′)) = 2(cj − cj′) = 2 > 0

so performing the swap strictly decreases δ. By induction, there is a gallery in ρ(Ui) joining
c and ĉ, and hence ρ(Ui) is gallery connected.
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It follows directly from this proposition, Theorem 18, and Theorem 17 that R as defined
in Appendix D.3 corresponds to a fundamental domain.

Corollary 24 Let G 6 Sn, B be an orbit minimal base, and N indexed so that each part
of Πi is a set of consecutive digits. Let R be the right transversal for G constructed above,
then F , the interior of

⋃
r∈R [ρ(r)], is a fundamental domain for G acting on Rn.

D.6. Finishing off the proof

To complete the proof of Theorem 6 we have two tasks: first show that the map π↑ as defined
in Section 2.3 has image in F =

⋃
r∈R [ρ(r)], and so indeed projects onto a fundamental

domain; and then remove the assumptions of orbit minimality and on how N is indexed.

Proposition 25 Let G 6 Sn, B be an orbit minimal base, and N indexed so that each part
of Πi is a set of consecutive digits. Then the image of π↑ lies in

⋃
r∈R [ρ(r)].

Proof It suffices to show that the image of Rndist lies in F =
⋃
r∈R [ρ(r)]. We claim that

ρ(R) = {(cj)j ∈ C | for 1 6 i 6 k, cbi 6 cj for all j ∈ ∆i}.

It is clear that the definition of π↑ implies that the right hand side of this is the image of
π↑|C , so the proposition follows immediately from this claim.

Call the set on the right hand side C ′, first we will show that ρ(R) ⊆ C ′. By Equation (5)
(note that the entries of (cj)j there are indexed differently there) we can see

ρ(Ui) ⊂ {(cj)j ∈ C | cbi 6 cj for all j ∈ ∆i}.

Since Ui ⊂ Sym(Γi), which fixes bi−1 for i > 2, one can inductively check from the definition
of ρ that ρ(Uk · · ·U1) ⊂ C ′. Similarly, in the partition Πk, each bi appears as a singleton, so
Hk also fixes bi for 1 6 i 6 k, hence ρ(R) ⊆ C ′.

To establish the claim we just need to show that |C ′| = |ρ(R)|; since they are finite sets,
this implies that they are equal. On the one hand, since ρ is a bijection, and using Lagrange’s
Theorem

|ρ(R)| = |R| = |{right cosets of G in Sn}| = |Sn|/|G|.

On the other hand, each condition ‘cbi 6 cj for all j ∈ ∆i’ decreases the size of C by a factor
of |∆i|, so

|C ′| = |C|/(|∆1| · · · |∆k|).

Since C is the bijective image of Sn under ρ, |C| = |Sn|. By the Orbit-Stabiliser Theorem

|∆i| = |bi ·Gi−1| = |Gi−1|/|StabGi−1(bi)| = |Gi−1|/|Gi|,

Where the last equality follows from the definition Gi = StabGi−1(bi). Therefore

|∆1| · · · |∆k| =
|G0|
|G1|
|G1|
|G2|

· · · |Gk−1|
|Gk|

=
|G0|
|Gk|

=
|G|
|{1}|

= |G|

Hence |C ′| = |ρ(R)|, which completes the proof.
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Proof [Proof of Theorem 6] Let N = {1, . . . , n}, and choose B a base for G 6 Sn, and
ε satisfying the conditions in Section 2.3. Let s ∈ Sn be a permutation of N such that
Bs := B · s is an orbit minimal base, and each part of each partition Πs

i := Πi · s is a set
of consecutive digits. That s exists is clear by first permuting k times so that B is orbit
minimal (note bi 6∈ ∆j for all j > i) and then applying Theorem 20. Write bsi = bi · s so that
Bs = (bs1, . . . , b

s
k).

Let Gs = s−1Gs be the conjugate of G by s in Sn, then for any g ∈ G and m ∈ N ,

(m · s) · gs = ((gs)−1s−1)(m) = (s−1g−1)(m) = (m · g) · s (6)

where gs = s−1gs. In other words, permuting by s and then acting by Gs is the same as
acting by G and then permuting by s. It follows that Gsi := s−1Gis = Gsi−1 ∩ StabGs(bsi ),
and ∆s

i := ∆i · s = bsi ·Gsi−1.
Finally define φs↑ and π

s
↑ as in Section 2.3 with respect to Bs and ε. We claim that for x′ as

defined in Section 2.3, φs↑(x
′) = (φ↑(x

′))s = gsx′ . Indeed by definition φs↑(x
′) = g̃k · · · g̃1 where

g̃i ∈ Gsi such that ̃ · g̃i = bsi and ̃ ∈ ∆s
i is chosen such that the ̃th entry of (g̃i−1 · · · g̃1) · x′

is minimal among those entries indexed by ∆s
i . But now ∆s

i = ∆i · s means ̃ = j · s (where
j ∈ ∆i is the index found in the definition of φ↑). Thus

bsi = bi · s = (j · gi) · s
Equation (6)

= (j · s) · gsi = ̃ · gsi ,

so we can certainly choose g̃i = gsi . Then as claimed

φs↑(x
′) = g̃k · · · g̃1 = gsk · · · gs1 = (gk · · · g1)s = gsx′ = (φ↑(x

′))s.

Expanding out φs(x′) = s−1φ(x′)s, we can now compute πs↑ in terms of π↑ and s:

πs↑(x) = φs↑(x
′) · x = s · (φ↑(x′) · (s−1 · x)) = s · π↑(s−1 · x).

Writing F for the interior of the image of π↑, and Fs for the interior of the image of πs↑, this
implies Fs = s · F (because s−1 ·Rn = Rn). But Theorem 24 together with Theorem 25 says
that Fs is a fundamental domain for Gs and πs↑ is a projection onto Fs; so F = s−1 · Fs is a
fundamental domain for G and π↑ is a projection onto F .

To prove the final claim of the theorem, that π↑ : Rn → Rn is uniquely defined by the
choice of B and ε, we just need to show that a different choice of the elements g1, . . . , gk
given x ∈ Rn does not change φ↑. In fact φ↑ is determined completely by what it does to the
points x′ ∈ Rndist, and φ↑(x

′) will lie inside the fundamental domain (not on its boundary).
By the definition of a fundamental domain, any different choice g′1, . . . , g′k must necessarily
combine to give the same element gx′ (no non-trivial element of G acts trivially), and hence
φ↑ is uniquely determined.

Appendix E. Other mathematical results

E.1. Universal approximation theorem

The universal approximation theorem is a fundamental result in the theory of machine
learning that any continuous function α : X → Rm on a compact subset X ⊂ Rn can be
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arbitrarily well approximated by a neural network with one hidden layer. To state the
theorem precisely, one needs to specify that closeness between two continuous functions
α, β : X → Rm is measured by the Lp norm (for 1 6 p) which is given by

‖f‖p =

(∫
X
f(x)pdµ(x)

) 1
p

,

where µ is the Lebesgue measure on X ⊂ Rn. Then the distance between α, β is ‖α− β‖p.
Denote by Lp(µ,Rm) the set of functions f : X → Rm such that ‖f‖p <∞, and by Mn,m(σ)
the set of functions Rn → Rm implemented by a neural network with activation function
σ : R → R, one hidden layer with arbitrarily many neurons and m output neurons. The
universal approximation theorem, as in Theorem 1 of (22), states that if σ is unbounded and
non-constant, then Mn,m(σ) is dense in Lp(µ,Rm) (for any compact subset X of Rn).

To obtain a G-invariant version of this theorem, assume that X is a G-invariant subset
of Rn and let LpG(µ,Rm) be the set of G-invariant functions f on X such that ‖f‖p <∞.
Denote by MG

n,m(π, σ) the set of functions of the form α◦π where π : X → Rn is a projection
onto a fundamental domain, and α ∈Ml,m(σ).

Theorem 26 (G-invariant Universal Approximation Theorem) Let X ⊂ Rn be a
compact G-invariant subset, σ an unbounded and non-constant function and π : Rn → Rn a
projection onto a fundamental domain. Then MG

n,m(π, σ) is dense in LpG(µ,Rm).

Proof We need to show that given ε > 0, a G-invariant map α : X → Rm ∈ LpG(µ,Rm), and
a projection π : Rn → Rn, there is a neural network β ∈Ml,m(σ) such that ‖α− β ◦ π‖p < ε.
Let α : π(X)→ Rm be the restriction of α to the intersection of the closure of the fundamental
domain with X, ie π(X).

Since α ∈ LpG(µ,Rm), it follows immediately that α ∈ LpG(µ,Rm), where µ is the
restriction of µ to π(X). By the universal approximation theorem (Theorem 1 in (22))
applied to π(X), there is a network β : Rn → Rm such that

‖α− β‖p < ε.

Furthermore, since α is G-invariant, α = α ◦ π, which implies that

‖α− β ◦ π‖p = ‖α ◦ π − β ◦ π‖p = ‖(α− β) ◦ π‖p ≤ ‖α− β‖p < ε,

as required.

E.2. Computing the space of linear equivariant maps

A G-equivariant neural network (see for example (29; 9; 15)) consists of a series of G-
equivariant linear maps λi separated by some non-linear activation function σ, yielding
β = λk ◦ σ ◦ · · · ◦ σ ◦ λ1. Restrictions are placed on the learnable parameters of each λi to
ensure they are G-equivariant. For example, if λi : Rn → Rn is equivariant with respect to
Sn acting on each copy of Rn by permuting coordinates, then it was shown in Lemma 3 of
(41), that it must have the form

λi(x) = (aI + b1T1)x, (7)
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where a, b ∈ R are learnable parameters, I is the identity matrix, and 1 = (1, 1, . . . , 1). The
main task is to describe the space of all G-equivariant linear maps λ : Rn1 → Rn2 which
could map between layers in the neural network. Here we sketch an approach which is
combinatorial and involves putting a G-invariant simplicial complex structure on Rni and
applying the compatibility criterion Theorem 9 to the cells in the simplicial structure induced
on the quotient space.

To slightly simplify matters for the purpose of exposition, assume that G acts on Rn1 and
Rn2 discretely and irreducibly by orthogonal matrices on each space. Because the action is
orthogonal (ie it fixes the origin and preserves the Euclidean metric), it leaves the unit sphere
Sni−1 invariant in Rni . The sphere is compact and the action is properly discontinuous, so
it is possible to find some G-invariant triangulation of Sni−1. This means a decomposition
of Sni−1 into (ni − 1)-dimensional simplices (edges, triangles, tetrahedra, etc) such that
each g ∈ G acts on Sni−1 by sending k-simplices to k-simplices for each 0 6 k 6 ni − 1.
Moreover, possibly after subdividing once, any two points in the interior of some k-simplex
have the same stabiliser in G, and if some simplex σ is a face of another simplex σ′, then
StabG(σ′) 6 StabG(σ).

Now, the projection map πi : Sni−1 → Sni−1/G =: Qi induces a simplicial structure on
the quotient, and we can label each simplex σ in the quotient by the set of stabilisers of all
simplices σ ∈ Sni−1 which are mapped to σ, πi(σ) = σ. In fact the label of σ defined in this
way will be exactly the conjugacy class of StabG(σ) in G for some (equivalently, any) σ such
that πi(σ) = σ. We can now try to construct a compatible map λ′ : Q1 → Q2 by mapping
simplices σ1 ∈ Q1 to simplices σ2 ∈ Q2 such that some element of the label σ1 is a subgroup
of some element of the label of σ2 (note σ1 and σ2 need not have the same dimension) so
that these maps glue together in a continuous way. This reduces the problem of checking
the compatibility criterion on every point in Q1 to only checking it on a finite number of
simplices, and checking that the maps glue together, which is also a finite simplicial problem.

Appendix F. Implementation

F.1. Machine Learning Experiments

All neural networks were trained using Keras. SVMs were fitted using sci-kit learn. In each
case the performance was averaged over 10 runs, and sample standard deviations are given
in the tables in Section 3. The only exception to this is the training of SimpNet reported in
Table 3, where we only trained a single run.

Cayley tables There are five isomorphism classes of groups with eight elements: C8,
C4 × C2, D4, Q8, C2 × C2 × C2. We generated a dataset of 40000 Cayley tables: a sixth of
the tables were permutations of the group C8, another sixth of the group C4 × C2, another
sixth of the group D4, a quarter of the group Q8, a quarter of the group C2 × C2 × C2. The
dataset was split into training and test dataset of equal size. Two models were compared: a
fully connected neural network with two hidden layers of size 100 and 10 with activation
function ReLU using the Adam optimiser with learning rate 0.001 and cross-entropy loss as
a loss function training for 200 epochs; and a linear SVM.

CICY The neural network architectures and training parameters for the entries MLP,
MLP + pre-processing, and Inception in Table 2 were taken from the given references. The
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only difference we found is that in the case πDir+Inception and π↑+Inception on the randomly
permuted dataset, accuracy increased when not removing outliers from the training data, and
we therefore decided to not remove outliers from the training data in this case, contrary to
what was done in (14). The group invariant neural network had six equivariant layers (with
four trainable parameters each) with 100 channels and cross-channel interactions, followed
by sum pooling, and two fully connected layers with 64 and 32 neurons. No dropout was
used. We experimented with max pooling, dropout, different numbers and sizes of layers and
found the above parameters to work best. We found that test accuracy varied strongly for
large batch sizes and eventually trained with batch size one. We randomly split the dataset
into training and test sets of equal size.

Classifying rotated handwritten digits Three neural networks were compared: first,
a fully connected neural network with no hidden layers. Second, a fully connected neural
network with two hidden layers of size 128 and 64 with activation function ReLU. Third, a
small variation of the SimpNet architecture from (19), namely a convolutional neural network
with the following layers: 13 convolutional layers with 64 channels in the first layer and 128
channels in all other layers, filter size 1 × 1 in layers 11 and 12 and filter size 3 × 3 in all
other layers, max pooling layers with filter size 2× 2 and strides (2, 2) after the fourth and
seventh layer and filter size 2× 2 and strides (1, 1) after the 9th, 12th, and 13th convolutional
layers. All followed by one global max pooling layer, two hidden fully connected layers with
128 and 64 neurons respectively, and activation function ReLU after all hidden layers. We
used the Adam optimiser with learning rate 0.001 and cross-entropy loss as a loss function.
We trained for 100 epochs with early stopping if the training error does not decrease for 5
epochs.

F.2. Computing combinatorial projections

In this section we will give algorithms to compute combinatorial projection maps for permu-
tation group actions, and analyse the time and space complexity of these algorithms. These
work for any permutation group G, although they are not the ones we used in Section 3 which
employed more efficient ad hoc methods described in Appendix C. The general algorithms
here fall into two parts: first are the algorithms which are applied as a one-off to compute
data like a base and the orbits ∆i, and which run in O(k2n3) time, and O(n2 log n) space,
where n is the dimension of the input space and k is the size of the base, see subsection F.2.3.
Second are the algorithms which actually implement the projection π↑, and which must
therefore be run for each input datum. They do this in O(k2n2) time and O(n2 log n) space.
Since π↑ merely permutes the entries of a datum, it does not change the space required to
store the input data.

Throughout we will maintain the same notation as before, where we are working with a
subgroup of Sn which acts by permuting the coordinates of Rn indexed by N = {1, . . . , n}.
As initial data we will assume we have a subgroup G of Sn given by a generating set of
permutations. Moreover, we will assume that these permutations are given in cycle or one-line
notation, so that each can be stored in O(n log n) space, and multiplying two permutations
together can be performed in O(n) time. Similarly, given x ∈ Rn and a permutation g, the
point g · x can be computed in O(n) time.
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F.2.1. Computing initial data

We will make use of the method of representing permutation groups introduced by Jerrum in
(23) which we summarise. First we will explain the notations. Write N = {1, · · · , n}, we will
work with directed graphs (ie graphs whose edges have an orientation) of the form (N,E),
which have N as their vertex set and E as their edge set. These graphs will contain no edge
loops, and at most one edge joining any pair of vertices, and so we can write lm to denote an
edge which starts at l and ends at m. A (directed) path in (N,E) is a sequence of vertices
l0l1 · · · lm such that ljlj+1 ∈ E for each j, which is said to have length m > 0.

A directed graph is called a branching if it contains no paths of length m > 1 with the
same start and end points and each vertex has at most one incoming edge. If (N,E) is
a directed graph, an edge labelling is a map σ : E → Sn : blbm 7→ σlm which assigns to
each edge a permutation of N . This labelling extends to a labelling of paths by setting
σP = σbl0bl1 · · ·σlm−1lm ∈ Sn, where P = l0l1 · · · lm. We can now give a Theorem-Definition
of the representation of a permutation group, see Theorem 3.3 and Section 4 of (23).

Theorem 27 Let G 6 Sn be a permutation group given by a set of generators, then there
is an algorithm which yields a small base B = (b1, . . . , bk) for G (see subsection F.2.3
for a quantitative discussion of what it means for a base to be small). Extend B to a
fixed ordering B̂ = (b1, · · · , bk, bk+1, . . . , bn) on the set N . As before let G0 = G, and
define Gi = StabGi−1(bi) for 1 6 i 6 k. Then there exists an edge labelled directed graph
Υ(G) = (N,E, σ) satisfying the following properties:

1. Υ is a branching

2. For all blbm ∈ E

(a) l < m and l 6 k
(b) σblbm ∈ Gl−1

(c) bl · σblbm = bm

3. The set Ui := {σP | P is a path in Υ starting at bi} is a right transversal for Gi in
Gi−1 for each 1 6 i 6 k.

Then Υ(G) will be called a Jerrum representation of G. Given a generating set for G, a
Jerrum representation can be computed alongside B in O(k2n3) time and O(n2 log n) space.
This algorithm also computes the orbits ∆i = bi ·Gi−1 for 1 6 i 6 k.

Remark 28 The algorithm presented in (23) in fact assumes that (1, 2, · · · , n) has been
chosen a priori to be the base, but it is straightforward to amend the algorithm to compute
a more efficient base using the greedy algorithm mentioned at the start of Appendix D.3,
compare with (3).

F.2.2. Applying π↑ to input data

Fix a permutation group G and let Υ = Υ(G) be a Jerrum representation for G. First we
will prove a useful characterisation of the orbit ∆i+1.
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Lemma 29 The orbit ∆i is the set of bl ∈ N such that there exists a path P in Υ which
starts at bi and ends at bl.

Proof Note that by induction on m, for any path P = bl0 · · · blm , (2) in Theorem 27
generalises to say

(a) l0 < lm and lm−1 6 k

(b) σP ∈ Gl0−1

(c) bl0 · σP = blm .

If P starts at bi, then σP ∈ Gi−1 and bi · σP = bl so bl ∈ ∆i. Conversely, if bl ∈ ∆i, there is
some g ∈ Gi−1 such that bi · g = bl. Note that the cosets of Gi in Gi−1 are exactly the sets of
the form {g ∈ Gi−1 | bi · g = b} for fixed b ∈ ∆i. Indeed g, g′ ∈ Gi−1 are in the same coset iff
g′g−1 ∈ Gi iff bi · (g′g−1) = bi iff bi · g′ = bi · g. Since Ui is a complete set of representatives,
it contains an element from every coset, and hence an element which maps bi to bl. Call this
element ubl , then by definition there is some path P which starts at bi such that ubl = σP ,
and by the observation above, the end point of P must be bl.

With this Lemma we can give an algorithm to perform the main task in computing π↑,
computing φ↑ as a product of permutations gi ∈ Gi−1, see Section 2.3.

Proposition 30 Given x′ ∈ Rn, all of whose entries are distinct, and a Jerrum repre-
sentation Υ = Υ(G) for G, there is an algorithm to compute φ↑(x′) in O(k2n2) time and
O(n2 log n) space.

Data: A point x′ ∈ Rn, a Jerrum representation Υ = Υ(G), and the orbits ∆i.
Result: φ↑(x′).

1 for 1 6 i 6 k do // Loop runs k times
2 Set j to be the index in ∆i such that x′j 6 x

′
l for all l ∈ ∆i ; // This will be the

current working vertex in Υ
3 Set gi = e; // This will accumulate edge labels from Υ
4 while j 6= bi do // Loop runs at most |∆i| times
5 Set l to be the unique index in ∆i such that lj is an edge of Υ
6 Set gi = σljgi Set j = l

7 end
8 Set x′ = gi · x′
9 end

10 Set φ↑(x′) = gk · · · g1

Algorithm 1: Computing φ↑.

Proof The algorithm we will use is Algorithm 1. Recall the definition of φ↑(x′). Assume
g1, . . . , gi−1 have already been found, Gi−1 acts transitively on ∆i, choose j ∈ ∆i such that
the jth entry of (gi−1 · · · g1) · x′ is minimal among those entries indexed by ∆i. Choose
gi ∈ Gi−1 such that j · gi = g−1

i (j) = bi. Then define φ↑(x′) := gk · · · g1.
The job of finding each gi is made easy by Theorem 29, since we just need to find a

path P in Υ joining bi to j, which is guaranteed to exist. Since Υ is branching, each vertex
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has at most one incoming edge, and hence starting from j and working backwards we are
guaranteed to reach bi. Making note of each edge label as we construct P , we can choose
gi = σP . This is achieved by the loop starting in Line 3.

We consider the time complexity of this algorithm. Following (23), Υ can be represented
by an n × n array, whose pq-entry is NULL if pq is not an edge of Υ, and σpq otherwise.
Finding l in Line 4 requires searching the jth column of this array for the unique non-NULL
entry, whose index row index will be l, and so takes O(n) steps. As mentioned above Line 5
also takes O(n) steps, so the while loop at Line 3 takes O(n|∆i|) steps.

Finding j in Line 1 requires O(|∆i|) steps, searching through each entry of x′ indexed
by ∆i and comparing it with the current minimal entry found; while Line 7 takes O(n)
steps. Thus the dominant step in the main for loop is the while loop. Overall then this for
loop takes O(kn

∑k
i=1 |∆i|) steps, which is greater than the O(kn) steps to compute Line 9.

Noting that |∆i| 6 n, this algorithm runs in O(k2n2) time.
As for space, Υ is an n2 array, containing at most n− 1 non-NULL entries (since the graph

is has no cycles, its number of edges is bounded by n− 1), each of which takes O(n log n)
space to store. An efficient encoding can then use O(n2 log n) space. The other significant
space cost is storing the set of gi’s, which takes O(kn log n) which is at most O(n2 log n).

Theorem 31 Given x ∈ Rn, a perturbation vector ε, and a Jerrum representation Υ for G,
there is an algorithm to compute π↑(x) in O(k2n2) time and O(n2 log n) space.

Data: A point x ∈ Rn, a perturbation vector ε, a Jerrum representation Υ = Υ(G), and the
orbits ∆i.

Result: π↑(x).
1 if x ∈ R1 then
2 Set d = 1
3 else
4 Set d = min{|xi − xj | | xi 6= xj}
5 end
6 Set x′ = x+ dε
7 Compute φ↑(x′); // Algorithm 1
8 Set π↑(x) = φ↑(x

′) · x
Algorithm 2: Computing π↑.

Proof Algorithm 2 follows exactly the procedure outlined in Section 2.3. It is clear that
Line 6 dominates in terms of both time and space complexity.

F.2.3. Analysing time complexity

Naïvely one may assume that the size k of the base B is O(n), indeed this is the case for
G = Sn or An for example, but in practice we can do a lot better. Write b(G) for the size
of the smallest base for G, then in (3) Blaha showed that the greedy algorithm used in
Theorem 27 to find a base will not necessarily yield a minimal base, but nearly—in particular
k will be O(b(G) log log n).
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When looking at permutation groups, it is natural to focus on the case of so-called primitive
permutation groups, ie subgroups G 6 Sn which act transitively on N = {1, . . . , n} such that
there are no non-trivial G-invariant partitions. This is because arbitrary permutation groups
can be built up out of primitive ones. In this setting Liebeck proved the following in (27).

Theorem 32 Let G be primitive, and not Sn or An, then there is some absolute constant c
such that b(G) < c

√
n.

It follows that in this case, the base found above will have size O(
√
n log logn). Combining

this with the observation in Appendix C that for Sn and An, π↑ can be computed using a
sorting algorithm, we get the following.

Theorem 33 Let G 6 Sn be primitive, then either

• G = Sn or An: no initial data needs to be computed and π↑ can be computed in O(n2)
time per datum (using worst case for quicksort); or

• Initial data can be computed in O(n4(log log n)2) time, and π↑ can be computed in
O(n3(log log n)2) time per datum.

F.3. Computing Dirichlet projections

We focus on the case G acts discretely on Rn by orthogonal matrices. Choose a point x0 ∈ Rn
which is only fixed by elements of G which fix the whole of Rn point-wise. The map φ
from Section 2.2 maps x ∈ Rn to the element in G which minimises the Euclidean distance
d(g · x, x0). In this case, the inner product 〈·, ·〉 is invariant. It is efficient to compute 〈·, ·〉,
which varies inversely with the Euclidean distance d between points, so we can perform
gradient descent to minimize

N(g · x) := 〈g · x,−x0〉 =
1

2

(
d(g · x, x0)2 − |g · x|2 − |x0|2

)
.

Here the second equality comes from applying the cosine rule and the geometric definition of
the inner product.

Our main application of the discrete gradient descent algorithm is for CICY matrices
when G = S12 × S15. Since |G| ≈ 6× 1020 one cannot minimise a function over G by simply
evaluating it at all elements of G.

F.3.1. Approximations using gradient descent

It is natural to compute the minimiser of N on a group orbit using gradient descent. The
steps in the descent are restricted to the discrete G-orbit of the input point x, so we must
define what a gradient is in this case. A generating set T for G is a subset such that any
element g ∈ G can be written as a finite product of elements in T , ie there are t1, . . . , tl ∈ T
such that g = t1 · · · tl. Two points x, x′ ∈ Rn are adjacent with respect to T if there is t ∈ T
such that x′ = t · x, so in particular, adjacent points are in the same G-orbit.
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Definition 34 Given an action of a finite group G on Rn, a generating set T of G, a
function N : Rn → R and x ∈ Rn, the discrete gradient descent is an approximation for

min
g∈G

N(g · x)

and is defined iteratively as follows. Let x0 = x. Given xi, define

xi+1 = min
t∈T∪{e}

N(t · xi).

The output of the algorithm is xi when xi+1 = xi.

Since we can get between any two points in G by a finite sequence of steps by generators
this algorithm always terminates. In general, there are many choices for a generating
set T resulting in different approximations for φ. For G = Sn a natural choice for a
generating set is given by T = {(1 2), (2 3), . . . , (n− 1 n)}. In particular, one has in this case
|T | = n− 1� n! = |Sn|. By taking the union of these generating sets for Sn and Sm one
obtains a generating set of size n+m− 2 for Sn × Sm.

Choosing a larger generating set increases the computational cost of the algorithm but
potentially also its accuracy. For example, consider the set T ′ = {tt′ | t, t′ ∈ T ∪{e}}. This is
a generating set for Sn and again yields a generating set for Sn × Sm in a similar way. When
applied to the CICY dataset, we found that choosing T ′ instead of T leads to a significant
increase in computation cost, but not so in accuracy. Instead, we have used discrete gradient
with different seeds.

For a 12 × 15 CICY matrix x, The seeds are xkm := C12
kxC15

m, where Ci are cyclic
permutation matrices 1 ≤ k ≤ 12 and 1 ≤ m ≤ 15. To each xkm, apply the discrete gradient
descent algorithm above and pick the minimum of all seeds. The result is still a permutation
of x since Ci are permutation matrices. This increases the computation cost by a constant
factor 11× 14 + 1 = 155 but has led to a significant accuracy boost.

We are unable to give a bound for the number of generators applied to an input until a
local minimum is reached. Experiments on the CICY dataset show that this number is very
low compared to the size of the group. On the original CICY dataset the average number of
iterations is ≈17.4, with standard deviation ≈15.6 and maximum 163. On an augmented
dataset, which contains 10 permutations of each matrix, the average number of iterations is
≈22.5, with standard deviation ≈16.9 and maximum 198.

F.3.2. The existence of an exact algorithm

Computing a Dirichlet projection can be hard and we do not expect that in general there is
a polynomial time algorithm to compute it. If such an algorithm exists, this would imply a
solution to the graph isomorphism problem in polynomial time, and it is currently unknown
whether such an algorithm exists. To see this, let n ∈ N and Γ1, Γ2 be graphs with adjacency
matrices A1, A2 ∈ {0, 1}n×n. The symmetric group Sn acts on the graphs by relabelling the
vertices, which can be viewed as an action on {0, 1}n×n. Let

x0 =

2n·n−1 2n·n−2 · · · 2n·n−n

...
...

. . .
...

2n−1 2n−2 · · · 20


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and denote the corresponding Dirichlet projection by π : {0, 1}n×n → {0, 1}n×n. Because of
our choice of x0, for all A ∈ {0, 1}n×n there exists a unique g ∈ Sn that minimises 〈g(A), x0〉.
The element g can be characterised as the permutation that makes the matrix A as small as
possible, when read as a binary number row by row.

The graphs Γ1 and Γ2 are isomorphic if and only if A1 and A2 are in the same orbit
under the Sn action, which is the case if and only if π(A1) = π(A2). Therefore, if one is
able to compute π(Ai) for i ∈ {1, 2} in polynomial time, one can decide if Γ1 and Γ2 are
isomorphic in polynomial time.
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