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Abstract

Despite the advanced capacities of the state-
of-the-art large language models (LLMs), they
suffer from issues of hallucination, stereotype,
etc. Preference models play an important role
in LLM alignment, yet training preference mod-
els predominantly rely on human-annotated
data. This reliance limits their versatility and
scalability. In this paper, we propose learn-
ing the preference model for LLMs via auto-
matic preference data generation (AutoPM).
Our approach involves both In-Breadth Data
Generation, which elicits pairwise preference
data from LLMs following the helpful-honest-
harmless (HHH) criteria, and In-Depth Data
Generation, which enriches the dataset with re-
sponses spanning a wide quality range. With
HHH-guided preference data, our approach si-
multaneously enables the LLMs to learn hu-
man preferences and align with human values.
Quantitative assessments on five benchmark
datasets demonstrate the reliability and poten-
tial of AutoPM, pointing out a more general and
scalable way to improve LLM performance.

1 Introduction

With the rapid development of the Large Language
Models (LLMs), the state-of-the-art LLMs (e.g.,
GPT series (Brown et al., 2020a), OPT (Zhang
et al., 2022), BLOOM (Scao et al., 2022), and
LLaMA (Touvron et al., 2023)) exhibit remark-
able emergent capabilities (Wei et al., 2022b) and
can adeptly generate coherent responses in accor-
dance with user instructions after supervised fine-
tuning (SFT) (Ouyang et al., 2022; Wang et al.,
2022; Taori et al., 2023; Chiang et al., 2023). De-
spite their advanced generation capacities, LLMs
may produce inaccurate and potentially detrimen-
tal content that is not readily discernible by human
users. Aligning LLMs with human values is thus
of central consideration before deploying LLMs to
society.
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Governing model behavior from implicit sig-
nals underlying human feedback has long been a
principled methodology for LLM alignment. Ex-
emplary work employs preference models to em-
bed those human feedback signals (Stiennon et al.,
2020; Nakano et al., 2021) and recent publications
like InstructGPT (Ouyang et al., 2022) have made
significant progress along this direction. These
preference models also constitute a cheap yet reli-
able model-based evaluation metric (Wang et al.,
2023) and have thus been widely adopted. Nonethe-
less, the acquisition of the preference model relies
heavily on human-annotated preference data. A
standard data collection procedure involves obtain-
ing multiple machine-generated responses for each
prompt, followed by engaging annotators to rank
these responses. To guarantee alignment with hu-
man values, recent work (Bai et al., 2022a) fol-
lows HHH criteria (Askell et al., 2021) in their
annotation process. They encourage crowdworkers
to intentionally goad virtual assistants to produce
helpful or harmful responses during the interaction,
which further intensifies the reliance on manual an-
notation and impedes the versatility and scalability
of preference models.

A line of work starts to explore the possibility of
leveraging LLMs themselves for gathering prefer-
ence data (Wang et al., 2023; Peng et al., 2023).
However, these methods still adhere to conven-
tional preference data collection pipelines, with
the exception of replacing human annotators with
GPT-3.5 (OpenAI, 2023b) and GPT-4 (OpenAI,
2023a). Such naive data collection strategies lack a
comprehensive guideline and therefore fail to align
the preference model well with human values (See
Section 5).

To address these shortcomings, we propose Au-
toPM, an approach for learning the preference
model via automatic preference data generation
from LLMs. Our guideline-driven data generation
method systematically directs the preference data



synthesis from performant LLMs, achieving broad
coverage and diversity. Moreover, as our data syn-
thesis guideline closely adheres to the HHH crite-
ria (Askell et al., 2021), our approach enables the
LLMs to learn human preferences and simultane-
ously align themselves with human values.

Specifically, AutoPM consists of In-Breadth
Data Generation and In-Depth Data Generation.
The in-breadth data generation prompts pairwise
preference data from LLMs that either match or
violate human standards from various aspects in ac-
cordance with the HHH criteria as the guidance of
human preferences. The in-depth data generation,
on the other hand, employs a novel HHH-guided
sequential post-editing process to construct prefer-
ence data with broad coverage of quality.

Through this novel paradigm of preference data
collection, AutoPM can effectively generate di-
verse preference data that adheres closely to hu-
man preference guidelines without human annota-
tion. With GPT-3.5 as the main source of synthetic
preference data, we amass 42K preference data
and develop AutoPM based on LLaMA (Touvron
et al., 2023). Extensive evaluation on 5 benchmark
datasets attests to the superiority of AutoPM. Ex-
perimental results show that AutoPM’s predictions
are highly consistent with humans and GPT-4. Au-
toPM can even elevate the performance of strong
LLMs. Besides, we have two intriguing findings:

• Though the training data quality of AutoPM
is upper-bounded by GPT-3.5, AutoPM is
still capable of discriminating responses from
stronger models like GPT-4, going beyond the
limitations of training data.

• By automatically learning the preference
model, AutoPM can improve the response
quality of not only Alpaca (Taori et al., 2023)
but also stronger models like Vicuna (Chiang
et al., 2023). This improvement is achieved
even when using the same prompt dataset
and GPT-3.5 for data generation, as originally
used by Alpaca.

2 Related Work

Data Generation from LLMs. Scaling
transformer-based language models has given rise
to a substantial paradigm shift in Natural Language
Processing (Brown et al., 2020b; Chowdhery et al.,
2022). These powerful LLMs can generate fluent
and informative text with high coherency, which re-
shapes the conventional machine learning pipeline:

they can directly synthesize annotated data for train-
ing lightweight yet strong downstream task mod-
els. For instance, ZeroGen (Ye et al., 2022) shows
how to appropriately design prompts and sampling
procedures to obtain synthetic data from LLMs to
train a small LSTM. SunGen (Gao et al., 2023) im-
proves over ZeroGen by filtering low-quality data
from the generated corpus. These data generation
techniques have also generalized to LLM align-
ment, where a line of work focuses on producing
instructions from LLM to align LLM itself with
human expectations (Wei et al., 2022a; Ouyang
et al., 2022). One example is Self-Instruct (Wang
et al., 2022), which starts from a seed set of human-
written instructions and guides LLM to brainstorm
a board set of instructions for fine-tuning itself.
More recent work (Peng et al., 2023) made use
of GPT-4 (OpenAI, 2023a) to generate instruction-
following data.

Preference Model for LLMs. A well-learned
preference model can significantly contribute to
evaluating and aligning LLMs (Wang et al., 2023;
Ouyang et al., 2022; Bai et al., 2022b). Early
work (Stiennon et al., 2020; Nakano et al., 2021)
begins to use preference models as human pref-
erence feedback in specific NLP tasks. Instruct-
GPT (Ouyang et al., 2022) leads the way to learn-
ing the preference model for improving general AI
assistants. The diversity of the prompts-responses
set is a key factor for training preference models.
Anthropic (Bai et al., 2022a) asks crowdworkers to
have open-ended conversations with AI assistance
to cover more helpful and harmless cases. Work
like SHP (Ethayarajh et al., 2022) collects pref-
erence data from real-world websites like Reddit.
Recent work starts leveraging strong LLMs to col-
lect preference data (Wang et al., 2023; Peng et al.,
2023), but still follow the conventional preference
data collection pipeline except for ranking the re-
sponses using more advanced GPT-3.5 and GPT-4.
In contrast, the proposed AutoPM directly gener-
ates preference data from LLMs governed by HHH
criteria, ensuring not only a high level of accuracy
but also increased diversity.

Alignment of LLMs. Alignment (Leike et al.,
2018; Glaese et al., 2022) of LLMs aims to build
agents that are better at following user inten-
tions. InstructGPT (Ouyang et al., 2022) pro-
pose to improve LLM alignment in two ways:
supervised fine-tuning (SFT) with demonstration
data and reinforcement learning from human feed-
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Figure 1: The framework of the proposed AutoPM. Each blue arrow represents a preference data sample, from a
positive response to a negative one.

back (RLHF) against the preference model. With
the development of powerful GPT-3.5 (OpenAI,
2023b) and data generation techniques like Self-
Instruction (Wang et al., 2022), Alpaca (Taori
et al., 2023) and Vicuna (Chiang et al., 2023) align
LLaMA by SFT with generated data or real conver-
sation data from GPT-3.5. WizardLM (Xu et al.,
2023) and Dromedary (Sun et al., 2023) further im-
prove SFT by generating complicated instructions
and better principle-driven responses. Other than
using reinforcement learning via proximal policy
optimization (PPO) (Schulman et al., 2017) on pref-
erence models, RRHF (Yuan et al., 2023) proposes
to align human preferences through ranking loss to
get rid of laborious hyper-parameter tuning, while
RAFT (Dong et al., 2023) directly fine-tunes with
the best response from multiple responses ranked
by the preference model.

3 Automatic Preference Data Generation

AutoPM comprises two components: In-Breadth
Data Generation and In-Depth Data Generation. In
addition, we also use Paired Models Data to further
supplement the data. The detailed descriptions
follow below.

3.1 In-Breadth Data Generation

A training sample of a preference model consists
of a pair of similar texts but different in qual-
ity (Ouyang et al., 2022). We propose to elicit such

data from LLM by crafting appropriate prompts.
A pair-wise setup is adopted: We collect a set of
phrase pairs. Each pair has two opposite cases
under one HHH principle in Askell et al. (2021),
i.e., Helpful, Harmless, and Honest. These phrase
pairs will then be injected into our manually writ-
ten templates and passed into LLM to guide the
data generation. LLM will generate two responses:
one that matches the HHH criteria is marked as the
positive case for training the preference model, and
the other one that violates the HHH criteria will
be served as the negative sample. This way makes
prompt engineering easier to obtain a diverse set
of replies w.r.t. a given LLM query, e.g., antonym
pairs will be a natural choice to inform LLM to
produce text from two distinct viewpoints.

Concretely, we first instantiate the HHH crite-
ria into pairwise phrase descriptions. We collect a
wide variety of phrase pairs and perform filtering
and merging. The resulting phrase pairs are shown
in Table 1, each representing a unique property.
For example, “specific” and “too-general” encour-
ages LLM to generate data of various granularity,
while “not relevant” and “highly relevant” will in-
struct LLM whether to include redundant content
or not. Based on phrase pairs, our In-Breadth Data
Generation is as follows: We first randomly sam-
ple a phrase pair (phrasea,phraseb) and a natu-
ral instruction (data sources are described in Sec-
tion 4.1). A prompt template “Given the question,



HHH Criteria Phrase Pairs

Helpful (“useful” vs. “useless”), (“comprehensive-thinking” vs. “single-thinking”), (“highly relevant” vs.
“not relevant”), (“specific” vs. “too-general”)

Honest (“correct” vs. “contains wrong information”), (“objective” vs. “exaggerated”), (“honest” vs.
“fabricated”), (“clear” vs. “misleading”)

Harmless (“impartial” vs. “biased/discriminatory”), (“legal” vs. “contains illegal/sexual/hate content”),
(“positive” vs. “negative”), (“ethical” vs. “unethical”)

Table 1: Phrase pairs for in-breadth data generation.

generate a phrasea answer A, and a phraseb an-
swer B” is later employed to construct the model’s
input, with the natural instruction appended and
(phrasea, phraseb) substituted. The generated out-
put from LLM will serve as the fine-tuning data
of our preference model. A demonstration of this
process is shown in the upper part of Figure 1.

3.2 In-Depth Data Generation

Although altering the phrase pairs enables us to har-
vest samples that possess various properties at scale,
a crucial issue of these synthesized data is that the
preference model might merely simplify this task
into a binary classification problem and collapse
to a trivial solution without predicting a reliable
preference score. We thus propose In-Depth Data
Generation to enrich the dataset with responses
spanning a wide quality range, which resembles
the post-editing process by executing a series of
actions that edit the generated text outward the
HHH criteria. Inspired by Levenshtein distance,
we define the following edit actions:

• Deletion removes content in the LLM re-
sponse that is useful for replying to the given
query.

• Substitution edits content in the LLM re-
sponse such that it will be inappropriate for
the given query.

• Insertion adds new content irrelevant to the
given query into the LLM response.

We operationalize these edit actions with a pow-
erful LLM, as these actions are challenging to im-
plement with simple algorithms. With these edit
actions, the propose in-depth data generation is il-
lustrated in the lower part of Figure 1: Starting with
a well-generated response for a given instruction,
we sample a sequence of edit actions to modify
the raw response. LLM executes these actions se-
quentially, where at each step LLM deteriorates
the output from the previous step according to the
current action. To execute a certain edit action in
step i, its natural language description acti (See
Appendix A.2) will be put into the prompt template
“Given the question and answer pair, acti, thus

making a worse answer.”, which instructs LLM to
rewrite the previous step output in an expected way.
Multiple pairs of preference data could be assem-
bled from one edit actions sequence by composing
LLM outputs in two random intermediate steps and
annotating the one from the early step as positive.
By sampling sequences of various lengths (1 ∼ 3)
and actions, the synthetic dataset could cover more
possibilities and be non-trivial for optimization.

3.3 Paired Models Data Generation

To improve the coverage of our synthetic prefer-
ence data, we treat LLMs from different institutions
as different sources for data collection. Gathering
data from various LLMs also empowers us to con-
trol the response quality, where the model perfor-
mance is a reasonable quality indicator. We send
the same natural instruction to a large LLM and
a relatively smaller one to obtain their responses.
This pair of responses, as well as the original in-
struction, forms a training instance of our prefer-
ence model. In our experiments, responses from
GPT-3.5 (text-davinci-003) (OpenAI, 2023b) will
be treated as positive while those from OPT-IML-
1.3B (Iyer et al., 2022) will be negative.

4 Learning Preference Model

4.1 Preference Data Collection

We adopt the auto-generated Alpaca dataset (Taori
et al., 2023) as the source of instructions for
preference data generation, which contains 52K
instruction-following data generated by the Self-
Instruct technique (Wang et al., 2022). To cover
scenarios where users make malicious requests, we
additionally include 1K Red Team Prompts (Gan-
guli et al., 2022). All prompts are randomly di-
vided into three equal-sized splits to synthesize
preference data via the proposed three data gener-
ation methods respectively. We choose GPT-3.5
(text-davinci-003) for in-breadth and in-depth data
generation and finally obtain 42K preference data.
The data samples are provided in Appendix A.1.

Following Wang et al. (2022), we manually re-



Quality Review Question Yes%

In-Breadth Data Generation
chosen > rejected 83%
chosen ≈ rejected 16%
chosen < rejected 1%

In-Depth Data Generation
chosen > rejected 79%
chosen ≈ rejected 19%
chosen < rejected 2%

Paired Models Data Generation
chosen > rejected 94%
chosen ≈ rejected 6%
chosen < rejected 0%

Table 2: Synthetic preference data quality review result.

view the data quality by randomly sampling 200
generated examples from the splits of in-breadth
and in-depth data generation. An expert annotator
is asked to label whether the chosen response is
better (denoted as >), comparable (denoted as ≈),
or worse (denoted as <) than the rejected response.
Results in Table 2 show that most generated data
are valid, while only a small part of chosen re-
sponses is comparable to the rejected ones, mainly
because: a) GPT-3.5 itself can not properly respond
to that instruction; b) Some instructions are not suit-
able to generate specific rejected responses, e.g.,
a fabricated and exaggerated response is probably
not a bad choice for a story-writing instruction.

4.2 Training Strategy
We follow the training method of Instruct-
GPT (Ouyang et al., 2022) and Anthropic-PM (Bai
et al., 2022a) to learn the score-based preference
model. Given the instruction x and the response
y, a scalar value r(x, y) is predicted as the prefer-
ence score. Specifically, we first concatenate the
tokenized instruction x with lx tokens and response
y with ly tokens and feed them into the pretrained
language model to get the last layer hidden state
F ∈ R(lx+ly)×C , where C is the hidden size. Then
a linear regression head is applied on F to predict
the score for each token. We take the average of
the last ly scores as the output scalar value r(x, y).
The training objective is given as:

L(θ) = − log (σ (rθ (x, yc)− rθ (x, yr))) (1)

where yc is the preferred response out of the paired
responses yc and yr w.r.t. the instruction x. θ is the
model parameters and σ is the Sigmoid function.
Implementation details. We build AutoPM on
top of a 7B parameter variant of LLaMA (Tou-
vron et al., 2023), and we also provide a 30B pa-
rameter variant to demonstrate the performance

scaling. We train AutoPM with Zero Redundancy
Optimizer (ZeRO) (Rajbhandari et al., 2020) stage
3 on 8 NVIDIA A100-SXM4-80GB GPUs, and
adopt FP16 and gradient checkpointing (Sohoni
et al., 2019) to reduce GPU memory footprint.
All parameters are updated by the Adam opti-
mizer (Kingma and Ba, 2014) for one epoch with
a learning rate of 5e-6 and a cosine learning rate
scheduler (Loshchilov and Hutter, 2016).

5 Experiments

5.1 Baseline Systems

We quantitatively evaluate AutoPM on 5 bench-
mark datasets and evaluate AutoPM’s reliability
and potential to improve LLM. We compare Au-
toPM with multiple advanced LLMs (Wang and
Komatsuzaki, 2021; Brown et al., 2020a; OpenAI,
2023b; Touvron et al., 2023; OpenAI, 2023a) , as
well as two open-source preference models:
Anthropic-PM. Bai et al. (2022a) aims to train a
helpful and harmless assistant via reinforcement
learning with the preference model. They let crowd-
workers to ask for help or to elicit harmful re-
sponses from the AI assistant, and compare mul-
tiple AI responses. They collect 161K preference
data and release this preference dataset but not
the model. We reproduce Anthropic-PM based
on LLaMA-7B using their released dataset.
PandaLM. PandaLM (Wang et al., 2023) is devel-
oped to distinguish the superior model from several
LLMs in the instruction tuning optimization stage.
It gathers responses from LLMs with similar scales
(ranging from 6.7B∼7B) and ranks them by GPT-
3.5, obtaining 300K preference samples.

5.2 Datasets

HHH-Eval. HHH-Eval (Askell et al., 2021) from
BIG-bench (bench authors, 2023) systematically
evaluates LLM responses according to HHH cri-
teria. It contains about 200 samples and 50 for
each of the following 4 labels, including Helpful,
Honest, Harmless, and Other. Each sample mim-
ics a single-turn conversation between the user and
a language model assistant, including a user request
and a pair of chosen-rejected replies.
TruthfulQA. TruthfulQA (Lin et al., 2021) is a QA
dataset targeted at misconception and false belief.
For instance, a question in TruthfulQA is “What
happens to you if you eat watermelon seeds?”. A
common falsehood that appears in the machine-
generated answer is “You grow watermelons in your



Model Instruct.
Source

Preference
Source #Param. Score HHH-Eval

Overall Harmless Helpful Honest Other
Anthropic-LM - - 52B ✗ 0.77 - - - -
GPT-3.5 - - - ✗ 0.87 0.95 0.85 0.80 0.91

PandaLM Alpaca GPT3.5 Rank 7B ✗ 0.60 0.57 0.64 0.56 0.63
Anthropic-PM

Human Human Rank
52B ✓ 0.86 - - - -

Anthropic-PM† 7B ✓ 0.81 0.88 0.71 0.75 0.93

AutoPM (ours)
Alpaca GPT3.5 Gen

7B ✓ 0.83 0.83 0.73 0.89 0.89
AutoPM (ours) 30B ✓ 0.85 0.81 0.78 0.89 0.93

Table 3: Performance comparison on HHH-Eval benchmark. † denotes our reproduction with the LLaMA-7B
backbone using Anthropic’s official dataset. Score denotes that the model outputs a scalar preference score for each
response instead of comparing the two responses directly.

Model #Param. TruthfulQA-MC1

Anthropic-LM 52B 0.32
Anthropic-PM† 7B 0.37
GPT-J 6B 0.20
GPT-3 175B 0.21
GPT-3.5 - 0.47
GPT-4 - 0.59

AutoPM (Ours) 7B 0.56
AutoPM (Ours) 30B 0.59

Table 4: Performance comparison on TruthfulQA-MC1.

stomach”. This dataset helps to evaluate the hon-
esty of LLM. TruthfulQA contains 817 questions
and has two settings: a) Generation asks the model
to generate the answer given only the question; b)
MC1 additionally provides 4-5 answer choices with
only one true statement for each question.
Bot Adversarial Dialogues (BAD). BAD (Xu
et al., 2020) is a human-bot conversation dataset,
where the users are instructed to adversarially goad
the chatbot to reply unsafe content and tag the chat-
bot response as Not Harmful or Harmful. We
adopt BAD to further assess the harmlessness of
preference models.
Self-instruct User-oriented Benchmark. Self-
instruct User-oriented benchmark (Wang et al.,
2022) is an instruction-following dataset that tests
LLMs’ ability to perform a wide spectrum of tasks.
It contains 252 expert-written instructions.
Vicuna Benchmark. Vicuna Benchmark (Chi-
ang et al., 2023) is a recently proposed dataset
that evaluates whether LLM could generate human-
preferred replies. It devises 80 questions from vari-
ous categories and is evaluated by GPT-4.

5.3 Benchmark Evaluation

We first conduct experiments on BIG-bench HHH-
Eval. To evaluate preference models on HHH-Eval,

preference models first predict a preference score
for each reply independently and select the one
with the highest score. As shown in Table 3, our
AutoPM-7B achieves an overall accuracy of 0.83,
which is very close to Anthropic-PM-52B and GPT-
3.5. This is a strong result especially given that
AutoPM is small and in a harder setup where it can-
not observe both replies for comparison at the same
time. With a larger 30B backbone, the performance
on Helpful and Other categories can be further
improved. PandaLM performs poorly on HHH-
Eval, probably because their training data are ordi-
nary LLM responses and do not cover many harm-
ful or dishonest cases. We also note that our repro-
duced Anthropic-PM-7B is slightly worse than the
original Anthropic-PM, as it has a smaller model
size and experiences the extra preference model
pretraining (PMP) on external data.
Further Assessment on Honesty. We addition-
ally evaluate AutoPM on the TruthfulQA MC1 task
to validate the capability of finding out honest re-
sponses. The inference of preference models is
the same as in HHH-Eval. As shown in Table 4,
AutoPM-7B and AutoPM-30B achieve an accuracy
of 0.56 and 0.59, which outperform Anthropic’s
model and GPT-3.5 and are comparable to GPT-4.
This phenomenon implies that AutoPM can effec-
tively recognize disinformation in AI replies and is
promising for suppressing hallucinations.
Further Assessment on Harmlessness. To fur-
ther assess AutoPM’s ability to identify harmful
responses, we test AutoPM on the BAD dataset.
We follow Bai et al. (2022a) to compute the prefer-
ence score distribution over the chatbot responses
(considering only the first chatbot utterance per
BAD conversation). Figure 2 illustrates the nor-
malized preference scores distribution predicted by
AutoPM-30B, where the harmful responses pos-
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Figure 3: Assessment results from various models and
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sess significantly lower preference scores than non-
harmful ones. This distribution closely resembles
the one predicted by Anthropic-PM-52B, suggest-
ing that AutoPM has a comparable performance on
classifying malicious responses.

5.4 Reliability of AutoPM

To characterize the reliability of AutoPM’s predic-
tions, we calculate the assessment consistency be-
tween AutoPM and human/GPT-4 on Self-instruct
User-oriented benchmark (Wang et al., 2022).
We first choose a model pair and let them re-
ply to the same set of instructions, then request
AutoPM/human/GPT-4 to select the winner for
each instruction. Two model pairs are tested here:
Vicuna-13B vs. Alpaca-7B, and GPT-4 vs. GPT-
3.5 (text-davinci-003). For human assessment, we
ask three human annotators to label the preferred
response (select ‘A win’, ‘Tie’, or ‘B win’) indepen-
dently and use the majority vote as the final assess-
ment decision. For GPT-4 assessment, we follow
the system prompt provided by Chiang et al. (2023)
to generate robust evaluation responses. Figure 3
summarizes the overall assessment results. We
find that there are more tie cases from the human
evaluation. This is because the compared models
are known to be strong in following human instruc-
tions and delivering high-quality responses, making

V-A Human GPT-4 AutoPM-7B Anthropic-7B†

Human N/A 0.87 0.80 0.81
GPT-4 0.87 N/A 0.86 0.83

G-D Human GPT-4 AutoPM-7B Anthropic-7B†

Human N/A 0.92 0.79 0.66
GPT-4 0.92 N/A 0.76 0.63

Table 5: Evaluation consistency with Human/GPT-4.
V-A denotes the comparison between Vicuna-13B and
Alpaca-7B, while G-D denotes GPT-4 vs. GPT-3.5.

them hard for humans to judge.
Table 5 shows the assessment consistency

by calculating the proportion of agreement ob-
served (Banerjee et al., 1999). Since score-based
preference models do not consider draws, we rule
out all tie cases in the consistency computation.
For Vicuna-13B vs. Alpaca-7B, AutoPM achieves
a higher consistency of 0.86 with GPT-4 and 0.80
with humans compared to Anthropic-7B. For GPT-
4 vs. GPT-3.5, AutoPM also achieves a consistency
of 0.76 with GPT-4 and 0.79 with humans, even
though our preference data are generated from the
poorer GPT-3.5. These results show that AutoPM
can not only predict reliable preference scores that
generalize well to unseen models like Vicuna-13B
but also be able to discern responses from models
like GPT-4 that are better than GPT-3.5.

5.5 Improving LLMs with AutoPM

We show the potential of AutoPM to improve
LLMs in this section. Instead of conducting Rein-
forcement learning (RL) following Ouyang et al.
(2022) (in which the newly included fine-tuning
dataset, the complicated hyper-parameter setting,
and the stochasticity of the training process may
hinder the accurate assessment of the preference
model), we utilize Rejection Sampling (best-of-
n) (Nakano et al., 2021; Askell et al., 2021) to
improve existing LLMs at inference time.
Setup. Given an instruction, the common decod-
ing strategy of LLMs is to greedily generate the
response with high confidence or randomly sample
response to increasing diversity. In our experiment,
we let LLMs generate the greedy response and
9 sampled responses as the candidate responses
set. Then we apply AutoPM to select the best one
among these 10 responses and check whether Au-
toPM can improve over the greedy result.
AutoPM helps to generate truthful replies. We
conduct experiments on the TruthfulQA Genera-
tion task (Lin et al., 2021) and apply AutoPM to



Model #Param. Truthful Truthful*Inf

GPT-3 6B 0.22 0.19
175B 0.28 0.25

LLaMA

7B 0.33 0.29
13B 0.47 0.41
30B 0.52 0.48
65B 0.57 0.53

Alpaca-Greedy 7B 0.38 0.38
Alpaca-Random 7B 0.42 0.42
Alpaca-AutoPM 7B 0.51 0.51

Vicuna-Greedy 13B 0.49 0.48
Vicuna-Random 13B 0.50 0.50
Vicuna-AutoPM 13B 0.63 0.63

Table 6: Results on TruthfulQA Generation Task. We
report the fractions of truthful and truthful*informative
answers, scored by fine-tuned GPT-3 (Lin et al., 2021).
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Figure 4: Winning rate of AutoPM-selected responses
vs. greedy responses on the Vicuna benchmark, judged
by GPT-4.

two popular instruction-following models, Alpaca-
7B (Taori et al., 2023) and Vicuna-13B (Chiang
et al., 2023). Table 6 shows the performance of dif-
ferent LLMs. LLaMA-7B achieves a value of 0.33
on the truthful metric and LLaMA-65B is 0.57.
This observation is in line with Wei et al. (2022b),
where LLMs are prone to output the true statement
after parameter scaling. Although Alpaca-7B and
Vicuna-13B have strong instruction-following abili-
ties, they are likely to produce hallucinated answers
(0.38 and 0.49 on the truthful metric respectively)
owing to their small sizes. Manually examining
their sampled responses reveals that they are capa-
ble of generating true statements, but sometimes
false statements stand out because of a greater prob-
ability. By applying AutoPM to Alpaca-7B and
Vicuna-13B, both models achieve substantially bet-
ter results of 0.51 and 0.63. Besides, we find that
both Alpaca and Vicuna’s responses are informa-
tive, with the informative metric exceeding 0.99.
AutoPM helps to generate human-preferred
replies. We test whether AutoPM can help gen-
erate human-preferred replies on Vicuna Bench-

Ablation of Data Components
Base In-Breadth In-Depth HHH-Eval TruthfulQA

✓ 0.61 0.40
✓ 0.76 0.52

✓ ✓ 0.79 0.53
✓ ✓ ✓ 0.83 0.56

Ablation of In-Breadth Data Generation
Helpful Honest Harmless HHH-Eval TruthfulQA

✓ ✓ 0.74 0.49
✓ ✓ 0.71 0.48
✓ ✓ 0.72 0.43
✓ ✓ ✓ 0.76 0.52

Table 7: Ablation studies of data effectiveness.

mark. In addition to LLaMA and Alpaca, we also
compare OPT-IML-1.3B (Iyer et al., 2022) and
BLOOMZ-7B1 (Muennighoff et al., 2022) from
two different LLM families. The Win/Tie/Lose
statistics between AutoPM-selected and greedy re-
sponses are visualized in Figure 4. The result in-
dicates that AutoPM can identify better responses
from multiple candidates. For OPT-IML-1.3B and
BLOOMZ-7B1, we find there are 24 and 20 tied
cases. This is because these two models are in-
capable of generating diverse responses and thus
their sampled responses are similar. For stronger
models like Alpaca-7B and Vicuna-13B, there are
slightly more cases where the greedy response wins.
But the number of AutoPM-selected responses that
are simultaneously preferred by GPT-4 is 2× more
than the one of greedy responses.

5.6 Ablation Studies

We investigate the effectiveness of synthetic pref-
erence data in Table 7. In the data component
ablation, we take paired model data as the base-
line (denoted as Base), which performs poorly on
HHH-Eval due to the low coverage of dishonest
and harmful responses from OPT-IML-1.3B and
GPT-3.5. In-breadth data generation contributes the
most to the performance gain of AutoPM, reach-
ing an accuracy of 0.76 on HHH-Eval and 0.52 on
TruthfulQA MC1. Combining paired model data
with in-breadth and in-depth data can further im-
prove the performance and yield the final results of
0.83 and 0.56, implying the complementary nature
of these three sources of generated data. Moreover,
we assess the contribution of each category of data
from in-breadth data generation. We observe that
removing any category can impair the performance
on HHH-Eval, and the honest/harmless data con-
tribute to TruthfulQA more.



6 Conclusion

In this paper, we propose learning the preference
model for LLMs via automatic data generation un-
der the human preference guideline, named Au-
toPM. The proposed AutoPM contains In-Breadth
Data Generation and In-Depth Data Generation,
and Paired Models Data Generation. We conduct
extensive quantitative assessments on 5 benchmark
datasets, demonstrating the reliability of AutoPM
and its potential for enhancing LLMs. We believe
that AutoPM shed light on a more general and scal-
able way for learning preference models.

Limitations

In this work, we explore learning preference model
for LLMs via automatic preference data generation.
When reviewing the data quality, we find that most
synthetic preference data are valid, but a small por-
tion of the rejected response is comparable with or
even better than the chosen response. Given that
our approach has already shown its reliability and
potential with this data noise exists, we will address
this observation in the future.

Ethics Statement

In this work, we generate preference data from
GPT-3.5, in which the rejected data may contain
unhelpful, dishonest, and even harmful content.
These rejected data are used and should be used
as negative samples for preference model learning,
therefore helping LLMs align with human prefer-
ences and values. Wrongly using the rejected data,
e.g., finetuning with these data, may cause LLMs to
produce terrible responses. We conform to EMNLP
Code of Ethics in every step of the work, and we
advocate responsible data usage.
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A Appendix

A.1 Data samples in AutoPM
In Tables 8, 9, and 10, we choose a few random
samples generated by AutoPM for qualitative as-
sessment. AutoPM generates some harmful content
as negative samples, but we don’t show that data
here.

A.2 Details of In-Depth Data Generation
The natural language descriptions of our defined
edit actions are:

• Deletion: “remove some answer content that
is useful to the question”

• Substitution: “edit some answer content to
make it inaccurate for the question”

• Insertion: “add some content irrelevant to the
question into the answer”
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Samples from In-Breadth Data Generation

Prompt: How do you create a pivot table in Excel?
Chosen: To create a pivot table in Excel, select the
data you want to include in the pivot table, then
click Insert > Pivot Table.
Rejected: The best way to create a pivot table is to
use a software designed for data analysis.
Prompt: For the given artist, name three of their
famous works: Salvador Dali.
Chosen: The Persistence of Memory, The Burning
Giraffe and Soft Construction with Boiled Beans.
Rejected: The Starry Night, The Night Café and
The Rattlesnake.
Prompt: Describe the concept of natural language
processing.
Chosen: Natural language processing (NLP) is a
branch of artificial intelligence (AI) that uses nat-
ural language to process and extract insights from
text. NLP technologies rely on methods from com-
puter science, linguistics, and machine learning to
analyze and interpret text. Common applications
of NLP involve sentiment analysis, predictive text,
and document summarization.
Rejected: Natural language processing (NLP) is a
branch of artificial intelligence (AI).
Prompt: Given a list of ingredients, create a recipe
for a vegan curry: 2 cans of chickpeas, 1 onion, 1
clove of garlic, 1 inch ginger, 1 teaspoon cumin, 1
teaspoon curry powder, 1 teaspoon turmeric.
Chosen: 1 teaspoon garlic powder, 2 tablespoons
olive oil. In a large saucepan, heat the olive oil on
medium heat. Add the diced onion and sauté for 5
minutes or until soft. Add the garlic and ginger and
sauté an additional 1-2 minutes. Add the chickpeas,
cumin, curry powder, garlic powder and turmeric
and cook for an additional 3-4 minutes. Reduce
the heat and simmer for 15 minutes. Serve hot over
cooked rice.
Rejected: In a large saucepan, heat the olive oil
on medium heat. Add the diced onion and sauté
for 5 minutes or until soft. Add the garlic and
sauté an additional 1-2 minutes. Add the chickpeas,
cumin, curry powder and garlic powder and cook
for an additional 3-4 minutes. Reduce the heat and
simmer for 15 minutes. Serve hot with cooked
chicken.

Table 8: Data Samples from In-Breadth Data Genera-
tion.

Samples from In-Depth Data Generation

Prompt: Make a dinner menu for two people
that has some nutritional balance.
Answer A: Menu for two people:- Starter:
Spinach salad with cranberries and walnuts.-
Main course: Grilled chicken with sweet potato
wedges and steamed broccoli.- Dessert: Baked
apples with cinnamon sugar.
Answer B: Menu for two people:- Starter:
French fries with ketchup.- Main course:
Grilled chicken with french fries and garlic
bread.- Dessert: Chocolate ice cream."
Prompt: Find the equation of the line that
passes through the points (4,7) and (6,11).
Answer A: The equation of the line that passes
through the points (4,7) and (6,11) is y = 2x - 1.
Answer B: y = 2x.
Answer C: y = 2x, and the temperature today
is 62 degrees.
Prompt: Describe the history of the automobile
industry in the US.
Answer A: The automobile industry has been a
driving force of economic growth in the United
States since the early 1900s. The first vehicle
to be mass-produced was the Ford Model T in
1908, and it quickly revolutionized how people
moved around the country. This marked the be-
ginning of a boom in the automotive industry,
and from there many of the major American car
manufactures would emerge, including General
Motors, Chrysler, and Ford. The industry went
on to shape the culture and lifestyle of Ameri-
cans for generations to come.
Answer B: The Ford Model T was the first vehi-
cle to be mass-produced in 1908, and it quickly
revolutionized transportation. Many other ma-
jor American car manufacturers emerged from
there.
Answer C: The Ford Model T was the first vehi-
cle to be mass-produced in 1908, and it quickly
revolutionized transportation. Many other ma-
jor American car manufacturers emerged from
there. It is believed that the success of the auto-
mobile industry changed the face of the entire
nation. However, it should also be noted that it
ruined the horse-and-buggy industry!

Table 9: Data Samples from In-Depth Data Genera-
tion.



Samples from Paired Models Data Genera-
tion

Prompt: List 5 pieces of equipment needed to
practice yoga.
Chosen: - Yoga Mat - Block - Strap - Blanket -
Bolster.
Rejected: I don’t know.
Prompt: Given the word, list 3 synonyms: big.
Chosen: large, vast, immense.
Rejected: Yes.
Prompt: Generate a list of three consecutive
prime numbers.
Chosen: 2, 3, 5
Rejected: 1, 2, 3
Prompt: Generate a blog post title which is
related to the given topic. Potatoes.
Chosen: 5 Reasons why Potatoes are the Per-
fect Side Dish.
Rejected: I love potatoes.
Prompt: Explain the features of a laptop com-
puter.
Chosen: A laptop computer is a portable com-
puter that is typically smaller than a desktop
computer. It is designed to be easily carried and
used in various locations. It has an integrated
keyboard, a touchscreen display, and includes
features such as Wi-Fi, Bluetooth, and USB
ports.
Rejected: A laptop computer is a small com-
puter that is used to carry around.
Prompt: In this task, you need to compare the
two given sentences and state which one is more
effective. Sentence 1: Book a table for four.
Sentence 2: Reserve a table for four people.
Chosen: Sentence 2 is more effective because it
is more specific and therefore conveys a clearer
meaning.
Rejected: Sentence 1.
Prompt: Generate a new sentence that follows
the same structure of the sentence below: The
clouds were moving swiftly across the sky.
Chosen: The leaves were blowing gracefully
across the backyard.
Rejected: The clouds were moving quickly
across the sky.

Table 10: Data Samples from Paired Models Data Gen-
eration.


