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Abstract
Fine-tuning large-scale pre-trained models pro-
vides an effective solution to alleviate the la-
bel scarcity problem in cardiovascular diseases
(CVDs) detection using electrocardiogram (ECG).
However, as the pre-trained models scale up, the
computational costs for fine-tuning and inference
become unaffordable on low-level devices de-
ployed for clinical applications. Additionally,
maintaining the model performance under low
budgets in computational resources remains a sig-
nificant challenge. However, a comprehensive
study that can address them in a joint framework is
still lacking. Here, we propose a holistic method
(H-Tuning) for low-cost and efficient fine-tuning
of pre-trained models on downstream datasets.
Then, the inference costs of the models fine-tuned
by H-Tuning are further reduced significantly us-
ing a knowledge distillation technique. Exper-
iments on four ECG datasets demonstrate that
H-Tuning reduces the GPU memory consumption
during fine-tuning by 6.34 times while achieving
comparable CVDs detection performance to stan-
dard fine-tuning. With the knowledge distillation
technique, the model inference latency and the
memory consumption are reduced by 4.52 times
and 19.83 times. As such, the proposed joint
framework allows for the utilization of pre-trained
models with high computation efficiency and ro-
bust performance, exploring a path toward low-
cost and efficient CVDs detection. Code is avail-
able at https://github.com/KAZABANA/H-Tuning
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1. Introduction
Acting as the number one cause of death, cardiovascular
diseases threaten the lives of millions of people worldwide
(Kelly et al., 2010; Mc Namara et al., 2019). In recent years,
deep-learning models have been successful in diagnosing
cardiovascular diseases (CVDs) using electrocardiography
(ECG)(Hannun et al., 2019; Ribeiro et al., 2020; Strodthoff
et al., 2020). However, gathering sufficient labeled data and
computational resources required to train and implement
deep learning models from scratch is still very expensive and
time-consuming, especially for developers from resource-
limited communities. Fortunately, fine-tuning large-scale
pre-trained models provides an effective solution to reduce
the requirement of labeled data in downstream datasets.
For example, Vaid et al. (2023) pre-trained a large-scale
vision transformer on a huge dataset with eight million ECG
recordings, which demonstrated better transferability and
performance than traditional network architectures. Sub-
sequently, many studies have tried to transfer the success
of large pre-trained foundation models from the computer
vision and natural language processing domains to medical
intelligence domains. For example, foundation models in
retinal imaging (Zhou et al., 2023), cancer imaging (Pai
et al., 2024), and digital pathology (Wang et al., 2024) were
developed for enhancing disease diagnosis performance on
downstream datasets. In the field of ECG-based CVDs
detection, researchers also validated the effectiveness of
fine-tuning foundation models in reducing the requirement
on labeled data (Han & Ding, 2024; Mathew et al., 2024;
McKeen et al., 2024; Pham et al., 2024).

However, fine-tuning pre-trained models becomes computa-
tionally expensive as the pre-trained models scale up. Specif-
ically, standard fine-tuning optimizes all the parameters of
pre-trained models using gradient backpropagation (first-
order optimization), requiring a large amount of GPU mem-
ory. Unlike industrial servers, such computational costs are
unaffordable for low-level devices. Hu et al. (2022) pro-
posed the low-rank adaptation (LoRA) to alleviate this prob-
lem and maintain the model performance on downstream
datasets. Specifically, it freezes the pre-trained weights
and injects trainable low-rank matrices to fine-tune the pre-
trained models, reducing the number of trainable parame-
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ters and the GPU memory consumption in saving parameter
gradients. However, LoRA cannot avoid caching network
activations required during the backpropagation process,
greatly limiting its efficiency in reducing GPU memory con-
sumption. Malladi et al. (2023) addressed this problem by
developing a backpropagation-free method (MeZO), which
can fine-tune pre-trained models with just forward pass.
MeZO calculates parameter gradients using a zeroth-order
optimization method and waives the requirement for activa-
tions caching. It can achieve comparable performance with
fine-tuning on natural language processing tasks. However,
MeZO’s performance would collapse without the assistance
of prompt engineering (Malladi et al., 2023). Consequently,
its effectiveness in medical image and physiological sig-
nal processing is questionable as prompt engineering is not
feasible in these domains. In summary, the high and often
prohibitive computational costs associated with fine-tuning
pre-trained models have greatly impeded their widespread
application in cardiac healthcare within resource-limited
communities. This phenomenon highlights the need for
computationally efficient fine-tuning methods with robust
performance in the field of ECG-based CVDs detection.
Apart from fine-tuning costs, pre-trained models also intro-
duce high inference costs, which is also a pressing issue
when deploying them on low-level devices. Specifically, de-
ploying large-scale models is feasible on personal comput-
ers and laptops but is very difficult on mobile devices, such
as phones and smartwatches. It limits the development of
mobile cardiac health in the era of pre-trained models. For-
tunately, the knowledge distillation technique (Hinton et al.,
2015) can transfer the knowledge of large-scale teacher mod-
els to small-scale student models, providing a solution to
alleviate this problem. In recent years, many studies have
validated its effectiveness in ECG-based CVDs detection.
For example, Sepahvand & Abdali-Mohammadi (2022) vali-
dated that student models can achieve comparable CVDs de-
tection performance with large-scale teacher models while
demonstrating low computational costs. Despite their effec-
tiveness in reducing inference costs, the computational costs
of training or fine-tuning teacher models for knowledge
distillation are not considered.

In summary, the high fine-tuning and inference costs of
pre-trained models hinder their application in ECG-based
CVD detection, especially in resource-limited environments.
However, a comprehensive study that addresses them in a
joint workflow is still lacking. Additionally, how to main-
tain the fine-tuning performance under low computational
budgets still needs to be explored. In this study, a holistic
framework (H-Tuning) is proposed to fine-tune pre-trained
models with low computational costs while maintaining
good model performance. By integrating a knowledge distil-
lation technique, a joint workflow for low-cost and efficient
ECG-based CVDs detection is developed (Fig.1). Specif-

ically, a mix-order optimization method is first designed
to accurately estimate gradient information with low GPU
memory footprints during the fine-tuning process. A low-
rank adaptation technique is then integrated to reduce the
number of trainable parameters. Subsequently, the shallow
and deep layers of pre-trained models are updated with dif-
ferent schemes to ensure low fine-tuning costs while avoid-
ing significant drops in detection performance. Experiment
results on four downstream datasets demonstrate that H-
Tuning achieves comparable performance with standard
fine-tuning while reducing the GPU memory consumption
by 6.34 times. To reduce the inference costs of the fine-
tuned models for mobile cardiac healthcare, a knowledge
distillation technique is utilized to transfer the knowledge
from large-scale fine-tuned models to tiny student models.
In comparison to the teacher models, the inference latency,
the GPU memory consumption, and the number of parame-
ters of the student models are reduced by 4.52, 19.83, and
194.23 times, respectively. Notably, student models also
achieve similar CVDs detection performance when com-
pared to the teacher models. Additionally, the knowledge
transfer process improves model performance in recogniz-
ing CVDs from 1-lead and 3-lead ECG, facilitating efficient
mobile healthcare using wearable ECG devices. With robust
CVDs detection performance and low computational costs,
the proposed workflow can be deployed for accurate and
mobile cardiac healthcare, providing an effective solution
for low-cost and efficient ECG-based CVDs detection. The
major contributions of the proposed paradigm are listed
below:

• First, a mix-order optimization method is proposed to
accurately estimate the gradient information using a
coarse-to-fine estimation mechanism. Compared with
traditional optimization methods, it greatly reduces the
computation costs for fine-tuning pre-trained models
while maintaining the CVDs detection performance of
the fine-tuned models.

• Second, a holistic framework (H-Tuning) is developed
to integrate the mix-order optimization with low-rank
adaptation and a novel layer-dependent model update
scheme, enhancing both computational efficiency and
robustness. Then, a knowledge distillation technique is
introduced to reduce the computational costs for model
inference.

• Third, a comprehensive workflow is proposed for
reducing the fine-tuning and inference costs of pre-
trained models while maintaining diagnostic perfor-
mance, exploring a new path toward low-cost and effi-
cient CVDs detection using ECG.
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Figure 1. The workflow of efficient CVDs detection and cardiac healthcare with ECG data. Using the proposed H-Tuning framework,
a large-scale pre-trained model is first fine-tuned on the downstream ECG datasets in a memory-efficient way. Then, to further reduce
the computational cost, the knowledge of the large-scale fine-tuned model is transferred into tiny student models using a knowledge
distillation method.

2. Method
2.1. Preliminaries about Zeroth-order Optimization

Fine-tuning pre-trained models using gradient backpropa-
gation provides a robust method for solving downstream
CVDs detection tasks. However, the gradient backpropaga-
tion process requires saving the network activations during
the forward process, which consumes a prohibitive amount
of GPU memory. On the contrary, zeroth-order optimiza-
tion estimates the gradients using the loss differences, waiv-
ing the need to store the network activations (Spall, 1992;
Flaxman et al., 2005; Duchi et al., 2015). Specifically, the
gradients of a model with parameters θ can be estimated
by the simultaneous perturbation stochastic approximation
(SPSA) method (Flaxman et al., 2005),

∇̂L(θ) = 1
n

n∑
i=1

L(θ + µzi) − L(θ − µzi)
2µ

zi, (1)

where zi ∈ Rd is a random vector sampled from the standard
Gaussian distribution N(0, Id), µ is the perturbation scale
and n is the number of function queries. Note that a large
n value reduces the variance of the estimated gradients but

increases the complexity of forward computation. Based on
the estimated gradients at the t-th iteration, the parameters
θ can be updated by the gradient descent process as

θt+1 = θt − η∇̂L(θt). (2)

Assuming that the loss function L(θ) is L-Lipschitz smooth,
the differences between Ez

[
∇̂L(θ)

]
and the true gradients

∇L(θ) can be bounded as (Nesterov & Spokoiny, 2017;
Gao et al., 2018),

∥∥∥Ez

[
∇̂L(θ)

]
− ∇L(θ)

∥∥∥2
≤ µ2L2d2

4 (3)

When µ → 0, Eq. (1) provides us an unbiased estimation
of the true gradients of θ : Ez

[
∇̂L(θ)

]
= ∇L(θ), which

indicates the feasibility of the zeroth-order methods in opti-
mization. In the implementation, µ is usually set to a small
constant (1e-5, 1e-3), and n is set to 1 for efficient model
training, which makes ∇̂L(θ) become a biased estimation
of the true gradients (Malladi et al., 2023).
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2.2. Mix-order Optimization

Although the zeroth-order methods demonstrate low GPU
memory footprints, the models fine-tuned with them cannot
achieve comparable performance to the models fine-tuned
with the first-order methods, which calculate the gradient
information using backpropagation (Li et al., 2024). In
natural language processing tasks, prompt engineering is
adopted to make the optimization trajectory well-behaved,
which enables the zeroth-order methods to optimize the
whole network (Malladi et al., 2023; Zhang et al., 2024).
However, prompt engineering is only feasible when text
data is available for model training, which greatly limits
the effectiveness of the zeroth-order methods in ECG-based
CVDs detection. In response to the aforementioned limita-
tions, we propose a mix-order optimization method, which
enables memory-efficient and robust model fine-tuning with-
out prompt engineering.

Given a random batch of ECG signals B = {xi, yi}N
i=1 and

a model with parameters θ, the zeroth-order method (SPSA,
Eq. (1)) is first utilized to provide an initial estimation of the
parameter gradients, defined as ∇̂L(B; θ). Here, ∇̂L(B; θ)
can be regarded as an approximation of ∇̂L(θ). Consider-
ing that multiple CVDs can be diagnosed from each ECG
segment, the CVDs detection process should be summarized
as a multi-label classification task. Consequently, the loss
function utilized in our study can be defined as a multi-label
binary cross-entropy loss,

L(B; θ)

= − 1
NC

N∑
i=1

C∑
c=1

(1 − yi,c) log(1 − pi,c) + yi,c log pi,c,

(4)

where pi,c = P (c = 1|θ; xi) is the model prediction on
class c and C is the number of categories. According to
Eq.(3), the variance of ∇̂L(B; θ) increases rapidly as the
model size scales up, which results in slow convergence
and poor model performance (Gautam et al., 2024). To
address this problem, we propose to utilize the first-order
method (gradient backpropagation) to refine the norm and
the direction of the estimated gradients ∇̂L(B; θ). In order
to avoid heavy computational burdens, backpropagation is
only conducted on a tiny subset B1 = {xi, yi}N1

i=1 sampled
from B, with N1 ≪ N . Specifically, the gradient refinement
process can be formulated as,

∇̂L(B; θ)λ

= λ∇L(B1; θ) + (1 − λ)∥∇L(B1; θ)∥
∥∇̂L(B; θ)∥

∇̂L(B; θ),
(5)

where ∇L(B1; θ) is the parameter gradients estimated by
the gradient backpropagation on the tiny subset B1, λ is

a hyperparameter balancing the first-order and the zeroth-
order methods. The direction of ∇̂L(B; θ) depends on the
random vector z, which might have a large discrepancy with
the true gradients. Consequently, we introduce ∇L(B1; θ)
to refine the direction of the estimated gradients with an im-
portant factor of λ. Compared with the gradients ∇L(B1; θ)
estimated by the first-order methods, ∇̂L(B; θ) has a much
larger expected Frobenius norm when n = 1, which can be
formulated as (Malladi et al., 2023),

E
[
∥∇̂L(B; θ)∥2

]
= dE

[
∥∇L(B; θ)∥2]

≥ dN1

N
E

[
∥∇L(B1; θ)∥2]

.
(6)

The proof is provided in Appendix A.1. When 1 ≤ N1 ≪
N ≪ d, we have,

E
[
∥∇̂L(B; θ)∥2

]
≫ E

[
∥∇L(B1; θ)∥2]

. (7)

∇̂L(B; θ)λ is a weighted sum of the gradients estimated
by the first-order and the zeroth-order methods. Without
norm refinement, its direction and Frobenius norm would
be dominated by ∇̂L(B; θ) unless λ ≈ 1. A naive solution

is simply dividing the ∇̂L(B; θ) by
√

dN1
N . However, as

shown in Eq.(1), the random vector z is sampled from the
standard Gaussian distribution. This suggests that the dis-

crepancy between ∥∇̂L(B; θ)/
√

dN1
N ∥ and ∥∇L(B1; θ)∥ is

not stable and will affect the refinement process. To address
this problem, we normalize the magnitude of ∥∇̂L(B; θ)∥
using ∥∇L(B1; θ)∥ and Eq.(5).

Compared with the standard zeroth-order optimization, the
proposed mix-order optimization provides a more stable and
accurate estimation of the parameter gradients in both direc-
tion and Frobenius norm. Without prompt engineering, this
advantage enables the mix-order optimization to demon-
strate a better convergence behavior than the zero-order
methods. Additionally, the extra computational burdens
introduced by the gradient refinement process are ignorable
because the backpropagation process is only conducted on
the tiny subset B1.

2.3. Hybrid Tuning for Lightweight and Robust Model
Training

While the proposed mix-order optimization method demon-
strates robust performance, its computational efficiency and
robustness can be further improved by two techniques. First,
we integrated our mix-order optimization with low-rank
adaptation, which approximates the incremental update of
the pre-trained weights by two low-rank matrices (Hu et al.,
2022). With inputs X , the output of a linear layer with
parameters θ = {W0, b} can be formulated as,

h = (W0 + BA)X + b, (8)
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where B ∈ Rdin×r and A ∈ Rr×dout , and the rank r ≪
min(din, dout). During model training, pre-trained weight
W0 is frozen while the bias term b and the low-rank matrices
A, B are trainable. Compared with tuning the whole linear
layer, the low-rank adaptation greatly reduces the number
of trainable parameters, which decreases the variance in the
SPSA process according to Eq.(3). Besides, it can signif-
icantly reduce the storage consumption of the fine-tuned
models, as we only need to save the optimized low-rank
matrices.

The second technique is applying different optimization
schemes to different layers distributed at different locations
of the model. Specifically, we define the last M = 2 linear
layers as the deep layers and the remaining layers as the shal-
low layers. It is well known that the deep layers contain the
task-variant knowledge while the shallow layers contain the
domain-invariant knowledge (Sharif Razavian et al., 2014;
Tajbakhsh et al., 2016). More importantly, fine-tuning the
deep layers using first-order optimization is computation-
ally efficient, whereas fine-tuning the shallow layers using
the same method introduces heavy computational burdens.
Consequently, we propose tuning the deep layers using first-
order optimization to provide good adaptability to the model
on downstream tasks. Additionally, we tune the shallow lay-
ers using the proposed mix-order optimization method to
improve computational efficiency during the model training.
In summary, the proposed pipeline can be formulated as,

θm
t+1 =

{
θm

t − η∇L(B; θm
t ), m ≥ K − M

θm
t − η∇̂L(B; θm

t )λ, m < K − M
, (9)

where K is the total number of layers within the model,
∇L(B; θm

t ) is computed using the gradient backpropagation
and ∇̂L(B; θm

t )λ is estimated using Eq.(5). The complete
algorithm of H-Tuning is presented in Appendix A.2.

2.4. Knowledge Distillation for Fast Model Inference

In application scenarios with very limited computation re-
sources, the model inference efficiency should be high
enough to satisfy the hardware requirements. Although
the model fine-tuning process can be carried out on the
cloud servers, the inference process should be performed
on the local devices. When mobile and continuous moni-
toring is required, the inference speed should be high, and
the corresponding memory footprints should be low. Conse-
quently, we first conduct the proposed H-Tuning on a large
pre-trained model on downstream tasks and then transfer
its knowledge to a tiny model using a classic knowledge
distillation method (Hinton et al., 2015). The optimized
parameters of the large fine-tuned model are defined as θT ,
and the parameters of the tiny student model are defined
as θS . During the knowledge distillation process, the large
model is frozen, and the training loss of the student model

is formulated as,

LK(B; θS)

= − 1
NC

N∑
i=1

C∑
c=1

(1 − pT
i,c) log(1 − pS

i,c) + pT
i,c log pS

i,c,

(10)

LS(B; θS) = L(B; θS) + LK(B; θS), (11)

where pS
i,c = P (c = 1|θS ; xs

i ), pT
i,c = P (c = 1|θT ; xi).

B = {xi, yi}N
i=1 is a random batch of ECG signals and the

corresponding ground truth for knowledge distillation. To
allow the student models to handle ECG recordings with var-
ious numbers of leads and meet the requirements for mobile
cardiac healthcare, the input xs

i can be ECG signals with
different numbers of leads. If only 1-lead ECG is accessible
for the student model, we use lead I of xi to generate xs

i . If
only 3-lead ECG is accessible for the student model, we use
leads II, V1, and V5 of xi to generate xs

i . Considering the
number of trainable parameters in the student model is very
small, we use the gradient backpropagation to optimize its
parameters θS .

3. Results
3.1. Datasets and Signal Pre-processing

In this study, the Chapman-Shaoxing database (Zheng et al.,
2020b), the Georgia 12-lead ECG Challenge (G12EC)
database (Alday et al., 2020), the Physikalisch-Technische
Bundesanstalt (PTB-XL) database (Wagner et al., 2020),
and the Ningbo database (Zheng et al., 2020a) are used
for the performance evaluation of our H-Tuning frame-
work. The four datasets were also included in the Physionet
2020/2021 challenge (Alday et al., 2020; Reyna et al., 2022).
To be specific, there are 10,646 12-lead ECG recordings in
the Chapman-Shaoxing database. In addition, the G12EC
database, the PTB-XL database, and the Ningbo database
contain 10344, 21837, and 34,905 12-lead ECG recordings,
respectively. The recordings from the above databases last
around 10 seconds with a sampling rate of 500 Hz and are
annotated with multi-label CVDs ground truths. Note that
multiple CVDs can be recognized from each recording si-
multaneously. Consequently, automatic CVDs detection can
be formulated as a multi-label classification task. To en-
sure sufficient representation across the training, validation,
and test sets, only CVD categories containing more than
200 ECG recordings are included during model training
and evaluation. For signal pre-processing, a band-pass (1-
47Hz) is applied to remove the potential noises from the raw
ECG recordings, such as the power-line interference and the
motion artifacts. Then, z-score normalization is utilized to
normalize the filtered signals.
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Table 1. Performance of H-Tuning and the compared models on four public datasets. The average performance across four seeds is
presented. The dashed lines separate the memory-efficient fine-tuning methods and the fine-tuning methods with first-order optimization.
The unit of memory is Gigabyte (GB).

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset

Methods Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2

Full FT 9.214 0.869 0.588 9.212 0.919 0.618 9.211 0.933 0.591 9.211 0.930 0.623
LoRA 8.754 0.870 0.592 8.754 0.919 0.618 8.754 0.934 0.580 8.754 0.932 0.636
LP 1.416 0.852 0.545 1.416 0.897 0.582 1.416 0.906 0.530 1.416 0.898 0.579
MeZO 1.815 0.532 0.327 1.814 0.515 0.241 1.814 0.504 0.231 1.814 0.499 0.277
MeZO + LoRA 1.437 0.507 0.316 1.444 0.483 0.227 1.444 0.530 0.234 1.444 0.481 0.278
Addax 2.000 0.863 0.573 2.003 0.898 0.578 2.003 0.909 0.509 2.004 0.929 0.596
Addax + LoRA 1.453 0.857 0.568 1.451 0.899 0.582 1.451 0.901 0.495 1.451 0.907 0.588
LoHO 2.002 0.851 0.554 2.000 0.902 0.588 2.001 0.907 0.535 1.998 0.905 0.574
LoHO + LoRA 1.453 0.851 0.557 1.453 0.900 0.581 1.453 0.909 0.535 1.453 0.904 0.580
H-Tuning 1.453 0.870 0.586 1.453 0.923 0.628 1.453 0.931 0.550 1.453 0.929 0.634

Table 2. Ablation study of H-Tuning. The average performance across four seeds is presented. The unit of memory is Gigabyte (GB).

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset

Methods Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2 Memory Macro AUC Macro Fβ=2

Without SPSA gradient estimation 1.451 0.866 0.575 1.451 0.919 0.616 1.451 0.921 0.525 1.451 0.927 0.612

Without gradient refinement 1.453 0.851 0.557 1.453 0.900 0.581 1.453 0.909 0.535 1.453 0.904 0.580

Without gradient normalization 1.453 0.870 0.588 1.453 0.917 0.609 1.453 0.924 0.536 1.453 0.928 0.596

Without low-rank adaptation 2.002 0.856 0.564 2.000 0.907 0.588 2.000 0.924 0.527 2.001 0.922 0.603

H-Tuning 1.453 0.870 0.586 1.453 0.923 0.628 1.453 0.931 0.550 1.453 0.929 0.634

3.2. Experiment Protocols and Evaluation Metrics

In our experiments, a pre-trained model provided by Zhou
et al. (2024) acts as the backbone for all the compared fine-
tuning methods. Specifically, the backbone has 50.494 mil-
lion parameters and is pre-trained on the Clinical Outcomes
in Digital Electrocardiology (CODE) dataset (Ribeiro et al.,
2019; 2020). Subsequently, the backbone is fine-tuned and
evaluated on the four public datasets with a limited number
of labeled samples. For each dataset, a training set and a
held-out test set are randomly sampled in a ratio of 1: 9.
Then, a validation set is collected from the training set and
accounts for 20% of it. In our implementation, the vali-
dation set is used to select the best checkpoint during the
fine-tuning process. During the model evaluation process,
we utilize two metrics to quantify the performance of dif-
ferent methods in multi-label CVDs detection: macro Fβ=2
and macro AUC. Following the settings in Strodthoff et al.
(2020), we set the β value to be 2. Additionally, we record
the peak GPU memory footprints of different methods dur-
ing fine-tuning. In our experiments, we compare H-Tuning
with several baseline models: Full Fine-Tuning (Full FT),
Low-Rank Adaptation (LoRA) (Hu et al., 2022), Linear
Probing (LP), Memory-Efficient Zeroth-Order Optimization

(MeZO) (Malladi et al., 2023), Low-order Hybrid Optimizer
(LoHO) (Chen et al., 2025), and Addition of Gradient Es-
timates through Memory-Efficient Execution (Addax) (Li
et al., 2024). Full FT, LoRA, and LP are three popular adap-
tation approaches that use first-order optimization to update
the trainable parameters. MeZO is the baseline model in
zeroth-order optimization. Addax and LoHO combine the
first-order and zeroth-order optimization methods, serving
as state-of-the-art models in memory-efficient fine-tuning.
At the same time, we integrate them with LoRA to formulate
new comparison methods (MeZO + LoRA, Addax + LoRA,
LoHO + LoRA), which have less trainable parameters than
them. Note that the low-rank matrices are implemented
in every layer of the pre-trained backbone. Details of the
compared methods are provided in Appendix A.3.

3.3. Comparison of H-Tuning with Existing Methods

As presented in Table 1, we report the CVDs detection
performance and GPU memory footprints of the proposed
H-Tuning and the compared methods. It can be observed
that H-Tuning is the only memory-efficient method that
achieves comparable performance with Full FT and LoRA.
Specifically, H-Tuning achieves an average macro Fβ=2
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of 0.600 across four datasets and only has performance
losses of 0.5% and 0.7% compared with Full FT and LoRA,
respectively. More importantly, H-Tuning achieves a re-
markable reduction in GPU memory footprints by 6.02 to
6.34 times compared with LoRA and Full FT, indicating
its flexibility and compatibility in clinical devices with lim-
ited GPU memory. Specifically, LoRA and Full FT use
first-order optimization methods to calculate the parameter
gradients, which require large GPU memory to save the
activation outputs for backpropagation on the mini-batch
samples. In contrast, H-Tuning estimates the gradients using
the proposed mix-order optimization, significantly reduc-
ing the need to store the activation outputs and the overall
GPU memory footprints. Compared with other memory-
efficient methods, H-Tuning demonstrates the best CVDs
detection performance without significantly increasing the
GPU memory footprints. Compared with the method with
the lowest GPU memory footprints (LP), the extra GPU
memory consumption introduced by H-Tuning is ignorable
in model training (0.037 GB). However, the improvements
in CVDs detection performance are remarkable. For exam-
ple, H-Tuning achieves a marco Fβ=2 score of 0.634 on the
Chapman dataset, outperforming LP by 5.5%. In Appendix
A.4, we provide detailed comparisons of different methods
using more evaluation metrics.

3.4. Ablation Studies

In this section, ablation studies are performed to demon-
strate the contribution of the modules implemented in the
proposed H-Tuning. As shown in Table 2, we successively
remove the components from the H-Tuning and report the
corresponding CVDs detection performance across four
datasets. (1) Utilizing SPSA methods to estimate the pa-
rameter gradients improves model performance. When the
SPSA gradient estimation module is removed from the H-
Tuing (λ = 1), backpropagation cannot calculate the gra-
dient information with enough batch sizes due to limited
GPU memory spaces. Therefore, the CVDs detection per-
formance decreases in all datasets. (2) A remarkable degen-
eration in model performance is observed when the gradient
refinement module is removed (λ = 0). It indicates that
refining the initial gradients estimated by the SPSA method
benefits the optimization process. (3) Applying gradient
normalization (Eq.(5)) during the refinement process has
a positive effect on the model performance. Specifically,
an obvious performance enhancement is attained when the
module is implemented. Ablation studies of H-Tuning on
more evaluation metrics are provided in Appendix A.4

3.5. Sensitivity Analyses

(1) The effect of the control parameter for mix-order
optimization. In the proposed mix-order optimization mod-
ule, we control the importance of the zeroth-order SPSA

method and the first-order gradient backpropagation by a hy-
perparameter λ (Eq.(5)). Here, we adjust its value from 0.85
to 0.99 and present the corresponding model performance
across four datasets. As shown in Fig.2a, the experiment
results reveal that the model performance is not sensitive
to the varying λ, suggesting the stability of the proposed
module.

(2) The effect of the backpropagation batch size. In the
gradient refinement process, we conduct gradient backprop-
agation on a tiny subset B1 = {xi, yi}N1

i=1 to refine the esti-
mated gradients in Eq.(5). As shown in Fig.2b, we adjust N1
from 2 to 8 and report the corresponding model performance
across four datasets. It can be observed that the model per-
formance generally improves as N1 increases on the Ningbo
and the G12EC datasets. However, increasing N1 has a lim-
ited impact on the PTB-XL and the Chapman datasets. This
phenomenon indicates that the difficulty of recovering the
true gradient information varies across datasets.

(3) The effect of the rank parameter for low-rank adap-
tation. The proposed H-Tuning framework uses low-rank
adaptation (Hu et al., 2022) to reduce the number of train-
able parameters during the mix-order optimization process.
The rank of all the low-rank matrices is controlled by the pa-
rameter r, and the number of trainable parameters decreases
as r decreases. As presented in Fig.2c, we adjust r from
4 to 16 and provide the corresponding model performance
across four datasets. The experiment results demonstrate
that the model performance improves as r increases. This
phenomenon can be explained by the various representa-
tion capacities of the fine-tuned models with different r.
Specifically, increasing the number of trainable parameters
enables the low-rank matrices to store more task-specific
information in CVDs detection, thus improving the model
performance. On the other hand, it is important to note that
it will also increase the storage costs of the matrices. Con-
sequently, the value rank parameter r should be carefully
selected according to the maximum storage spaces and the
expected CVDs detection performance.

3.6. Inference Costs Reduction through Knowledge
Distillation

Apart from the training process, the computational costs
of the fine-tuned models during the inference process are
important for their implementations in clinical practices.
Therefore, through a knowledge distillation technique (Hin-
ton et al., 2015), we compress the fine-tuned large-scale
model into a tiny student model, which is able to be de-
ployed at low-level devices for inference. Considering that
most mobile ECG devices only have 1-3 leads, we also
investigate the performance of the student model under var-
ious lead configurations. As shown in Table 3, we report
the CVDs detection performance of the student models
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Figure 2. The sensitivity analysis on the H-Tuning.

Table 3. Overall CVDs detection performance of the student models with various numbers of ECG leads. The average performance across
four seeds is presented. ’None’ represents that the student models are optimized using the ground truths without teachers’ assistance.

G12EC Dataset PTB-XL Dataset Ningbo Dataset Chapman Dataset
Teacher Student Macro AUC Macro Fβ=2 Macro AUC Macro Fβ=2 Macro AUC Macro Fβ=2 Macro AUC Macro Fβ=2

None 12-Lead 0.847 0.558 0.903 0.592 0.921 0.530 0.927 0.617
12-Lead 12-Lead 0.868 0.582 0.921 0.628 0.937 0.568 0.933 0.632
None 12-Lead 0.834 0.537 0.886 0.559 0.903 0.500 0.911 0.577
3-Lead 3-Lead 0.860 0.574 0.905 0.596 0.928 0.549 0.919 0.614
None 1-Lead 0.772 0.457 0.830 0.462 0.844 0.420 0.847 0.498
12-Lead 1-Lead 0.795 0.495 0.843 0.509 0.866 0.469 0.862 0.538

Teacher’s performance 0.870 0.586 0.923 0.628 0.931 0.550 0.929 0.634

across four datasets. Note that we use leads II, V1, and
V5 to simulate 3-lead ECG signals and use lead I to sim-
ulate 1-lead ECG signals. The performance of the teacher
models fine-tuned by H-Tuning is presented for compari-
son. The results demonstrate that the student models with
12-lead ECG achieve similar and even better diagnostic per-
formance than the teacher models. Additionally, it can be
observed that the participation of teacher models introduces
remarkable improvements in student models’ performance,
highlighting the effectiveness of the knowledge transfer
process. Specifically, the average improvements on macro
Fβ=2 score across four datasets are 2.81%, 3.98%, and
4.36% for 12-lead, 3-lead, and 1-lead ECG signals. We also
present the computational efficiency of the teacher and stu-
dent models with different numbers of ECG leads in Fig.3.
Specifically, the GPU memory footprints, the inference time,
and the number of parameters of different models are uti-
lized to quantify their computational efficiency. It can be
observed that the student models have only 0.26 million
parameters. They achieve an inference time of 1.28 ms and
only consume 18.05 MB of GPU memory during the ECG
screening process. Compared with the large-scale teacher
model, the student models speed up the inference speed by
4.52 times and decrease the GPU memory footprints and
the number of parameters by 19.83 times and 194.23 times,

respectively. Consequently, the results demonstrate the high
inference efficiency of the student models, highlighting their
great potential in cardiac healthcare using low-level mobile
devices. The architecture of the teacher and student models
is provided in Appendix A.3.

3.7. External Validation on A Wearable 12-lead ECG
Dataset

External validation is an important approach to evaluate
the generalization performance of the proposed method
on unseen datasets. Specifically, We combine the G12EC,
PTB-XL, Ningbo, and Chapman datasets to fine-tune the
pre-trained model and generate three teacher models using
three methods (Full FT, LoRA (Hu et al., 2022) and the
proposed H-Tuning). Following the dataset splitting method
defined in Section.3.1, only 10% of the labeled data within
the training set are used for fine-tuning. Subsequently, the
knowledge distillation technique defined in Eq.(10) is uti-
lized to create three corresponding student models. Then,
an external validation set consisting of 7000 wearable 12-
lead ECG signals is used to evaluate the CVDs detection
performance of our classifiers in mobile cardiac healthcare.
The external dataset is provided by (Lai et al., 2023), which
contains 60 types of CVDs. Here, only the CVDs that
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Figure 3. Inference efficiency of the teacher model and the student models with different numbers of ECG leads. The batch size for the
four models is set to 4.

Table 4. External validation on the wearable 12-lead ECG dataset. The average performance across four seeds is presented.

Methods Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

Teacher Models

Full FT 0.137 5.595 0.870 0.600 0.314 0.570
LoRA 0.134 5.440 0.879 0.598 0.319 0.579
H-Tuning 0.141 5.484 0.866 0.575 0.312 0.567

Student Models

Full FT 0.135 5.462 0.867 0.566 0.287 0.534
LoRA 0.129 5.384 0.874 0.582 0.302 0.543
H-Tuning 0.127 5.297 0.880 0.598 0.311 0.551

co-exist in the external dataset and the training set are se-
lected for model evaluation, including NSR, QAb, TAb, SB,
SA, PAC, AF, AFL, PVC, IAVB, BBB, CRBBB, IRBBB,
CLBBB, and PR. The CVD detection performance of the
six classifiers on the external dataset is shown in Table 4.
The results demonstrate that the teacher model generated
by H-Tuning achieves performance similar to Full FT and
LoRA. As shown in Table 1, the GPU memory consump-
tions of H-Tuning are 6.34 times smaller than Full FT. The
above two observations reveal that H-Tuning can provide
a low-cost and effective solution to fine-tuning pre-trained
models. Additionally, our student model performs better
than the compared methods. This phenomenon could be
explained by the fact that strong teachers might not have a
better teaching ability than weaker teachers (Huang et al.,
2022).

4. Conclusion
In this paper, we propose the H-Tuning framework for
fine-tuning pre-trained models in low GPU memory con-
sumption. Experiment results on four downstream datasets

demonstrate that the proposed H-Tuning outperforms other
memory-efficient methods in ECG-based CVDs detection
with remarkable superiority. Additionally, H-Tuning sig-
nificantly reduces GPU memory usage and achieves com-
parable performance with first-order fine-tuning methods.
Subsequently, the fine-tuned models are compressed into
small-scale student models through a knowledge distillation
technique. Compared with large-scale models, small-scale
student models have significantly lower inference costs and
are more suitable for mobile cardiac healthcare. In con-
clusion, this paper designs a joint workflow to reduce the
fine-tuning and inference costs of large-scale pre-trained
models in ECG-based CVDs detection. We hope the pro-
posed workflow could pave the way toward low-cost and
efficient CVDs detention with pre-trained models. In the
future, we plan to explore the applications of H-Tuning on
other physiological signals, such as electroencephalograms.
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Impact Statement
Our H-Tuning provides a pathway toward low-cost and effi-
cient ECG-based cardiovascular disease detection by design-
ing a joint workflow to reduce the fine-tuning and inference
costs of large-scale pre-trained models. It can accelerate and
popularize the clinical applications of pre-trained ECG anal-
ysis models in resource-limited communities. Additionally,
it has the potential to be generalized to many other fields in
machine learning domains.
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A. Appendix.
A.1. Proof of Eq.(6)

Consider a model with trainable parameter θ and a batch size of N , we can calculate its gradients using gradient backpropa-
gation and a loss function L as,

∇L(B; θ) = 1
N

N∑
i=1

∇L(xi, yi; θ), (12)

where xi, yi are ECG sample and its label within the mini-batch B. The computational costs of gradient backpropagation
are expensive as the model scales up. To address this, we can use the zeroth-order method to estimate the gradient as

∇̂L(B; θ) = 1
N

N∑
i=1

n∑
j=1

L(xi, yi; θ + µzj) − L(xi, yi; θ − µzj)
2µ

zj , (13)

where z ∈ Rd is a random vector sampled from the standard Gaussian distribution N(0, Id), µ is the perturbation scale and
n is the number of function queries. As shown in Malladi et al. (2023),

E
[
∥∇̂L(B; θ)∥2

]
= d + n − 1

n
E

[
∥∇L(B; θ)∥2]

(14)

where d is the number of trainable parameters in the model. In our study, we set n = 1 to ensure low latency in calculating
the zeroth-order gradients, which yields that,

E
[
∥∇̂L(B; θ)∥2

]
= dE

[
∥∇L(B; θ)∥2]

= d(E
[
∥∇L(B; θ) − E [∇L(B; θ)] ∥2]

+ ∥E [∇L(B; θ)] ∥2)

= d

N
(E

[
∥∇L(x1, y1; θ)∥2]

− ∥∇L(θ)∥2) + d∥∇L(θ)∥2

= N1

N1

d

N
(E

[
∥∇L(x1, y1; θ)∥2]

− ∥∇L(θ)∥2) + d∥∇L(θ)∥2

= dN1

N

1
N1

(E
[
∥∇L(x1, y1; θ)∥2]

− ∥∇L(θ)∥2) + d∥∇L(θ)∥2

= dN1
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(15)

where L(θ) is the true gradient of θ and B1 = {xi, yi}N1
i=1 is the tiny mini-batch for the proposed mix-order optimization

(N1 ≪ N ).

A.2. Algorithm of H-Tuning

The algorithm of the proposed H-Tuning is presented in Algorithm 1.

A.3. Implementation Details

This section introduces the details of the H-Tuning algorithm and the knowledge distillation process. We use the pre-trained
model provided by Zhou et al. (2024) for ECG-based CVDs detection on the downstream dataset. It has 50.494 million
parameters and is pre-trained on the Clinical Outcomes in Digital Electrocardiology (CODE) dataset (Ribeiro et al., 2019;
2020). The backbone consists of three convolution blocks, twelve self-attention blocks, and one classification block. The
number of convolution channels within the convolution blocks and the hidden layer dimension control the number of
trainable parameters. We fine-tuned the pre-trained model on downstream datasets using the proposed H-Tuning method.
The fine-tuned model acts as the teacher model during the knowledge distillation process. In this study, the student model
shares a similar architecture with the teacher model but only has 0.26 million trainable parameters. Specifically, the
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Algorithm 1 The H-Tuning algorithm

Require:
- Labeled dataset D = {X, Y }; Learning rate η; Batch sizes N ; Batch sizes of the tiny subset N1.
- The trainable parameters of the large pre-trained model θ; λ for the gradient refinement process.

Ensure: Fine-tuned large model with the updated parameters θT ;
1: θ1 = θ
2: for 1 to T do
3: sample a random batch B = {xi, yi}N

i=1 from D;
4: apply data augmentation to B;
5: sample a tiny subset B1 = {xi, yi}N1

i=1 from B;
6: Simultaneous Perturbation Stochastic Approximation (SPSA)
7: Based on Eq.(13), generate an initial estimation of the parameter gradients ∇̂L(B; θt).
8: Gradient Refinement
9: Conduct the gradient backpropagation on the tiny subset B1 to calculate ∇L(B1; θt).

10: Calculate ∇̂L(B; θ)λ using ∇̂L(B; θt), ∇L(B1; θt) and the Eq.(5).
11: Parameter Optimization
12: Conduct the gradient descent process to update the parameters θt using Eq.(9).
13: apply an early-stop strategy to avoid overfitting;
14: end for

convolution channels and the hidden layer dimension of the teacher model are 512, while the number is 64 for the student
model. Specifically, Adam optimizer is utilized to conduct the gradient descent process defined in Eq.(9), with a learning
rate of η = 0.002. The batch size N and N1 defined in the proposed mix-order optimization are set to 128 and 2, respectively.
Additionally, the controlling weight λ is searched within a set of {0.85, 0.90, 0.95, 0.99}. The perturbation scale µ for
the SPSA process is searched within a set of {0.001, 0.0001}, and the number of queries n is set to 1. The rank r of the
low-rank adaptation process is set to 16, and the number of deep layers M is set to 2.

For the comparison methods, the same pre-trained model is used for fine-tuning. Adam optimizer is adopted to update
the model with a learning rate η = 0.002. To implement LP, we freeze all the layers within the model except the last two
linear layers. The perturbation scales µ for MeZO, LoHO, and Addax are searched within a set of {0.001, 0.0001}, and the
number of queries n is set to 1. The rank r of the compared methods with low-rank adaptation process (LoRA, MeZO +
LoRA, Addax + LoRA, LoHO + LoRA) is set to 16. The training batch size of the proposed H-Tuning and the compared
methods is set to 128. All the experiments are conducted in a single NVIDIA A6000 graphics processing unit using the
Pytorch library.

A.4. Extended Experimental Results on More Evaluation Metrics.

• (1) Detailed comparisons of H-Tuning and the baseline models on more evaluation metrics (Table 5). Apart
from macro AUC and macro Fβ=2, four metrics on multi-label classification are used to evaluate the performance of
different fine-tuning methods: ranking loss, coverage, mean average precision (MAP), macro Gβ=2. For the ranking
loss and coverage, a lower value indicates a better detection performance. However, for the MAP, macro AUC, macro
Gβ=2, and macro Fβ=2, the greater the better. We also report the number of trainable parameters (Params) of different
methods to measure their storage consumption during fine-tuning. The higher the number of trainable parameters, the
higher the parameter storage consumption. The average time for each iteration during fine-tuning is also included for
comparison (Time/iter). Experimental results on six evaluation metrics demonstrate the superiority of H-Tuning against
other memory-efficient fine-tuning methods in CVDs detection. For instance, H-Tuning demonstrates an average MAP
of 0.535 across four datasets, outperforming the best competitor (Addax) by 2.8%. Additionally, it can be observed
that H-Tuning achieves comparable performance to fine-tuning methods with the first-order optimization (Full FT and
LoRA) on three datasets but fails to achieve this in the Ningbo dataset. This phenomenon indicates that its performance
might not be stable in certain datasets, which deserves further investigation in future works. As for the computational
costs, H-Tuning consumes significantly less GPU memory than Full FT and LoRA. Similar to LoRA(Hu et al., 2022),
it can fine-tune pre-trained models in a parameter-efficient manner, greatly decreasing the parameter storage costs by
23.7 times compared with the Full FT. One limitation is that H-Tuning cannot accelerate the fine-tuning process.
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• (2) Detailed ablation studies of H-Tuning on more evaluation metrics for multi-label CVDs detection (Table 6). It
can be observed that removing gradient estimation, refinement, or normalization module from the H-Tuning results in
performance degradations on all datasets.

• (3) Detailed CVDs detection performance under different ECG lead configurations on more evaluation metrics
for multi-label CVDs detection (Table 7). Under all ECG lead configurations, the knowledge distillation process
increases the CVDs detection performance of the student models on all evaluation metrics. In Fig.4, we visualize the
AUC of different student models on each CVDs from the four datasets. The CVDs analyzed in our study and their
abbreviations can be found in Table 8. For example, the models with 1-lead ECG perform well in detecting atrial
fibrillation (AF) but poorly in recognizing left axis deviation (LAD). This is because 1-lead ECG (lead I) has the ability
to capture the patterns of determining AF, such as irregular RR intervals and the absence of P waves(Fuster et al., 2006).
However, as the critical pattern of LAD is abnormal QRS complexes in lead II and lead aVF(Kashou et al., 2023), it is
not visible in 1-lead ECG (lead I).

A.5. Performance Comparisons of Different Models under Limited Supervision

In the domain of medical intelligence, collecting labeled labels is expensive and time-consuming, limiting the sample size of
the datasets for model fine-tuning. Therefore, evaluating the performance of different fine-tuning methods under minimal
supervision is important, as it provides a stress test for their robustness in clinical practices. For the four datasets, we decrease
the ratio between the training set and the held-out test set from 1:9 to 0.5:9.5, and present the average CVDs detection
performance of different fine-tuning methods across the four datasets in Fig.5. For simplicity, we visualize the methods
with the top eight performances. It can be observed that the superiority of H-Tuning compared with other memory-efficient
methods persists under limited supervision. For instance, H-Tuning achieves an average MAP of 0.503 across the four
datasets, outperforming Addax by 3.03%. More importantly, it outperforms the Full FT in ranking loss, coverage, and macro
AUC. Besides, its performance losses compared with Full FT are within 1.5% for the remaining evaluation metrics. As
shown in Fig.6, we utilize paired t-test to evaluate whether the performance differences between H-Tuning and all compared
methods are significant. The results demonstrate that H-Tuning significantly outperforms other memory-efficient methods on
six evaluation metrics, such as Addax. Additionally the performance differences between H-Tuning and memory-inefficient
methods (Full FT, LoRA) are not significant on five metrics. These phenomena indicate the robustness of the proposed
H-Tuning framework under different supervision levels, highlighting its effectiveness in clinical practices.
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Table 5. Performance of H-Tuning and the compared models on four public datasets. The average performance and the standard deviation
across four seeds are presented. The dashed lines separate the memory-efficient fine-tuning methods and the traditional fine-tuning
methods.

Methods Params Memory Time/iter Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

Full FT 50.493 M 9.214 GB 0.401 s 0.086±0.004 3.657±0.113 0.869±0.006 0.517±0.012 0.336±0.009 0.588±0.014
LoRA 2.135 M 8.754 GB 0.428 s 0.084±0.005 3.621±0.134 0.870±0.009 0.522±0.008 0.336±0.007 0.592±0.011
LP 0.272 M 1.416 GB 0.152 s 0.095±0.004 3.837±0.086 0.852±0.003 0.483±0.002 0.306±0.004 0.545±0.005
MeZO 50.493 M 1.815 GB 0.339 s 0.513±0.050 11.325±0.811 0.532±0.047 0.133±0.026 0.111±0.010 0.327±0.012
MeZO + LoRA 2.135 M 1.437 GB 0.386 s 0.479±0.010 10.761±0.187 0.507±0.025 0.115±0.009 0.103±0.004 0.316±0.009
Addax 50.493 M 2.000 GB 0.349 s 0.086±0.006 3.664±0.130 0.863±0.006 0.497±0.009 0.319±0.008 0.573±0.008
Addax + LoRA 2.135 M 1.453 GB 0.403 s 0.093±0.008 3.786±0.166 0.857±0.005 0.478±0.008 0.312±0.009 0.568±0.006
LoHO 50.493 M 2.002 GB 0.303 s 0.098±0.004 3.877±0.098 0.851±0.003 0.484±0.003 0.309±0.004 0.554±0.009
LoHO + LoRA 2.135 M 1.453 GB 0.341 s 0.095±0.002 3.825±0.029 0.851±0.002 0.480±0.002 0.308±0.003 0.557±0.009
H-Tuning 2.135 M 1.453 GB 0.409 s 0.085±0.004 3.612±0.069 0.870±0.002 0.506±0.006 0.330±0.005 0.586±0.010

PTB-XL Dataset

Full FT 50.494 M 9.212 GB 0.413 s 0.026±0.002 2.550±0.069 0.919±0.002 0.558±0.001 0.387±0.006 0.618±0.011
LoRA 2.135 M 8.754 GB 0.442 s 0.026±0.001 2.537±0.057 0.919±0.006 0.558±0.002 0.385±0.006 0.618±0.006
LP 0.272 M 1.416 GB 0.155 s 0.032±0.001 2.721±0.025 0.897±0.002 0.509±0.001 0.354±0.003 0.582±0.006
MeZO 50.494 M 1.814 GB 0.347 s 0.368±0.135 9.890±2.169 0.515±0.021 0.116±0.023 0.104±0.014 0.241±0.024
MeZO + LoRA 2.135 M 1.444 GB 0.394 s 0.398±0.088 10.155±1.362 0.483±0.024 0.104±0.013 0.096±0.006 0.227±0.008
Addax 50.494 M 2.003 GB 0.358 s 0.031±0.005 2.677±0.163 0.898±0.009 0.510±0.014 0.354±0.010 0.578±0.015
Addax + LoRA 2.135 M 1.451 GB 0.408 s 0.029±0.001 2.628±0.044 0.899±0.004 0.505±0.007 0.361±0.006 0.582±0.007
LoHO 50.494 M 2.000 GB 0.311 s 0.031±0.001 2.679±0.027 0.902±0.002 0.517±0.002 0.360±0.003 0.588±0.004
LoHO + LoRA 2.135 M 1.453 GB 0.355 s 0.032±0.001 2.700±0.038 0.900±0.001 0.509±0.004 0.352±0.007 0.581±0.009
H-Tuning 2.135 M 1.453 GB 0.412 s 0.025±0.001 2.470±0.034 0.923±0.003 0.552±0.004 0.393±0.003 0.628±0.002

Ningbo Dataset

Full FT 50.496 M 9.211 GB 0.428 s 0.027±0.001 2.639±0.034 0.933±0.002 0.541±0.005 0.366±0.005 0.591±0.004
LoRA 2.137 M 8.754 GB 0.457 s 0.027±0.001 2.661±0.035 0.934±0.002 0.536±0.006 0.355±0.006 0.580±0.008
LP 0.274 M 1.416 GB 0.172 s 0.034±0.001 2.893±0.040 0.906±0.001 0.462±0.002 0.314±0.006 0.530±0.008
MeZO 50.496 M 1.814 GB 0.359 s 0.509±0.056 13.938±1.235 0.504±0.031 0.091±0.018 0.086±0.012 0.231±0.017
MeZO + LoRA 2.137 M 1.444 GB 0.417 s 0.489±0.094 13.560±2.056 0.530±0.018 0.085±0.006 0.082±0.006 0.234±0.014
Addax 50.496 M 2.003 GB 0.370 s 0.041±0.010 3.155±0.377 0.909±0.018 0.443±0.045 0.303±0.019 0.509±0.029
Addax + LoRA 2.137 M 1.451 GB 0.425 s 0.040±0.005 3.128±0.188 0.901±0.016 0.426±0.029 0.293±0.014 0.495±0.022
LoHO 50.496 M 2.001 GB 0.328 s 0.034±0.001 2.916±0.030 0.907±0.001 0.466±0.003 0.316±0.006 0.535±0.012
LoHO + LoRA 2.137 M 1.453 GB 0.369 s 0.034±0.001 2.875±0.016 0.909±0.001 0.463±0.002 0.321±0.003 0.535±0.004
H-Tuning 2.137 M 1.453 GB 0.429 s 0.028±0.001 2.689±0.039 0.931±0.003 0.497±0.010 0.333±0.006 0.550±0.006

Chapman Dataset

Full FT 50.492 M 9.211 GB 0.363 s 0.032±0.002 2.245±0.057 0.930±0.005 0.587±0.006 0.417±0.008 0.623±0.008
LoRA 2.134 M 8.754 GB 0.394 s 0.029±0.001 2.189±0.036 0.932±0.003 0.596±0.003 0.428±0.002 0.636±0.005
LP 0.271 M 1.416 GB 0.140 s 0.038±0.002 2.352±0.023 0.898±0.008 0.530±0.003 0.381±0.007 0.579±0.018
MeZO 50.492 M 1.814 GB 0.314 s 0.388±0.097 7.951±1.338 0.499±0.064 0.114±0.019 0.107±0.011 0.277±0.014
MeZO + LoRA 2.134 M 1.444 GB 0.361 s 0.518±0.062 9.926±1.011 0.481±0.009 0.129±0.020 0.115±0.009 0.278±0.004
Addax 50.492 M 2.004 GB 0.324 s 0.031±0.004 2.216±0.112 0.929±0.005 0.579±0.008 0.398±0.006 0.596±0.007
Addax + LoRA 2.134 M 1.451 GB 0.368 s 0.034±0.007 2.302±0.202 0.907±0.025 0.529±0.042 0.391±0.029 0.588±0.038
LoHO 50.492 M 1.998 GB 0.280 s 0.036±0.001 2.309±0.029 0.905±0.002 0.535±0.005 0.374±0.006 0.574±0.013
LoHO + LoRA 2.134 M 1.453 GB 0.313 s 0.035±0.001 2.303±0.021 0.904±0.001 0.541±0.003 0.382±0.002 0.580±0.005
H-Tuning 2.134 M 1.453 GB 0.381 s 0.030±0.002 2.195±0.034 0.929±0.002 0.586±0.011 0.420±0.005 0.634±0.009
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Table 6. Detailed ablation study of H-Tuning.

Methods Memory Time/iter Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

Without SPSA gradient estimation 1.451 GB 0.388 s 0.090±0.002 3.760±0.067 0.866±0.002 0.500±0.004 0.324±0.006 0.575±0.009
Without gradient refinement 1.453 GB 0.341 s 0.095±0.002 3.825±0.029 0.851±0.002 0.480±0.002 0.308±0.003 0.557±0.009
Without gradient normalization 1.453 GB 0.395 s 0.091±0.005 3.715±0.061 0.870±0.002 0.504±0.005 0.328±0.005 0.588±0.004
Without low-rank adaptation 2.002 GB 0.357 s 0.096±0.003 3.900±0.038 0.856±0.005 0.492±0.006 0.318±0.006 0.564±0.012
H-Tuning 1.453 GB 0.409 s 0.085±0.004 3.612±0.069 0.870±0.002 0.506±0.006 0.330±0.005 0.586±0.010

PTB-XL Dataset

Without SPSA gradient estimation 1.451 GB 0.394 s 0.027±0.002 2.531±0.078 0.919±0.005 0.542±0.009 0.379±0.009 0.616±0.010
Without gradient refinement 1.453 GB 0.355 s 0.032±0.001 2.700±0.038 0.900±0.001 0.509±0.004 0.352±0.007 0.581±0.009
Without gradient normalization 1.453 GB 0.403 s 0.027±0.002 2.553±0.064 0.917±0.003 0.537±0.006 0.376±0.005 0.609±0.007
Without low-rank adaptation 2.000 GB 0.368 s 0.032±0.004 2.727±0.140 0.907±0.006 0.526±0.013 0.364±0.010 0.588±0.015
H-Tuning 1.453 GB 0.412 s 0.025±0.001 2.470±0.034 0.923±0.003 0.552±0.004 0.393±0.003 0.628±0.002

Ningbo Dataset

Without SPSA gradient estimation 1.451 GB 0.406 s 0.034±0.003 2.910±0.115 0.921±0.013 0.469±0.023 0.318±0.006 0.525±0.010
Without gradient refinement 1.453 GB 0.369 s 0.034±0.001 2.875±0.016 0.909±0.001 0.463±0.002 0.321±0.003 0.535±0.004
Without gradient normalization 1.453 GB 0.420 s 0.033±0.002 2.859±0.062 0.924±0.004 0.478±0.013 0.322±0.013 0.536±0.014
Without low-rank adaptation 2.000 GB 0.381 s 0.035±0.003 2.971±0.114 0.924±0.004 0.474±0.014 0.316±0.010 0.527±0.017
H-Tuning 1.453 GB 0.429 s 0.028±0.001 2.689±0.039 0.931±0.003 0.497±0.010 0.333±0.006 0.550±0.006

Chapman Dataset

Without SPSA gradient estimation 1.451 GB 0.357 s 0.034±0.007 2.275±0.145 0.927±0.004 0.578±0.013 0.402±0.010 0.612±0.015
Without gradient refinement 1.453 GB 0.313 s 0.035±0.001 2.303±0.021 0.904±0.001 0.541±0.003 0.382±0.002 0.580±0.005
Without gradient normalization 1.453 GB 0.369 s 0.034±0.002 2.300±0.044 0.928±0.005 0.572±0.010 0.398±0.013 0.596±0.021
Without low-rank adaptation 2.001 GB 0.327 s 0.035±0.004 2.289±0.082 0.922±0.003 0.565±0.016 0.401±0.011 0.603±0.014
H-Tuning 1.453 GB 0.381 s 0.030±0.002 2.195±0.034 0.929±0.002 0.586±0.011 0.420±0.005 0.634±0.009
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Table 7. Detailed CVDs detection performance of the student models with various numbers of ECG leads.

Teacher Student Ranking Loss ↓ Coverage ↓ Macro AUC ↑ MAP ↑ Macro Gβ=2 ↑ Macro Fβ=2 ↑

G12EC Dataset

None 12-Lead 0.091±0.002 3.779±0.077 0.847±0.004 0.481±0.010 0.311±0.008 0.558±0.003
12-Lead 12-Lead 0.085±0.003 3.627±0.079 0.868±0.003 0.510±0.007 0.335±0.002 0.582±0.005

None 3-Lead 0.102±0.003 4.050±0.087 0.834±0.003 0.465±0.007 0.295±0.005 0.537±0.005
12-Lead 3-Lead 0.088±0.002 3.712±0.046 0.860±0.002 0.497±0.004 0.325±0.003 0.574±0.008

None 1-Lead 0.159±0.015 5.120±0.312 0.772±0.011 0.351±0.014 0.225±0.013 0.457±0.018
12-Lead 1-Lead 0.133±0.009 4.685±0.194 0.795±0.011 0.399±0.012 0.260±0.009 0.495±0.012

Teacher’s performance 0.085±0.004 3.612±0.069 0.870±0.002 0.506±0.006 0.330±0.005 0.586±0.010

PTB-XL Dataset

None 12-Lead 0.029±0.001 2.620±0.032 0.903±0.004 0.527±0.004 0.360±0.008 0.592±0.014
12-Lead 12-Lead 0.024±0.000 2.448±0.016 0.921±0.003 0.559±0.005 0.394±0.003 0.628±0.009

None 3-Lead 0.032±0.001 2.721±0.037 0.886±0.007 0.496±0.006 0.336±0.004 0.559±0.015
12-Lead 3-Lead 0.027±0.001 2.570±0.020 0.905±0.004 0.528±0.004 0.372±0.003 0.596±0.004

None 1-Lead 0.055±0.003 3.328±0.079 0.830±0.004 0.381±0.005 0.240±0.007 0.462±0.009
12-Lead 1-Lead 0.048±0.002 3.175±0.066 0.843±0.007 0.431±0.003 0.285±0.002 0.509±0.004

Teacher’s performance 0.025±0.001 2.470±0.034 0.923±0.003 0.552±0.004 0.393±0.003 0.628±0.002

Ningbo Dataset

None 12-Lead 0.030±0.001 2.781±0.057 0.921±0.002 0.485±0.003 0.323±0.002 0.530±0.004
12-Lead 12-Lead 0.026±0.001 2.623±0.047 0.937±0.002 0.520±0.007 0.350±0.007 0.568±0.010

None 3-Lead 0.036±0.001 2.987±0.037 0.903±0.001 0.450±0.008 0.300±0.008 0.500±0.009
12-Lead 3-Lead 0.029±0.000 2.756±0.022 0.928±0.001 0.495±0.005 0.337±0.005 0.549±0.006

None 1-Lead 0.057±0.003 3.630±0.124 0.844±0.008 0.340±0.004 0.234±0.003 0.420±0.007
12-Lead 1-Lead 0.050±0.001 3.541±0.037 0.866±0.003 0.395±0.005 0.268±0.004 0.469±0.007

Teacher’s performance 0.028±0.001 2.689±0.039 0.931±0.003 0.497±0.010 0.333±0.006 0.550±0.006

Chapman Dataset

None 12-Lead 0.029±0.001 2.176±0.021 0.927±0.002 0.574±0.004 0.410±0.011 0.617±0.008
12-Lead 12-Lead 0.030±0.001 2.197±0.031 0.933±0.003 0.587±0.003 0.423±0.009 0.632±0.009

None 3-Lead 0.037±0.001 2.356±0.041 0.911±0.007 0.532±0.016 0.381±0.010 0.577±0.020
12-Lead 3-Lead 0.033±0.001 2.283±0.022 0.919±0.003 0.559±0.006 0.408±0.004 0.614±0.011

None 1-Lead 0.053±0.004 2.677±0.124 0.847±0.007 0.441±0.010 0.318±0.006 0.498±0.011
12-Lead 1-Lead 0.054±0.002 2.779±0.045 0.862±0.004 0.471±0.008 0.346±0.004 0.538±0.001

Teacher’s performance 0.030±0.002 2.195±0.034 0.929±0.002 0.586±0.011 0.420±0.005 0.634±0.009
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Table 8. Description of the cardiovascular diseases analyzed in our study.
Original annotation Abbreviations Original annotation Abbreviations

G12EC Dataset

atrial fibrillation AF 1st degree av block IAVB
incomplete right bundle branch block IRBBB left axis deviation LAD
left bundle branch block LBBB low qrs voltages LQRSV
nonspecific intraventricular conduction disorder NSIVCB sinus rhythm NSR
premature atrial contraction PAC prolonged qt interval LQT
qwave abnormal QAb right bundle branch block RBBB
sinus arrhythmia SA sinus bradycardia SB
sinus tachycardia STach t wave abnormal TAb
t wave inversion TInv ventricular premature beats VPB

PTB-XL Dataset

atrial fibrillation AF complete right bundle branch block CRBBB
1st degree av block IAVB incomplete right bundle branch block IRBBB
left axis deviation LAD left anterior fascicular block LAnFB
left bundle branch block LBBB nonspecific intraventricular conduction disorder NSIVCB
sinus rhythm NSR premature atrial contraction PAC
pacing rhythm PR prolonged pr interval LPR
qwave abnormal QAb right axis deviation RAD
sinus arrhythmia SA sinus bradycardia SB
sinus tachycardia STach t wave abnormal TAb
t wave inversion TInv

Ningbo Dataset

atrial flutter AFL bundle branch block BBB
complete left bundle branch block CLBBB complete right bundle branch block CRBBB
1st degree av block IAVB incomplete right bundle branch block IRBBB
left axis deviation LAD left anterior fascicular block LAnFB
low qrs voltages LQRSV nonspecific intraventricular conduction disorder NSIVCB
sinus rhythm NSR premature atrial contraction PAC
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Figure 4. AUC of different student models on various CVDs. The green lines denote the student model trained with 12-lead ECG signals,
the orange dashed-dotted lines denote the student model trained with 3-lead ECG signals, and the blue dashed lines denote the student
model trained with 1-lead ECG signals.

20



H-Tuning: Toward Low-Cost and Efficient ECG-based Cardiovascular Disease Detection with Pre-Trained Models

0.050

0.052

0.054

0.056

0.058 0.058

0.056
0.0550.055

0.053

0.0500.050
0.049

Ranking Loss

2.900

2.950

3.000

3.050

3.100

3.150

3.200

3.250

3.194

3.124
3.1033.098

3.067

3.010

2.975
2.956

Coverage

0.850

0.860

0.870

0.880

0.890

0.900

0.910

0.8960.8940.894

0.880
0.8750.8740.873

0.866

Macro AUC

0.440

0.460

0.480

0.500

0.520 0.516

0.5050.503

0.4700.4700.467
0.463

0.443

MAP

0.290

0.300

0.310

0.320

0.330

0.340
0.336

0.3290.329

0.311
0.308

0.3060.306

0.294

Macro G = 2

0.490

0.500

0.510

0.520

0.530

0.540

0.550

0.560
0.552

0.544
0.539

0.5190.5180.516
0.513

0.499

Macro F = 2

Addax + LoRA LP LoHO LoHO + LoRA Addax Full FT LoRA H-Tuning

Figure 5. CVDs detection performance of different models under very limited supervision (training data: testing data = 0.5 : 9.5).
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Figure 6. Paired t-test results for the model performance under different supervision levels. We check if the averaged performance
differences on four datasets between H-Tuning and the compared methods are significant. Each circle indicates a t-test result between
H-Tuning and a compared method after false discovery rate correction. The circle colors denote different significant levels. The black
dashed lines separate the memory-efficient and memory-inefficient fine-tuning methods.
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Figure 7. Visualization of the raw and the preprocessed lead I ECG .
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