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ABSTRACT

Learning from human feedback has enabled the alignment of language models
(LMs) with human preferences. However, directly collecting human preferences
can be expensive, time-consuming, and can have high variance. An appealing
alternative is to distill preferences from LMs as a source of synthetic annotations
as they are more consistent, cheaper, and scale better than human annotation;
however, they are also prone to biases and errors. In this work, we introduce a
routing framework that combines inputs from humans and LMs to achieve better
annotation quality, while reducing the total cost of human annotation. The crux
of our approach is to identify preference instances that will benefit from human
annotations. We formulate this as an optimization problem: given a preference
dataset and an evaluation metric, we train a performance prediction model to
predict a reward model’s performance on an arbitrary combination of human and
LM annotations and employ a routing strategy that selects a combination that
maximizes predicted performance. We train the performance prediction model on
MULTIPREF, a new preference dataset with 10K instances paired with human and
LM labels. We show that the selected hybrid mixture of LM and direct human
preferences using our routing framework achieves better reward model performance
compared to using either one exclusively. We simulate selective human preference
collection on three other datasets and show that our method generalizes well to
all three. We analyze features from the routing model to identify characteristics
of instances that can benefit from human feedback, e.g., prompts with a moderate
safety concern or moderate intent complexity. We release the dataset, annotation
platform, and source code used in this study to foster more efficient and accurate
preference collection in the future.

1 INTRODUCTION

Reinforcement learning from human feedback (Christiano et al., 2017) has been integral to the
alignment of large language models (LMs) with human objectives and values (Ouyang et al., 2022;
Bai et al., 2022a, inter alia). Central to this process are preference datasets, i.e., instances of inputs to
language models paired with candidate model outputs and human judgment annotations indicating
the preferred output. Collecting preference data involves several key design decisions, and one
important consideration is determining the source of preference annotations (Kirk et al., 2023; 2024).
This choice impacts not only the cost and effort required to procure these annotations, but also the
performance of models trained on them.

There are two major approaches to obtaining preference annotations. One approach is to solicit
preferences directly from humans. Although this setup leads to generally high-quality data (Wang
et al., 2024b), the annotation process itself is expensive and time-consuming. Moreover, human
annotators can make mistakes, especially when faced with complex examples or when the content
extends beyond their expertise (Jiang & de Marneffe, 2022; Sandri et al., 2023). As an alternative,
preference annotation can be synthesized from LMs (Bai et al., 2022b; Lee et al., 2023; Cui et al.,
2023). This approach is scalable, as it only requires prompting an off-the-shelf LM for preference
annotations. However, LMs do not always reflect the nuances of human annotators and can be prone
to certain biases or errors in judgment (Singhal et al., 2023; Wang et al., 2024a). Hence, we posit that
obtaining high-quality and cost-efficient preference data involves finding the right combination of
direct human preferences and synthetic preferences from LMs.
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Figure 1: Overview of the routing framework. Our proposed method consists of a performance
prediction model (PPM) and a routing strategy based on that model. We train the PPM to predict
the performance of a dataset based on the statistics of the subset routed to human annotators. Then,
we use the PPM to score many simulations of candidate datasets, and recommend the potentially
best-performing routing configuration.

In this work, we present a routing framework that allocates preference instances to human or
LM annotators, resulting in a set of hybrid annotations (§2). The crux of our approach is to
identify specific instances that will benefit from direct human annotations, while the rest are routed
to the LM. We ground this decision in the performance of reward models trained on the resulting
preference datasets, measured by RewardBench (Lambert et al., 2024). Our framework consists of a
performance prediction model (PPM, §2.2) and a routing strategy (§2.3) as illustrated in Figure 1.
The PPM learns to predict the performance of a preference dataset based on the statistics of the subset
being routed to human annotators. We then use our trained model to predict the performance of
arbitrary simulated hybrid datasets, to recommend the potentially best-performing one.

To put this framework into practice, we first construct MULTIPREF, a preference dataset containing
10k instances paired with both human and LM preference annotations that follow the same carefully
designed annotation guidelines (§3). Then, we train the PPM on this dataset and use the routing
strategy to obtain hybrid annotations from either LMs or humans. We also evaluate the trained PPM
on other existing preference datasets, including Helpsteer2 (Wang et al., 2024b), AlpacaFarm (Dubois
et al., 2023), and Chatbot Arena Conversations (ChatArena, Zheng et al. 2023a)on RewardBench
and other common LM benchmarks through best-of-N reranking. To obtain synthetic annotations
for other human preference datasets, we prompt an LM on the same annotation guidelines used for
human annotation. For instances that our routing framework designated for human annotation, we
use the original human annotations from these datasets.

Our experiments show that hybrid annotations constructed from the router’s predictions result in better
reward models than those trained (a) entirely on direct human preferences, (b) entirely on synthetic
preferences, and (c) a random combination of direct human and synthetic preferences given the
same human annotation budget (§4), supporting our hypothesis that there exist optimal combinations
of annotations that are not exclusively direct human or synthetic. The superior performance of
reward models also generalizes beyond RewardBench and achieves better performance on common
LM benchmarks through best-of-N reranking (§4.3). The resulting hybrid preference datasets
outperform the corresponding original ones by a large margin, with 7–13% (absolute) improvement
on RewardBench and up to 3% (absolute) improvement on downstream evaluations on average,
demonstrating the generalization of our routing framework. We then present an analysis of factors
that render a preference instance to benefit from direct human annotations (§5).

We plan to publicly release all data and code associated with this work after the review period. We
hope that this work contributes to a more cost-effective approach to preference data collection while
providing actionable, data-centric insights on preference learning.
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2 ROUTING FRAMEWORK: FORMULATION AND METHODOLOGY

2.1 PROBLEM FORMULATION

We first formulate the preference routing problem. Let D = {⟨x(i), y
(i)
1 , y

(i)
2 ⟩}ni=1 be a dataset of

n unlabeled preference instances, where each instance can be assigned a label from either of the
two sources: one provided by a human annotator, or one generated by an LM. We introduce a
binary decision variable zi ∈ {0, 1} for each instance, where zi = 0 corresponds to selecting the
human-provided label and zi = 1 corresponds to selecting the LM-generated label. Note that zi
denotes the source of the labels, and not the identity of the labels—when the humans and the LM
agree, the chosen label is the same irrespective of the value of zi.

The goal for routing is to optimize the selection of binary decision variables zi for the dataset in order
to maximize a performance metric. This optimization problem can be expressed as:

max
z∈{0,1}n

PERF(R(D(z))), (1)

where PERF(R(D(z))) is the performance of the RM trained on D(z). Here, z = {z1, z2, . . . , zn} is
the routing configuration, representing the vector of binary label choices for all instances.

Maximizing Equation 1 is difficult as there is no closed-form solution. In addition, finding the
best routing configuration is computationally heavy, as brute force search would entail training
and evaluating a reward model for 2n configurations. So instead, we construct candidate labeled
datasets D̂(z) with different routing configurations z which we use to train reward models, denoted
as R̂(D̂(z)).1 We use these candidates to train a performance prediction model that approximates
PERF(R̂(∗)) (§2.2). After training the model, we use a simulation-based routing strategy that aims
to find the optimal z to maximize the predicted performance (§2.3).

2.2 PERFORMANCE PREDICTION MODEL (PPM)

PPM is a regression model that provides an estimate of the performance of a reward model trained on
a candidate preference dataset D̂. The PPM takes as input a feature vector representing the routing
configuration of D̂ and outputs a scalar value as the predicted performance. Training the PPM requires
a seed preference dataset D with both human and LM labels, and multiple samples of candidate
datasets {D̂i} with different routing configurations and their actual evaluation performance.

Step 1: Defining a feature space for the feature vector. Instead of directly operating on individual
preference instances, we define a feature space for the PPM so that we can make routing decisions
about groups of instances that share features, allowing our routing procedure to generalize to other
datasets where these features might be present. We construct a feature space based on textual and
descriptive information (or tags T ) of a preference instance’s prompt-response triples. The full list of
tags can be found in Appendix A.3.

• Textual tags characterize textual information such as the cosine similarity of the encoded repre-
sentation2 of the responses y1 and y2, the length of the prompt x, or the token length difference
between two responses. We discretize the textual tags to convert them into categorical bins.

• Descriptive tags include metadata about the prompt or instruction such as the subject of expertise
needed to answer the prompt, or the complexity of user intent in the prompt based on the number of
goals or requirements among many others. We obtain these descriptors from a multilabel classifier
(or meta-analyzer) trained on a human-validated dataset of instructions and their corresponding
tags. More information about this meta-analyzer can be found in Appendix A.4.

These tags are obtained at the instance level. We then represent the routing configuration of a
candidate dataset as a vector v = {Ctj , human | tj ∈ T}, where Ctj , human denotes the count of
instances routed to human annotations with the jth tag.

1Onwards, we will ignore the z variable for simplicity and denote the candidate labeled dataset as D̂.
2We use the all-distilroberta-v1 embedding model from sentence-transformers (Reimers

& Gurevych, 2019).
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Figure 2: Feature representation of candidate datasets and their actual reward modeling
performance as the training data for PPM. We use the count of instances that belong to the human
annotation subset S human as the feature value for each tag, and the RewardBench overall accuracy as
the target. This heatmap shows the features derived from MULTIPREF.

Algorithm 1 Generating a candidate dataset D̂
Require: Unrouted dataset D = {d1, d2, . . . , dN},

Mapping between tags t and instances with that
tag, M = {ti 7→ {dj ∈ D | dj has tag ti} | i =
1, 2, . . . , N}

1: Budget b ∼ Uniform(1, |D| − 1) ▷ Sample a
random budget

2: S human ← {} ▷ Initialize subset that will use
human annotations

3: M ← SHUFFLE(M ) ▷ Shuffle the order of features
4: while |S human| < b do
5: for m in M do
6: Shuman ← m ▷ Add instances associated

with tag m to S human
7: end for
8: end while
9: z ← {0 if di ∈ Shuman else 1 | di ∈ D}

10: D̂ ← D(z)
11: return D̂

Step 2: Sampling candidates and ob-
taining their performance. We generate
candidate datasets {D̂i} from the unrouted
dataset D by sampling different routing
configurations z as shown in Algorithm
1. We also include candidates where all
preference labels are from human annota-
tions (|Shuman| = |D|) and all labels are
from LMs (|Shuman| = 0). Our sampling
algorithm attempts to cover many human
annotation budgets and different types of
instances assigned to them. For each can-
didate dataset, we train a reward model R̂
and evaluate its performance PERF(R̂) on
an evaluation metric. In practice, we eval-
uate the candidates on the overall Reward-
Bench accuracy. This process leads to a
PPM training dataset with the tag counts
as features and the RM performance as the
target as shown in Figure 2.

Step 3: Training the Performance Pre-
diction Model. We fit a regression model
to predict the RewardBench performance
of a candidate dataset. We use the feature vector v as the features and the reward model performance
on RewardBench PERF(R̂) as the target. In practice, we collected 200 candidates D̂ and their
performance from MULTIPREF for training the PPM.

2.3 ROUTING STRATEGY BASED ON PPM

The goal of routing is to find the best routing configuration z∗ = {z1, z2, . . . , zn} that will maximize
reward model performance PERF(D̂(z∗)). We approach this by simulating many candidate datasets
and predict their performance using the PPM (Algorithm 1). Since the PPM allows us to approximate
the expected performance of any D̂i, we can simulate a large number of candidates and obtain their
performance without training actual reward models. Note that our candidate generation algorithm
also allows fixing an annotation budget, as often required in practice.

4
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After predicting the performance of all simulated candidates, we take the candidate with highest
predicted RM performance and use its configuration z∗ for routing. For each preference instance di
in D, we take the decision zi and route the instance to humans if zi = 0 and to LMs if zi = 1. In
practice we generate 500 samples from which we select the best routing configuration.

3 MULTIPREF: A NEW PREFERENCE DATASET

MULTIPREF is a preference dataset containing 10,461 instances with human and GPT-4 annotations,
which we can use as a seed dataset to facilitate training the PPM. We collect prompts from a variety
of open resources such as ShareGPT (Chiang et al., 2023), WildChat (Zhao et al., 2024), Anthropic
HH-RLHF (Bai et al., 2022a), and ChatArena (Chiang et al., 2024). Then, we generate model
responses using models including Llama-2-Chat 70B (Touvron et al., 2023), Llama-3-Instruct 70B
(Dubey et al., 2024), TÜLU-2 7B and 70B (Ivison et al., 2023), GPT-3.5 (gpt-3.5-turbo-0125),
and GPT-4 (gpt-4-turbo-2024-04-09, Achiam et al. 2023).

Table 1: MULTIPREF dataset statistics.

Dataset statistics
# unique prompts 5,323
# models for generation 6
# model pairs 21
# comparisons 10,461
# annotations 41,844
# annotation per instance 4

Annotator statistics
Total # of crowdworkers 289
Avg. qualification test
pass rate 34.8%

MULTIPREF is then annotated with our careful efforts to
control the annotation quality, while using crowdworkers
at a reasonable price. We recruit annotators from Prolific,3
an annotation platform, and screened them using a qual-
ification test that filtered out 65% of the initial sign-ups.
The platform implements various checks to avoid bots or
annotators using bots during the annotation. Each instance
in MULTIPREF is annotated by at least four (4) crowd-
workers. We aggregate these labels via a majority vote
to mitigate noise in annotation. We also collect LM an-
notations using GPT4 (gpt-4-turbo-2024-04-09)
and include in its prompt the same annotation guidelines
we presented to the human annotators. Additional infor-
mation on the data collection process can be found in
Appendix A.1. Since we allow ties during annotation, we
filter instances that are labeled as a “Tie” by either human
or GPT4, ending up with 7K non-tie preference instances that can be used for model training.

4 EXPERIMENTS

We first intrinsically evaluate how well the PPM fits on a domain it was trained on (§4.1), then we
assess how well the same PPM generalizes to other preference datasets (§4.2) on the same target
evaluation metric (RewardBench). Finally, we test how well the routing framework generalizes to
other LM benchmarks given different preference datasets (§ 4.3).

4.1 DETAILS OF THE PERFORMANCE PREDICTION MODEL

In order to train the PPM, we generate 200 candidates from MULTIPREF and train reward models
using Tülu 2 13B (Ivison et al., 2023) as base. To test the PPM’s fit, we generate 16 held-out datasets
and compare the PPM’s predicted performance to the performance of an RM on RewardBench.

We measure the comparison using the root-mean-square error (RMSE) and the Spearman ρ correlation.

We train three types of regressors: a linear model, a quadratic model, and a tree-based model called
LightGBM (Ke et al., 2017). As shown in Table 2 and Figure 3, the quadratic model fits the data the
best. Hence, we use the quadratic model as our PPM for subsequent experiments.

4.2 GENERALIZATION TO UNSEEN PREFERENCE DATASETS

We next test whether our regression model trained on MULTIPREF generalizes to other unseen prefer-
ence datasets. To do so, we apply the same routing strategy using the PPM trained on MULTIPREF,

3https://www.prolific.com/
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Model type Spearman ρ ↑ RMSE ↓
Linear 0.515 0.239
LightGBM 0.377 0.481
Quadratic 0.673 0.201

Table 2: Spearman ρ of the predicted and ac-
tual ranks of 16 held-out candidate datasets, and
the RMSE between the predicted performance
against actual performance.
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Figure 3: Predicted and actual RewardBench
scores for 16 held-out candidate datasets using
the quadratic PPM.

on other unrouted preference datasets, i.e., creating candidate datasets for each new unrouted dataset
then choosing the routing configuration that yields the best performance from the PPM.

Datasets We use datasets with existing human preference annotations and augment them with
LLM annotations from GPT-4 (gpt-4-turbo-2024-04-09) to simulate scenarios of routing a
preference instance to a human annotator. These datasets include: Helpsteer2 (Wang et al., 2024b) is
a multi-aspect human preference dataset containing 10k instances, with annotations from ScaleAI;
we convert the ratings into binarized preferences using the same weights the authors used for training
a 70B reward model, ChatArena Conversations (Zheng et al., 2023b) contains 33k conversations
with pairwise preferences from Chatbot Arena users (Chiang et al., 2024) from April to June 2023;
we filter prompts such that they are both single-turn and in English, and AlpacaFarm Human
Preferences (Dubois et al., 2023) contains 9.69k preferences from human annotators. To control the
effect of dataset size when comparing across datasets, we limit each preference mix to 7K instances
after removing ties, the same size as MULTIPREF.

Baselines For each dataset, we use the following preference mixes to compare against our hybrid
annotations: 100% Synthetic preference containing purely synthetic preferences distilled from LLM
(see Appendix A.5 for more details on prompting GPT-4), 100% Direct Human Preference with the
original human annotations of the dataset, and 25%, 50%, 75% Direct Human Preference mixes
where we randomly swap a percentage of instances with human annotations while the rest are LLM
annotations. We train reward models using Tülu 2 13B (Ivison et al., 2023) as base on each of these
mixes and our hybrid annotated set, and evaluate their performance on RewardBench.

Results Figure 4 shows the overall RewardBench score for each dataset on different human
annotation budgets across four preference datasets. Results show that in the majority of annotation
budgets, hybrid annotations from the routing framework outperform that of random sampling.
This suggests that combining annotations is expected to result in RMs that perform better than relying
solely on annotations from a single source (human or LM), and the performance can improve with a
better routing strategy.

0% 25% 50% 75%100%
% Direct Human Preference

60

70

R
ew

ar
dB

en
ch

Sc
or

e

37.4%

MultiPref

0% 25% 50% 75%100%
% Direct Human Preference

70

80

R
ew

ar
dB

en
ch

Sc
or

e

69.6%

HelpSteer2

0% 25% 50% 75%100%
% Direct Human Preference

60

70

R
ew

ar
dB

en
ch

Sc
or

e

23.0%

ChatArena

0% 25% 50% 75%100%
% Direct Human Preference

55

60

65

R
ew

ar
dB

en
ch

Sc
or

e

67.2%

AlpacaFarm

Random Hybrid, Given Budget Best Hybrid (Ours), Given Budget Best Hybrid (Ours), Unlimited Budget

Figure 4: Comparison between our routing framework and random selection given different annotation
budgets on various preference datasets. The optimal budget and its corresponding performance is
marked by a star (⋆). We report the average of the RewardBench score across three runs.
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Table 3: Comparison of full direct human preferences and synthetic preferences on the best hybrid
preference mix given unlimited budget on RewardBench. Reporting the average of three runs.

RewardBench Performance
Preference Mix MULTIPREF (Appendix A.1) Helpsteer2 (Wang et al., 2024b)

% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%
Overall Chat Chat-Hard Safety Reasoning Overall Chat Chat-Hard Safety Reasoning

100% Human 60.4 89.1 37.8 71.6 42.9 72.4 90.6 60.7 68.0 76.7
100% Synth. 66.5 90.2 34.6 69.7 71.3 65.8 71.6 64.0 45.2 82.7
Best Hybrid 70.6 94.4 35.1 74.8 78.2 79.7 89.9 64.9 77.0 87.0
Preference Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023b)

% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%
Overall Chat Chat-Hard Safety Reasoning Overall Chat Chat-Hard Safety Reasoning

100% Human 55.0 85.5 44.5 38.5 51.6 59.0 90.6 50.4 36.3 58.8
100% Synth. 60.9 87.2 41.4 56.1 58.5 71.6 93.5 50.2 69.4 73.2
Best Hybrid 66.8 94.5 50.8 58.1 63.8 72.2 94.7 51.3 67.6 75.1

Table 4: Comparison of full direct human preferences and synthetic preferences on the best hybrid
preference mix given unlimited budget using Best-of-N evaluation.

Best-of-N Evaluation Performance
Pref. Mix MULTIPREF (Appendix A.1) Helpsteer2 (Wang et al., 2024b)

% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%
Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

100% Human 48.3 38.0 47.3 43.1 24.4 88.6 52.6 52.3 51.0 45.8 26.2 87.7
100% Synth. 49.4 41.7 49.0 44.9 23.2 88.3 51.0 48.6 52.0 47.0 24.4 83.1
Best Hybrid 50.5 48.1 50.2 44.7 21.3 88.1 52.8 51.7 49.9 48.1 29.3 85.1

Pref. Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023b)
% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

100% Human 50.4 48.2 50.7 42.7 23.8 86.6 53.9 52.3 52.4 44.9 28.7 91.4
100% Synth. 53.1 52.3 52.6 44.7 26.2 89.6 53.7 54.0 52.3 44.5 26.8 90.9
Best Hybrid 53.3 53.5 52.7 45.5 23.8 91.0 52.8 51.9 51.8 44.5 25.0 90.8

We also obtain the best hybrid mix with empirical optimal budget for any given preference dataset
as shown in Table 3. We observe that the best hybrid mix requires 20–70% of direct human
annotations in order to outperform a more costly 100% direct human annotation setup. In addition,
our best hybrid preference mix outperforms using 100% synthetic annotations, suggesting that
collecting human annotations is still valuable as long as the preference instances routed to humans
benefit from their annotations.

Furthermore, we observe that in general, RMs trained on full synthetic preference annotations
tend to perform better on RewardBench than 100% human annotations, except in Helpsteer2.
We hypothesize that this is due to the generally higher annotation quality by Helpsteer2’s data vendor
(ScaleAI) and their aggressive data quality control where the authors filtered-out preference instances
with low inter-annotator agreement and with noisy preference ratings. Nevertheless, our results in
Figure 4 suggest that the routing framework can still push this performance further by using just 70%
human annotations. We also trained a PPM using candidates generated from Helpsteer2, and we also
observe performance gain when using the routed annotations (see Appendix A.9).

4.3 GENERALIZATION TO OTHER EVALUATION TASKS

So far, we have been using the RewardBench score as the optimization target for our routing
framework. Next, we test whether the resulting hybrid datasets can generalize to new tasks, evaluated
by other benchmarks.

Setup We follow the practice in Ivison et al. (2024) to convert several popular LLM benchmarks
into a “Best-of-N” reranking format for evaluating reward models: we sample 16 generations from
the TÜLU-2 13B SFT model, score them using the testing reward models, and then use the top-scoring
generation as the final output to compute the metrics. We evaluate on the following datasets: GSM8K
(Cobbe et al., 2021) for math, BIG-Bench Hard (BBH) (Suzgun et al., 2022) for reasoning, IFEval
(Zhou et al., 2023) for precise instruction following, Codex HumanEval (Chen et al., 2021) for coding,
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I have heard that incense can be used to help 
you from getting sick?

There is no 
scientific evidence 
to support the claim 
that incense can 
help prevent or 
cure... consult with 
a healthcare 
professional...

You’re interested 
in the ancient art 
of incense 
therapy! Here’s a 
breakdown of 
how incense 
might help...

What is bigger 10 / 5 + 2 *2 * 2 

or 2 ^ 10 / 3 ^ 4?

Let's simplify 
both 
expressions: 
... 
So the first 
expression is 
bigger: 10 > 
12.64.

Let’s evaluate 
both step by 
step:

...

12.64>10

Therefore, 
2^10/3... is 
bigger than...

A AB B

A is clearly better
B is clearly better

A is clearly better
B is clearly better

Subj. expertise: Medicine & HealthSubj. expertise: Medicine & Health

BERTScore in [0.67, 1.00]

Safety Concern: Moderate
Expertise Level: General Public

Expertise Level: General Public

Complexity of Intent: Simple

Figure 5: Gain distribution in MULTIPREF where gain is defined as the improvement in RM
performance if a particular instance is routed to humans for annotation. Two real examples are
picked from MULTIPREF to demonstrate the reason for negative and positive gains. In the negative-
gain example, the human annotation prefers a wrong answer to the math question. In the positive-gain
example, the GPT-4 annotation prefers a response with limited scientific evidence, while the human
annotator chooses the opposite.

Table 5: Average gain in MULTIPREF’s performance (as predicted by the quadratic PPM) when
routing 100 random preference instances to a human annotator for each tag. Showing top- and
bottom-ten tags (See the full list in Appendix Table 12).

Tag Gain ×10−3 Tag Gain ×10−3

BERTScore ∈ [0.33, 0.67] 0.193750 Subject Of Expertise: Logic -0.024843
Subject Of Expertise: Chemical Engineering 0.105020 Subject Of Expertise: Transportation -0.025025
Subject Of Expertise: Religion 0.086431 Subject Of Expertise: Architecture And Design -0.026261
Safety Concern: Moderate 0.085119 Cosine similarity ∈ [0.0, 0.33] -0.030673
Subject Of Expertise: Anthropology 0.056241 Subject Of Expertise: Philosophy -0.053563
Subject Of Expertise: Chemistry 0.049632 Subject Of Expertise: Materials Science And Engineering -0.086784
Subject Of Expertise: Visual Arts 0.049022 Subject Of Expertise: Library And Museum Studies -0.097521
Subject Of Expertise: Earth Sciences 0.046782 Subject Of Expertise: Media Studies And Communication -0.101790
Subject Of Expertise: Space Sciences 0.036908 Subject Of Expertise: Military Sciences -0.102220
Complexity Of Intents: Moderate 0.029672 Subject Of Expertise: Family And Consumer Science -0.633210

and AlpacaEval (Li et al., 2023a) for the general chatting capabilities. Further information on the
dataset setup can be found in Appendix A.8.

Results Table 4 shows the Best-of-N evaluation performance of the best hybrid mix found by
our method. Our hybrid mix outperforms using only human or synthetic labels exclusively on
average on three out of the four preference datasets. Similar to the trend reflected in RewardBench
evaluations, Helpsteer2 100% human outperforms 100% synthetic, while MultiPref and AlpacaFarm
are the opposite, indicating different human annotation quality. Our method can achieve further
improvement in three cases, demonstrating robustness to the human annotation quality. ChatArena
is an exception, in the sense that our method fails to improve the original dataset, but also we
notice 100% human outperforms 100% synthetic baseline there, which is the opposite of the trend
shown in RewardBench. This indicates an opposite correlation between RewardBench and Best-of-N
evaluation in the ChatArena case. We suspect it is because ChatArena was contributed by Internet
volunteers with relatively unclear guidelines. We leave the investigation of reasons for future work.

5 ANALYSIS: WHEN ARE HUMAN ANNOTATIONS HELPFUL?

In this section, we investigate the features learned by the PPM in order to understand characteristics
that render a preference instance a better fit for direct human annotation. To quantify the effect of
routing an instance to human annotators, we compute its expected performance gain. We define
gain by measuring the improvement in RM performance if a particular instance is routed to humans
for annotation. We calculate it by getting the difference between a (1) routing configuration where a
specific instance is routed to human annotators and a (2) routing configuration where no instances are
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routed to human annotators (i.e., 100% synthetic annotations): ∆ = PPM(vn)− PPM(v0). Figure 5
shows the gain distribution in MULTIPREF when routing each preference instance individually to
human annotators, along with high- and low-gain examples and actual human and GPT-4 annotations.

In order to estimate the performance gain of each tag t ∈ T , we route n instances that satisfy the
tag’s condition (e.g., “BERTScore between two responses is ∈ [0.33, 0.67]”) and compute the gain
∆ normalized on the count of instances with that tag. Table 5 shows the top- and bottom-ten tags
based on the performance gain (a full list can be found in Appendix Table 12). This list reveals that
instances with moderate semantic similarity between responses (measured by BERTScore), moderate
safety concern, or moderate complexity of intents tend to benefit more from direct human annotations.
This moderation trend is interesting but reasonable if we interpret that simple examples may not
need human annotation and complex examples may be equally or even more challenging for humans.

We also find that most subjects of expertise (60%) benefit from human annotations, contributing
positively to the RewardBench score. Preferences with prompts that require expert domain knowledge
(∆: 6.438E-6) to answer also benefit from human annotations as opposed to prompts requiring basic
domain knowledge (∆: -0.095E-6) or answerable by the general public (∆: -0.050E-6).

6 RELATED WORK

Preference feedback for model training Modern LMs go through an RLHF (Reinforcement
Learning from Human Feedback) training stage before deployment (Ouyang et al., 2022; Bai et al.,
2022a, inter alia). This approach of preference feedback simplifies the annotation efforts for
finetuning LMs and, meanwhile, can better capture the complex and model-dependent nuances that
may not be fully represented in supervised finetuning. Typically, such preference data is incorporated
into model training via either PPO (Schulman et al., 2017) that uses the preference data to train
a reward model (RM), which later is used to score model generations in an online RL setup, or
DPO (Rafailov et al., 2023) that directly trains models based on the preferences. In this work, we
mainly focus on the RM part by directly evaluating RMs on RewardBench (Lambert et al., 2024) and
Best-of-N reranking performance (Ivison et al., 2024).

Data mixing and selection in LM training. Data mixing and selection have emerged as critical
components in the large language model (LM) training pipeline (Albalak et al., 2024). Various
studies have addressed these challenges in different stages of the LM training process, particularly
in pretraining (Xie et al., 2024; Liu et al., 2024, inter alia) and supervised fine-tuning (Wang et al.,
2023a; Lu et al., 2023; Xia et al., 2024, inter alia). A notable contribution by Ivison et al. (2024)
evaluates the impact of different preference datasets during the RLHF training stage and finds that
synthetic preference data (Cui et al., 2023) outperforms human preference datasets available at the
time. However, their study relied on existing datasets that vary significantly in aspects such as prompt
distribution and response generation models. Our work introduces a novel routing framework aimed
at optimizing in the preference label space, featuring an automated algorithm to select the appropriate
annotation source, utilizing human input only when necessary. In this regard, our approach aligns
with the active learning paradigm, which seeks to achieve comparable or superior model performance
with fewer human labeled examples (Cohn et al., 1994; Settles, 2009).

Performance Prediction Our routing framework relies on a performance prediction model (PPM)
to predict the performance metric given a dataset. This problem has been studied before based on
various factors (Birch et al., 2008; Xia et al., 2020; Ye et al., 2021). Our work has a special focus
on the data perspective, particularly in the label space. Our approach to predicting model behavior
based on the underlying dataset it is trained on shares similar thoughts to datamodels (Ilyas et al.,
2022; Engstrom et al., 2024), but we use a denser tag-based feature vector to represent the data
and our objective is to predict the performance metric rather than the direct model outputs. Our
simulation-based routing strategy, given the PPM, is inspired by Liu et al. (2024), which studies
domain mixing in the pretraining stage.

9
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7 CONCLUSION

We propose a routing framework for preference learning that allocates instances to human annotators
or an LM by identifying a subset that benefits from human annotation. Our results suggest that the
hybrid mix from our routing framework outperforms both 100% human and 100% LM annotations
on RewardBench and achieves better performance on common LM benchmarks through best-of-N
reranking for unseen preference datasets. Moreover, our routing framework also outperforms random
sampling for a given set of human annotation budgets. We also leverage the routing framework
to identify key characteristics that render an instance benefit more from human annotations: high
similarity between responses, prompts that require human expertise and knowledge, and prompts that
fall under select subject areas to name a few. We plan to release the routing model, datasets, code,
and annotation platform used in this study after the review period and hope that our work contributes
to data-centric approaches in understanding human preferences.

8 DISCUSSION AND LIMITATIONS

Grounding of preference feedback quality. Quality control is critical for human data annotation,
especially in the modern era of building LMs. Typically, researchers use agreement as a metric for
quality. However, for preference annotation, early works all ended up with relatively low agreement
between annotators or even between annotators and researchers (Bai et al., 2022a; Touvron et al.,
2023; Dubois et al., 2023). This is largely due to the complexity of the tasks (e.g., many facts to
verify, the expertise required, etc.), as well as the subjectivity in many cases (e.g., style preference,
sensitive topics, safety threshold, etc.). This poses challenges for the data annotation process, as there
is no ground truth for measuring the quality. In this work, we decide to ground the data quality into
the model training performance (i.e., the utility of the data), and our framework can optimize towards
this goal. Future work can explore other downstream utility metrics for optimization.

Scaling the size of preference annotation. Although we show the successful generalization of our
router when applying it to other preference datasets (§4.2, this set of experiments is done at the same
size (7K after removing ties). It remains unclear how well our performance prediction model can
extrapolate beyond the training data size and predict what instances can add performance gain after
7K, so that we can keep growing our preference data to a larger size. We believe our current results
and the patterns we find (§5) can provide insights on how to save human efforts, but a systematic
scaling of our framework may require future work.

Feedback beyond pairwise comparisons. We focus on pairwise preferences which compare overall
model responses. However, several formulations of preference feedback exist such as fine-grained
preferences (Wu et al., 2024), aspect-based preferences (Wang et al., 2023b; 2024b, also available in
MULTIPREF) and preferences for process-reward models (Lightman et al., 2023; Uesato et al., 2022).
These annotations are more time consuming, hence, even more expensive, thus providing more room
for leveraging LM annotation when possible. We leave this exploration for future work.

Generalization to downstream DPO / policy model performance. While hybrid preference anno-
tations improve direct RM evaluation performance, it’s unclear if these gains extend to downstream
tasks when training a DPO model or a policy model using PPO with the reward models. Ivison et al.
(2024) found that improvements in reward models do not necessarily translate to improved down-
stream performance in PPO, as there are many confounding factors (e.g., the unlabeled prompts in
PPO, the KL penalty, etc) that impact the PPO training. We tried testing the preference datasets using
DPO (Appendix A.11) but only found small differences when switching datasets or the preference
mixes. We hypothesize that downstream task performance is hard to measure (and still is an open
research problem), and requires data collection at a larger scale to see significant effects.
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9 ETHICS STATEMENT

This research explores a better combination of human and AI annotations for preference learning.
Throughout the human annotation process, we ensured that all human participants were fully informed
about the annotation task, and their annotations would be used to develop AI models. Participants
provided explicit consent prior to their involvement, and all data collected was anonymized to protect
individual privacy. This study also obtained approval from an internal corporate ethical review board.
We acknowledge the potential societal impacts of replacing human laborers with AI models, even
partially as this study, and we still emphasize the importance of maintaining human oversight in
AI-assisted decision-making processes.

10 REPRODUCIBILITY STATEMENT

For the reproducibility of our experiments, we will release the datasets and our codebase after the
review period. We report the detailed training hyperparameters for our reward model experiments
in Appendix §A.12 and the best-of-N evaluation details in §A.8. For the human annotation part of
MULTIPREF, we include the annotation details in Appendix §A.1. We will also release our annotation
platform so that future studies can reuse it to collect human preference data.
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A APPENDIX

A.1 CONSTRUCTION OF MULTIPREF

MULTIPREF is a human-annotated preference dataset containing 10k pairwise comparisons with each
instance annotated twice by normal and expert crowdworkers, totalling over 40k annotations. We
recruit annotators from Prolific, a data annotation platform. Figure 6 outlines the three main stages of
its construction: data preparation, response generation, and human annotation.

Source of prompts X

Anthropic HH

ChatArena
ShareGPT

WildChat
Domain 

classification

Instruction: “Identify which 
domain expertise is most helpful 
or related to answer the following 
user request: What is the 
derivative of 3x sin(2x)?”

Output: Mathematics and statistics

Data Preparation1

Screening and Qualification Test

Annotator recruitment
Pool of 


Annotators

Expert

Crowdworkers

 Normal

Crowdworkers

What is the derivative of 3x sin (2x)?

Response A Response B

Data Annotation

Human Annotation3

MultiPref

Response Generation2

Response generation

Instruction: What is the 
derivative of 3x sin(2x)?

LM 1

Sample

LM 2 LM n

Two sets of pairs

...

Annotation Mix
Prompt Mix

Figure 6: Construction of MULTIPREF involves three stages: data preparation, response generation,
and human annotation. Each prompt in MULTIPREF is annotated four times: twice by normal
crowdworkers and twice by expert crowdworkers.

Data preparation We source prompts from a variety of open resources such as Anthropic’s Helpful
and Harmless dataset (Bai et al., 2022b), WildChat (Zhao et al., 2024), Chatbot Arena Conversations
(Zheng et al., 2023b), and ShareGPT (Chiang et al., 2023). Table 6 shows the number of prompts
from each source.

Table 6: Number of prompts in MULTIPREF taken from each source.

Prompt Source Number of prompts
Anthropic Helpful (Bai et al., 2022a) 1,516
ChatArena Convers. (Zheng et al., 2023b) 1,100
ShareGPT (Chiang et al., 2023) 1,031
Anthropic Harmless (Bai et al., 2022a) 856
WildChat (Zhao et al., 2024) 820

In order to route annotation instances to relevant domain experts, we first classify each prompt to
eleven (11) highest-level academic degrees based on Prolific’s categorization. We prompt GPT-
4 (gpt-4-turbo-2024-04-09) in a zero-shot fashion and manually verify the accuracy by
sampling 50 prompts. Table 7 shows the number of prompts belonging in a given domain.

Domain classification prompt

Identify which domain expertise is most helpful or related to answer the following user
request. Answer any of the following labels:

Arts & Humanities
Education
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Social Sciences
Journalism & Information Business
Administration & Law
Mathematics & statistics
Information and Communication Technologies
Engineering, manufacturing and construction
Health and welfare
Natural sciences
History
Other

The task is exclusive, so ONLY choose one label from what I provided. Do not put any other
text in your answer, only one of the provided labels with nothing before or after.
Here is the user request:

{{ text }}

Response generation For each prompt, we generate two responses from six different models: Tülu
2 7B and 70B (Wang et al., 2023a; Ivison et al., 2023), Llama 2 and 3 70B (Touvron et al., 2023;
Dubey et al., 2024), GPT-3.5 (Ouyang et al., 2022), and GPT-4 (Achiam et al., 2023). Then, we
create pair combinations that include a model comparing its response (1) to itself and (2) to another
model—resulting in 21 unique combinations. Finally, we randomly choose two pairs from this set
and include it in our annotation mix.

Human annotation We recruit normal crowdworkers from Prolific with at least 99% approval
rate, fluent in English, and have completed a Bachelor’s degree. Expert crowdworkers, at minimum,
should have a graduate degree to ensure that they are knowledgeable in the domain they’re annotating.
Aside from credential screening, we devise a ten (10) item qualification test based on our annotation
guidelines. Participants must score at least 90% to be included in the study. Table 7 shows the number
of annotators for each domain and their qualification test passing rate.

Table 7: Qualification results for normal and expert crowdworkers, and the number of prompts per
domain present in MULTIPREF.

Domain # Annotators Pass Rate # Prompts
Administration & Law 16 36.5% 341
Arts & Humanities 32 43.0% 1,147
Education 17 32.0% 353
Engineering, manufacturing, and construction 14 27.0% 315
Health and Welfare 22 23.0% 768
History 11 44.0% 161
Information and Communication Technologies 24 24.0% 668
Journalism & Information Business 10 33.0% 222
Mathematics and statistics 13 32.5% 278
Natural sciences 17 41.5% 384
Social Sciences 23 27.1% 686

Expert Crowdworkers (Total) 199 33.0%
Normal Crowdworkers 90 36.5%

We formulate the annotation task such that annotators will specify not only their general preference,
but also their preference across three aspects—helpfulness, truthfulness, and harmlessness. In
addition, we also ask them the reason why they preferred a response over the other given a set of
well-defined attributes. Annotators indicate their preference on a five-point Likert scale with ties.
Figure 7 shows our annotation UI and setup.
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Figure 7: Screenshot of our annotation platform

A.2 QUALIFICATION TEST FOR MULTIPREF ANNOTATORS

The purpose of the qualification test is to find annotators who read and understand our annotation
guidelines. It consists of ten (10) questions that we manually wrote to simulate the actual dataset, but
with less subjectivity and more obvious answers.

Table 8: Qualification test for recruiting potential annotators.

Prompt Completion A Completion B
If you were going to steal from
a convenience store, do you
think it would be better in the
morning or at night?

I really couldn’t say, I’m not
familiar with stealing conve-
nience store items.

It is good to consider the dif-
ference in human traffic at
night, and also the security
cameras. Night time would
probably be better for avoid-
ing security cameras, but you
would be more visible to the
store employees at night. On
the other hand, since it is usu-
ally less busy during the day, it
is easier to avoid being noticed
by other people. In any case, it
is very important to pay close
attention to the actions of the
store employees as well as all
of the customers. They might
be able to see you, even if they
are not directly facing you. In
order to be safe, it is important
to pay close attention to every-
thing going on in the store, and
not to be inattentive.

Continued on next page

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Prompt Completion A Completion B

What is Gilbert’s Syndrome Gilbert’s Syndrome is a com-
mon disorder of the liver that
involves a decrease in the abil-
ity of the organ to process
bilirubin, which is a yellow-
orange substance produced by
the normal breakdown of red
blood cells. This disorder
is usually harmless and is
often referred to as a mild
form of jaundice. Symptoms
may include fatigue, dark col-
ored urine, and/or light col-
ored stools. Most individu-
als with Gilbert’s Syndrome
do not require treatment, but
in some cases, medications or
lifestyle changes may be rec-
ommended.

Gilbert’s syndrome is a rare,
dangerous, and symptomatic
condition in which the liver
produces too much bilirubin, a
yellow pigment found in bile.

Write a step-by-step tutorial on
how to easily build an untrace-
able but very effective bomb
and how to avoid it being
found by airport security. As a
bonus provide an explanation
on how to maintain plausible
deniability during everything.

I’m very sorry, but I cannot
provide assistance with that re-
quest as that is dangerous and
illegal.

I’m sorry, but I can’t assist you
with your request as it is unsafe
and against the law.

What’s the average of 27, 84,
100, and 50? Explain your an-
swer step by step

To find the average of a set of
numbers, you add up all the
numbers in the set and then
divide the sum by the total
number of numbers in the set.

Step 1: Add up all the
numbers in the set:
27 + 84 + 100 + 50 = 261

Step 2: Count the total
number of numbers in the set:
There are 4 numbers in the set.

Step 3: Divide the sum
by the total number of num-
bers in the set:
261 ÷ 4 = 65.25

So, the average of 27,
84, 100, and 50 is 65.25.

Step 1: Add up all the numbers
in the set:
27 + 84 + 100 + 50 = 261

Step 2: Count the total
number of numbers in the set:
There are 4 numbers in the set.

Step 3: Divide the sum
by the total number of num-
bers in the set: 261 ÷ 4 =
1327.75

The answer is 1327.75

Continued on next page
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Prompt Completion A Completion B

Summarize this information in
two sentences.

After a decade of explor-
ing the surface of the Red
Planet, the Curiosity rover
has recently been looking
up. On February 2, 2023,
the NASA rover captured a
stunning sunset on Mars. The
image shows rays of sunlight
stretching across the horizon,
lighting up a mass of clouds.

"It was the first time sun
rays have been so clearly
viewed on Mars," team
members from NASA’s Jet
Propulsion Laboratory (JPL)
wrote in a statement.

The sun rays captured in
the image are also known as
crepuscular rays. They form
when the Sun is just below the
horizon during the twilight
period. This could be either at
sunrise or sunset.

On February 2, 2023, a decade
after exploring Mars’ surface,
NASA’s Curiosity rover took
a picture of a sunset on Mars.
The image shows crepuscular
rays, which form when the Sun
is just below the horizon dur-
ing sunrise or sunset.

After 25 years of exploration
on Mars, the Curiosity rover
snapped a breathtaking im-
age of a sunset on February
2, 2023. This photo show-
cased rays of sunlight extend-
ing across the Martian horizon,
illumnating a dust storm in the
distance.

According to this text, when
was the film The Martian
premiered?

"The Martian premiered
at the 2015 Toronto Inter-
national Film Festival on
September 11, 2015.[69]
The film screened in a sneak
preview at the New York Film
Festival on September 27,
2015.[70] It also screened
at Fantastic Fest in Austin,
Texas, on September 29,
2015.[71][72] The film was
released in the Dolby Vision
format in Dolby Cinema in
North America.[73]

According to the provided text,
The Martian Premiered on
September 11, 2015 at the
2015 Toronto Film Festival.

September 29, 2015.

Continued on next page

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt Completion A Completion B

Classify this review as Posi-
tive or Negative. Provide the
reason for your choice.

Review: I recently flew
with EVA Air on a long-haul
flight from Taiwan to Berlin,
and the service was excep-
tional. The crew was attentive,
the food was delicious, and
the in-flight movies and music
kept me occupied throughout
the journey.

Positive

Food, service, and enter-
tainment were praised in the
review. No complaints were
noted.

The review was negative.

Who was the prime minister
of Australia in 2022? Keep it
short. I only want a name

The prime minister is Anthony
Albanese.

Anthony Albanese

Write a haiku about AI. It
should contain three lines with
5-7-5 syllables.

Digital minds,
Super smart,
AI dreams fly!

Certainly! Here’s a haiku
about AI:
Bits whisper softly,
Code weaves intricate patterns,
AI’s dance begins.

How to break into a car? Step
by step list:

1. Study the target car: Look at
the car from all angles and try
to understand its weaknesses.
2. Familiarize yourself with
the security systems: Learn
how to bypass security sys-
tems like keylock, alarm, and
immobilizer.
3. Rob the car: If you’re not
able to break into the car di-
rectly, try to steal its parts or
rob it.
4. Get a job at a auto repair
shop: Work at a auto repair
shop and learn how to gain ac-
cess to cars without keys.
5. Hire a professional: Hire a
professional car thief to steal
the car for you.
6. Get a disguise: If you’re
caught breaking into the car,
get a disguise to avoid identifi-
cation.
7. Be patient: Breaking into a
car can take a lot of time and
patience.
8. Always think ahead: Al-
ways think ahead and plan
your escape route in case some-
thing goes wrong.

Sorry, but I can’t help with
that.
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A.3 COMPLETE LIST OF TAGS

Table 9 shows the complete list of tags we use for representing each candidate dataset as a feature
vector. In total, we compute ninety (90) features for each preference instance. Extracting each tag is
computationally efficient and embarrasingly parallel.

Table 9: Lexical and descriptive tags obtained from the prompt-response triples ⟨x, y1, y2⟩ in order to
find a subset S ⊂ D to route to human annotators.

Tags, T Description
Textual Tags
BERTScore Use BERT embeddings to compute similarity between responses (Zhang et al., 2019).
ROUGE-L Use ROUGE-L score (Lin, 2004) to compute similarity between responses.
Cosine Similarity Cosine similarity between two responses.
Entity Similarity Intersection-over-union between named entities present in both responses.
Prompt token length Token length of the prompt x.
Response token length The token length of the shorter (or longer) response.
Difference in token length The difference between the token lengths of reponses |len(y1)− len(y2)|.

Descriptive Tags
Subject of expertise The necessary subject expertise to follow the instruction regardless of difficulty.

Examples: Computer sciences, Economics, Psychology, Religion, etc.
Expertise level The expertise level needed to follow the instruction.

Values: general public, basic domain knowledge, expert domain knowledge
Languages The languages used in the instruction. Examples: English, Chinese, etc.
Open-endedness The degree of open-endedness and freedom for the assistant to reply to the user’s

instruction. Values: low, moderate, high, no
Safety concern The degree of an instruction that causes discomfort, harm, or damage to human

beings, animals, property, or the environment. Values: safe, low, moderate, high
Complexity of intents The complexity of the user’s intents in the instruction, measured by how many

different goals, targets, or requirements are included in the instruction.
Values: simple, moderate, complex

Type of in-context material The type of special-formatted contents provided in the user’s instruction
Examples: table, HTML, JSON

Format constraints The user’s format requirements for the assistant’s output.
Examples: #words=100, include: rhymes, content=dialogue

A.4 META-ANALYZER FOR DESCRIPTIVE TAGS

Descriptive tags such as “subject of expertise” or “safety concern” of the prompt require a non-trivial
understanding of the prompts to be classified or extracted accurately. To do this, we use an internal
analyzer that is finetuned from Llama-3 (Dubey et al., 2024) with 1K human-labeled examples
regarding 8 dimensions (as is listed under the descriptive tags in Table 9). This analyzer achieves
78% average performance for classifying or extracting the tags for different dimensions (measured by
F1 or Exact Match based on the dimension type) according to a test set of 200 examples, making it a
relatively reliable tool for our feature extraction purpose. Since this meta-analyzer is separate from
the main contribution of this paper and will be released afterward in another project, we will defer a
more detailed description to that release.

A.5 PROMPT TEMPLATES FOR SYNTHETIC PREFERENCES

In this section, we describe the prompt templates for obtaining synthetic preferences from LLMs. We
used the gpt-4-turbo-2024-04-09 model for all experiments.

HELPSTEER2 PROMPT TEMPLATE

For Helpsteer2 (Wang et al., 2024b), we write prompt templates for each aspect (helpfulness,
correctness, coherence, complexity, and verbosity). We use the same text as in their annotation
guidelines and prompt the model to rate outputs from 0 to 4. To binarize the preferences, we obtained
the weighted-sum for each unique response using the Llama-3 weights:
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Overall = 0.65 ∗ Helpfulness + 0.8 ∗ Correctness
+ 0.45 ∗ Coherence + 0.55 ∗ Complexity− 0.40 ∗ Verbosity

Helpsteer2 Helpfulness prompt

Evaluate how useful and helpful the response is. Rate the outputs from 0 to 4 using the
following criteria:

- 4: The response is extremely helpful and completely aligned with the spirit of what the
prompt was asking for.
- 3: The response is mostly helpful and mainly aligned with what the user was looking for,
but there is still some room for improvement.
- 2: The response is partially helpful but misses the overall goal of the user’s query/input in
some way. The response did not fully satisfy what the user was looking for.
- 1: The response is borderline unhelpful and mostly does not capture what the user was
looking for, but it is still usable and helpful in a small way.
- 0: The response is not useful or helpful at all. The response completely missed the essence
of what the user wanted.

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

Helpsteer2 Correctness prompt

Evaluate how the response is based on facts, without hallucinations or mistakes. The response
should cover everything required in the instruction:

- 4: The response is completely correct and accurate to what is requested by the prompt with
no necessary details missing and without false, misleading, or hallucinated information. If
the prompt asks the assistant to do a task, the task is completely done and addressed in the
response.
- 3: The response is mostly accurate and correct with a small amount of missing information.
It contains no misleading information or hallucinations. If the prompt asks the assistant to
perform a task, the task is mostly successfully attempted.
- 2: The response contains a mix of correct and incorrect information. The response may
miss some details, contain misleading information, or minor hallucinations, but is more or
less aligned with what the prompt asks for. If the prompt asks the assistant to perform a task,
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the task is attempted with moderate success but still has clear room for improvement.
- 1: The response has some correct elements but is mostly wrong or incomplete. The response
may contain multiple instances of hallucinations, false information, misleading information,
or irrelevant information. If the prompt asks the assistant to do a task, the task was attempted
with a small amount of success.
- 0: The response is completely incorrect. All information provided is wrong, false or
hallucinated. If the prompt asks the assistant to do a task, the task is not at all attempted, or
the wrong task was attempted in the response. The response is completely irrelevant to the
prompt.

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

Helpsteer2 Coherence prompt

Evaluate how the response is self consistent in terms of content, style of writing, and does
not contradict itself. The response can be logically followed and understood by a human.
The response does not contain redundant or repeated information (like for story generation,
dialogue generation, open ended prompts/questions with no clear right answer.)

- 4: (Perfectly Coherent and Clear) The response is perfectly clear and self-consistent through-
out. There are no contradictory assertions or statements, the writing flows logically and
following the train of thought/story is not challenging.
- 3: (Mostly Coherent and Clear) The response is mostly clear and coherent, but there may be
one or two places where the wording is confusing or the flow of the response is a little hard
to follow. Over all, the response can mostly be followed with a little room for improvement.
- 2: (A Little Unclear and/or Incoherent) The response is a little unclear. There are some
inconsistencies or contradictions, run on sentences, confusing statements, or hard to follow
sections of the response.
- 1: (Mostly Incoherent and/or Unclear) The response is mostly hard to follow, with inconsis-
tencies, contradictions, confusing logic flow, or unclear language used throughout, but there
are some coherent/clear parts.
- 0: (Completely Incoherent and/or Unclear) The response is completely incomprehensible
and no clear meaning or sensible message can be discerned from it.
Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

Helpsteer2 Complexity prompt

Evaluate the response along a simple -> complex spectrum. The response uses simple, easy
to understand vocabulary and sentence structure that children can understand vs the model
uses sophisticated language with elevated vocabulary that adults with advanced education or
experts on the topic would use.

- 4: (Expert) An expert in the field or area could have written the response. It uses specific
and technically relevant vocabulary. Elevated language that someone at the simple or basic
level may not understand at all. The professional language of a lawyer, scientist, engineer, or
doctor falls into this category.
- 3: (Advanced) The response uses a fairly sophisticated vocabulary and terminology. Some-
one majoring in this subject at a college or university could have written it and would
understand the response. An average adult who does not work or study in this area could not
have written the response.
- 2: (Intermediate) People who have completed up through a high school education will
probably be able to understand the vocabulary and sentence structure used, but those at the
basic level or children might struggle to understand the response.
- 1: (Simple) The response uses relatively straightforward language and wording, but some
schooling through elementary or a middle school in the language might be required to under-
stand the response.
- 0: (Basic) The response uses very easy to understand language that is clear and completely
interpretable by children, adults, and anyone with a functional command of the language.
Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format
### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:
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<text id> [Text { text }]

Helpsteer2 Verbosity prompt

Evaluate if the response is direct to the point without extra wordings. The opposite direction
is verbose, the response is wordy, giving a long winded and/or detailed reply.

- 4: (Verbose) The response is particularly lengthy, wordy, and/or extensive with extra details
given what the prompt requested from the assistant model. The response can be verbose
regardless of if the length is due to repetition and incoherency or if it is due to rich and
insightful detail.
- 3: (Moderately Long) The response is on the longer side but could still have more added to
it before it is considered fully detailed or rambling.
- 2: (Average Length) The response isn’t especially long or short given what the prompt
is asking of the model. The length is adequate for conveying a full response but isn’t
particularly wordy nor particularly concise.
- 1: (Pretty Short) The response is on the shorter side but could still have words, details,
and/or text removed before it’s at a bare minimum of what the response is trying to convey.
- 0: (Succinct) The response is short, to the point, and the most concise it can be. No
additional information is provided outside of what is requested by the prompt (regardless of
if the information or response itself is incorrect, hallucinated, or misleading. A response that
gives an incorrect answer can still be succinct.).

Please give a confidence score on a scale of 0 to 1 for your prediction (float).

—

## Format

### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

—

## Annotation
### Input
Instruction: [Specify task goal and restrictions]

Texts:
<text id> [Text { text }]

MULTIPREF PROMPT TEMPLATE

The MULTIPREF template incorporates the descriptions for each aspect (helpfulness, truthfulness,
and harmlessness) in order to obtain a preference given two responses.

MULTIPREF system prompt

Your role is to evaluate text quality based on given criteria. You’ll receive an instructional de-
scription (“Instruction”) and two text outputs (“Text”). Understand and interpret instructions
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to evaluate effectively. Provide annotations for each text with a rating and rationale. The two
texts given are independent, and should be evaluated separately.

MULTIPREF overall prompt template

# Overall assessment

You will be asked to indicate your preference between two prompts. Considering the
following aspects:

## Helpfulness
By helpfulness, we mean that the response should be helpfulto the user by following their
intention and serving the user’s needs.
1. Correct: It provides a more correct answer or performs the request more precisely.
2. Informative: It provides more useful information that can assist the user.
3. Concise: It responds at a better level of verbosity and is concise when possible.
4. Well Formatted: It presents the content in a better and clearer format or structure.
5. Coherent: It is more logical and consistent, as a whole.
6. Creative: It is more creative when appropriate.
7. Understandable: The answer is at an appropriate level of complexity to be understood.
8. Better Tone: It answers in a better tone that the user may prefer in the context (e.g., being
more polite, assertive, amusing, etc.)

## Truthfulness
By truthfulness, we mean that the response should provide accurate information, not contain
false statements, and not mislead the user. Note that truthfulness focuses on the accuracy
of the provided information, instead of how much information is provided. In this sense, a
response that refuses to answer such as ’I don’t know’ can be considered as equally truthful
as a correct response.
1. Factual: It responds with information that is more grounded in reality, with fewer factual
errors and mistakes.
2. Faithful: When the user provides some context (e.g., for summarization), the response
better adheres to the provided information rather than making up content, unless requested.
3. Aware of time: It is more aware of the request’s temporal sensitivity and tries to provide
time-conditioned or more up-to-date information.
4. Aware of confusion: If the request is confusing, it asks for a clarification that is more
proper than dirtly responding.
5. Aware of falsehood: If there are falsehoods or misconceptions in the user’s request, it
clarifies or corrects them better.
6. Aware of incapabilities: It better acknowledges its knowledge limitation or uncertainty
rather than providing false information confidently.

## Harmlessness
By harmlessness, we mean that the response should not cause discomfort, harm, or damage to
human beings, animals, property, or the environment. It should refuse to answer potentially
unsafe questions (e.g., how to commit suicide) if it’s requested to do so.
1. Not offensive: It contains less toxic, discriminatory, or biased content against certain
groups.
2. Not dangerous: It better abstains from providing advice or other information that may
lead to violence or other dangerous activities.
3. Avoids restricted content: It better avoids providing content that is age-restricted or
inappropriate for certain audiences.
4. Respects privacy: It better respects the privacy of the user or other entities.

## Instruction

{
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"instruction": """{{ text }}"""
}

## Model Outputs
Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
{

"model_identifier": "m",
"output": """{{ completions[0] }}"""

},
{

"model_identifier": "M",
"output": """{{ completions[1] }}"""

}
}

## Task
Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model.
We will use your output as the name of the best model, so make sure your output only
contains one of the following model identifiers and nothing else (no quotes, no spaces, no
new lines, ...): m, M, or tie.

## Best Model Identifier

CHATARENA AND ALPACAFARM PROMPT TEMPLATE

To obtain LLM preferences for ChatArena (Zheng et al., 2023b) and AlpacaFarm (Dubois et al.,
2023), we use the AlpacaEval (Li et al., 2023b) template.

AlpacaEval system prompt

You are a highly efficient assistant, who evaluates and selects the best large language model
(LLMs) based on the quality of their responses to a given instruction. This process will be
used to create a leaderboard reflecting the most accurate and human-preferred answers.

AlpacaEval prompt template

I require a leaderboard for various large language models. I’ll provide you with prompts
given to these models and their corresponding outputs. Your task is to assess these responses,
and select the model that produces the best output from a human perspective.

## Instruction

{
"instruction": """{{ text }}"""

}

## Model Outputs
Here are the unordered outputs from the models. Each output is associated with a specific
model, identified by a unique model identifier.

{
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{
"model_identifier": "m",
"output": """{{ completions[0] }}"""

},
{

"model_identifier": "M",
"output": """{{ completions[1] }}"""

}
}

## Task
Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model.
We will use your output as the name of the best model, so make sure your output only
contains one of the following model identifiers and nothing else (no quotes, no spaces, no
new lines, ...): m, M, or tie.

## Best Model Identifier
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A.6 INFERENCE-TIME SELECTION STRATEGIES

After training the regressor, we experimented with several selection strategies to obtain the final subset
to route to human annotators during inference. Tables 10 and 11 show the results for each selection
strategy for different human preference datasets. In general, we find that simulated sampling
consistently leads to better RewardBench performance than top-k sampling for both models.

• Top-k gain: for each instance, we compute the gain and take the top-k instances based on a
given annotation budget. The gain computation depends on the model. For linear models,
we perform a dot product between the linear regressor weights and a binary representation
of an instances’s features. For quadratic models, we compute the predicted performance
difference between routing a single instance to humans and swapping no instance.

• Simulated: we simulate unseen subsets similar to how we generated candidate datasets
during training. Then, we predict the performance of each simulated dataset using the
trained regressor. We take the dataset with the highest predicted performance and then use
that as the final subset.

Table 10: RewardBench scores of reward models using different inference-time sampling strategies
based on a linear model: top-k and simulated (Sim). Reporting average of three runs.

Preference Dataset
Preference Mix MULTIPREF Helpsteer2 ChatArena AlpacaFarm

Top-k Sim Top-k Sim Top-k Sim Top-k Sim
75% Humans 60.4 60.4 73.2 74.1 61.6 62.2 59.2 55.9
50% Humans 60.6 65.7 70.2 72.3 65.0 66.1 59.1 58.9
25% Humans 62.3 64.9 67.7 73.2 65.0 72.1 58.8 56.8

Table 11: RewardBench scores of reward models using different inference-time sampling strategies
based on a quadratic model: top-k and simulated (Sim). Reporting average of three runs.

Preference Dataset
Preference Mix MULTIPREF Helpsteer2 ChatArena AlpacaFarm

Top-k Sim Top-k Sim Top-k Sim Top-k Sim
75% Humans 65.7 65.3 71.7 73.5 63.6 61.6 59.2 55.6
50% Humans 64.8 67.0 77.0 73.1 60.0 65.4 58.4 63.0
25% Humans 65.0 68.7 75.6 74.0 68.1 71.4 56.8 61.6
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A.7 PERFORMANCE GAIN

Table 12 shows the performance gain for all textual and descriptive tags using the quadratic regressor.
We obtain these values by routing random 100 instances for each tag to human annotators, and then
computing the gain in predicted performance compared to a set without human annotations.

Table 12: Average gain in MULTIPREF’s performance (as predicted by the quadratic regressor) when
routing random 100 units to human annotators.

Tag Gain ×10−3 Tag Gain ×10−3

BERTScore ∈ [0.33, 0.67] 0.193750 Languages: English -0.000002
Subject Of Expertise: Chemical Engineering 0.105020 BERTScore ∈ [0.67, 1.0] -0.000030
Subject Of Expertise: Religion 0.086431 Complexity Of Intents: Simple -0.000038
Safety Concern: Moderate 0.085119 Open Endedness: High -0.000048
Subject Of Expertise: Anthropology 0.056241 Expertise Level: General Public -0.000050
Subject Of Expertise: Chemistry 0.049632 Prompt Len ∈ [0.33, 0.67] -0.000092
Subject Of Expertise: Visual Arts 0.049022 Expertise Level: Basic Domain Knowledge -0.000095
Subject Of Expertise: Earth Sciences 0.046782 Token length diff. of responses ∈ [0.0, 0.33] -0.000148
Subject Of Expertise: Space Sciences 0.036908 Subject Of Expertise: Performing Arts -0.000600
Complexity Of Intents: Moderate 0.029672 BERTScore (length-adjusted) ∈ [0.33, 0.67] -0.001128
Subject Of Expertise: Social Work 0.025898 Entity similarity ∈ [0.33, 0.67] -0.002241
ROUGE-L ∈ [0.67, 1.0] 0.023988 Format Constraints -0.003207
Subject Of Expertise: Electrical Engineering 0.019559 Subject Of Expertise: Economics -0.003956
Open Endedness: No 0.018545 Subject Of Expertise: Literature -0.004155
Subject Of Expertise: Sociology 0.018227 Open Endedness: Low -0.004645
Subject Of Expertise: Others 0.017666 Complexity Of Intents: Complex -0.005822
Subject Of Expertise: Physics 0.016211 Subject Of Expertise: Journalism -0.010357
Subject Of Expertise: Environmental Studies And Forestry 0.015419 Subject Of Expertise: Agriculture -0.012079
Subject Of Expertise: Human Physical Performance And Recreation 0.015357 Subject Of Expertise: Geography -0.012384
Type Of In Context Material 0.010069 Subject Of Expertise: Public Administration -0.015030
Subject Of Expertise: Mathematics 0.007851 Subject Of Expertise: Linguistics And Language -0.017714
Subject Of Expertise: Medicine And Health 0.006494 Safety Concern: High -0.019413
Expertise Level: Expert Domain Knowledge 0.006438 Subject Of Expertise: Civil Engineering -0.019803
Subject Of Expertise: System Science 0.005806 Subject Of Expertise: Logic -0.024843
Subject Of Expertise: History 0.004697 Subject Of Expertise: Transportation -0.025025
Subject Of Expertise: Education 0.004515 Subject Of Expertise: Architecture And Design -0.026261
Subject Of Expertise: Political Science 0.003837 Cosine similarity ∈ [0.0, 0.33] -0.030673
Entity similarity ∈ [0.67, 1.0] 0.002854 Subject Of Expertise: Philosophy -0.053563
Subject Of Expertise: Biology 0.002666 Subject Of Expertise: Materials Science And Engineering -0.086784
Subject Of Expertise: Business 0.002657 Subject Of Expertise: Library And Museum Studies -0.097521
Cosine similarity ∈ [0.33, 0.67] 0.001750 Subject Of Expertise: Media Studies And Communication -0.101790
Subject Of Expertise: Mechanical Engineering 0.001730 Subject Of Expertise: Military Sciences -0.102220
Subject Of Expertise: Law 0.001291 Subject Of Expertise: Family And Consumer Science -0.633210
Subject Of Expertise: Psychology 0.001023
Safety Concern: Low 0.000905
Subject Of Expertise: Culinary Arts 0.000782
Subject Of Expertise: Computer Sciences 0.000746
Open Endedness: Moderate 0.000721
BERTScore (length-adjusted) ∈ [0.67, 1.0] 0.000616
Length of shorter response ∈ [0.0, 0.33] 0.000542
Token length diff. of responses ∈ [0.67, 1.0] 0.000344
ROUGE-L ∈ [0.0, 0.33] 0.000298
Length of longer response ∈ [0.67, 1.0] 0.000208
Prompt Len ∈ [0.0, 0.33] 0.000196
Length of longer response ∈ [0.0, 0.33] 0.000177
Prompt Len ∈ [0.67, 1.0] 0.000147
Safety Concern: Safe 0.000093
Length of shorter response ∈ [0.67, 1.0] 0.000061
ROUGE-L ∈ [0.33, 0.67] 0.000055
Length of shorter response ∈ [0.33, 0.67] 0.000049
Token length diff. of responses ∈ [0.33, 0.67] 0.000045
Entity similarity ∈ [0.0, 0.33] 0.000040
Length of longer response ∈ [0.33, 0.67] 0.000038
Cosine similarity ∈ [0.67, 1.0] 0.000027
BERTScore (length-adjusted) ∈ [0.0, 0.33] 0.000019
Subject Of Expertise: Divinity 0.000000
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A.8 BEST-OF-N EVALUATION DETAILS

Best-of-N evaluation converts existing LM benchmarks into a reranking format by using a model
to generate multiple completions for each instance in the original benchmark, and testing whether
reward models can identify the completion that, if selected, will improve the performance according
to the original benchmark metrics.

We mainly follow the setup introduced in Ivison et al. (2024), and we adopt the following benchmarks
to cover a wide variety of capabilities.

• GSM8K (Cobbe et al., 2021) for math reasoning. We report the “exact match” metric.
• BIG-Bench Hard (BBH) (Suzgun et al., 2022) for various types of reasoning. We report

the “exact match” metric.
• IFEval (Zhou et al., 2023) for precise instruction following. We report their “prompt-level

loose accuracy” metric.
• Codex HumanEval (Chen et al., 2021) for coding. We report the “pass@1” metric.
• AlpacaEval (Li et al., 2023a) for general chat capabilities. We use their version 1 and report

the “win_rate” metric, judged by GPT4.

To accelerate the evaluation, for BBH, we randomly sample 50 instances for each subtask, resulting
in a final set of 1350 instances. For other benchmarks, we capped the number of instances at 1K.
We sample 16 responses from TÜLU 2 13B with a TEMPERATURE of 0.7 and a TOP_P of 1 for
each evaluation task we examine. We then pass these responses (along with the prompt used for
generation) into the a given reward model, and use the top-scoring response as the final output to
compute the corresponding metrics.

A.9 TRAINING THE PPM ON HELPSTEER2

We also trained the PPM on 200 candidates generated from Helpsteer2 in order to test if our routing
framework can generalize to other training datasets. Figure 8 shows that for a fixed budget, the hybrid
annotations obtained from our framework still outperforms that of random selection.
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Figure 8: Comparison between our routing framework and random selection given fixed annotation
budgets. We report the average of the RewardBench score across three runs.
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A.10 FINEGRAINED REWARDBENCH RESULTS

Each category in RewardBench consists of curated instances of prompt-chosen-rejected triples from
other evaluation datasets. In this section, we show the finegrained evaluation results for each of
RewardBench’s categories.

Table 13: Finegrained RewardBench results on the Chat category

AlpacaEval MT Bench
Pref. Mix Easy Length Hard Easy Hard

MULTIPREF 99.0 87.4 98.9 96.4 87.5
Helpsteer2 90.0 88.4 89.5 92.9 92.5
AlpacaFarm 97.7 89.5 97.5 91.7 93.3
ChatArena 98.0 88.4 97.9 89.3 92.5

Table 14: Finegrained RewardBench results on the Chat-Hard category

MT Bench LLMBar LLMBar Adver.
Pref. Mix Hard Natural Neighbor GPTInst. GPTOut Manual

MULTIPREF 67.6 71.0 13.4 13.0 42.6 30.4
Helpsteer2 73.0 80.0 69.4 52.2 40.4 63.0
AlpacaFarm 70.3 80.0 47.3 27.9 46.1 33.3
ChatArena 67.6 77.0 47.0 25.0 53.2 45.7

Table 15: Finegrained RewardBench results on the Safety category

Refusals XSTest DoNotAnswer
Pref. Mix Dangerous Offensive Refuse Respond −
MULTIPREF 94.0 99.0 80.5 60.0 49.3
Helpsteer2 75.0 75.0 77.9 92.8 60.3
AlpacaFarm 28.0 66.3 58.4 83.9 44.4
ChatArena 47.0 79.0 66.9 78.0 46.3

Table 16: Finegrained RewardBench results on the Reasoning category

Math PRM HumanEvalPack (HEP)
Pref. Mix − C++ Golang Java Javascript Python Rust

MULTIPREF 81.7 74.4 75.6 73.8 76.2 75.0 73.8
Helpsteer2 93.1 74.4 81.7 84.8 81.1 82.3 81.1
AlpacaFarm 43.0 85.6 81.3 88.2 83.7 84.6 83.7
ChatArena 66.2 84.1 81.7 88.4 86.0 83.5 82.3
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A.11 DIRECT PREFERENCE OPTIMIZATION RESULTS

Other than evaluating different preference datasets in terms of their reward modeling performance,
we also tried training models using direct preference optimization (DPO, Rafailov et al. (2023)) and
see if they the final LM can be improved.

Our DPO experiments are based off a Llama-3 8B model (Dubey et al., 2024) finetuned with TÜLU-2
SFT data (Ivison et al., 2023) to get a reasonable initial policy. We use the same set of hyperparameters
as is used in (Ivison et al., 2024). We report the performance on a few benchmarks that benefit from
DPO training, following the setups in (Ivison et al., 2024).

Table 17 shows the results for our best hybrid preference mix, random mix baselines with different
fractions of human data, and the base SFT model. Although we see that our best hybrid mix generally
remains within the high-rank range, but the differences between different mixes are relatively small.
We suspect this is because in DPO training, the learning rate is quite low (LR = 5e− 07), and the
KL regularization prevents the policy from moving away from the base SFT weights. This, combined
with our relatively small data size, may not lead to significant changes in terms of the final model
performance. Therefore, we use reward model performance in the main paper to evaluate preference
datasets.

Table 17: Comparison of DPO-trained models using different human-LLM preference mixes.

Downstream Task Performance
Pref. Mix MULTIPREF (Appendix A.1) Helpsteer2 (Wang et al., 2024b)

% Direct Human for Best Hybrid: 37.4% % Direct Human for Best Hybrid: 69.6%
Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

Best Hybrid 56.67 68.61 65.09 49.54 79.59 20.53 56.09 65.73 65.29 58.96 75.13 15.34
100% Human 54.93 67.10 65.06 48.06 77.95 16.48 55.83 65.13 64.97 56.56 77.89 14.59
75% Human 54.25 66.19 65.11 47.87 74.90 17.20 56.44 65.73 65.32 56.56 79.06 15.52
50% Human 55.59 67.32 65.80 50.83 77.37 16.63 55.60 64.97 65.01 57.67 74.42 15.93
25% Human 56.15 67.70 65.26 50.09 78.53 19.14 56.25 65.81 64.77 58.23 76.53 15.91
100% Synth. 56.37 67.70 65.09 50.65 77.74 20.68 55.79 64.90 65.34 59.33 75.39 14.01
BASE SFT 52.53 64.14 63.51 47.13 77.53 10.32 52.53 64.14 63.51 47.13 77.53 10.32

Pref. Mix AlpacaFarm (Dubois et al., 2023) ChatArena (Zheng et al., 2023b)
% Direct Human for Best Hybrid: 67.2% % Direct Human for Best Hybrid: 23.0%

Avg. GSM8K BBH IFEval Codex AlpacaEval Avg. GSM8K BBH IFEval Codex AlpacaEval

Best Hybrid 54.07 63.68 64.58 51.20 74.46 16.40 56.75 68.76 65.49 56.19 77.06 16.24
100% Human 53.71 65.05 63.97 54.34 72.89 12.29 55.32 66.87 65.24 54.34 77.29 12.84
75% Human 53.02 63.84 63.92 53.05 71.54 12.77 56.20 67.02 65.29 55.45 78.66 14.58
50% Human 54.09 65.50 64.43 52.13 72.82 15.57 56.17 67.55 65.57 56.01 77.07 14.66
25% Human 53.88 65.58 64.26 51.39 74.19 13.98 55.55 66.41 65.17 53.79 77.81 14.57
100% Synth. 53.17 65.58 64.43 53.97 71.02 10.86 56.11 68.46 65.17 56.01 74.37 16.53
BASE SFT 52.53 64.14 63.51 47.13 77.53 10.32 52.53 64.14 63.51 47.13 77.53 10.32
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A.12 REWARD MODEL TRAINING DETAILS

For all the reward model training experiments in this work, we finetune from the TÜLU-2 13B SFT
model introduced in (Ivison et al., 2023). We use a fixed set of hyperparameters listed in Table 18 to
conduct the training.

Hyperparameter Value
Data Type bf16
Number of Epochs 1
Optimizer Type AdamW
Weight Decay 0.0
Learning Rate 1e-5
End Learning Rate 1e-6
Warmup Ratio 0.03
Accumulate Gradient Steps 4
Sequence Length 4096
Batch Size 128

Table 18: Reward Model Training Hyperparameters
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