
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SYMBOLIC AUTOENCODING
WITH STRAIGHT-THROUGH GRADIENT ESTIMATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervised autoregressive models have achieved significant success across
diverse domains, including text, audio, and biological sequences. However, these
models often rely heavily on large samples of aligned (parallel) data, limiting
their applicability in low-resource settings. To address this limitation, we pro-
pose Symbolic Autoencoding (ΣAE) with Straight-Through Gradient Estimators
(STGEs)—a latent variable model where the latent space consists of sequences
of categorical random variables, resembling sentences in an emergent symbolic
language. ΣAE is trained end-to-end using a family of straight-through gradient
estimators. In the unsupervised mode, ΣAE learns to compress input data into sym-
bolic sentences and reconstructs the data from this emergent language. In weakly
supervised settings, ΣAE further grounds the latent language by leveraging super-
vised training on the small amount of parallel data available. We evaluate ΣAE
with three well-known quantization mechanisms on four text sequence transduction
tasks. Our results show that ΣAE outperforms baseline methods, particularly in
low-resource scenarios with limited parallel data.

1 INTRODUCTION AND PRELIMINARIES

Mapping data between symbolic systems is a fundamental problem in information theory and machine
learning Kaiser & Bengio (2018); Baziotis et al. (2019); Fortuin et al. (2019). Whether converting
natural language into structured representations or relating biological sequences to their functions, the
central challenge lies in effectively encoding and representing information from one symbolic system
into another. In natural language processing, for example, this may involve translating sentences into
semantic graphs, requiring both syntactic parsing and an understanding of deeper semantic structures.
Sánchez et al. (2023)

In cases where large-scale parallel datasets are available—such as aligned language pairs in machine
translation—supervised models can be trained to perform these mappings directly. However, in the
more common scenario where parallel data is scarce or unavailable, how can we still learn to map
sequences between two symbolic systems? Magueresse et al. (2020); Lample & Conneau (2019);
Joshi et al. (2020); Gregor et al. (2013).

To address this challenge, we propose Symbolic Autoencoding (ΣAE), a weakly-supervised frame-
work for sequence transduction across symbolic systems X and Z. ΣAE is designed to leverage both
non-parallel data and limited amounts of parallel data to establish bidirectional mappings between two
systems. At its core, ΣAE employs a latent variable model where the latent space comprises sequences
of categorical random variables—discrete symbolic representations with variable lengths. These
latent sequences serve as an emergent language, enabling both lossy compression (via autoencoding)
and alignment with parallel data via standard supervised training when available.

The training process alternates between two complementary tasks:

• Unsupervised Autoencoding: ΣAE reconstructs sequences through bidirectional mappings:

– Z
Mzx−−−→ X

Mxz−−−→ Z, where Mzx serves as the encoder and Mxz as the decoder; or
– X

Mxz−−−→ Z
Mzx−−−→ X , where Mxz acts as the encoder and Mzx as the decoder.

Both mappings utilize discrete bottlenecks to learn emergent symbolic representations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Mzx

DBx

Mxz

DBz

Dx

Mzx

DBx

Mxz

DBz
^

Dz

Mzx

DBx

Mxz

DBz

Dxz

^ ^^

Parallel
Data

Unparallel Z Data Unparallel X Data

Figure 1: Illustration of the abstract flow of data in the symbolic autoencoding (ΣAE) framework,
exemplified with the Rosetta Stone problem. Two sequence-to-sequence models (Mxz and Mzx) are
trained with both parallel data (the Rosetta Stone) through next-token prediction and unparallel data
through connecting the models with a discrete bottleneck layer (DBx and DBz) to autoencode each
language using the other as its hidden representation.

• Weakly-Supervised Refinement: When paired data is available, supervised training is employed
to refine the alignment between latent representations and the ground-truth mappings. This is
achieved by minimizing the cross-entropy loss on each of the model outputs.

Key to ΣAE is the discrete bottleneck layer, which outputs both token probability distributions
and quantized samples, enabling end-to-end differentiability through straight-through gradient es-
timators Bengio et al. (2013) and the reparameterization trick. We explore three quantization
mechanisms—softmax-argmax, Gumbel-softmax-argmax, and vector quantization (VQ-VAE)—to
optimize training efficiency and stability. To mitigate hidden sequence collapse, where EOS tokens
are prematurely selected and the latent sequences are ignored Bowman et al. (2016); Sánchez et al.
(2023); Zhao et al. (2018), we introduce a gradient estimator for EOS masking probabilities, ensuring
gradients are propagated across the full sequence.

In the absence of parallel data, ΣAE learns an emergent symbolic representation within the bottleneck,
which can be interpreted as a lossy compression mechanism. This emergent language effectively
captures the underlying structure of the input symbolic system.

We evaluate ΣAE on four sequence transduction benchmarks (SCAN, PCFG SET, CFQ, and COGS)
and demonstrate superior performance in both unsupervised and weakly-supervised settings. Our
results highlight the framework’s ability to learn compressed symbolic representations, enabling
generalization across modalities and establishing ΣAE as a robust approach for symbolic sequence
transduction.

Related work.

Our work intersects with several key areas in unsupervised and weakly supervised learning through
discrete representations. Baziotis et al. (2019) connected two encoder-decoder models via a hidden
sequence layer, employing a reconstruction loss and a language model prior loss for unsupervised text
compression. Kaiser & Bengio (2018) explored semantic hashing (Salakhutdinov & Hinton, 2009)
and the Gumbel-Softmax trick (Jang et al., 2017) for generating interpretable, discrete encodings.
Kaiser et al. (2018) further experimented with the Gumbel-Softmax trick, semantic hashing, and
two vector quantization variants van den Oord et al. (2017) to learn a compressed discrete latent
variable for fast parallel decoding in a seq2seq model. Sánchez et al. (2023) trained Hidden Schema
Networks, a discrete VAE model trained via the Gumbel-Softmax trick mapping input sequences to
random walk instances on a learned graph, and demonstrated the model’s ability to learn interpretable
representations of structured data. Similarly, Fortuin et al. (2019) investigated training VAEs with
discrete bottlenecks and examined the use of continuous paths alongside discrete ones. Zhao et al.
(2018) proposed a fixed-length discrete latent variable model for learning interpretable dialogue
action representations via Gumbel-Softmax and maximizing the mutual information between data
and latent actions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In the realm of semi-supervised learning, Kingma et al. (2014) studied semi-supervised autoencoding
by treating the classification label as a categorical hidden variable, emphasizing the integration of
labeled and unlabeled data.

Zhu et al. (2017) and He et al. (2016) enforced consistency across translation tasks, with Zhu et al.
(2017) using adversarial networks and He et al. (2016) employing Reinforcement Learning (RL) to
update the models. Using REINFORCE Williams (1992) to optimize the discrete latent variables has
been explored in other contexts. Evtimova et al. (2018) investigated emergent communication, where
two agents collaboratively converse about images and textual descriptions using sequences of binary
symbols from a fixed set to match the images and text. Similarly, Miao & Blunsom (2016) proposed
a generative variational auto-encoding sentence compression model that compresses a document into
a summary sentence and reconstructs the document from the summary, employing a latent language
model as the encoder.
Our work introduces a parallel approach, in contrast with RL and cycle-consistency based methods,
leveraging straight-through gradient estimators to train symbolic probabilistic generative models
end-to-end.

Furthermore, numerous studies have focused on the discretization of elements and representations
in neural networks Liu et al. (2022; 2021); Tamkin et al. (2023); Peng et al. (2018); Maddison et al.
(2016).

Our proposed solution also parallels the technique of back-translation (Sennrich et al., 2015; Çaglar
Gülçehre et al., 2015; 2017), which typically involves training an intermediate system on parallel data
to translate target monolingual data into the source language, thereby generating synthetic parallel
corpora for further training Edunov et al. (2018). The ΣAE framework is akin to an online version of
back-translation, where the intermediate system is continuously improving without storing synthetic
sequences.

2 ΣAE FRAMEWORK

To mathematically formalize the symbolic latent variable learning process, we will first describe
the training of a single discrete random variable. We will then extend this framework to the case of
learning sequences of discrete random variables.

2.1 BACKGROUND: TRAINING A SINGLE DISCRETE RANDOM VARIABLE

Consider a probabilistic latent variable model that maps an input x to a probability distribution over a
latent variable z, denoted as Pθ(Z|X = x). We assume the ability to sample from this distribution
and compute a loss l(z) for a sample, which may be influenced by downstream components in the
computation graph.

Even for continuous random variables, optimizing this process is challenging, as the loss is stochastic
and non-differentiable. The average loss for a given input is expressed as Ez∼pθ(Z|X=x)[l(z)], and
the overall loss across the input distribution is Ex∼p(x)[Ez∼pθ(Z|X=x)[l(z)]].

2.1.1 OPTIMIZATION METHODS

Several methods have been proposed to minimize this average loss:

• REINFORCE Williams (1992) uses the identity:

∇θEz∼pθ(Z|X=x)[l(z)] = Ez∼pθ(Z|X=x)[l(z)∇θ log pθ(Z|X = x)] (1)

This method estimates the gradient for the average loss using a one-sample Monte Carlo approxi-
mation:

∇θEz∼pθ(Z|X=x)[l(z)] ≈ l(z)∇θ log pθ(Z|X = xi) (2)

Notably, the gradient is estimated directly from the distribution samples, without requiring differen-
tiability of the distribution. Variants such as REINFORCE with baselines were later introduced to
reduce gradient variance Gu et al. (2015).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Continuous averaging and annealing Methods methods do not sample from the distribution;
instead, they compute a deterministic weighted sum of the embeddings. Additionally, Graves
(2016) introduces a halting mechanism for variable-length, adaptive computation using continuous
embeddings rather than discrete representations.
In Correia et al. (2019); Peters et al. (2019) gradual temperature annealing is employed to make
the distribution increasingly deterministic. At each training step, the objective is minimizing
l(Ez∼pθ(Z|X=x)z)—loss of the average embedding- rather than minimizing l(z) for specific sam-
ples z ∼ pθ(Z|X = x). This expectation is differentiable, allowing gradient-based optimization.
Over the course of training, the temperature is annealed to zero, transitioning the expected value to
the argmax of the distribution, effectively producing discrete samples.

• Reparameterization trick Kingma & Welling (2013) offers a more stable alternative. It expresses
the random variable as a differentiable, deterministic function of noise ϵ ∼ Dϵ and distribution
parameters θ: z = gθ(ϵ, x). For instance, sampling from a Gaussian distribution z ∼ N (µ, σ2)
that can be reparameterized as z = µ + σϵ where ϵ ∼ N (0, 1). This allows the gradient of the
expected loss to be written as:

∇θEz∼pθ(Z|X=x)[l(z)] = ∇θEϵ∼Dϵ
[l(gθ(ϵ, x))] = Eϵ∼Dϵ

[∇θl(gθ(ϵ, x))]. (3)

This can be efficiently approximated using a one-sample Monte Carlo estimate, enabling gradient-
based optimization Kingma & Welling (2013); Gregor et al. (2013).

2.1.2 GENERALIZATION OF REPARAMETERIZATION TRICK TO CATEGORICAL RANDOM
VARIABLES

Our goal is to learn symbolic representations, which are sequences of discrete tokens. These tokens
follow a categorical distribution pθ(Z|X = x), where Z represents a token.

For categorical random variables, the reparameterization trick can be applied using the Gumbel-
Softmax distribution Jang et al. (2017); Maddison et al. (2016). Given a probability vector pθ(x) =
Pθ(Z|X = x) for the categorical distribution, the Gumbel-Softmax reparameterization enables
sampling from pθ via:

z = one-hot[argmax
i

pg(pθ(x), τg)], (4)

where pg(pθ(x), τg) = softmax(log pθ(x)+g
τg

) and g ∼ G(0, 1) is is sampled from the Gumbel
distribution.

While this reparameterization captures the sampling process, the argmax function is non-
differentiable. To circumvent this, the straight-through estimator replaces the gradient of the argmax
with an identity function, allowing gradient flow through the non-differentiable operation Bengio
et al. (2013).

2.1.3 GRADIENT APPROXIMATION FOR DISCRETE VARIABLES

More formally, given a sampled z = one-hot[argmaxi pg(pθ(x), τg)], the gradient of the loss with
respect to model parameters can be approximated as:

∇θl(z) ≈ ∇zl(z)∇θz = ∇zl(z)∇θ

[
one-hot[argmax

i
pg(pθ(x), τ)]

]
≈ ∇zl(z)∇θpg(pθ(x), τg)

(5)

This approach copies the gradient from the output of the argmax to its input, enabling backpropa-
gation through the parameters. In automatic differentiation frameworks, this is often implemented
as: z ← z + pg − sg(pg) where the sg is the stop-gradient operator, ensuring that gradients are not
propagated back through the corresponding computation subgraph van den Oord et al. (2017).

2.2 DISCRETE BOTTLENECK

We refer to the quantization layer in the model as the Discrete Bottleneck (DB). In this framework,
sampling from the distribution is required to propagate information forward in the computation graph.
Importantly, to maintain the discreteness of the latent sequence elements, continuous averaging over

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

embeddings (as discussed in section 2.1.1) is not permitted. Allowing such averaging would introduce
information leakage through the continuous averaging weights, enabling the encoder to indirectly
pass continuous information to the decoder. By enforcing this constraint, input features are strictly
represented as compositions of discrete symbols, ensuring that no continuous information is used for
reconstruction.

The DB can be defined as a function p,vq = DB(v), where:

• p represents a discrete distribution over tokens, facilitating supervised training with negative
log-likelihood loss when labels are available for z.

• vq is a quantized vector that serves as input to subsequent models or layers, such as the decoder in
unsupervised training when labels are not provided.

Here, p ∈ [0, 1]|V | is a probability vector over the vocabulary V , with
∑|V |

i=1 pi = 1, and |V |,
the vocabulary size, is treated as a hyperparameter. The discrete nature of the DB implies that the
quantized vector belongs to a finite set vq ∈ D , where D = {D[i]}|V |

i=1 is a dictionary of embeddings.

This discrete computation introduces non-differentiability, which requires surrogate gradients to
enable gradient-based optimization. By constraining the model output to a finite set of vectors,
the model is forced to represent input features as compositions of dictionary vectors rather than a
continuous representation Liu et al. (2022).

2.2.1 DISCRETE BOTTLENECK IMPLEMENTATIONS

The discrete bottleneck (DB) unifies methods like VQ-VAE, Gumbel-Softmax reparameterization,
and Softmax/Argmax approximations as different implementations of the same underlying concept:
quantization of latent variables. At their core, these methods estimate a probability over the latent
variable pθ(x, τ), where τ is the temperature controlling the sharpness of the distribution.

If partial labels for the latent variable are available, the model can be trained using the negative
log-likelihood loss. Otherwise, sampling from the distribution is necessary, which can be done via
the Gumbel reparameterization trick with a sampling temperature τg:

z = one-hot[argmax
i

pg(pθ(x, τ), τg)] (6)

Embedding-Based Quantization. In VQ-VAE, the latent distribution is a one-hot vector, and the
quantized vector is the nearest dictionary embedding to the input vector:

l[i] = ∥v −D[i]∥, vq = D
[
argmin

i
l[i]

]
, p[i] =

{
1 if i = argmini l[i]

0 otherwise
(7)

This is equivalent to sampling with both τg, τ = 0 in the equation above, i.e., a deterministic nearest-
neighbor lookup. In the non-degenerate case, where τ > 0, the softmax of the distance between
the input vector and the dictionary embeddings is used, and the model can be trained with negative
log-likelihood loss:

p[i] =
exp(−∥v−D[i]∥

τ)∑|V |
j=1 exp(−

∥v−D[j]∥
τ)

, vq = D
[
argmax

i
p[i]

]
(8)

We study this as the VQ-DB in our experiments, an instance of embedding-based quantization where
the probability vector p is a function of the dictionary embeddings, p = S(·;D).

Probability-Based Quantization. In contrast to VQ-VAE, we study the Softmax/Argmax approxi-
mation, which corresponds to τg = 0 and τ > 0, but without dependence on dictionary embeddings.
Additionally, we examine the Gumbel-Softmax discretizer, a non-degenerate case with both τg > 0
and τ > 0, introducing stochasticity while maintaining a differentiable approximation of the categori-
cal variable.

The Softmax DB uses maximum likelihood decoding, where the quantized vector corresponds to the
most likely token in the dictionary:

p[i] =
exp(v[i]τ)∑|V |
j=1 exp(

v[j]
τ)

, vq = D
[
argmax

i
p[i]

]
(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Softmax Gumbel VQ-VAE T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0
PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0
COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0
CFQ

η

Figure 2: Z Sentence Accuracy per supervision ratio (η). Dashed lines denote the best performance
of ΣAE framework using different discretizers which shows consistent superiority of Softmax and
VQ-VAE over the pretrained and in-context learning baselines.

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0
PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0
COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

CFQ

η

Figure 3: Results for Softmax Discrete Bottleneck – Z Sentence Accuracy per supervision ratio (η).
At least one training method with the ΣAE framework consistently outperforms the pretrained and
in-context learning baselines except on the CFQ dataset at 8% supervision ratio. (ICL, flat line with
fixed number (20) of in-context samples) and the supervised training baselines. Fine-tuned T5 on the
CFQ dataset at an 8% supervision ratio outperforms our methods and all other baselines.

The Gumbel DB uses true categorical sampling for decoding:

p[i] =

exp

(
1
τg

(
log(

exp(
v[i]
τ)∑|V |

j=1 exp(
v[j]
τ)

) + gi

))
∑|V |

j=1 exp

(
1
τg

(
log

exp(
v[j]
τ)∑|V |

k=1 exp(
v[k]
τ)

+ gj

)) , vq = D
[
argmax

i
p[i]

]
(10)

Here, gi is a sample from the Gumbel distribution, i.e., gi = − log(− log(ui)), where ui ∼
Uniform(0, 1), using the Gumbel reparameterization trick to translate the sampling into the argmax
of noisy probabilities Jang et al. (2017).

These are examples of probability-based quantization, where the probability vector p is a function of
the input vector v, i.e., p = S(v), without dependence on dictionary embeddings.

2.3 TRAINING A SEQUENCE OF DISCRETE RANDOM VARIABLES

To learn a latent variable Z̄, which represents a sequence of discrete tokens, we extend the single
discrete random variable framework. The joint probability distribution over the sequence Z̄ =
(Z̄1, · · · , Z̄T) given input X = x is modeled as:

pθ(Z̄ = (Z̄1, · · · Z̄T)|X = x) =

T∏
t=1

pθ(Z̄t|X = x, Z̄<t) (11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0
COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0
CFQ

η

Figure 4: Results for VQ-VAE Discrete Bottleneck – Z Sentence Accuracy per supervision ratio (η).
Almost all training methods with the ΣAE framework consistently outperforms the pretrained and
in-context learning baselines.

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

CFQ

η

Figure 5: Results for Gumbel Discrete Bottleneck – Z Sentence Accuracy per supervision ratio (η).
Due to the inherent randomness of Gumbel DB, the prediction could be noisy, and the full sentence
accuracy is more prone to fall as can be seen in the plots. However, you can find the token accuracy
in the appendix A.7 showing a more stable measure of performance.

In symbolic systems, the sequence length T is itself a random variable. More complex inputs are
likely to be mapped to longer ”sentences” in the emergent symbolic language.

We model this process by introducing a masking function Z = M(Z̄), which effectively masks
out the tokens that appear after the first integer representing the end of the sequence. Formally, the
sequence z1, z2, · · · , zT is defined as:

(z1, z2, · · · , zT) = (z̄1, z̄2, · · · , z̄T)⊙m (12)

Here, m = m(Z̄) is a binary mask that depends on the sampled outputs, where m[i] = 1 if
the EOS (End-of-Sequence) token has not been generated, and m[i] = 0 otherwise. Substituting
Z = Z̄ ⊙m(Z̄) in the forward computation necessitates evaluating ∇θl(Z) = ∇θl(Z̄ ⊙m(Z̄)),
which requires differentiating the binary mask m during the backward pass. This challenge is
addressed in the next section (2.3.1).

The choice of symbol for the EOS token is arbitrary but needs to be explicitly modeled. By penalizing
the likelihood of the EOS token we can control the brevity of sentences generated in the emergent
language.

2.3.1 HIDDEN SEQUENCE COLLAPSE IN SEQ2SEQ MODELS

In symbolic autoencoding, the encoder generates hidden tokens until an End-of-Sequence (EOS)
token or a maximum length is reached. This process involves a discrete decision about when to
halt generation, for which the model never receives gradient feedback. Specifically, in unsupervised
training, the loss gradient doesn’t directly inform the model that mistakenly assigning a high likelihood
to EOS has a penalty beyond the negative log likelihood loss: it can prematurely stop the entire
sequence generation.

In our early autoencoder trainings we empirically observed that the models tended to completely
ignore the latent sequences, or rely excessively on the first tokens of the hidden representation,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

leading to underutilization of subsequent tokens. This resulted in what we term hidden sequence
collapse—a tendency for the model to terminate sequences prematurely and only train the decoder.
This probem is similar in nature to the posterior collapse problem in VAEs for textual data, and
has been reported in various forms in prior work Bowman et al. (2016); Havrylov & Titov (2020);
Newman et al. (2020); Zhao et al. (2018). To address this, we developed a soft-masking mechanism
that allows for gradient-based learning of when to halt generation.

2.3.2 EOS SOFT-MASKING – GRADIENT APPROXIMATION FOR HALTING THE GENERATION

In unsupervised training, sequences generated within a batch can have varying halting points. Typi-
cally, the generation continues until either the maximum sequence length is reached or the EOS token
is produced. Tokens generated after the EOS are masked out using a binary mask m of length T
(the number of tokens) as defined in the previous section. The mask at time step i can be rewritten
recursively as a function of the mask at the previous step i− 1 and the current sampled output token,
z̄i−1:

m[i] =

{
1 if z̄i−1 ̸= eos-token-id, and m[i− 1] = 1

0 otherwise
(13)

Applying the mask to the quantized vectors v<T
q during the forward pass enforces a halting mechanism

by setting vectors post-EOS to a fixed, padding embedding, vq ← vq ⊙m+D[<PAD>]⊙ (1−m),
thereby terminating the sequence generation. The challenge arises during the backward pass, as this
mask is a non-differentiable output of the forward computation. To address this, we propose a gradient
approximation for m that allows the model to learn the EOS effect through a feedback mechanism.
To mitigate autoregressive collapse, we pass the gradients through m to pθ(z̄k = eos-token-id)
as if E[m[i]] =

∏i−1
k=1 (1− pθ(z̄k = eos-token-id)) had been the masking matrix in the forward

computation. This approximation provides direct feedback on the EOS effect by simply assigning
m←m+ E[m]− sg(E[m]). The derivation of this approximation is detailed in Appendix A.2.

3 EXPERIMENTS

3.1 TRAINING MODELS WITH AND WITHOUT SUPERVISION ON SEQ2SEQ TASKS

Given two symbolic systems X and Z, we aim to learn the mappings Mxz from X to Z and Mzx

from Z to X . This is normally done with parallel data Dxz , where each input x has a corresponding
target z. ΣAE allows extracting information from unparallel data, by mapping data from the input
space, to a latent space, and back to the input space for reconstruction.

We model the above system as an autoregressive decoder model, where the latent variable Z is
generated autoregressively from the input X . We incorporate a DB layer into each seq2seq model:
DBx to Mzx and DBz to Mxz , enabling both separate and joint training modes.

For parallel training data (x, z) ∈ Dxz we do a supervised training step similar to common seq2seq
training. Given input sequence x and target sequence until step t, z<t, the model Mxz predicts a
probability vector pt

z for the t-th token zt and receives a loss (similarly for predicting the x sequence):

pt
z,v

t
z = DBz(Mxz(x, z

<t)), Lxz = −
∑
t

logpt
z[z

t] (14)

Given unlabeled data (x ∈ Dx or z ∈ Dz), the models generate a latent sequence of quantized vectors
(v<Tx

x = {vt
x}

Tx
t=0):

pt
x,p

t
x = DBx(Mzx(z,v

<t
x)) (15)

These vectors are then used to reconstruct the original input:

pt
z,v

t
z = DBz(Mxz(v

<Tx
x , z<t)), (16)

using as the reconstruction loss Lzxz = −
∑

t logp
t
z[z

t]. Similar steps are followed for the x
sequence. We call these X Reconstruction and Z Reconstruction modes, where we use unparallel
data, Dx or Dz , to minimize reconstruction losses Lxzx or Lzxz .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

To navigate this multi-objective optimization problem, we propose three scheduling strategies: Joint
Training involves randomly selecting a batch from Dxz , Dx, or Dz at each iteration and training
in the corresponding mode. Unsupervised Pretraining with Supervised Finetuning starts with
training on Dx and Dz until convergence, followed by fine-tuning on Dxz . Conversely, Supervised
Pretraining with Unsupervised Finetuning trains on Dxz until convergence, then shifts to fine-
tuning on Dx and Dz .

3.2 EXPERIMENTAL SETUP

For our experiments, we utilized four seq2seq datasets: SCAN Lake & Baroni (2017), PCFG SET
Hupkes et al. (2019), CFQ Keysers et al. (2019), and COGS Kim & Linzen (2020), chosen for their
compositional complexity, controlled environments, and precise accuracy measures. We evaluated the
framework on the aforementioned datasets, focusing on sentence accuracy (SA) and token accuracy
(TA). Additional performance metrics are discussed in the appendix in Section A.5. More details on
the datasets are provided in Section A.3.

3.3 BASELINES

In our experiments, we compare the performance of the ΣAE framework against the following
baselines: (1) Supervised Fine-tuning of a Pretrained Model (T5 large), where a pretrained T5
model is fine-tuned on the available parallel data; (2) In-context Learning (ICL) with a Large
Language Model (GPT-3.5), which utilizes GPT-3.5 to perform tasks based on given context
without explicit fine-tuning; and (3) Supervised Training from Scratch, where a model is trained
from scratch on the available parallel data. Further details on the tasks, model architecture, and
hyperparameters are provided in Section A.4

3.4 EXPERIMENTAL RESULTS

To show the feasibility of symbolic autoencoding with straight-through gradients updates we per-
formed an unsupervised autoencoding reconstruction experiment for each dataset and DB, and
observed that the models successfully learned a compression of the input sequences, as shown in
Table 1. The results are further detailed in Section A.8.1.

In the weakly supervised task, we simulated a Rosetta Stone-like scenario with a mix of parallel and
unparallel data, varying the ratio of parallel data (η) to assess the framework’s ability to balance and
integrate supervised and unsupervised losses. Results for the Softmax, VQ-VAE, and Gumbel DB
are detailed in Figures 3, 4, 5.

Figure 2 shows the maximum performance of ΣAE framework methods at each supervision ratio for
different DBs. Our experiments demonstrated that the ΣAE framework can efficiently utilize small
amounts of parallel data to improve performance on larger unparallel datasets. At each supervision
ratio η, one of our scheduling methods from Section 3.1 consistently outperformed the supervised
baselines. As expected, model accuracy improved with increased supervised data, narrowing the
performance gap as accuracies converged to their maxima. An exception was observed in the
CFQ dataset (for Softmax DB) at an 8% supervision ratio, where fine-tuning the T5-large model
outperformed our methods. This is likely due to the CFQ dataset’s closer resemblance to natural
language question answering tasks, benefiting the T5 model, which is pretrained on similar tasks.
Additional remarks on training dynamics and learning behavior are provided in Section A.6. A
detailed analysis of the results and the full set of performance metrics, including other DBs, are
presented in Section A.8.2.

Additionally, due to the inherent randomness of Gumbel DB, the prediction could be noisy, and
the full sentence accuracy is more prone to fall as can be seen in Figure 5. However, results on
token accuracy A.7 show a more stable measure of performance in which ΣAE framework methods
outperform the baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Table of Test Autoregressive token accuracy (Z) (top) and Sentence Accuracy (Z) (bottom) on the
unsupervised autoencoding task (Z reconstruction). A high token accuracy is achieved across all datasets,
showing the feasibility of learning discrete representations with gradient descent-based methods. Sentence
accuracy is similar for Softmax and Gumbel DBs, while VQ DB shows makes errors on all but the SCAN dataset.
SCAN dataset has the shortest average sentence length, which could explain the higher accuracy.

SCAN PCFG COGS CFQ

Softmax DB 1.00 0.74 0.98 0.99
0.96 0.31 0.55 0.69

Gumbel DB 0.98 0.75 0.98 0.99
0.74 0.36 0.51 0.43

VQ DB 1.00 0.44 0.94 0.90
0.93 0.00 0.03 0.00

4 LIMITATIONS AND FUTURE WORK

Exploring autoencoding for sequences, especially in weakly supervised settings, reveals significant
challenges and opportunities for advancement. While our approach effectively reduces unsupervised
reconstruction loss, it does not always directly translate to improved model performance. One
key limitation is the slower training pace of autoregressive models due to their sequential nature,
which hinders parallelization. Moreover, our findings suggest unsupervised samples have less
impact on accuracy compared to supervised ones, which need to be studied in future work. The
ΣAE framework’s adaptability to various seq2seq models and its applicability across different data
modalities—from text to images, audio, or video—highlight its broad utility. This flexibility suggests
numerous pathways for further exploration and application beyond the current study’s scope.

5 CONCLUSION

In this study, we introduced a framework for learning latent variable models where the latent space
is both discrete and sequential—representing sentences from an emergent symbolic system. We
proposed a novel approach for training seq2seq models using non-parallel data. This was achieved
by connecting two models through a discrete bottleneck, enabling the output sequence from one
model to serve as the hidden representation for the other. This design creates a unique autoencoder
architecture in which both the encoder and decoder are seq2seq models. To ensure the end-to-end
trainability of this autoencoder within a gradient descent framework, we proposed gradient substitute
and autoregressive masking techniques. Our unsupervised experiments validated the feasibility of
training models within this discrete sequential autoencoder setup.

Further expanding on this concept we leveraged the symbolic autoencoders to train seq2seq models
beyond parallel data and facilitate the use of non-parallel data. Demonstrating a practical application
of our methodology, we presented evidence of performance improvements in weak supervision
settings by utilizing unsupervised monolingual data, tested across four distinct seq2seq datasets.

REFERENCES

Jasmijn Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela. Jump to better
conclusions: Scan both left and right. ArXiv, abs/1809.04640, 2018.

Christos Baziotis, Ion Androutsopoulos, Ioannis Konstas, and Alexandros Potamianos. Seqˆ3: Dif-
ferentiable sequence-to-sequence-to-sequence autoencoder for unsupervised abstractive sentence
compression. In North American Chapter of the Association for Computational Linguistics, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. In Stefan Riezler and Yoav Goldberg (eds.),

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning,
pp. 10–21, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/K16-1002. URL https://aclanthology.org/K16-1002.

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In Proc.
EMNLP-IJCNLP (to appear), 2019.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, Nathan Scales, Xinying Song, Xinyun Chen,
Olivier Bousquet, and Denny Zhou. Compositional semantic parsing with large language models. In
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=
gJW8hSGBys8.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale, 2018.

Katrina Evtimova, Andrew Drozdov, Douwe Kiela, and Kyunghyun Cho. Emergent communication
in a multi-modal, multi-step referential game. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch. Som-
vae: Interpretable discrete representation learning on time series. In International Conference on
Learning Representations, 2019.

Alex Graves. Adaptive computation time for recurrent neural networks. ArXiv, abs/1603.08983,
2016.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive
networks. ArXiv, abs/1310.8499, 2013.

Shixiang Shane Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropa-
gation for stochastic neural networks. CoRR, abs/1511.05176, 2015.

Serhii Havrylov and Ivan Titov. Preventing posterior collapse with levenshtein variational autoencoder.
CoRR, abs/2004.14758, 2020.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, and Wei-Ying Ma. Dual learning
for machine translation. In Neural Information Processing Systems, 2016.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? J. Artif. Intell. Res., 67:757–795, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state and
fate of linguistic diversity and inclusion in the NLP world. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 6282–6293, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.560.

Lukasz Kaiser and Samy Bengio. Discrete autoencoders for sequence models. ArXiv, abs/1801.09797,
2018.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and
Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In Jennifer G.
Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pp. 2395–2404. PMLR, 2018. URL http:
//proceedings.mlr.press/v80/kaiser18a.html.

11

https://aclanthology.org/K16-1002
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
http://proceedings.mlr.press/v80/kaiser18a.html
http://proceedings.mlr.press/v80/kaiser18a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
method on realistic data. ArXiv, abs/1912.09713, 2019.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on semantic
interpretation. ArXiv, abs/2010.05465, 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on Machine
Learning, 2017.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. ArXiv,
abs/1901.07291, 2019.

Dianbo Liu, Alex Lamb, Kenji Kawaguchi, Anirudh Goyal, Chen Sun, Michael Curtis Mozer, and
Yoshua Bengio. Discrete-valued neural communication. In Neural Information Processing Systems,
2021.

Dianbo Liu, Alex Lamb, Xu Ji, Pascal Junior Tikeng Notsawo, Michael Curtis Mozer, Yoshua
Bengio, and Kenji Kawaguchi. Adaptive discrete communication bottlenecks with dynamic vector
quantization. ArXiv, abs/2202.01334, 2022.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. ArXiv, abs/1611.00712, 2016.

Alexandre Magueresse, Vincent Carles, and Evan Heetderks. Low-resource languages: A review of
past work and future challenges. ArXiv, abs/2006.07264, 2020.

Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for
sentence compression. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, November 2016.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D. Manning. The EOS decision and
length extrapolation. CoRR, abs/2010.07174, 2020.

Hao Peng, Sam Thomson, and Noah A. Smith. Backpropagating through structured argmax using a
spigot. ArXiv, abs/1805.04658, 2018.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse sequence-to-sequence models. ArXiv,
abs/1905.05702, 2019.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. Int. J. Approx. Reason., 50:
969–978, 2009.

Ramsés J. Sánchez, Lukas Conrads, Pascal Welke, Kostadin Cvejoski, and César Ojeda Marin.
Hidden schema networks. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 4764–4798. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.263. URL https:
//doi.org/10.18653/v1/2023.acl-long.263.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data. ArXiv, abs/1511.06709, 2015.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:
1929–1958, 2014.

12

https://doi.org/10.18653/v1/2023.acl-long.263
https://doi.org/10.18653/v1/2023.acl-long.263

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Tamkin, Mohammad Taufeeque, and Noah D. Goodman. Codebook features: Sparse and
discrete interpretability for neural networks. ArXiv, abs/2310.17230, 2023.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6306–6315, 2017.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Tiancheng Zhao, Kyusong Lee, and Maxine Eskénazi. Unsupervised discrete sentence representa-
tion learning for interpretable neural dialog generation. In Iryna Gurevych and Yusuke Miyao
(eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 1098–
1107. Association for Computational Linguistics, 2018. doi: 10.18653/V1/P18-1101. URL
https://aclanthology.org/P18-1101/.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=WZH7099tgfM.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2242–2251, 2017.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural machine
translation. ArXiv, abs/1503.03535, 2015.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, and Yoshua Bengio. On integrating a
language model into neural machine translation. Comput. Speech Lang., 45:137–148, 2017.

A APPENDIX

A.1 REMARKS ON ΣAE FRAMEWORK

For all our straight-through gradient estimations, as training progresses, models become more
confident in their predictions, resulting in more polarized score distributions. This polarization helps
the models identify the most likely token with increasing certainty, making the scores sparser and
improving the accuracy of gradient approximations.

While we only use symbolic autoencoding in reconstruction setups, the framework is adaptable to
additional models and data sources. For instance, one could imagine models Mzy,Myx, etc., each
with their own supervised and reconstruction losses (e.g., Lzy,Lyxz,Lxyx, etc.) to be optimized.
Unlike some multi-task scenarios where individual tasks may appear independent or unrelated, in
the ΣAE framework, improvement in one task can directly benefit others, creating a synergy that
enhances overall performance.

A.2 EOS GRADIENT APPROXIMATION

The EOS collapse phenomena can be explained by the model’s lack of understanding of the EOS
token’s impact. Without explicit feedback, the model does not learn the importance of distributing
information across the entire sequence. The EOS collapse phenomenon arises from the model’s lack
of understanding of the EOS token’s role in sequence generation. Without explicit feedback, the
model fails to learn the importance of distributing information evenly across the entire sequence.
Instead, it observes that tokens appearing later in the sentence are randomly masked out, leading

13

https://aclanthology.org/P18-1101/
https://openreview.net/forum?id=WZH7099tgfM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

to a tendency to concentrate all information into the first few tokens to ensure robust decoding.
This behavior is loosely resembles to the effect of dropout Srivastava et al. (2014), where randomly
masking information encourages models to learn more robust and compact representations.

In the ΣAE framework, we inform the model of the halting effect of the EOS token by approximating
a gradient for the mask m, which masks the tokens appearing after the first EOS token. This
approximation is crucial for the model to learn the halting effect of the EOS token, essential for
generating accurate sequences.

The m is 1 if the EOS token has not been generated and 0 otherwise:

m[i] =

{
1 if m[i− 1] = 1 and z̄k ̸= eos-token-id)
0 otherwise

(17)

Hence, the binary random vector m is defined as:

pθ(m[i] = 1) = (1− pθ(z̄i−1 = eos-token-id)) pθ(m[i− 1] = 1)

=

i−1∏
k=1

(1− pθ(z̄k = eos-token-id)) . (18)

Therefore the expected value of m is:

E[m[i]] =

i−1∏
k=1

(1− pθ(z̄k = eos-token-id)) (19)

Our ablation studies showed that unsupervised training often failed due to hidden state collapse when
this approximation was not used. Without this gradient approximation, the model struggled to learn
effectively, highlighting the importance of this technique for successful training.

As training progresses, models become more confident in correctly predicting the EOS token, leading
to more polarized probabilities. This makes the expected mask E[m] a better approximate the true
mask, thereby improving the accuracy of our approximation.

A.3 DATASET DESCRIPTION AND EXAMPLES

We evaluated the ΣAE framework on four diverse datasets: SCAN, PCFG SET, CFQ, and COGS.

• SCAN Lake & Baroni (2017) is a simple language-driven navigation instruction task de-
signed to evaluate the ability of neural models to learn compositional commands.

• PCFG SET Hupkes et al. (2019) is a synthetic dataset generated using probabilistic context-
free grammars, aimed at testing the systematic generalization of models.

• CFQ Keysers et al. (2019) is a large-scale dataset of complex natural language questions
and their corresponding SPARQL query against the Freebase knowledge base designed to
measure the compositional generalization capabilities of semantic parsing models, with
questions constructed to reflect the compositional structure of Freebase.

• COGS Kim & Linzen (2020): COGS is a dataset for evaluating the generalization of
semantic parsing models to novel linguistic structures, emphasizing the model’s ability to
generalize from given sentences to new sentences that have similar syntactic structures but
different lexical items or phrasal constructions.

Examples of samples from each dataset are provided in Table 2.

The selection of these datasets ensures a comprehensive and nuanced evaluation of the ΣAE frame-
work. They facilitate direct evaluation of our approach, avoiding reliance on proxy metrics often
used with larger datasets. Here, the mapping from X to Z is unique and non-reversible, with Z
typically being the longer sequence, serving as a reliable ground truth for X . Our study diverges
from the typical use of these datasets for compositional generalization. Instead of focusing on
out-of-distribution testing, we emphasize in-distribution performance assessment. We also conduct a
bidirectional evaluation of both Mxz and Mzx models, reflecting realistic seq2seq model applications
where translation in both directions holds equal significance, in line with the suggestions of Bastings
et al. (2018).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 2: Example of Samples from Different Datasets, Including Average X and Z Lengths

Dataset Sample Train set size Parallel portion Avg. X Length Avg. Z Length

SCAN
X: look right thrice after run left
Z: I TURN LEFT I RUN I TURN RIGHT I LOOK
I TURN RIGHT I LOOK I TURN RIGHT I LOOK

13382 1% to 8% 9.28 16.59

PCFG SET
X: echo append append E18 C13 ,
L18 M17 , R1 L1 Y1 T18 J18
Z: E18 C13 L18 M17 R1 L1 Y1 T18 J18 J18

65734 4% to 32% 39.05 24.69

CFQ

X: Who influenced M1 ’s cinematographer , writer , and editor
Z: SELECT DISTINCT ?x0 WHERE
?x0 a ns:people.person.
?x0 ns:influence.influence node.influenced ?x1.
?x1 ns:film.cinematographer.film M1.
?x1 ns:film.editor.film M1.
?x1 ns:film.writer.film M1.

76594 2% to 16% 15.70 71.21

COGS X: Olivia rolled Liam.
Z: roll . agent (x 1 , Olivia) AND roll . theme (x 1 , Liam) 24155 1% to 8% 16.04 55.40

These datasets were chosen for their controlled environments and precise accuracy measures, making
them ideal for evaluating the framework’s performance. Additionally, they are widely used for
benchmarking symbolic modeling capabilities, as demonstrated in works such as Drozdov et al.
(2023); Zhou et al. (2023), which highlight the complexity of these tasks for state-of-the-art models.

The autoregressive nature of our model means that a zxz-reconstruction pass on a trained model
requires a number of forward passes proportional to the latent sequence length. For example, in
SCAN, the computational cost of a zxz pass is approximately 10 times that of a supervised next-token
prediction forward pass. This scaling reflects a fundamental computational trade-off inherent in
autoregressive unsupervised sequence models. This limitation is not unique to ΣAE but is shared
across autoregressive frameworks, including on-policy reinforcement learning, where rollouts are
computationally expensive, and recurrent neural networks, whose computation scales with sequence
length. While non-autoregressive approaches such as diffusion models could alleviate this scaling
issue, they are not yet well-suited for discrete random variables and introduce other challenges.

This computational scaling also highlights the difficulty of studying longer sequences, such as those in
natural language tasks. As sequence length and model size grow, the lack of supervised data (e.g., for
teacher forcing) causes the compute and memory requirements to increase prohibitively with sequence
length. Moreover, such tasks typically require domain-specific techniques and substantial engineering
effort. Thus, this study focuses on providing a proof-of-concept under controlled conditions, laying
the groundwork for future extensions to more complex, real-world applications.

In-context learning (ICL) vs. Chain-of-thought (CoT) Prompting Baseline It is helpful to
compare the performance of our proposed method with ICL and CoT in state-of-the-art LLMs,
however, it is not clear how CoT is applicable to the tasks considered in this work since explicit
reasoning steps are not available for the datasets under study. Our synthetic datasets, structured
as symbolic puzzles, lack the annotations required for CoT reasoning. Therefore, we opted for
evaluating ICL by providing example pairs of (X,Z) to assess to what extent the patterns could
be learned in-context and extrapolated to the test sequences without the need for a neuro-symbolic
auto-encoding. Our ICL baseline uses GPT3.5 which takes as input the concatenation of 20 pairs of
(X,Z), followed by the test sample’s X and is then prompted to generate the corresponding Z. We
simply then compute the evaluation metrics from Sec. 3.2 using the generated Z sequences, which
constitute the results in Figures 2- 5.

A.4 DETAILS ON TASKS, MODEL ARCHITECTURE, AND HYPERPARAMETERS

We conducted two sets of experiments on each dataset:

• Unsupervised Training: In this scenario, we only have access to unparallel data. The
primary goal is to reconstruct Z from a hidden discrete sequence. The framework matches
the dictionary size and the maximum sequence length of the hidden representation to those
of X . This setup evaluates the ΣAE framework’s ability to compress the input sequence
into a shorter sequence and accurately reconstruct it.

• Weakly-supervised Training: This scenario simulates the Rosetta Stone problem, where a
small portion of the data is parallel, and the rest is unparallel. The objective is to leverage
both parallel and unparallel data by minimizing unsupervised losses (Lzxz and Lxzx)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and supervised losses (Lzx and Lxz). We conduct experiments for each dataset and DB
implementation, varying the supervision ratio η = |Dxz|

|Dxz|+|Dx|+|Dz| . This allows us to assess
how effectively the framework uses limited parallel data to improve performance on larger
unparallel datasets.

In our experiments with the ΣAE framework, we adopted a standardized model architecture and
hyperparameter setting across all tasks to maintain consistency and focus on the framework’s effective-
ness. We utilized a six-layer transformer encoder–decoder model for Mxz and Mzx, with 8 attention
heads and a hidden size of 512. The model was trained using the Adam optimizer with learning
rate reduction on loss plateau. We used greedy decoding consistently for all tasks, simplifying the
decoding process and ensuring uniformity across experiments.

Model learning rates were manually chosen on the order of 10−3 or 10−4, to ensure a decrease in loss
during the early stages of training. Hyperparameters were not extensively tuned. For each task, the
same hyperparameters were used across different supervision ratios which are available in our config-
uration files in the code. This uniform approach underscores the framework’s robustness, although
we acknowledge that more nuanced tuning and regularization might yield higher performance.

In both unsupervised and supervised finetuning after pretraining approaches, a gradual curriculum
shift is employed rather than an abrupt change. This involves slowly altering the probability distribu-
tion of the ‘three-sided coin’ used for batch selection in joint training, to transition smoothly from the
initial training phase to the subsequent finetuning phase.

A.5 EVALUATION METRICS

In assessing the performance of the ΣAE framework, we measured two distinct metrics: sentence
accuracy (SA) and token accuracy (TA). These metrics are designed to provide both a holistic and
a detailed view of the model’s capabilities. Sentence accuracy (SA) for a sample is counted as 1 if
the entire sentence is correctly generated. Token accuracy (TA) is a more granular measure, where
correctness of each predicted token in all sentences are measured separately. This metric allows for
partial credit within a sentence, providing a finer understanding of the model’s performance at the
token level.

The token accuracy can be measured with two methods: We can teacher-force the correct previous
tokens (as per the ground truth) to the model and measure its accuracy in predicting the next token.
Alternatively, the model’s previous outputs (which may or may not be correct) can be used as inputs
for generating subsequent tokens. This autoregressive approach is generally more challenging than
teacher-forcing.

Each X has a unique corresponding Z, simplifying the assessment of accuracy in this direction,
therefore, evaluating Mxz performance is simply done by examining the Autoregressive Z TA/SA,
directly measuring the model’s capability to generate accurate Z sequences. For a given Z, however,
there could be multiple valid X sequences. Therefore, to evaluate Mzx, we utilize the Teacher-forced
X TA, which restricts the range of correct X sequences for end tokens. Another approach is the
Reconstruction Z TA/SA, where a model Mxz maps a generated sequence x̂ back to Z, and the
accuracy of this reconstructed sequence serves as a proxy for the correctness of x̂.

A.6 REMARKS ON EXPERIMENTAL RESULTS

We note that the VQ DB faced a peculiar issue of numerical instability on the SCAN dataset
after extended training periods (+500 epochs). This instability was addressed through weight
clipping, suggesting that while ΣAE offers substantial benefits, optimizing stability and accuracy
across different data representations and tasks may require tailored adjustments. These insights into
performance variations across X and Z spaces not only highlight the framework’s broad applicability
but also pinpoint areas for future refinement to maximize the ΣAE framework’s effectiveness.

The training time for a single epoch depends on the sequence length, dataset size, and the number of
epochs, influenced by the autoregressive nature of our approach. Specifically, one autoencoding step
requires a number of forward passes proportional to the latent sequence length of the autoregressive
encoder. Consequently, the average training time per epoch scales with the product of: (latent

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0
COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

CFQ

η

Figure 6: Results for Softmax Discrete Bottleneck – Z Token Accuracy per supervision ratio (η).

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0
COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0
CFQ

η

Figure 7: Results for VQ-VAE Discrete Bottleneck – Z Token Accuracy per supervision ratio (η).

sequence length), (unsupervised-to-supervised sample size ratio), and (supervised training time per
epoch).

A.7 EXPERIMENT RESULTS

A.8 WEAKLY SUPERVISED TRAINING - TOKEN ACCURACY FOR DIFFERENT DBS

Here we present the plots for different DBs using ΣAE framework methods in Figures ??, ??, ??
showing the token accuracy which is a more stable measure compared to full sentence accuracy.

A.8.1 UNSUPERVISED TRAINING RESULTS

In the unsupervised task, we trained the discrete autoencoder to compress and reconstruct Z sequences
without any supervised signal, evaluating the learnability of the discrete bottleneck using straight-
through gradients. The results, summarized in Table 1, show that the Softmax DB achieved over 98%
token accuracy on the SCAN, CFQ, and COGS datasets. Both the Gumbel and VQ DBs demonstrated
similar effectiveness, indicating robustness in discrete autoencoding with straight-through gradients
for sequence learning tasks. An exception to the high performance was the PCFG SET reconstruction
task, where model performances were notably lower. This variation may be attributed to the unique
symbolic nature of variables within the PCFG SET task, where basic tokenization assigns distinct
representations to symbolically equivalent variables, leading to observed performance discrepancies.

A.8.2 WEAKLY SUPERVISED TRAINING RESULTS

In the Z space, the Softmax DB consistently surpassed supervised baselines, significantly enhancing
token and sentence accuracy across all datasets. For instance, with only 8% supervision on the
PCFG SET dataset, token accuracy improved from below 15% to above 80%. While the Gumbel DB
generally showed noisier training and slightly weaker performance, it still outperformed supervised
baselines in most scenarios, except for a minor shortfall in the COGS dataset at a 16% supervision
ratio. The VQ DB, despite showing a slight weaker performance in supervised baselines, improved
the training similar to the Softmax and Gumbel DBs, achieving over 20% token accuracy on CFQ
dataset at 2% supervision ratio.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

1.0

Se
nt

en
ce

A
cc

ur
ac

y

SCAN

Supervised Baseline Supervised Pretraining Joint Training Unsupervised Pretraining T5 Finetuning GPT3.5 ICL

0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

PCFG

0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

COGS

0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

CFQ

η

Figure 8: Results for Gumbel Discrete Bottleneck – Z Token Accuracy per supervision ratio (η).

While no single Discrete Bottleneck or scheduling method universally outperforms others across all
datasets and supervision ratios, for every dataset and η value, at least one of our scheduling methods
consistently surpasses the baseline performance. In other words, training within the ΣAE paradigm
always enhances performance, though the optimal choice of the scheduling strategy depends on the
task.

The ΣAE framework’s impact extends into the X space, where the Softmax, Gumbel, and VQ DBs
exhibit performance boosts. Notably, the exception to this trend occurs with teacher-forced token
accuracy in the SCAN dataset for the Softmax DB, indicating a unique challenge in this specific
setting.

For all our experiments, we computed 95% confidence intervals via bootstrapped resampling of the
test set, however they are too small to be visible on the plots. This performance analysis underscores
the ΣAE framework’s versatility and its capacity to leverage both unsupervised and weakly supervised
data to enhance model training and performance across diverse seq2seq tasks.

We only measure the ICL and supervised finetuning of T5 baselines for Autoregressive Z TA and SA,
as the teacher-forced X TA is not applicable to these baselines. The ICL baseline is a flat line with a
fixed number of in-context samples (20) and the supervised finetuning of T5 is a single point at 100%
supervision ratio.

We present the results of our experiments in the following tables. For Softmax discrete bottleneck,
we present the results in the following tables:

• Table 3 Shows the performance of the Softmax DB on Autoregressive Z token accuracy,
from test inputs

• Table 4 Shows the performance of the Softmax DB on Autoregressive Z sentence accuracy,
from test inputs

• Table 5 shows the performance of the Softmax DB on the Autoregressive Z reconstruction
token accuracy, after mapping to a hidden X

• Table 6 shows the performance of the Softmax DB on the Autoregressive Z reconstruction
sentence accuracy, after mapping to a hidden X

• Table 7 shows the performance of the Softmax DB on the X token accuracy when teacher-
forcing the previous inputs

For Gumbel discrete bottleneck, we present the results in the following tables:

• Table 8 Shows the performance of the Gumbel DB on Autoregressive Z token accuracy,
from test inputs

• Table 9 Shows the performance of the Gumbel DB on Autoregressive Z sentence accuracy,
from test inputs

• Table 10 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction
token accuracy, after mapping to a hidden X

• Table 11 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction
sentence accuracy, after mapping to a hidden X

• Table 12 shows the performance of the Gumbel DB on the X token accuracy when teacher-
forcing the previous inputs

For VQ discrete bottleneck, we present the results in the following tables:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Softmax DB – Autoregressive Z Token Accuracy. ∗ These baselines are not concerned with
the discretizer type and are not trained with our proposed discrete bottleneck. They will appear in all
tables for comparison.

SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5)∗ – – – – 0.54
T5 Finetuning∗ 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.78 0.92 0.98 1.00 1.00
Joint training 0.76 0.89 0.98 0.99 —

Supervised Pretraining 0.84 0.96 0.99 1.00 —
Unsupervised Pretraining 0.79 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.17
T5 Finetuning 0.50 0.74 0.85 0.93 –

Supervised Baseline 0.17 0.30 0.78 0.93 0.97
Joint training 0.56 0.77 0.94 0.91 —

Supervised Pretraining 0.47 0.73 0.91 0.95 —
Unsupervised Pretraining 0.58 0.82 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.25
T5 Finetuning 0.35 0.72 0.95 0.99 –

Supervised Baseline 0.87 0.94 0.98 0.99 1.00
Joint training 0.94 0.97 0.99 1.00 —

Supervised Pretraining 0.94 0.93 0.98 1.00 —
Unsupervised Pretraining 0.95 0.98 0.99 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.26
T5 Finetuning 0.45 0.63 0.86 0.96 –

Supervised Baseline 0.62 0.70 0.78 0.82 0.86
Joint training 0.69 0.75 0.84 0.88 —

Supervised Pretraining 0.73 0.80 0.84 0.88 —
Unsupervised Pretraining 0.71 0.79 0.82 0.85 —

• Table 13 Shows the performance of the VQ DB on Autoregressive Z token accuracy, from
test inputs

• Table 14 Shows the performance of the VQ DB on Autoregressive Z sentence accuracy,
from test inputs

• Table 15 shows the performance of the VQ DB on the Autoregressive Z reconstruction token
accuracy, after mapping to a hidden X

• Table 16 shows the performance of the VQ DB on the Autoregressive Z reconstruction
sentence accuracy, after mapping to a hidden X

• Table 17 shows the performance of the VQ DB on the X token accuracy when teacher-forcing
the previous inputs

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Softmax DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.18 0.52 0.87 0.97 1.00
Joint training 0.24 0.50 0.87 0.95 —

Supervised Pretraining 0.29 0.71 0.91 0.98 —
Unsupervised Pretraining 0.25 0.61 0.85 0.95 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.01
T5 Finetuning 0.39 0.61 0.82 0.91 –

Supervised Baseline 0.01 0.11 0.75 0.94 0.97
Joint training 0.45 0.73 0.94 0.92 —

Supervised Pretraining 0.32 0.70 0.92 0.96 —
Unsupervised Pretraining 0.47 0.81 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.09
T5 Finetuning 0.03 0.45 0.70 0.87 –

Supervised Baseline 0.48 0.71 0.89 0.95 1.00
Joint training 0.63 0.82 0.95 0.97 —

Supervised Pretraining 0.60 0.83 0.94 0.97 —
Unsupervised Pretraining 0.66 0.84 0.95 0.97 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.01
T5 Finetuning 0.01 0.13 0.55 0.83 –

Supervised Baseline 0.25 0.40 0.53 0.61 0.69
Joint training 0.43 0.50 0.65 0.73 —

Supervised Pretraining 0.49 0.59 0.66 0.73 —
Unsupervised Pretraining 0.47 0.60 0.64 0.69 —

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: Softmax DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.81 0.89 0.92 0.96
Joint training 0.99 0.98 0.98 0.97 —

Supervised Pretraining 0.99 0.99 0.99 0.97 —
Unsupervised Pretraining 0.98 0.83 0.93 0.97 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.37 0.50 0.74 0.78 0.83
Joint training 0.71 0.80 0.86 0.91 —

Supervised Pretraining 0.68 0.75 0.86 0.89 —
Unsupervised Pretraining 0.76 0.79 0.88 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.92 0.95 0.97 0.98 0.99
Joint training 0.98 0.99 1.00 1.00 —

Supervised Pretraining 0.98 0.97 0.99 1.00 —
Unsupervised Pretraining 0.99 0.99 1.00 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.94 0.96 0.97 0.98 0.99
Joint training 0.97 0.97 0.98 0.99 —

Supervised Pretraining 0.98 0.98 0.99 0.99 —
Unsupervised Pretraining 0.98 0.99 0.99 0.99 —

Table 6: Softmax DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.11 0.24 0.28 0.46
Joint training 0.82 0.76 0.72 0.65 —

Supervised Pretraining 0.90 0.81 0.91 0.66 —
Unsupervised Pretraining 0.84 0.18 0.41 0.66 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.09 0.20 0.28 0.35
Joint training 0.21 0.29 0.44 0.63 —

Supervised Pretraining 0.15 0.22 0.33 0.47 —
Unsupervised Pretraining 0.19 0.26 0.44 0.41 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.04 0.35 0.48 0.57
Joint training 0.51 0.76 0.93 0.97 —

Supervised Pretraining 0.55 0.48 0.68 0.96 —
Unsupervised Pretraining 0.75 0.81 0.90 0.95 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.11 0.23 0.36 0.48 0.53
Joint training 0.29 0.36 0.50 0.61 —

Supervised Pretraining 0.36 0.44 0.54 0.62 —
Unsupervised Pretraining 0.40 0.51 0.52 0.60 —

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Softmax DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.77 0.84 0.88 0.88
Joint training 0.57 0.66 0.78 0.84 —

Supervised Pretraining 0.39 0.58 0.70 0.82 —
Unsupervised Pretraining 0.50 0.45 0.69 0.81 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.41 0.50 0.53 0.57 0.65
Joint training 0.50 0.54 0.57 0.61 —

Supervised Pretraining 0.47 0.50 0.54 0.57 —
Unsupervised Pretraining 0.48 0.50 0.61 0.63 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.87 0.95 0.98 0.99 1.00
Joint training 0.90 0.96 0.99 1.00 —

Supervised Pretraining 0.00 0.88 0.95 0.99 —
Unsupervised Pretraining 0.88 0.96 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.74 0.79 0.82 0.85 0.88
Joint training 0.77 0.80 0.83 0.85 —

Supervised Pretraining 0.73 0.80 0.83 0.85 —
Unsupervised Pretraining 0.71 0.78 0.82 0.84 —

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Gumbel DB – Autoregressive Z Token Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.75 0.89 0.95 0.97 0.97
Joint training 0.76 0.88 0.95 0.96 —

Supervised Pretraining 0.80 0.93 0.96 0.97 —
Unsupervised Pretraining 0.79 0.90 0.96 0.96 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.16 0.25 0.70 0.82 0.89
Joint training 0.25 0.66 0.81 0.86 —

Supervised Pretraining 0.44 0.62 0.85 0.88 —
Unsupervised Pretraining 0.56 0.64 0.81 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.74 0.80 0.84 0.85 0.86
Joint training 0.76 0.79 0.82 0.84 —

Supervised Pretraining 0.78 0.81 0.84 0.84 —
Unsupervised Pretraining 0.75 0.81 0.83 0.84 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.52 0.57 0.63 0.65 0.65
Joint training 0.56 0.62 0.65 0.69 —

Supervised Pretraining 0.55 0.61 0.65 0.68 —
Unsupervised Pretraining 0.60 0.66 0.68 0.71 —

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Gumbel DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.13 0.46 0.79 0.86 0.89
Joint training 0.22 0.48 0.78 0.85 —

Supervised Pretraining 0.23 0.56 0.80 0.86 —
Unsupervised Pretraining 0.21 0.55 0.81 0.86 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.08 0.62 0.76 0.84
Joint training 0.06 0.57 0.74 0.80 —

Supervised Pretraining 0.26 0.51 0.78 0.81 —
Unsupervised Pretraining 0.45 0.55 0.75 0.81 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.30 0.48 0.62 0.70 0.73
Joint training 0.41 0.56 0.64 0.68 —

Supervised Pretraining 0.38 0.53 0.63 0.66 —
Unsupervised Pretraining 0.32 0.53 0.63 0.66 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.14 0.23 0.30 0.33 0.34
Joint training 0.21 0.29 0.34 0.40 —

Supervised Pretraining 0.21 0.29 0.35 0.39 —
Unsupervised Pretraining 0.29 0.37 0.41 0.45 —

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Gumbel DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.78 0.86 0.90 0.94
Joint training 0.96 0.94 0.96 0.95 —

Supervised Pretraining 0.97 0.98 0.97 0.97 —
Unsupervised Pretraining 0.81 0.88 0.90 0.94 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.33 0.46 0.70 0.75 0.79
Joint training 0.32 0.58 0.73 0.83 —

Supervised Pretraining 0.56 0.63 0.72 0.81 —
Unsupervised Pretraining 0.57 0.75 0.82 0.85 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.90 0.93 0.96 0.97 0.98
Joint training 0.96 0.98 0.98 0.99 —

Supervised Pretraining 0.96 0.97 0.98 0.99 —
Unsupervised Pretraining 0.97 0.98 0.99 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.92 0.94 0.95 0.96 0.97
Joint training 0.95 0.96 0.96 0.97 —

Supervised Pretraining 0.94 0.95 0.96 0.97 —
Unsupervised Pretraining 0.98 0.98 0.98 0.98 —

Table 11: Gumbel DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.08 0.17 0.27 0.30
Joint training 0.60 0.43 0.54 0.54 —

Supervised Pretraining 0.65 0.71 0.68 0.62 —
Unsupervised Pretraining 0.11 0.18 0.39 0.55 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.06 0.20 0.25 0.21
Joint training 0.01 0.11 0.19 0.38 —

Supervised Pretraining 0.07 0.11 0.15 0.25 —
Unsupervised Pretraining 0.05 0.21 0.32 0.42 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.02 0.20 0.27 0.34
Joint training 0.29 0.48 0.59 0.61 —

Supervised Pretraining 0.24 0.42 0.56 0.60 —
Unsupervised Pretraining 0.30 0.46 0.59 0.63 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.05 0.10 0.17 0.21 0.21
Joint training 0.10 0.14 0.21 0.25 —

Supervised Pretraining 0.07 0.13 0.19 0.27 —
Unsupervised Pretraining 0.26 0.27 0.31 0.34 —

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Gumbel DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.76 0.84 0.87 0.88
Joint training 0.60 0.70 0.78 0.85 —

Supervised Pretraining 0.40 0.63 0.76 0.84 —
Unsupervised Pretraining 0.36 0.64 0.62 0.76 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.39 0.48 0.51 0.55 0.57
Joint training 0.38 0.49 0.55 0.58 —

Supervised Pretraining 0.45 0.50 0.52 0.56 —
Unsupervised Pretraining 0.43 0.53 0.55 0.57 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.84 0.93 0.97 0.98 0.99
Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.86 0.93 0.97 0.98 —
Unsupervised Pretraining 0.85 0.94 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.71 0.77 0.80 0.83 0.85
Joint training 0.75 0.79 0.81 0.84 —

Supervised Pretraining 0.72 0.78 0.81 0.84 —
Unsupervised Pretraining 0.69 0.77 0.81 0.84 —

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 13: VQ DB – Autoregressive Z Token Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.73 0.89 0.98 1.00 1.00
Joint training 0.67 0.88 0.95 0.97 —

Supervised Pretraining 0.84 0.95 0.99 1.00 —
Unsupervised Pretraining 0.75 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.23 0.86 0.87 0.93 0.93
Joint training 0.31 0.66 0.90 0.89 —

Supervised Pretraining 0.41 0.86 0.90 0.93 —
Unsupervised Pretraining 0.12 0.13 0.13 0.13 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.86 0.95 0.99 1.00 1.00
Joint training 0.92 0.97 0.99 0.99 —

Supervised Pretraining 0.91 0.97 0.99 1.00 —
Unsupervised Pretraining 0.94 0.97 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54
T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.49 0.77 0.91 0.95 0.84
Joint training 0.71 0.81 0.91 0.96 —

Supervised Pretraining 0.69 0.83 0.94 0.96 —
Unsupervised Pretraining 0.44 0.54 0.52 0.61 —

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 14: VQ DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.10 0.41 0.85 0.98 1.00
Joint training 0.12 0.44 0.70 0.87 —

Supervised Pretraining 0.29 0.64 0.91 0.98 —
Unsupervised Pretraining 0.15 0.54 0.84 0.93 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.04 0.86 0.87 0.94 0.91
Joint training 0.14 0.59 0.91 0.89 —

Supervised Pretraining 0.23 0.86 0.90 0.94 —
Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.47 0.74 0.92 0.97 0.84
Joint training 0.51 0.81 0.93 0.97 —

Supervised Pretraining 0.59 0.82 0.94 0.97 —
Unsupervised Pretraining 0.51 0.63 0.62 0.59 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11
T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.53 0.79 0.87 0.25
Joint training 0.69 0.78 0.92 0.96 —

Supervised Pretraining 0.41 0.66 0.85 0.91 —
Unsupervised Pretraining 0.01 0.02 0.07 0.05 —

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 15: VQ DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.73 0.77 0.83 0.91 0.99
Joint training 0.95 0.95 0.95 0.96 —

Supervised Pretraining 0.99 0.98 0.98 0.97 —
Unsupervised Pretraining 0.86 0.97 0.99 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.35 0.67 0.77 0.81 0.53
Joint training 0.59 0.77 0.91 0.93 —

Supervised Pretraining 0.68 0.81 0.83 0.89 —
Unsupervised Pretraining 0.32 0.38 0.32 0.32 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.93 0.98 0.99 1.00 0.98
Joint training 0.97 0.99 0.99 1.00 —

Supervised Pretraining 0.97 0.98 0.99 1.00 —
Unsupervised Pretraining 0.98 0.99 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.89 0.95 0.98 0.98 0.98
Joint training 0.97 0.98 0.99 0.99 —

Supervised Pretraining 0.97 0.98 0.99 0.99 —
Unsupervised Pretraining 0.94 0.94 0.94 0.94 —

Table 16: VQ DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.12 0.29 0.61 0.91
Joint training 0.40 0.38 0.39 0.52 —

Supervised Pretraining 0.89 0.76 0.71 0.66 —
Unsupervised Pretraining 0.17 0.67 0.90 0.85 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.02 0.18 0.19 0.25 0.12
Joint training 0.10 0.30 0.64 0.75 —

Supervised Pretraining 0.13 0.33 0.39 0.56 —
Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.32 0.68 0.78 0.95 0.39
Joint training 0.41 0.68 0.86 0.93 —

Supervised Pretraining 0.35 0.69 0.88 0.96 —
Unsupervised Pretraining 0.44 0.57 0.52 0.53 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.01 0.19 0.51 0.52 0.22
Joint training 0.27 0.40 0.57 0.67 —

Supervised Pretraining 0.19 0.41 0.56 0.71 —
Unsupervised Pretraining 0.00 0.01 0.00 0.00 —

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 17: VQ DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.65 0.73 0.81 0.86 0.88
Joint training 0.56 0.67 0.74 0.84 —

Supervised Pretraining 0.41 0.62 0.71 0.78 —
Unsupervised Pretraining 0.27 0.61 0.57 0.79 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.32 0.52 0.55 0.58 0.62
Joint training 0.43 0.54 0.59 0.65 —

Supervised Pretraining 0.48 0.53 0.55 0.58 —
Unsupervised Pretraining 0.33 0.34 0.33 0.33 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.85 0.96 0.99 0.99 0.97
Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.85 0.93 0.98 0.99 —
Unsupervised Pretraining 0.88 0.93 0.93 0.93 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.60 0.77 0.83 0.86 0.88
Joint training 0.74 0.78 0.83 0.86 —

Supervised Pretraining 0.68 0.78 0.84 0.86 —
Unsupervised Pretraining 0.49 0.55 0.53 0.53 —

30

	Introduction and Preliminaries
	AE Framework
	Background: Training a single discrete random variable
	Optimization methods
	Generalization of Reparameterization trick to categorical random variables
	Gradient Approximation for Discrete Variables

	Discrete Bottleneck
	Discrete bottleneck implementations

	Training a Sequence of Discrete Random Variables
	Hidden Sequence Collapse in Seq2Seq Models
	EOS Soft-Masking – Gradient Approximation for Halting the Generation

	Experiments
	Training Models with and without Supervision on Seq2Seq Tasks
	Experimental Setup
	Baselines
	Experimental Results

	Limitations and Future Work
	Conclusion
	Appendix
	Remarks on AE framework
	EOS Gradient Approximation
	Dataset Description and Examples
	Details on Tasks, Model Architecture, and Hyperparameters
	Evaluation Metrics
	Remarks on Experimental Results
	Experiment Results
	Weakly Supervised Training - Token Accuracy for different DBs
	Unsupervised Training Results
	Weakly Supervised Training Results

