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Abstract
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary
class of generative models with exceptional qualities in both synthesis and
maximizing the data likelihood. These models work by traversing a forward
Markov Chain where data is perturbed, followed by a reverse process where a
neural network learns to undo the perturbations and recover the original data.
There have been increasing efforts exploring the applications of DDPMs in the
graph domain. However, most of them have focused on the generative perspective.
In this paper, we aim to build a novel generative model for link prediction. In
particular, we treat link prediction between a pair of nodes as a conditional
likelihood estimation of its enclosing sub-graph. With a dedicated design to
decompose the likelihood estimation process via the Bayes’ theorem, we are
able to separate the estimation of sub-graph structure and its node features. Such
designs allow our model to simultaneously enjoy the advantages of inductive
learning and the strong generalization capability. Remarkably, comprehensive
experiments across various datasets validate that our proposed method presents
numerous advantages: (1) transferability across datasets without retraining, (2)
promising generalization on limited training data, and (3) robustness against
graph adversarial attacks. The code is available at https://github.com/
hzlihang99/SGDiff.git.

1 Introduction
Graphs are ubiquitous data structures, with applications that span from social networks [1–3] to
cutting-edge scientific research [4–7]. Link prediction, as one of the most fundamental tasks on
graphs, plays an indispensable role in various graph applications in web-related scientific researches
such as e-commerce recommendations [8, 9], social network analysis [10], and network security
predictions [11]. With the recent rise of graph neural networks (GNNs), a variety of GNN-based
methods have been developed, tremendously advancing the performance of link prediction [12–14].

Existing link prediction approaches can be divided into two main categories: discriminative [12, 13,
15] and generative [16, 17]. While discriminative methods are more commonly used, generative
approaches, especially diffusion models, remain under-explored. Generative models are known for
their superior generalization and robustness, particularly in scenarios with limited labeled data [18] or
adversarial conditions [19–21], where they frequently outperform discriminative models. Generative
models have increasingly demonstrated their potential in discriminative tasks across domains. In
particular, diffusion models [22, 23] have shown remarkable success in image classification [24, 25]
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and segmentation [26], offering robustness and precision. Inspired by these recent advancements, we
explore diffusion model to link prediction, a core task in discriminative graph analysis. This direction
not only shows potential for enhancing the generalization and robustness of link prediction but may
also pave the way for the broader application of generative models in other graph tasks.

To fully unleash the potential of generative models for link prediction, we leverage a state-of-the-art
generative framework, the diffusion model [22, 23], as the backbone for our approach. Additionally,
we integrate this model with a sub-graph modeling strategy, proposing the first sub-graph-based
generative diffusion model for link prediction, termed SGDIFF. This combination enjoys two key
advantages. First, existing generative approaches for link prediction typically model the entire graph
structure in a single step [16]. While effective, they result in excessive memory usage, especially for
large graphs, due to the exponential growth in adjacency matrix size with increasing node counts.
Although autoregressive modeling offers a workaround for this memory constraint [27], it has proven
inefficient and high-variance [28], limiting its utility for graph learning tasks. By incorporating
sub-graph modeling, SGDIFF can control the size of the sub-graph adjacency matrix, expanding
the applicability of generative link prediction models to a broader range of scenarios. Furthermore,
sub-graph-based modeling enables SGDIFF to address the automorphic node problem [13], a common
limitation in previous global generative models, significantly enhancing SGDIFF’s performance over
other global-based methods. Second, prior generative models, such as VGAE [16], use both the
adjacency matrix and node features to reconstruct the graph structure through a single GNN model.
This design limits generalization, as node features across datasets are often incompatible, impeding
transferability. Other approaches, such as GraphLP [29], rely solely on adjacency matrices but face
limitations in utilizing generative strength due to inconsistencies in low-rank representations across
adjacency matrices. In SGDIFF, we apply Bayesian inference to decompose the generation of graph
structures and node features into sequential steps, thereby achieving effective cross-dataset transfer
capabilities.

2 Related Work
2.1 Sub-graph Based Link Prediction

Due to the limitation of traditional Message Passing Neural Network (MPNN) in capturing the
pairwise relations between two individual target nodes, vanilla GNNs often struggle with link
prediction problems [30]. To solve this issue, manual feature enhanced models (MFEMs) like
NBFNet [15], NCNC [14] and BUDDY [13] proposed a variety of methods trying to fuse the
complementary structure information, e.g., heuristic features, with the message passing neural
networks. On the other hand, sub-graph GNNs (SGNNs) like SEAL [12] and SUREL [31] transform
link prediction into a binary sub-graph classification task and attempts to learn data-driven link
prediction heuristics. Compared with fusion-based algorithms, SGNNs do not require complicated
heuristic feature fusion designs and have better generous capability to different datasets. Besides,
since they use sub-graphs as the sample unit, SGNNs are more flexible to inductive scenarios [32].

Next we give a formal statement about SGNNs. For a pair of nodes u, v and its enclosing sub-graph
Guv, SGNNs produce sub-graph representation Yu,v with GNNs and desired read-out functionsR.
With the classifier C, the sub-graph representation Yu,v is expected to classified as one if an edge
(u, v) exists and zero otherwise. Commonly, node features are augmented with structural features
to resolve the automorphic node problem [30]. The global heuristics can be well approximated
from sub-graphs that are augmented with structural features with an approximation error that decays
exponentially with the number of hops taken to construct the sub-graph [12]. By incorporating the
idea of SGNNs, we aim to solve the memory print challenge for generative models on graph learning
problems.

2.2 Likelihood Estimation of Diffusion Models

Diffusion models [22, 33] are a contemporary class of generative models. Through an iterative noising
(forward) and denoising (reverse) Markov chain, diffusion models aim to learn the distribution of data
in an explicit way [33]. Diffusion models enjoy the benefit of having a likelihood-based objective
like VAEs [34] as well as high visual sample quality like GANs [35] even on high variability datasets.
Recent advances in this area have also shown amazing results in text-to-image generation [36–38],
audio synthesis [39, 40] and text-to-3d content creation [41, 42]. Despite being powerful generative
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models, diffusion models has also been recently recognized as valid generative classifiers [43, 44]. As
using the variational lower bound (VLB) of the log-likelihood as the object function, a well-trained
diffusion models could provide accurate estimations to the probability of samples within the data
distribution [25]. Furthermore, by incorporating class information as the condition input during
the training, the diffusion model can be used to compute class-conditional likelihoods pθ(x|y).
Then, by selecting an appropriate prior distribution p(y) and applying Bayes’ theorem, predicted
class probabilities pθ(y|x) can be easily calculated. Compared to discriminative models, generative
classifiers have been shown to generalize better, be more robust, and be better calibrated [20, 21]. In
this work, we seek to develop diffusion models for solving discriminative graph problems.

3 Method
Although there are recent works on applying diffusion models for problems on graphs [45, 46], most
of them focus on its generative perspective. The usage of the likelihood score of diffusion models
to graph problems is relatively underexplored. Therefore, in this work, we take one of the most
fundamental problems on graphs (i.e., link prediction) as an example to demonstrate the effectiveness
of diffusion models with SGNNs for problems with graph data. Note that our algorithm can be easily
extended to other graph problems like node or graph classification and we leave it as one future work.
Next, we will first define notations and introduce an overview design of our algorithm SGDIFF. then,
we present details about the link likelihood score estimation with the combination of structure and
feature diffusion models.

3.1 Notations

In the following, we formally define the notations used in this work. Let G = (V, E) be an undirected
graph where V and E denote the sets of n nodes (vertices) V and e links (edges), respectively. Let
S = (VS ⊆ V, ES ⊆ E) be a node-induced sub-graph of G satisfying (u, v) ∈ ES iff (u, v) ∈ E
for any u, v ∈ VS . We use Sk

uv = (Vuv, Euv) to denote a k-hop sub-graph enclosing the link (u, v),
where Vuv is the union of the k-hop neighbors of u and v and Euv is the union of the links that can
be reached by a k-hop walk originating at u and v. The given features of nodes Vuv are represented
by Xuv and the adjacency matrix of Sk

uv is Auv. The probability of link (u, v) existing is indicated
by p(yuv = 1) and our goal is to estimate p(yuv = 1|Xuv,Auv) with likelihood score generated by
diffusion models. As following parts process each sub-graph with the same process, we will omit the
subscripts u and v for convenience.

3.2 Design Overview

As mentioned in Section 2.2, by using a prior distribution p(y), the categorical probability p(y|x)
can be estimated by applying Bayes’ theorem over the class-conditional likelihood p(x|y). However,
unlike applying diffusion models to a single input like image or text, performing diffusion on
graph data involves two different but related inputs, i.e., node feature (X) and adjacency matrix
(A). Therefore, we need dedicated designs to decompose p(y|A,X). To break the generalization
limitation of existing generative approaches and take advantage of the inductive learning capability
of SGNNs, we propose the following formulation:

p(y|S) = p(y|A,X) =
p(X|A, y) · p(A|y) · p(y)

Σc∈{0,1}p(A,X|y = c) · p(y = c)
(1)

where p(y) is the prior distribution of node-pair’s connectivity over the graph. p(A|y) denotes
the graph structure probability given the condition of nodes u and v being connected. p(X|A, y)
represents the feature probability that is conditioned on the observed structure and connectivity. An
overview of our framework is shown in Fig. 1. By splitting the generation of graph structure and node
features into sequential steps, SGDIFF can be used for various link prediction settings, with or without
node features. More importantly, since it integrates the idea of SGNNs, the structure diffusion model
of SGDIFF can easily be transferred across datasets without involving any re-training procedure. In
our experiments (Section 4.2), we find that small datasets can benefit from the learnt knowledge of
larger datasets. Meanwhile, since SGDIFF has the feature component, we can design an independent
feature diffusion model for each dataset to model diverse node features. In other words, the structure
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diffusion of SGDIFF provides a shareable basis for different datasets and the feature diffusion acts
as an adjusting head which adapts the whole model to specific datasets. Lastly, generative models
are well-known for their robustness against adversarial attacks [24, 47]. By modeling the likelihood
scores of both the graph structure and node features, we expect that SGDIFF should be more robust
against graph adversarial attacks as compared to existing discriminative approaches. We empirically
verify this assumption in Section 4.4. Next, we detail the major components of SGDIFF.

log 𝑝! 𝐀 𝑦)

log 𝑝! 𝐗 𝐀, 𝑦)

⨁
Likelihood Fusion

Structure Diffusion Model

Feature Diffusion Model

Figure 1: An overview of our proposed framework. Qt and q are diffusion kernels for
structure and feature diffusion models, respectively. The calculation of log-likelihood scores
logPθ(A|y) and logPϕ(X|A, y) is based on fitted denoising models, pϕ(A

(0)|A(t), y) and
pϵ(X

(t−1)|X(t−),A(0), y), respectively.

3.3 Structure Diffusion Model

The estimation of p(A|y) with diffusion models involves the discrete input A. Following Di-
Gress [45], we use discrete status transition noise [48] to maintain both the sparsity of the adjacency
matrix as well as graph theoretic notions such as connectivity during the diffusion process. In addition
to the adjacency matrix A, we further include the orbit features of each node X′ in the diffusion
process. This is because we are estimating the likelihood score of a sub-graph S under the connection
condition y of the sub-graph’s center nodes u and v. The orbit features indicate the relative distance of
each node toward the center nodes thereby better distinguishing the sub-graphs with similar adjacency
matrix but different center node locations. There are many choices for the orbit features. We use the
Double Radius Node Labeling (DRNL) [30] as we empirically find that it performs well on most of
the datasets. To be concise, we define the forward of the structure diffusion model as:

q(S(t)|S(t−1)) = (A(t−1)Qt
A, X

′(t−1)Qt
X),

q(S(t)|S(0)) = (A(0)Q̄t
A, X

′(0)Q̄t
X), (2)

where Qt
A and Qt

X are the transition probability matrices at the t-th step for discrete edge and node
features. Q̄t

A =
∏t

i=1 Q
i
A and Q̄t

X =
∏t

i=1 Q
i
X . The backward process can be stated as:

pθ(S
(t−1)|S(t), y) = (A(t)(Qt

A)
′ ⊙ ϕθ(A

(t), y, t)Q̄t−1
A ,

X(t)(Qt
X)′ ⊙ ϕθ(X

(t), y, t)Q̄t−1
X ) (3)

where ⊙ denotes a element-wise product and (Qt
A)

′ and (Qt
X)′ are the transpose of Qt

A and Qt
X ,

respectively. ϕθ is the denoising diffusion model, which takes timestep t, t-th step noisy sample S(t)

and connection condition y as inputs. It further outputs the distribution of categorical features in
the clean graph S(0). We use a transformer-based neural network for ϕθ and train it following prior
work [45]. The conditional information y is concatenated to every node and edge feature during the
pre-processing step.

The likelihood score of sub-graph S can then be estimated by applying the evidence lower bound
(ELBO) to the integration result of the joint probability pθ(S

(0:T )) = (
∏T

i=0 pθ(S
(t−1)|S(t))) ·
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P (S(T )) over different trajectories S(1:T ). We calculate pθ(S|y) as follows:

log pθ(S|y) ≥ log p(nS |y) +DKL[q(S
(T )|S)||qX(nS |y)× qE(nS |y)]︸ ︷︷ ︸

Prior loss

+

T∑
t=2

Lt(S|y)︸ ︷︷ ︸
Diffusion loss

+Eq(S(1)|S)[log pθ(S|S(1), y)]︸ ︷︷ ︸
Reconstruction loss

(4)

with
Lt(S|y) = Eq(S(t)|S)[DKL[q(S

(t−1)|S(t), S)||pθ(S(t−1)|S(t), y)]] (5)

where log p(nS |y) is the probability of sub-graph size nS under condition y. We note that since most
link prediction problems are on undirected graphs, the above diffusion process is only applied to
the upper-triangular of A. Additionally, as the (u, v)-th element of adjacency matrix A(0) will be
unknown during test, we make A

(0)
u,v = 0 during pre-processing.

3.4 Node Diffusion Model

Since node features are typically continuous variables, we estimate pθ(X|A, y) using Gaussian noise
as its diffusion kernel in a similar manner to DDPM [22]. Similar to Eq. (2), the forward process of
feature diffusion model can be written as:

q(X(t)|X(t−1)) = N (X(t);
√
1− βtX

(t−1), βtI), (6)

q(X(t)|X(0)) = N (X(t);
√
1− ᾱtX

(0), ᾱtI), (7)

where βt is the variance schedule, which transitions from 0 to 1, and ᾱt =
∏t

i=1(1−βt). The reverse
process under condition c is defined as:

pθ(X
(t−1)|X(t), c) = N (X(t−1); µ̃t, β̃t)

µ̃t =
1
√
αt

(X(t) − 1− αt√
1− ᾱt

ϵθ(X
(t), t, c), β̃t =

1− ᾱt−1

1− ᾱt
· βt (8)

where αt = 1− βt. ϵθ(X(t), t, y) is our denoising diffusion models and β̃t is only correlated with
the βt. Through applying the ELBO trick over the integral of joint distribution q(X(0:T )|y), we can
write the conditioned log-likelihood score of node features as:

log pθ(X|c) ≥ Eq

[
log

pθ(X
(0:T ), c)

q(X(1:T )|X(0))

]
= Eq[DKL(q(X

(T )|X(0))||pθ(X(T )))︸ ︷︷ ︸
Prior loss

− log pθ(X
(0)|X(1), c)︸ ︷︷ ︸

Reconstruction loss

+ΣT
t=2DKL(q(X

(t−1)|X(t),X(0))||pθ(X(t−1)|X(t), c))︸ ︷︷ ︸
Diffusion loss

], (9)

where the prior and reconstruction losses are nullified as their value is much smaller than the diffusion
loss. To calculate DKL(q|pθ), we use the simplified form proposed by Ho et al. [22] producing the
final expression:

−Et,ϵ[||ϵ− ϵθ(X
(t), c)||2] with X(t) =

√
ᾱtX

(0) +
√
1− ᾱtϵ, (10)

where ϵ ∼ N (0, 1). The denoising model ϵθ takes as input ϵθ, the noisy samples at step t, and the
given condition c = (A, y) and outputs the noise at step t. Since the condition c includes both the
adjacency matrix A and the connection condition y, the predictions are made at node-level. Lastly,
we use GCN [49] to model ϵθ:

ϵθ(X
(t), y, t) = Â(σ(ÂX(t)W0))W1, (11)

where σ is an activation function, and W0 and W1 are the learnable parameters. Â = D̃− 1
2 ÃD̃− 1

2

with Ã = A + IN and D̃ii = ΣjÃij . The connection status condition y is concatenated to each
node feature during the feature pre-processing.

5



Sub-graph Based Diffusion Model for Link Prediction

3.5 Connection Probability Estimation

With the estimated log-likelihood scores of the sample’s graph structure log p(A|y) and node features
log p(x|A, y), we can estimate the connection probability P (y|A,X) via Eq. (1). However, directly
taking the summation over those two components will be sub-optimal, as the scale of values returned
by the two diffusion models are different. Furthermore, the weighting values of the diffusion loss
are neglected during the loss calculation for simplification purposes. Because of this, we use the
additional learnable parameter set {η1, η2, δ} to flexibly adjust each component during the fusion.
The final connection probability calculation can be written as:

P (y|A,X) = softmaxy(logP (A,X|y) + logP (y)), (12)

with
logP (A,X|y) = η1 · log P̂(X|A, y) + η2 · log P̂(A|y) + δ, (13)

where {η1, η2, δ} are optimized via gradient descent over the cross entropy loss between true links
and the predicted connection probability P̂ (y|A,X). Please check Appendix A.1 for more details.

4 Experiments
In this section we conduct comprehensive experiments to validate the advantages of the proposed
framework SGDIFF. In particular, we aim to answer the following questions: RQ1: Does SGDIFF
enjoy the advantages of both SGNNs and generative models in solving cross-dataset link prediction?
RQ2: How is the generalization capability of SGDIFF when faced with the challenge of train size
limitation? RQ3: Does SGDIFF show its strength in robustness against the adversarial attacks on
graph structure? Before presenting our experimental results and observations, we first introduce our
general experimental settings.

4.1 General Experimental Settings

To demonstrate the effectiveness of SGDIFF, we choose seven representative link prediction al-
gorithms as our baselines. Specifically, our baselines include GCN [49], GAT [50], SAGE [51],
NeoGNN [52], VGAE [16], and SEAL [12]. To be noticed, we select VGAE because it is a represen-
tative generative model for graph learning. And we collect SEAL and NeoGNNs since both of them
are the effective link prediction models sharing the similar sub-graph learning ideas with SGDIFF. For
the other baseline methods, we collect them following the prior studies on link prediction tasks [53].
More details about implementations of the baseline and SGDIFF can be found in Appendix A.3. We
conduct experiments on six real-world graph datasets, including 3 citation networks: Cora, Citeseer
and Pubmed [54] and 3 miscellaneous networks: USAir, NS and Router. The details about each
dataset are shown in Table 3. Following prior works [12, 16], we split the existing links in each graph
into train/valid/test with the percentages 80%/5%/15%. For evaluation, we randomly sample the
same amount of unconnected node pairs as the negative samples. The evaluation metrics used in our
experiment are AUC, Average Precision(AP) and Hit@100. All experiments are run over 10 seeds
and we report both the mean values of each metric.

4.2 Performance on Cross-data Transferability

In this section, we aim to answer the first question about the cross-data transferablity of SGDIFF. As
discussed in Section 3.2, one potential advantage of the structure diffusion model of SGDIFF is the
potential to be transferred across datasets without re-training. To validate this advantage, we perform
a zero-shot cross dataset transferring experiment, where the model is trained with a source dataset
and is tested on other target datasets. As the node features among different datasets are incompatible
with each other, we do not add node features for SGDIFF and SEAL. For VGAE, as the training and
test graphs have different node numbers, we do not use node-id as input features for VGAE. Instead,
we follow prior work [55], which randomly projects the node features into the same dimension and
then performs row normalization. For graphs without node features, we draw random vectors from
the Gaussian distribution and use it as node features. We test the transferability by setting each of the
six graph datasets as the source for training and test the train model overall all six graphs. We report
the perforamnce of each model from two perspectives, Source and Target. To be specific, Source
averages the test performance on different target datasets of one model trained with one fixed source
dataset. And Target averages the test performances on one fixed target dataset of six models trained
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Table 1: Performance on the cross-data link prediction tasks. The Rank displays the average rank of
models in different source and target datasets. The best rank value is marked with ∗, the second best
is marked with ‡, and the third best is marked with †.

Source Target
Model Rank ↓ Cora Citeseer Pubmed Router NS USAir Cora Citeseer Pubmed Router NS USAir

AUC ↑
GCN 5.3 82.25 75.38 83.43 74.87 50.84 68.71 70.52 71.12 71.68 55.75 85.02 81.39
GAT 4.7 79.31 77.89 80.63 75.12 67.59 68.15 74.76 74.19 73.99 50.43 89.32 85.99

SAGE 4.0 82.41 81.28 84.17 76.30 70.63 68.14 73.33 73.01 79.54 65.45 85.81 85.78
NeoGNN 3.9† 80.26 74.49 85.99 81.09 63.83 78.21 82.67 78.05 82.48 53.37 90.15 77.16

VGAE 6.8 71.89 73.58 75.46 64.56 62.34 65.25 67.24 66.27 69.18 54.04 80.72 75.64
SEAL 1.9‡ 89.09 84.55 88.84 87.98 86.55 75.03 84.88 83.14 80.02 78.45 94.86 90.69
SGDiff 1.4∗ 85.94 90.49 92.07 87.99 87.98 83.80 86.93 86.23 90.78 88.62 91.62 84.09

AP ↑
GCN 5.5 83.75 79.37 85.94 74.88 58.78 69.11 73.67 73.00 74.37 62.85 85.83 82.11
GAT 4.4 81.44 80.68 83.57 80.10 72.31 72.21 78.27 79.40 76.66 58.39 92.88 84.72

SAGE 4.6 83.14 81.59 85.70 77.03 69.85 66.24 74.13 74.69 77.87 65.76 87.47 83.63
NeoGNN 3.3† 85.50 80.36 89.71 85.35 72.63 80.79 86.38 83.19 86.63 65.55 93.57 79.01

VGAE 6.9 71.21 74.21 76.21 64.81 61.52 65.07 67.56 66.01 69.38 57.23 78.35 74.49
SEAL 1.8‡ 90.54 87.06 91.51 89.02 88.16 78.76 87.50 86.89 82.25 81.32 95.92 91.16
SGDiff 1.5∗ 87.79 91.36 92.65 86.54 88.66 85.17 87.93 86.98 90.90 89.62 91.56 85.19

Hit@100 ↑
GCN 5.3 71.26 63.37 72.54 56.10 35.33 48.31 52.78 55.62 31.88 36.34 85.26 85.04
GAT 4.6 64.85 63.18 68.19 60.84 51.22 49.22 58.91 63.11 27.92 27.36 87.73 92.47

SAGE 4.8 68.06 65.35 73.38 57.45 48.49 43.62 54.19 58.28 26.50 39.79 85.16 92.44
NeoGNN 3.3† 72.09 65.13 77.77 70.12 52.23 63.56 74.96 69.35 48.35 41.76 89.78 76.70

VGAE 6.8 54.08 55.38 60.89 42.81 39.45 43.30 43.00 43.39 22.12 25.92 82.15 79.34
SEAL 1.8‡ 78.42 74.46 82.31 77.71 73.46 59.26 77.16 76.14 39.09 62.92 94.96 95.35
SGDiff 1.5∗ 74.99 83.37 86.02 76.82 75.01 74.51 78.95 80.08 50.43 78.67 93.84 88.75

by different source datasets. Overall, the cross-data transferring results are shown as Table 1, and we
calculate the average rank of each model under different source and target dataset as the indicator for
model’s cross-data transferability. Detailed performance of models can be found in Appendix. A.5.

From Table 1 we have the following observations: (1) the link prediction performance of all baseline
models is always much better than the random guess, e.g., AUC greater than 50%. This fact indicates
that different graph datasets actually share some similar structure patterns for link prediction task
and it will be possible to develop a unified link prediction model across different graph datasets. (2)
SGDIFF achieves best average ranking performance across different transferring scenarios, which
supports our claim that SGDIFF takes the advantages of both SGNNs and generative model in
generalization. In addition, we find that SGDIFF consistently benefits from transferring from a
larger source dataset. For instance, when trained with different source datasets, SGDIFF receives
the best performance with Pubmed, which indicates that fitting on Pubmed tends to produce the best
transferability. This observation is followed by the other five source datasets, Cora, Router, Citeseer,
NS and USAir, where USAir is the smallest. This phenomenon encourages us to explore an unified
pre-training framework for link prediction as one promising future direction. (3) It is important to
note that SGDIFF is outperformed by other baseline methods, such as SEAL, in certain transfer
scenarios—most notably when the target is USAir. In Appendix A.4, we provide a comprehensive
case study examining structural feature distribution shifts between the source and target datasets. Our
findings confirm that SGDIFF faces challenges when the distribution shift between the source and
target datasets is substantial.

4.3 Performance with Train Size Constraint

In this subsection, we further explore the generalization capability of SGDIFF and answer the second
question by applying low availability limitations on the size of training set. In this setting, we shrink
the training sample size of each dataset to only 1%. To make the result comparable with other
experiments, only the size of training data is decreased while keeping the validation and test sets.
Furthermore, we use random sampling to create smaller training sets. To be noticed, as we intend to
explore the performance change caused by decreasing training sample size, but not the completeness
of the graph, we do not mask the remaining 99% training edges from the original graph during the
enclosing sub-graph generation process. We only control the number of sub-graphs used for training
SEAL and SGDIFF. And for VGAE, we use the same adjacency matrix as other experiments but
we mask 99% of the cross-entropy loss over the adjacency matrix during the back propagation. The
performance of SGDIFF and baseline models are shown in Figure 2. We observe that as we limit
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Figure 2: Model Performance on Cora / Citeseer / Pubmed / Router / NS / USAir datasets under the
limited (1%) training set scenario.

Table 2: Robustness against random flip (RF) and node embedding (NE) Attacks on Cora / Citeseer /
Pubmed. The Rank displays the average rank of models in different settings. The best rank value is
marked with ∗, the second best is marked with ‡, and the third best is marked with †.

Cora Citeseer Pubmed

RF EA RF EA RF EAModel Rank ↓
25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%

AUC ↑
GCN 5.4 84.66 82.29 84.23 84.23 80.55 78.63 80.93 79.60 95.04 93.28 94.10 93.10
GAT 5.2 86.90 83.60 87.53 84.23 84.19 81.31 84.90 82.64 88.92 84.72 88.71 83.86

SAGE 2.7‡ 89.63 86.75 87.97 85.54 86.16 84.53 86.87 85.89 94.88 92.43 94.54 91.56
NeoGNN 3.7 89.15 86.59 87.51 84.92 82.59 80.96 83.00 82.19 94.40 93.68 95.30 93.21

VGAE 3.0† 88.87 86.61 87.38 85.05 90.07 87.46 89.96 87.45 94.35 92.42 94.24 92.27
SEAL 6.2 86.84 83.49 87.03 82.84 82.66 78.55 82.70 79.26 91.90 87.39 90.71 86.07
SGDiff 1.8∗ 88.37 86.88 88.00 85.67 87.13 85.43 86.51 84.82 95.09 94.62 94.76 93.99

AP ↑
GCN 5.6 85.79 83.37 85.11 85.11 81.33 80.06 81.74 81.36 95.18 93.51 95.25 93.47
GAT 6.1 87.33 84.00 88.41 84.79 85.90 83.32 86.68 84.78 89.28 85.28 89.15 84.40

SAGE 3.1† 89.79 87.98 90.52 89.08 87.25 85.77 87.86 86.99 95.27 93.08 95.04 92.51
NeoGNN 2.5∗ 90.84 89.25 91.05 89.82 85.77 84.53 86.16 85.36 95.59 94.06 95.54 93.83

VGAE 2.7‡ 90.12 88.18 88.75 86.72 91.09 88.95 91.21 89.07 94.94 93.52 94.90 93.44
SEAL 4.9 89.34 86.89 89.72 86.65 86.83 83.73 86.96 84.56 93.15 89.88 92.40 89.28
SGDiff 3.2 88.35 87.10 88.09 86.04 89.17 87.79 88.65 87.46 95.12 94.62 94.97 94.47

Hit@100 ↑
GCN 6.2 72.73 67.40 71.88 71.88 68.97 64.16 68.78 66.21 64.06 56.44 64.13 57.15
GAT 5.8 77.48 70.34 78.52 71.51 73.73 69.83 74.83 71.01 43.32 33.70 42.72 32.15

SAGE 2.3‡ 82.28 78.18 82.37 80.25 77.08 73.45 77.67 75.61 67.65 57.80 66.67 56.47
NeoGNN 3.9 80.44 77.37 81.04 78.27 70.00 69.08 70.52 69.97 63.98 58.61 63.83 59.45

VGAE 2.2∗ 80.49 76.94 78.59 73.87 84.30 79.50 82.92 79.13 67.58 62.81 68.23 62.86
SEAL 5.1 78.58 72.65 78.80 72.11 74.98 68.22 74.43 68.78 63.87 56.65 63.73 58.49
SGDiff 2.5† 79.55 77.10 78.82 74.53 79.49 76.08 78.11 74.48 65.63 63.27 65.51 64.42

the size of the training data, SGDIFF suffers less performance degradation compared with the other
baseline models. This validates the advantages of SGDIFF when little training data is used.

4.4 Performance in Terms of Robustness

In this section, we answer the third question by demonstrating the robustness of SGDIFF. To
empirically test this, we adopt three common adversarial attack baselines for link predictions, i.e.,
random flipping (RF), Embedding Attack (EA) [56] and DICE [57]. To be noticed, as most adversarial
attack are proposed for graphs with node features, we conduct the following experiments with three
citation networks: Cora, Citeseer and Pubmed. For DICE, as it required node label information as
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Figure 3: Models’ robustness against the DICE attack on Cora / Citeseer / Pubmed datasets.

the supervised signal to train a surrogate model during the attack process, we apply it only with two
baseline models, e.g., VGAE, SEAL, and SGDIFF. The implementation of each attack uses the open
source graph attack tool library, DeepRobust [58]. For each type of attacks, we substitute the clean
adjacency matrix with an attacked one during the inference process. We then compare each model’s
performance with different adversarial budgets against its clean performance. During the model
training phrase, the node feature will be used if it is available on that dataset. Otherwise, the one-hot
node id feature will be used as node features for VGAE. The complete performance of all models
against RF and EA is shown in Table 2 and the robustness towards DICE is presented as Figure 3.

From Table 2 and Figure 3, we have the following observations. (1) Generative models, e.g., VGAE
and SGDIFF, are more robust compared to most of the discriminative based models. This observation
is consistent with the robustness conclusion in prior researches on generative and discriminative
methods [19]. (2) SGDIFF achieves dominating leading positions in the relative performance
degradation percentage, while keeping leading in the absolute metric values on most of datasets. This
phenomenon demonstrates the robustness of SGDIFF. (3) Although SGDIFF does not shown its
steady leading position on some datasets like citeseer, but its performance degradation is relatively
much smaller than other baselines. And we have reason to believe that SGDIFF will be more robust
when face stronger perturbations.

5 Conclusion
In this paper, we aim to adopt the diffusion model to the link prediction problem. With extensive
experiments over the model’s generalization, robustness and cross-data transfer capability, we
successfully demonstrate the advantages of applying generative models toward graph learning tasks.
Additionally, through the findings on the exchangeable structure components over datasets, we show
the potential of our proposed framework to be an unified pre-training framework for link prediction
in the future.
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A Appendix
A.1 Algorithm Pseudo Code

The entire process of SGDIFF is shown in Algorithm 1. We estimate the likelihood scores for
the structure and features simultaneously from lines 2 to 9 and 10 to 16, respectively. The two
components are then fused together on line 17. Lastly, the sample’s final connection probability is
estimated on line 18.

Algorithm 1: Sub-graph Based Diffusion Model (SGDIFF)
Input: Sub-graph G = (A,X), connection condition inputs yc ∈ {0, 1}, structure diffusion

model ϕθ, feature diffusion model ϵθ, fusion parameter set {η1, η2, δ}, number of steps of
structure diffusion model Nϕ, number of steps of feature diffusion model Nϵ.

1 Initialize StructureScore[yc] = list() and FeatureScore[yc] = list() for each yc;
2 for step t← Nϕ to 1 do
3 prepare X′(0) with labeling tricks on A(0);
4 sample G(t) with q(G(t)|G(0)) = (A(0)Q̄t

A,X
′(0)Q̄t

X);
5 for conditioning yc ← 0 to 1 do
6 StructureScore[yc].append(
7 DKL[q(G

t−1|Gt, G)||pθ(Gt−1|Gt, yc))
8 end
9 end

10 for step t← Nϵ to 1 do
11 sample ϵ ∼ N (0, I);
12 X(t) =

√
ᾱtX

(0) +
√
1− ᾱtϵ;

13 for conditioning yc ← 0 to 1 do
14 FeatureScore[yc].append(||ϵ− ϵθ(X

(t),A(0), yc)||2)
15 end
16 end
17 calculate logP (A|yc) = mean(StructureScore[yc]);

logP (X|A, yc) = mean(FeatureScore[yc]);
logP (A,X|yc) = η1 · logP (X|A, y) + η2 · logP (A|y) + δ;

18 return argmin
yc∈{0,1}

(softmax(logP (A,X|yc))

A.2 Dataset Details

The details about each dataset are shown in Tabel 3. Following prior works [12, 16], we split the
existing links in each graph into train/valid/test with the percentages 80%/5%/15%. For evaluation,
we randomly sample the same amount of unconnected node pairs as the negative samples. The
evaluation metrics used in our experiment are AUC, Average Precision(AP) and Hit@100.

Table 3: Detailed statistical information about each dataset.

Data Domain Node
Number

Edge
Number

Average
Node Degree

Node
Feature / Label

Cora Citation 2,708 10,556 3.89 ✔
Citeseer Citation 3,327 9,228 2.77 ✔
Pubmed Citation 19,717 88,651 4.49 ✔
Router Transporation 5,022 12,516 2.49 ✘
USAir Transporation 332 4,252 12.81 ✘

NS Collaboration 1,589 5,484 3.45 ✘

A.3 Implement Details

The implementation and hyper-parameter settings of the two baseline models follow prior works [12,
16]. The implementation of our structure diffusion model follows the prior work [45] and the feature
diffusion model is implemented with a multi-layer GCNs. During the enclosing graph generation
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Table 4: Hyper-parameter setting of structure and feature diffusion models.
Name Symbol Cora Citeseer Pubmed Router USAir NS

Sturcture Diffusion

Hop number of subgraph
enclosing the link k 1 1 1 1 1 1

Maximum node number
for each hop’s sampling ns -1 20 20 10 40 5

Attention hidden neuron
number of each layer for

node representation
ha_x 256

Attention hidden neuron
number of each layer for

edge representation
ha_e 64

Attention hidden neuron
number of each layer for

global condition representation
ha_y 64

MLP hidden neuron
number of each layer for

node representation
hm_x 256

Attention hidden neuron
number of each layer for

edge representation
hm_e 128

Attention hidden neuron
number of each layer for

global condition representation
hm_y 128

Head number of attention head 8

Number of transformer layer l_t 2

Number of diffusion steps ds_t 20 20 10 5 10 20

Feature Diffusion

Hidden neruon of GCNs h_g 256 256 64
N/ANumber of GCN layers l_g 2 2 2

Number of diffusion steps ds_g 100 100 50

process, we incorporate the neighbor sampling trick [51] to avoid the graph size becoming extremely
large when it encounters some hub nodes. To add DRNL into the structure diffusion process, we treat
extracted structure labels as categorical variables and use the sum of node and feature cross-entropy
loss to train the structure denoising model. We perform grid search over the hyper parameters of our
score and feature diffusion models. The best parameter of each components for each dataset is shown
in Table. 4. As the prior p(y = 1) and p(y = 0) are constant numbers during the ELBO calculation,
we choose to set p(y) = 0.5 in our experiment. In parameter tuning process, we try to use the natural
distribution of y for the prior p(y). However, as we found that there is no significant difference, we
keep using p(y) = 0.5 for all our experiments for simplicity.

A.4 Case Studies on Cross-data Transferability

To explore the explanations to the inconsistent cases among discriminative and generative over
different datasets in the cross-data transferability experiment. To begin with, we choose to use the
comparison between SEAL and SGDIFF over the 6 datasets as our study’s target since they are the
top-2 ranked methods listed in Table. 1 and both of them leverage the sub-graph learning idea. Then,
we select one simple yet effective structure feature: common neighbor (CN), and calculate the its KL-
divergence, DKL between the feature distributions in Source (S) and Target (T ) datasets as an index
to represent the difference between the graph structures of source and target datasets. Specifically,
we first calculate the CN for all positive edges (+) and negative edges (−) in the train split of S
and the test split of T . Then, we calculate DKL(q

+
S (CN)∥p+T (CN)) and DKL(q

−
S (CN)∥p−T (CN)),

respectively. At last, we use the average value of the two KL-divergence as the index for the Source-
Target transfer learning pair. To align with the presenting formats in Table 1, we aggregate the
pair-wise results over different source and target datasets independently. Overall, our case study
result is shown in Table. 5.

From the table, we can clearly observe that the performance gap between SEAL and SGDIFF is
negatively related to the DKL. This fact suggests that when the graph structure feature distribution
between source and target is large (DKL is large), the SGDIFF will be outperformed by SEAL. On the
contrary, the SGDIFF outperforms SEAL when the source and target datasets share structure features.
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Table 5: Case studies over DKL and performance difference between SEAL and SGDIFF.

Data Source Target

Cora Citeseer Pubmed Router NS USAir Cora Citeseer Pubmed Router NS USAir

DKL 4.43 2.31 2.55 4.05 2.95 2.24 0.86 0.87 0.69 0.84 3.13 14.15

AUC

SEAL 89.09 84.55 88.84 87.98 86.55 75.03 84.88 83.14 80.02 78.45 94.86 90.69
SGDiff 85.94 90.49 92.07 87.99 87.98 83.80 86.93 86.23 90.78 88.62 91.62 84.09

Difference -3.15 5.94 3.23 0.01 1.43 8.77 2.05 3.09 10.76 10.17 -3.24 -6.60

AP

SEAL 90.54 87.06 91.51 89.02 88.16 78.76 87.50 86.89 82.25 81.32 95.92 91.16
SGDiff 87.79 91.36 92.65 86.54 88.66 85.17 87.93 86.98 90.90 89.62 91.56 85.19

Difference -2.75 4.30 1.14 -2.48 0.50 6.41 0.43 0.09 8.65 8.30 -4.36 -5.97

Hit@100

SEAL 78.42 74.46 82.31 77.71 73.46 59.26 77.16 76.14 39.09 62.92 94.96 95.35
SGDiff 74.99 83.37 86.02 76.82 75.01 74.51 78.95 80.08 50.43 78.67 93.84 88.75

Difference -3.43 8.91 3.71 -0.89 1.55 15.25 1.79 3.94 11.34 15.75 -1.12 -6.60

Table 6: Area under the curve (AUC) of different models in cross-data transferability experiment.
Target Source GCN GAT SAGE NeoGNN VGAE SEAL SGDiff

Cora

Cora 90.49 ± 0.59 89.85 ± 0.97 90.28 ± 0.84 92.01 ± 0.61 88.98 ± 1.09 91.74 ± 0.91 90.21 ± 2.21
Citeseer 71.99 ± 3.08 80.35 ± 1.47 77.29 ± 1.62 84.05 ± 1.72 67.16 ± 3.87 88.11 ± 1.73 90.09 ± 0.81
Pubmed 75.14 ± 4.31 77.12 ± 0.75 79.08 ± 1.29 84.49 ± 2.72 67.68 ± 3.80 88.36 ± 0.52 90.73 ± 2.03
Router 72.70 ± 1.42 72.18 ± 1.19 69.71 ± 1.48 82.44 ± 1.51 60.69 ± 3.17 84.42 ± 1.65 86.17 ± 2.31

NS 50.42 ± 4.60 66.20 ± 1.11 64.61 ± 1.41 75.60 ± 1.45 59.07 ± 1.58 84.08 ± 2.39 84.65 ± 1.91
USAir 62.36 ± 2.93 62.85 ± 1.88 59.01 ± 1.26 77.40 ± 2.77 59.87 ± 1.35 72.57 ± 3.80 79.74 ± 5.07

Citeseer

Citeseer 89.64 ± 1.11 88.90 ± 1.62 89.35 ± 1.28 90.60 ± 1.01 88.17 ± 0.80 89.37 ± 0.99 89.36 ± 2.16
Cora 80.12 ± 1.87 79.55 ± 1.45 79.43 ± 2.64 82.82 ± 1.43 67.93 ± 2.58 89.14 ± 1.04 87.81 ± 2.39

Pubmed 75.94 ± 4.77 78.04 ± 1.92 79.18 ± 1.92 81.11 ± 3.02 68.34 ± 2.73 80.78 ± 1.31 91.64 ± 1.77
Router 62.68 ± 1.59 69.02 ± 3.04 66.06 ± 1.94 75.84 ± 2.27 58.79 ± 2.73 82.45 ± 2.04 87.49 ± 2.96

NS 57.36 ± 3.88 66.37 ± 2.27 64.79 ± 2.34 67.45 ± 2.76 57.74 ± 2.20 86.53 ± 1.16 82.93 ± 2.09
USAir 60.98 ± 2.27 63.24 ± 2.74 59.24 ± 1.91 70.45 ± 3.38 56.62 ± 1.16 70.58 ± 3.15 78.13 ± 5.75

Pubmed

Pubmed 96.01 ± 0.30 93.07 ± 0.37 96.17 ± 0.20 96.50 ± 0.32 95.37 ± 0.19 97.36 ± 0.18 95.97 ± 0.75
Cora 89.54 ± 1.96 83.13 ± 0.95 86.70 ± 1.26 87.24 ± 1.49 78.10 ± 2.94 87.34 ± 2.19 90.74 ± 2.17

Citeseer 78.05 ± 5.57 82.29 ± 2.45 85.50 ± 1.04 83.25 ± 1.38 77.78 ± 3.73 79.54 ± 3.27 94.47 ± 1.48
Router 75.93 ± 0.58 68.19 ± 1.21 78.76 ± 0.54 83.61 ± 6.86 57.84 ± 4.50 87.06 ± 2.36 85.59 ± 3.48

NS 33.15 ± 4.98 58.91 ± 0.79 66.91 ± 0.93 67.22 ± 0.58 52.27 ± 0.65 78.06 ± 7.26 88.76 ± 3.73
USAir 57.39 ± 3.76 58.34 ± 1.37 63.21 ± 0.88 77.04 ± 2.09 53.71 ± 0.92 50.77 ± 7.42 89.13 ± 2.39

Router

Router 84.05 ± 1.03 64.33 ± 2.32 75.23 ± 0.97 70.09 ± 4.99 63.39 ± 2.35 95.90 ± 0.27 94.76 ± 0.69
Cora 60.09 ± 3.61 49.57 ± 1.94 65.65 ± 1.52 45.48 ± 3.37 53.21 ± 1.61 77.99 ± 3.03 88.80 ± 2.24

Citeseer 38.67 ± 4.50 45.66 ± 1.63 64.93 ± 1.12 37.46 ± 2.21 50.32 ± 0.96 66.34 ± 6.74 91.90 ± 1.68
Pubmed 70.05 ± 1.16 57.13 ± 1.04 69.89 ± 1.08 69.96 ± 1.24 48.15 ± 1.40 84.44 ± 1.04 94.20 ± 0.91

NS 22.42 ± 3.13 42.00 ± 1.62 58.89 ± 0.95 35.12 ± 1.91 52.34 ± 2.18 81.99 ± 4.12 82.95 ± 8.46
USAir 59.23 ± 4.96 43.91 ± 2.18 58.11 ± 2.08 62.11 ± 5.49 56.81 ± 2.66 64.03 ± 7.81 79.09 ± 5.71

NS

NS 89.79 ± 1.98 90.97 ± 1.45 91.75 ± 1.09 88.87 ± 1.47 93.32 ± 0.90 98.28 ± 0.35 97.47 ± 0.57
Cora 86.88 ± 1.33 90.26 ± 1.18 87.28 ± 1.65 90.75 ± 1.62 77.60 ± 1.60 97.59 ± 0.42 92.16 ± 4.30

Citeseer 87.58 ± 1.16 88.28 ± 0.84 86.38 ± 1.76 89.51 ± 1.64 78.74 ± 2.77 97.07 ± 0.57 95.46 ± 2.66
Pubmed 90.52 ± 1.24 90.99 ± 1.58 90.16 ± 1.37 91.20 ± 1.48 84.41 ± 1.62 92.62 ± 1.15 95.02 ± 1.16
Router 76.78 ± 3.02 90.18 ± 1.42 84.92 ± 2.44 92.44 ± 1.11 76.58 ± 5.54 89.01 ± 2.84 89.15 ± 2.57
USAir 78.54 ± 1.42 85.21 ± 1.61 74.37 ± 1.68 88.10 ± 2.67 73.66 ± 2.07 94.59 ± 1.77 80.43 ± 5.64

USAir

USAir 93.75 ± 1.64 95.34 ± 1.10 94.91 ± 1.07 94.15 ± 1.50 90.84 ± 1.21 97.62 ± 0.55 96.25 ± 1.58
Cora 86.38 ± 2.19 83.48 ± 2.43 85.11 ± 2.37 83.25 ± 13.72 65.53 ± 5.33 90.76 ± 2.43 65.90 ± 24.32

Citeseer 86.34 ± 2.46 81.83 ± 2.95 84.21 ± 2.40 62.04 ± 13.81 79.33 ± 4.57 86.86 ± 4.01 81.65 ± 11.75
Pubmed 92.90 ± 1.39 87.43 ± 2.88 90.53 ± 1.49 92.68 ± 1.78 88.81 ± 1.67 89.49 ± 1.18 84.84 ± 12.23
Router 77.06 ± 3.07 86.80 ± 1.30 83.11 ± 1.64 82.13 ± 17.75 70.04 ± 12.63 89.04 ± 2.05 84.79 ± 3.49

NS 51.92 ± 9.13 81.07 ± 1.77 76.82 ± 3.07 48.71 ± 6.89 59.31 ± 2.54 90.34 ± 1.96 91.11 ± 2.95

We think such observation may be caused by the difference in discriminative and generative training
methods. As generative training is not naturally designed for discriminative tasks, it fails to face the
large distribution shift between source and target datasets [24].

A.5 Cross-dataset Performance Details

We explore the transferability of models by setting each of the six graph as the training dataset and
testing the trained model on the other five and itself under the zero-shot scenario. Specicially, detailed
performances of seven baseline models and SGDIFF on AUC, AP and Hit@100 are presented in
Table. 6, Table. 7 and Table. 8. For each metric, we run experiment for 10 times and the mean value
and standard deviation are reported in the format of mean ± std%.
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Table 7: Average precision (AP) of different models in cross-data transferability experiment.
Target Source GCN GAT SAGE NeoGNN VGAE SEAL SGDiff

Cora

Cora 92.16 ± 0.40 91.14 ± 0.69 91.43 ± 0.87 93.39 ± 0.50 90.81 ± 0.83 92.85 ± 0.64 90.00 ± 2.41
Citeseer 76.79 ± 2.49 82.48 ± 1.22 78.37 ± 1.70 88.17 ± 1.05 67.47 ± 3.82 90.21 ± 1.40 91.08 ± 1.11
Pubmed 77.79 ± 3.86 80.26 ± 0.99 81.15 ± 1.20 88.79 ± 1.56 67.43 ± 4.72 90.86 ± 0.47 91.92 ± 1.86
Router 74.05 ± 1.45 77.65 ± 0.87 70.89 ± 1.27 86.74 ± 1.75 61.39 ± 4.15 86.90 ± 1.30 85.85 ± 3.17

NS 58.42 ± 4.08 71.68 ± 1.19 65.44 ± 0.92 82.44 ± 1.63 58.96 ± 1.71 86.00 ± 1.47 86.15 ± 1.85
USAir 62.80 ± 2.40 66.42 ± 2.42 57.48 ± 1.38 78.76 ± 3.95 59.32 ± 1.27 78.18 ± 3.58 82.55 ± 3.98

Citeseer

Citeseer 91.54 ± 0.94 90.93 ± 1.36 91.23 ± 1.12 92.41 ± 0.99 90.19 ± 0.85 91.62 ± 0.91 90.87 ± 1.93
Cora 80.59 ± 2.04 81.67 ± 1.96 81.80 ± 2.97 87.44 ± 0.99 67.36 ± 2.22 91.28 ± 0.70 88.95 ± 2.02

Pubmed 77.94 ± 4.75 83.54 ± 1.72 82.63 ± 1.52 86.62 ± 2.05 67.55 ± 3.15 86.52 ± 1.24 92.46 ± 1.48
Router 64.64 ± 1.14 76.56 ± 2.10 68.65 ± 1.76 81.66 ± 3.05 58.43 ± 2.36 85.03 ± 1.79 86.66 ± 4.02

NS 63.72 ± 3.10 74.11 ± 1.92 66.03 ± 2.82 78.70 ± 1.89 57.15 ± 2.19 89.43 ± 0.97 85.18 ± 2.17
USAir 59.55 ± 1.94 69.57 ± 2.31 57.79 ± 1.56 72.32 ± 3.94 55.39 ± 1.27 77.47 ± 3.06 77.77 ± 6.36

Pubmed

Pubmed 96.28 ± 0.30 93.73 ± 0.29 96.29 ± 0.24 97.04 ± 0.25 96.08 ± 0.20 97.38 ± 0.17 95.91 ± 1.14
Cora 90.84 ± 1.38 83.57 ± 1.26 86.82 ± 1.66 90.96 ± 0.95 78.87 ± 3.33 88.59 ± 1.64 90.77 ± 2.18

Citeseer 83.65 ± 4.32 82.88 ± 3.50 85.39 ± 1.40 88.27 ± 0.91 78.57 ± 4.34 83.58 ± 2.56 94.71 ± 1.48
Router 75.35 ± 0.67 74.48 ± 1.34 76.68 ± 0.77 87.68 ± 5.16 58.19 ± 6.46 88.05 ± 2.17 83.14 ± 4.23

NS 41.07 ± 3.42 63.73 ± 1.33 63.31 ± 1.19 76.37 ± 2.95 50.45 ± 0.56 79.39 ± 4.81 89.59 ± 2.35
USAir 59.05 ± 2.32 61.54 ± 2.04 58.71 ± 0.90 79.47 ± 1.63 54.09 ± 0.98 56.52 ± 5.29 91.25 ± 1.56

Router

Router 85.60 ± 1.01 72.16 ± 2.20 78.39 ± 1.60 77.53 ± 3.67 67.73 ± 1.85 95.78 ± 0.29 94.60 ± 1.00
Cora 65.25 ± 3.35 56.96 ± 2.33 65.97 ± 1.52 61.65 ± 2.47 55.76 ± 1.28 81.42 ± 2.26 89.70 ± 1.49

Citeseer 46.31 ± 3.28 55.85 ± 1.55 64.93 ± 1.57 53.99 ± 3.46 53.11 ± 0.89 72.38 ± 5.33 92.01 ± 1.86
Pubmed 75.82 ± 1.15 64.60 ± 1.26 71.79 ± 1.18 77.18 ± 1.11 52.72 ± 1.78 88.63 ± 0.82 93.95 ± 0.90

NS 40.44 ± 2.00 50.49 ± 2.10 57.38 ± 1.15 54.00 ± 4.46 54.25 ± 1.82 82.96 ± 3.28 83.05 ± 6.31
USAir 63.68 ± 3.67 50.28 ± 1.61 56.08 ± 1.77 68.92 ± 5.06 59.78 ± 2.23 66.72 ± 6.39 84.40 ± 4.73

NS

NS 93.27 ± 1.72 93.85 ± 0.74 94.00 ± 0.88 93.77 ± 0.83 94.74 ± 0.74 98.53 ± 0.29 97.76 ± 0.60
Cora 87.92 ± 1.93 93.85 ± 0.81 89.58 ± 1.35 94.59 ± 0.94 74.49 ± 1.68 98.00 ± 0.39 94.55 ± 2.70

Citeseer 91.02 ± 0.93 92.32 ± 0.59 88.77 ± 1.62 94.07 ± 0.92 75.98 ± 3.08 97.65 ± 0.37 95.11 ± 3.32
Pubmed 93.61 ± 0.81 94.08 ± 0.89 92.32 ± 0.96 94.57 ± 0.96 82.18 ± 2.09 94.85 ± 1.09 95.79 ± 1.27
Router 74.83 ± 3.48 93.66 ± 0.89 87.33 ± 1.95 94.99 ± 0.66 73.91 ± 5.63 90.36 ± 2.40 87.93 ± 3.75
USAir 74.33 ± 1.56 89.54 ± 1.25 72.80 ± 1.82 89.42 ± 3.48 68.82 ± 2.75 96.15 ± 1.18 78.21 ± 7.62

USAir

USAir 95.24 ± 1.12 95.89 ± 0.82 94.55 ± 1.04 95.84 ± 1.09 93.00 ± 0.98 97.51 ± 0.86 96.84 ± 1.39
Cora 85.73 ± 2.55 81.46 ± 4.03 83.24 ± 3.65 84.95 ± 12.86 59.94 ± 6.20 91.07 ± 3.55 72.79 ± 17.80

Citeseer 86.89 ± 2.64 79.64 ± 3.26 80.82 ± 4.13 65.22 ± 13.01 79.95 ± 5.95 86.93 ± 5.12 84.36 ± 8.04
Pubmed 94.22 ± 1.35 85.22 ± 4.18 90.03 ± 1.57 94.08 ± 1.81 91.27 ± 1.40 90.83 ± 1.37 85.84 ± 8.85
Router 74.80 ± 3.13 86.09 ± 2.05 80.22 ± 2.01 83.47 ± 15.26 69.21 ± 15.81 87.97 ± 2.52 81.08 ± 4.30

NS 55.78 ± 6.96 80.01 ± 1.71 72.94 ± 4.36 50.48 ± 4.39 53.57 ± 2.24 92.67 ± 2.46 90.24 ± 4.21

Table 8: Hit@100 of different models in cross-data transferability experiment.
Target Source GCN GAT SAGE NeoGNN VGAE SEAL SGDiff

Cora

Cora 85.97 ± 1.06 84.94 ± 1.78 84.43 ± 1.56 87.36 ± 2.02 81.87 ± 1.80 87.56 ± 2.24 83.68 ± 4.48
Citeseer 56.57 ± 3.22 66.23 ± 2.66 58.34 ± 2.97 76.13 ± 2.60 41.64 ± 6.27 81.86 ± 2.75 84.49 ± 1.64
Pubmed 59.31 ± 6.58 61.78 ± 1.86 64.82 ± 2.69 76.59 ± 3.75 41.70 ± 6.66 82.26 ± 2.34 85.76 ± 3.76
Router 50.81 ± 3.66 56.53 ± 1.67 48.61 ± 3.53 72.88 ± 2.98 33.03 ± 6.65 74.72 ± 3.72 76.48 ± 5.75

NS 28.19 ± 5.61 44.88 ± 3.04 39.54 ± 3.08 69.92 ± 2.06 28.56 ± 2.64 76.31 ± 5.02 72.69 ± 3.30
USAir 35.85 ± 3.76 39.08 ± 3.82 29.42 ± 2.50 66.90 ± 6.91 31.18 ± 3.48 60.26 ± 5.85 70.58 ± 8.60

Citeseer

Citeseer 85.39 ± 1.93 83.20 ± 2.47 84.44 ± 1.54 85.30 ± 1.10 81.87 ± 1.23 85.99 ± 2.44 84.34 ± 4.09
Cora 68.89 ± 3.02 69.90 ± 2.67 67.68 ± 5.43 74.10 ± 2.25 44.70 ± 4.69 86.88 ± 2.01 82.55 ± 5.19

Pubmed 63.97 ± 7.51 68.11 ± 3.33 69.66 ± 3.13 72.32 ± 3.89 46.42 ± 6.43 72.99 ± 2.30 88.44 ± 3.00
Router 40.31 ± 3.01 56.82 ± 3.78 49.03 ± 3.13 65.08 ± 3.69 32.06 ± 3.95 71.84 ± 5.42 83.08 ± 4.04

NS 39.98 ± 5.08 53.45 ± 3.61 44.70 ± 4.47 59.42 ± 2.78 28.27 ± 3.24 81.10 ± 2.22 70.49 ± 5.02
USAir 35.19 ± 3.45 47.15 ± 3.52 34.15 ± 3.05 59.89 ± 7.71 26.99 ± 3.24 58.01 ± 8.41 71.59 ± 8.65

Pubmed

Pubmed 73.75 ± 3.23 64.00 ± 2.08 73.53 ± 1.59 78.90 ± 1.85 74.22 ± 1.48 75.21 ± 1.43 68.77 ± 8.79
Cora 50.94 ± 4.53 28.90 ± 3.76 35.51 ± 4.32 60.68 ± 5.67 22.74 ± 5.04 44.20 ± 5.27 44.38 ± 10.69

Citeseer 44.58 ± 7.02 29.59 ± 8.35 30.35 ± 4.80 52.23 ± 9.10 22.81 ± 6.28 44.32 ± 5.29 65.81 ± 8.92
Router 17.70 ± 1.14 25.68 ± 3.13 13.59 ± 2.02 51.12 ± 11.81 5.61 ± 3.48 42.64 ± 5.97 24.02 ± 10.25

NS 1.36 ± 0.71 11.25 ± 1.90 3.91 ± 0.83 28.64 ± 20.89 2.50 ± 0.37 22.92 ± 10.61 45.86 ± 6.43
USAir 2.95 ± 3.62 8.07 ± 2.40 2.10 ± 0.30 18.53 ± 9.65 4.86 ± 0.53 5.26 ± 2.38 53.75 ± 8.30

Router

Router 68.28 ± 2.66 44.53 ± 3.30 57.77 ± 1.76 55.55 ± 5.69 36.55 ± 3.89 93.11 ± 1.78 89.47 ± 3.41
Cora 38.95 ± 4.66 25.20 ± 2.73 40.67 ± 2.80 34.71 ± 3.29 23.93 ± 2.36 58.70 ± 7.77 78.41 ± 4.29

Citeseer 14.82 ± 3.68 23.09 ± 1.84 39.26 ± 2.31 29.73 ± 2.30 20.71 ± 1.68 44.98 ± 10.47 82.71 ± 3.27
Pubmed 54.16 ± 2.18 32.35 ± 1.77 49.49 ± 2.29 54.23 ± 2.04 23.11 ± 2.84 77.06 ± 2.17 88.19 ± 5.71

NS 4.76 ± 2.30 19.70 ± 1.90 26.84 ± 2.49 28.02 ± 1.83 21.49 ± 2.62 65.66 ± 9.07 65.79 ± 14.49
USAir 37.04 ± 6.24 19.30 ± 1.76 24.70 ± 2.98 48.32 ± 5.97 29.72 ± 3.13 37.99 ± 10.19 67.46 ± 11.50

NS

NS 88.31 ± 2.16 89.02 ± 2.03 89.95 ± 1.63 87.57 ± 1.83 92.77 ± 1.21 98.92 ± 0.69 98.54 ± 1.28
Cora 88.62 ± 1.83 88.79 ± 1.58 87.42 ± 2.12 89.53 ± 2.35 79.89 ± 3.75 98.39 ± 0.80 91.66 ± 5.77

Citeseer 87.37 ± 0.91 86.32 ± 0.84 87.14 ± 2.87 88.56 ± 1.96 81.06 ± 5.13 97.30 ± 1.17 96.77 ± 2.46
Pubmed 89.06 ± 1.54 88.90 ± 1.74 87.80 ± 2.05 89.27 ± 1.88 87.99 ± 1.65 93.23 ± 1.68 96.26 ± 1.39
Router 75.13 ± 4.47 88.57 ± 1.82 85.18 ± 2.65 92.07 ± 2.40 77.03 ± 9.37 87.68 ± 6.58 94.52 ± 3.24
USAir 83.05 ± 3.09 84.78 ± 1.98 73.44 ± 3.57 91.69 ± 1.95 74.14 ± 4.42 94.24 ± 2.74 85.28 ± 6.62

USAir

USAir 95.77 ± 1.63 96.95 ± 1.20 97.92 ± 1.16 96.05 ± 1.44 92.90 ± 1.54 99.78 ± 0.39 98.38 ± 0.62
Cora 94.21 ± 1.77 91.36 ± 1.93 92.62 ± 2.75 86.18 ± 17.49 71.32 ± 7.43 94.77 ± 1.45 69.26 ± 26.48

Citeseer 91.48 ± 2.84 90.62 ± 2.56 92.57 ± 2.93 58.84 ± 17.22 84.17 ± 4.74 92.30 ± 3.24 86.12 ± 11.80
Pubmed 95.00 ± 1.66 93.97 ± 1.21 94.98 ± 1.93 95.32 ± 1.62 91.91 ± 1.69 93.13 ± 2.32 88.68 ± 15.24
Router 84.39 ± 4.53 92.91 ± 1.74 90.54 ± 2.14 84.01 ± 24.45 72.60 ± 15.83 96.26 ± 1.49 93.37 ± 3.52

NS 49.36 ± 12.58 89.01 ± 2.74 86.01 ± 3.94 39.81 ± 7.77 63.12 ± 2.84 95.86 ± 1.98 96.70 ± 1.74
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