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ABSTRACT

Finding neural network weights that generalize well from small datasets is dif-
ficult. A promising approach is to (meta-)learn a weight initialization from a
collection of tasks, such that a small number of weight changes results in low
generalization error. We show that this form of meta-learning can be improved
by letting the learning algorithm decide which weights to change, i.e., by learning
where to learn. We find that patterned sparsity emerges from this process. Lower-
level features tend to be frozen, while weights close to the output remain plastic.
This selective sparsity enables running longer sequences of weight updates with-
out overfitting, resulting in better generalization in the minilmageNet benchmark.
Our findings shed light on an ongoing debate on whether meta-learning can dis-
cover adaptable features, and suggest that sparse learning can outperform simpler
feature reuse schemes.

1 INTRODUCTION

The well-known model-agnostic meta-learning (MAML; |[Finn et al.; [2017)) algorithm aims to learn
a neural network initialization such that adaptations to new tasks generalize well. This strategy has
proven useful in the few-shot learning setting, where training sets are small and overfitting can easily
occur. In MAML, this problem is partially mitigated by limiting model adaptation to only a few
gradient steps, which can be seen as an ‘early stopping’. Here, we shed light on the inner workings
of MAML and advocate a regularization by sparse learning approach. Our results question the
benefits of more sophisticated meta-learners that modulate gradients (Li et al.| [2017; Zintgraf et al.|
2019; |[Flennerhag et al., [2020; Lee & Choi, [2018; Zhao et al., 2020} |Chen et al.| [2020).

Our study builds upon the surprising effectiveness of almost no inner-loop training (ANIL; |[Raghu
et al.,[2020). It has been recently shown that applying MAML while adapting only last-layer weights
leads to almost no decrease in performance in standard few-shot learning benchmarks. Instead of
deciding which weights to freeze a priori, here we endow the meta-learner with the possibility to
explicitly stop optimizing certain weights in the inner-loop learning process. We do this by introduc-
ing an adjustable binary mask which is elementwise multiplied with gradient updates. Overfitting
can thus be prevented and learning sped-up by focusing adaptation to a sparse parameter subset,
discovered by MAML.

We find that our sparse-MAML algorithm recovers similar behavior to ANIL. It induces high update
sparsity in earlier layers of the network while allowing for adaptation in deeper layers including the
network’s output. These findings are also in line with accumulating evidence for reduced plasticity
in lower-order sensory areas of the adult brain, after an initial developmental phase of high plasticity
(Wandell & Smirnakis, |2009; [Lohmann & Kessels| |2014). Interestingly, sparsity adapts intuitively
to the number of inner loop gradient steps as well as its learning rate, the few-shot dataset size
and network specifications. This leads to a simple, robust and interpretable variant of MAML that
improves generalization by self-regularizing the parameters that the model should learn.

2 FRrROM MAML TO SPARSE-MAML

Few-shot learning aims to find a network that performs well when trained on few samples of un-
seen data. Formally, consider a set of small tasks {7;}, with each task 7; containing a training D}

*equal contribution



Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

and validation D} dataset. A loss, £(¢; D), measures the quality of the prediction of a network
parametrized by ¢ on the dataset D. Few shot learning then consists in optimizing the parameters
0 of a learning algorithm 4 that given the training dataset produces the parameters ¢ in order to
improve performance on the validation set, i.e.,

meinEi [L(A(0; D)), DyY)].

MAML In MAML, this problem is approached by looking for network weights from which few
gradient descent steps are needed to reach high performance. The resulting optimization problem
can be formulated as follows:

meinEi (£ (6K (0,D}),D})] st. 1 = ¢ — V4L (¢1, D) and ¢ = 0,

with « the inner loop learning rate and K the number of gradient descent steps. The initialization ¢
is then obtained by iterative updating, using

0« 0—~vdgE;[L(ox(0,D}),D})],
with ~ the outer loop learning rate. The derivative w.r.t. to 6 requires backpropagating through
the inner optimization and is thus resource-intensive. First-order MAML (FOMAML) drastically
reduces the cost by setting to zero the second-order derivatives that appear when differentiating the
inner loop update.

Learning the learning rates Some variants of MAML focus on learning the learning rate. More
precisely, we consider inner loop updates of the following form:
Pry1 = Op — aMV 4L (o1, Dj),

for some learnable preconditioning matrix M. Through M, we learn some information on the
geometry of the loss with the hope of faster inner loop optimization. It is updated similarly to
6. Meta-SGD (Li et al., |2017) considers a diagonal M, i.e. learnable learning rates, and Meta-
Curvature (Park & Olival 2019) considers a block matrix. Note that MAML corresponds to the
M = Id case.

Sparse-MAML Following those approaches, we introduce sparse-MAML. It dynamically learns
the parameters which will be updated and the ones that won’t. Hence, sparse-MAML learns where
to learn. To do so, we use a vector m (instead of a matrix M) that modulates the gradient in the
inner loop update the following way:
Prt1 = Ok — &(Lmz0 0 VoL (¢, Dj)),

with 1.>¢ : R™ — {0, 1}™ the step function that we apply elementwise to the underlying parameter
vector m € R™ and o the pointwise multiplication. We differentiate the step function by considering
it linear; a method called the straight-through estimator (Bengio et al.| |2013)) that was recently used
for similar large-scale masking (Ramanujan et al.,|2020). Following FOMAML, we ignore second-
order derivatives. This leads to the update

K-1

m<+m+avE; |VyL(pr,D)o Z VoL (o D;) |-

k=0
A detailed derivation can be found in Appendix [B| Our mask update depends on the alignment
between the validation loss gradient g} and the training loss gradient g; := ZkK;Ol Vo L(¢r, D)
averaged over the inner loop trajectory. Learning tends to shut off for coordinates for which these
two quantities are of opposing sign, E;[g} g;] < 0. This freezing of learning when the parameter
updates are conflicting on the training and validation sets can be beneficial for generalization.

3 EXPERIMENTS

Our main aim is to investigate if and how sparse-MAML uses the possibility to prevent updating
weights for different training regimes. We focus on two hyperparameters, the inner loop learning
rate and the number of inner loop gradient steps. We define the update sparsity of a parameter group
or the entire network as 1 — ||1,,,>0|?/dim(m) and use it to monitor the state of the mask. Unless
explicitly stated, we follow the experimental setup of (Finn et al) 2017} [Vinyals et al.| [2016) and
focus on the common non-saturated benchmark Minilmagenet (Ravi & Larochelle, 2016)) for two
data regimes: 5-shot 5-way and 1-shot 5-way. All experimental details can be found in Appendix [A]
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Figure 1: Weight update sparsity emerges in 5-shot 5-way classification of Minilmagenet (Ravi &
Larochellel 2016)). Results averaged over 5 seeds + std. Left: Averaged network sparsity adapts
for different sparsity initializations throughout training. Center: Different final update sparsity for
convolutional weight matrices and the network’s output layer emerge with gradually less sparsity
from earlier to deeper layers while all being initialized at 50% sparsity. Right: Sparse-MAML
shows improved test set accuracy for higher update sparsity initializations.

3.1 LAYER SPECIFIC SPARSITY
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Figure 2: Update sparsity adjusts to the number of gradient steps in 5-shot 5-way (left) and 1-shot
5-way (right) classification of Minilmagenet (Ravi & Larochelle,|[2016)). In both data regimes, more
steps in the inner loop lead to higher final update sparsity and better generalization compared to
MAML. Note that in the lower data regime (right) much higher update sparsity emerges although
the exact same model and training setup is used. In all experiments the update sparsity is initialized
at 50%, the inner loop learning rate is 0.1 and results are averaged over 5 seeds = std.

Our first finding validates and extends the phenomenon described in Raghu et al.|(2020). As shown
in Figure[T] sparse-MAML dynamically adjusts the update sparsity of the network, with very differ-
ent values over the layers. As an example, we show the average update sparsity of the 4 convolutional
weight matrices and the output layer during training. The same trend is observed for other param-
eter groups in the network except the output bias (see Figure ] in Appendix [A). Sparsity clearly
correlates with the depth of the network parameter and gradually increases towards the early layers
of the network, despite the similar value before training (around 50%). This refines the findings
of Raghu et al.| (2020) by showing that sparse-MAML suppresses inner loop updates of weights in
earlier layers while allowing deeper layers to adjust to new tasks. This dynamic sparsity adjustment
is robust across different sparsity initializations (Figure [T} left plot) while increasing few-shot test
set accuracy robustly over all sparsity initializations (Figure [I] right plot).

3.2 SPARSITY ADJUSTS TO HYPERPARAMETERS

We study the effects of inner loop learning rate and length on the final update sparsity. First, we test
three different inner loop durations (5, 15 or 25 gradient steps, see Figure[2). We find that neither
MAML nor sparse-MAML exhibit overfitting for the duration range considered here (for reference,
the original study of MAML applied 5 inner-loop steps during meta-training). On the contrary, the
solutions found by sparse-MAML generalize significantly better for longer adaptation phases. This
improvement in generalization is accompanied by an increase in update sparsity.

To further investigate if increasing model adaptability to new tasks can result in improved general-
ization, in combination with update sparsity, we simply scan the inner loop learning rate over a large
range, see left plot of Figure[3] Here, we find a clear trend towards higher network sparsity in hand
with better test set accuracy for larger learning rates. Note that deep layers remain highly plastic (not
shown). Interestingly, similar effects have been reported in classic neural network training where
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Figure 3: Update sparsity for different hyperparameters for 5-shot 5-way classification of Minilma-
genet (Ravi & Larochelle), 2016). Figures show results for a sparsity initialization at 50% averaged
over 5 seeds £ std. Left: Higher inner loop learning rates enforce higher sparsity with gradually
better test set generalization. MAML fails to adjust to high learning rates. Right: Update sparsity
adjusts to different hidden layer sizes of the 4-layer network with less sparsity for wider networks.
The inner loop learning rate was set 0.1 for all hidden sizes.

both freezing layers throughout training (Raghu et al., | 2017; Brock et al., 2017 and the use of large
learning rates (Lewkowycz et al., | 2020) seem to improve generalization.

Finally, we also find that sparsity correlates strongly with the width of the network, decreasing for
networks with larger hidden size, see right plot of Figure 3] We leave a more thorough investigation
of sparse-MAML on wider and deeper networks as well as the use of meta-learning algorithms that
intrinsically use long inner loops (Rajeswaran et al.,[2019;|Zucchet et al.|[2021) for future research.

3.3 SPARSE-MAML AND META-SGD

While strictly less expressive, sparse-MAML  Table 1: 5-way Few-shot classification accuracy
is arguably conceptually simpler and more in- (%) on Minilmagenet. Mean = std. over 5 seeds.
terpretable than Meta-SGD. This allows carry-

ing out the analyses presented in the previous Method l-shot (1)  5-shot (1)
sections. Despite its simplicity, sparse-MAML = o1
performs on par with Meta-SGD on the two in- ~ MAML 48.07+17  63.15%09
vestigated few-shot regimes, cf. Table[T} Meta- ~ ANIL 46.70+9-40 61.50%0-50
SGD and Meta-Curvature (MC) take a single Meta-SGD 50.47E187  64.0310-94

gradient step in the inner loop (with a small 40.88 40.69
learning rate of 0.001), which prevents overfit- MC (+dataaug) 5423 68.47
ting. We further note that the results for Meta- ~ sparse-MAML ~ 50.15%119  66.70%0-23
Curvature are not directly comparable as addi-
tional data augmentation was used. We adjourn investigating fusions of Meta-SGD and mechanisms
to stop learning using gradient modulation like ReLU(m) o V ,L(¢x; D5).

4 CONCLUSION

We investigate a simple variant of MAML termed sparse-MAML, a meta-learner that is capable of
learning where to learn. This enables systematically analyzing update sparsity as a function of net-
work depth, shedding light into the inner workings of MAML on few-shot classification problems.
A clear trend emerges: the model should remain flexible close to the output, and learning should
essentially stop in the first layers. The meta-learning process therefore discovers a finer version of
the recent ANIL algorithm, whose inner loop consists in adapting only the last-layer weights. More-
over, the level of sparsity adaptively changes with model architecture, data-set size and inner-loop
optimization hyperparameters, leading to robust improved generalization. We hope that our analyses
further stimulates the debate on optimization-based meta-learners that offer a powerful and general
framework for learning-to-learn.
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A EXPERIMENTAL SETUPS
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Figure 4: Emergent weight update sparsity in 5-shot 5-way classification of Minilmagenet (Ravi
& Larochellel [2016)) with a 4-layer convolutional neural network, inner loop learning rate 0.1 and
25 inner loop steps. Results averaged over 5 seeds =+ std. Left: Different final update sparsity for
BatchNorm gain parameters emerge with gradually less sparsity from earlier to deeper layers while
all being initialised at 50% sparsity. Right: Output layer bias parameter sparsity for different spar-
sity initialisation tend towards 100%. Note that usually deeper layers tend towards lower sparsity.

All experiments, unless specified otherwise, follow the few-shot learning classification experimental
setup proposed in (Finn et al., 2017) and are performed on the MinilmageNet dataset introduced by
(Ravi & Larochellel [2016; [Vinyals et al., |2016) which consists of 64 training classes, 12 validation
classes and 24 test classes. The backbone classifier consists of four convolutional layers each with
64-filters followed by a BatchNorm layer (loffe & Szegedy) as well as max-pooling layer with kernel
size and stride of 2. The network then projects to its output via a fully-connected layer.

When not being the subject of analysis, the hyperparameters for the classification results are the
following. For 1-shot and 5-shot experiments, we use batches of sizes 4 resp. 2, with 25 gradient
descent inner-loop steps during meta-training and meta-testing. When not stated otherwise an inner
learning rate 0.1 is used. For the outer-loop optimisation we use ADAM (Kingma & Bal (2015))
with a learning rate of 0.001 and PyTorch default parameter for both the meta-parameters as well as
parameters underlying the gradient masks. We train all models for 400 epochs of 100 training tasks
each. All weight matrices including m, the gradient mask parameters, are initialised with Kaiming
initialisation (He et al.||[2015)).

The reported test set accuracies including the sparsity values are based on models that are check-
pointed on the accuracies averaged across 500 tasks build from the validation set. The model with
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best average validation set accuracy is then tested on 300 tasks of the test set data. We note that all
experiments, dataset split as well as meta-gradient computations used the Torchmeta library version
1.6 (Deleu et al.,|2019).

We stress that we use first-order MAML (Finn et al., [2017) to learn ¢q in all of the reported results
and handle the BatchNorm parameters as in the transductive learning protocol as originally done in
MAML (Finn et al., 2017 Nichol et al.,[2018).

Results in Table[T]are the best values found by our scans of learning rates and inner loop steps using
a sparsity initialization of 50%. For the 1-shot and the 5-shot regime, 35 steps and an inner learning
rate of 0.5 produce the reported test set accuracy.

B DERIVATION OF THE SPARSE-MAML UPDATE

We here derive the sparse-MAML update rule on the mask, that is

m <+ m+avyE; |VeL(pr,D ZV¢ﬁ ¢x, D

For the sake of clarity, we omit the dependencies of ¢ on 0 and D] in the following. We start by
exchanging the derivative and expectation

dnBi[L(dk, D})] = Ei[dn L(Sx, Dy)]
and applying the chain rule

dimL (9K, Di) = VoL (9K, Di) dmox-
We now compute the derivative of ¢ with respect to the mask:

dmodx = dmdr—1 —adpy, []]-mZO o VgL (ngK_l,D;)].
To avoid computing second-order derivatives and following FOMAML, we consider
VoL (¢x—1,D}) to be constant with respect to m. It remains
Aok =~ dmodr—1 — adm [Ln>o] - diag(VeL (0x—1,D;)).

We then approximate d,,1,,>0 using straight-through estimation, which consists in taking the
derivative equal to the identity. We thus have

dm¢K ~ dm¢K—1 - adlag(V¢£<¢K_1,D;))

and
K—1

dmok ~ —a Y diag(V4L (6r, D})).
k=0
Finally, we use the meta-gradient approximation

dmE; [L(¢K (0, D)), D))] = —aE;

K-1
VoL (¢, D}) 0 > VoL(ok, D)
k=0

and m is updated with

K-1
m<+—m+ayE; [V¢E(¢K, Z V¢£ ¢k,Dt)]
k=0



	Introduction
	From MAML to sparse-MAML
	Experiments
	Layer specific sparsity
	Sparsity adjusts to hyperparameters
	Sparse-MAML and Meta-SGD

	Conclusion
	Experimental Setups
	Derivation of the sparse-MAML update

