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Figure 1: Training schemes of both conventional methods and our PhysAvatar with qualitative
examples and visual Turing radar results. (a-b) Training schemes for conventional and our
PhysAvatar. (c-d) Comparative qualitative examples. (e) Visual Turing radar results.

ABSTRACT

Recent advances in diffusion transformer (DiT) models have greatly improved
audio-driven video avatar generation, enabling the synthesis of realistic avatars
from a single reference image and an audio clip. However, generating avatars with
physically grounded human behaviors remains challenging, primarily due to (i)
overreliance on shallow audio-visual correlations and (ii) misalignment between
semantic intent and behavioral expression. Consequently, existing methods often
produce facial expressions and gestures that appear constrained, lack emotional
depth, and fail to capture realistic human dynamics. In this paper, we present a
Physically grounded DiT model for Avatar generation, termed PhysAvatar, which
can produce realistic, contextually coherent, long-form avatars with human-like
behavioral fidelity. PhysAvatar introduces three key innovations: (i) physical state
supervision, embedding human behavioral dynamics into the video DiT model via
discrete diffusion; (ii) physical planning guidance, which leverages a multimodal
language model to jointly analyze audio and visual inputs and direct the avatar
behaviors according to semantic intent; and (iii) efficient long-form inference
with interleaved video interpolation, improving temporal coherence and identity
preservation. Extensive experiments on our in-house dataset, as well as PATS and
Vlogger, demonstrate that PhysAvatar outperforms state-of-the-art baselines in
both generative quality and behavioral realism, consistently producing avatars that
are more physically grounded, expressive, and lifelike.

1 INTRODUCTION

Audio-driven video avatar generation (Meng et al., 2025b; Chen et al., 2025; Wang et al., 2025; Meng
et al., 2025a; Gan et al., 2025) aims to synthesize lifelike avatar videos from a single reference image
and an audio clip by animating lip movements, facial expressions, and body gestures based on audio.
This capability is increasingly important in entertainment, education, and interactive media, where
users demand not only precise audio-visual synchronization but also physically plausible behaviors.

Recent advances in video synthesis have been propelled by Diffusion Transformer (DiT) models,
such as Sora (Peebles & Xie, 2023) and Wan (Wan et al., 2025). However, state-of-the-art (SOTA)
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DiT-based audio-driven avatar methods (Figure 1(a)) primarily capture low-level audio-visual corre-
lations, e.g., phoneme-to-lip mappings or prosody-to-gesture intensity, often overlooking whether
the generated movements reflect physically grounded human behavior. Consequently, while lip
synchronization may be accurate, facial expressions often lack emotional depth, gestures appear
“floaty”, and dynamic movements may misalign with the intended context (Figure 1(c)).

We identify two critical gaps in current methods. First, overreliance on audio-visual correlations:
existing methods largely depend on conventional visual continuous diffusion supervision (Ho et al.,
2020; Liu et al., 2023), which oversimplifies the audio-motion relationship. This leads to artifacts
like jitter, unnatural gestures, and desynchronization between facial and body movements. Second,
semantic intent misalignment: natural motion should reflect not only audio content and prosody
but also identity cues and contextual factors from the reference image. Without this guidance,
movements may be locally plausible yet semantically inconsistent. Addressing these gaps is essential
for generating avatars that are both natural and human-like.

To address these challenges, we propose PhysAvatar, a Physically grounded DiT model for Avatar
generation that produces realistic, contextually coherent, long-form avatars with human-like behav-
ioral fidelity. Our PhysAvatar improves upon conventional video DiT-based avatar methods in two
major aspects. (i) We introduce physical state supervision via a discrete diffusion mechanism,
which embeds human behavioral dynamics into the intermediate video DiT layer (Figure 1(b)).
By acknowledging that individuals express the same auditory content through diverse behaviors,
we employ a discrete temporal masking strategy to predict masked physical state tokens from un-
masked audio tokens, effectively capturing the behavioral nuances that emerge as audio evolves.
The supervised physical state tokens are derived from the SOTA pose estimator X-Pose (Yang et al.,
2024), which captures critical information regarding body, facial, and hand movements. (ii) We also
provide physical planning guidance via a multimodal large language model (MLLM)-based guider,
i.e. Qwen2.5-Omni (Xu et al., 2025), to analyze audio and images jointly, thereby capturing emotions
and intentions while planning future behaviors. The MLLM integration equips the video DiT with
state-transition guidance, ensuring avatar behaviors evolve consistently with the intended semantic
context. In addition, we propose an efficient long-form inference strategy utilizing interleaved video
interpolation to address behavioral inertia across sequential video chunks, effectively resolving the
identity drifting issue. Collectively, these advancements produce avatars that are well-synchronized
with audio and exhibit enhanced physical grounding, expressiveness, and lifelikeness (Figures 1(d-e)).

The contributions of our PhysAvatar are summarized as follows. (i) We present a novel physically
grounded DiT model for avatar generation, which can produce realistic, contextually coherent, and
long-form avatars with human-like behavioral fidelity. (ii) We propose a physical state supervision
via discrete diffusion mechanism to embed human behavioral dynamics into the video DiT model.
(iii) We utilize an MLLM-based guider to analyze audio and image inputs jointly and direct the avatar
behaviors according to semantic intent. (iv) We develop an efficient long-form inference strategy
with interleaved video interpolation, improving temporal coherence and identity preservation. (v)
Experimental results on our in-house, PATS, and Vlogger datasets demonstrate that our PhysAvatar
outperforms existing methods in generative performance, while also producing human behaviors that
are more physically grounded, expressive, and lifelike.

2 RELATED WORKS

Audio-driven video avatar generation. Audio-driven video avatar generation aims to synthesize
realistic avatars from a single reference image and an audio clip (Corona et al., 2025). Existing
methods fall into the following two categories. 1) Explicit pose-intermediated models (He et al., 2024;
Corona et al., 2025; Meng et al., 2025b), i.e. audio to pose to video, which maps audio to intermediate
pose visualizations (e.g. 2D/3D keypoints) via an audio-to-pose model before video generation;
however, they are susceptible to pose noise, latency, and audio-pose misalignment. 2) End-to-end
models (Chen et al., 2025; Wang et al., 2025; Gan et al., 2025; Meng et al., 2025a), i.e. audio to
video, which generate video directly from audio but often yield conservative, limited-amplitude, or
semantically implausible facial and gesture motions. Despite notable gains in visual fidelity and
synchronization, they both struggle to deliver physically grounded, human-like behavior. Unlike
them, the proposed PhysAvatar is able to produce physically grounded avatars via physical state
supervision and physical planning guidance.

Video DiT model. The video DiT model, exemplified by text-to-video (T2V) models such as
Sora (Peebles & Xie, 2023; Brooks et al., 2024) and Wan-series (Wan et al., 2025), integrates
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scalable transformers with visual continuous diffusion to jointly model spatial fidelity and temporal
coherence. This architecture is currently the main thrust for audio-driven video avatar generation,
showcasing remarkable abilities in capturing intricate interactions, motion, and environmental context.
Additionally, frameworks extending from T2V foundation models, e.g. the All-in-One Video Creation
and Editing (VACE) model (Jiang et al., 2025) from Wan2.1, facilitate a variety of downstream
applications. However, these DiT-based models typically depend on visual continuous diffusion loss
supervision, which prioritizes pixel-level fidelity but offers limited guidance for modeling human
behavior. Thus, achieving physically grounded human behaviors remains challenging.

3 METHODOLOGY

In this section, we begin with the preliminaries in Section 3.1, followed by an overview of PhysAvatar
in Section 3.2. Section 3.3 then introduces our discrete diffusion-based physical state supervi-
sion, while Section 3.4 describes the concrete MLLM-based physical planning guidance. Finally,
Section 3.5 specifies the overall objective function together with our long-form inference strategy.

3.1 PRELIMINARIES

Diffusion models have emerged as a powerful framework in both computer vision (CV) and natural
language processing (NLP). They operate via a two-phase procedure: a forward process that gradually
corrupts clean data and a learned reverse process that reconstructs the original signal. Accordingly,
they are commonly categorized as (i) continuous diffusion, which applies continuous-valued noise
corruption (Ho et al., 2020), and (ii) discrete diffusion, which uses discrete masking (Lou et al., 2024).

Continuous diffusion model. We reinterpret conventional continuous-valued image and video
diffusion in CV as continuous diffusion: a forward process that progressively perturbs continuous-
valued data with Gaussian noise and a reverse process that predicts the noise (or velocity) required to
recover the clean signal. Exemplified by latent-based rectified flows (Liu et al., 2023), let a pretrained
encoder £(-) map an image or video X € RF*HXW>x3 1o Jatents x; = £(X) € RUXhxw)xC
where F', H, and W denote the frame number, height, and width of the original data, and f, h, w,
and C' denote the corresponding latent dimensions. The forward process randomly samples Gaussian
noise xg ~ A (0, 1) and defines intermediate latents along a linear path «; = ta; + (1 — t)xq for
the timestep ¢ € [0, 1]. In the reverse process, the diffusion model Uy (-) predicts the velocity by
minimizing a mean-squared-error objective between its output and the ground-truth velocity v;:

LContinuous == ||Z/[9($t, ec’ t) - /UiE”2 B (1)

where v; = % = x1 — xo and e denotes the conditioning tokens.

Discrete diffusion model. Discrete diffusion is an efficient and powerful paradigm for NLP that
formulates generation as progressive token masking followed by reconstruction. Exemplified by
masked diffusion (Nie et al., 2025), given a sequence of text token embeddings oy € RL™ O™,
where L™ is the sequence length and C™ is the embedding dimensionality, the forward process

yields a partially observed sequence x; € REL™xC™ by independently replacing each token z! with a

dedicated mask embedding e™ € R with probability ¢ € [0, 1]. The reverse process then trains a
model pg(-) to recover the original tokens at masked positions, conditioned on the visible context ;.
Accordingly, the learning objective is a masked negative log-likelihood:

LDiscrete = *l[mi = em] logpg (mlo | mt)v (2)

where 1[] is the indicator function that restricts supervision to masked tokens.

3.2 OVERVIEW OF PHYSAVATAR

Given a reference image of a human and an audio clip, PhysAvatar aims to produce a realistic avatar
that effectively aligns lip movement, expression, and gesture with the audio’s acoustic and linguistic
content, along with the physical environment depicted in the image. As shown in Figure 2, we
adopt the T2V model Wan2.1 (Wan et al., 2025) in the main branch enhanced with a dedicated
VACE branch, which builds on the advanced VACE model (Jiang et al., 2025) and the principles of
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Figure 2: Illustration of the training process for the proposed PhysAvatar.

ReferenceNet (Hu, 2024). Specifically, we inject audio tokens into the main branch to modulate
fine-grained dynamics, whereas the reference image and MLLM embeddings are injected into the
VACE branch with additional transformer blocks to provide high-level physical planning guidance.

During training, we optimize the video DiT model using (i) discrete diffusion-based physical state
supervision and (ii) continuous diffusion-based visual supervision, resulting in videos that exhibit
more realistic human dynamics and enhanced visual quality. The inference process remains consistent
with the standard video DiT model, without masking any audio tokens. Additionally, we propose an
efficient long-form inference strategy utilizing interleaved video interpolation, enabling the generation
of temporally coherent and identity-preserving long avatar videos.

3.3 DISCRETE DIFFUSION-BASED PHYSICAL STATE SUPERVISION

To promote physically grounded human behavior in conventional video DiT models, we propose
a discrete diffusion-based physical state supervision, thereby facilitating the learning of temporal
behavior changes as audio progresses, as shown in the main branch of Figure 2.

Audio tokens injection. We condition video generation on input audio by injecting Whisper (Rad-
ford et al., 2023)-tokenized audio tokens into each transformer block of the main branch via
cross-attention. To expand the audio receptive field and enhance temporal continuity, we re-

. aud . . g .
place the raw encoded audio tokens e™¥-¢ ¢ RF*C™ with overlapping sliding-window tokens

eVinaud RFX((%H)XCM), using a window size of 2k + 1:

ewinjud _ EBF [ Ea_w];aud, . egaw,aud’ . elljab'\_zvlgaud}’ (3)
where the superscript ®¢ denotes audio, the subscript i refers to the i-th token, [-,-] denotes
row-wise (horizontal) concatenation, and ¢ denotes column-wise (vertical) concatenation, respec-
tively; mirror padding is applied at sequence boundaries. Next, we introduce an MLP-based au-
dio projector, Proj,q(+), which temporally compresses €*"-%¢ to produce the final audio tokens
€4 = Proj,, (e""*) € R/*C. This ensures alignment with the video latent sequence length f
while maintaining a dimensionality of C'. Additionally, rotary positional encoding (RoPE) (Su et al.,
2024) is incorporated into the audio cross-attention to facilitate audio-visual temporal alignment.

Noise-based audio masked ratio modulation. In continuous diffusion, the timestep noise o
decays from global to local learning; naive discrete supervision breaks this curriculum, causing scale
mismatch and unstable gradients. We therefore propose a noise-based audio masked ratio modulation
strategy to facilitate the alignment of both objectives per timestep, as detailed in Alg. 1.



Under review as a conference paper at ICLR 2026

Algorithm 1: Noise-based Audio Masked Ratio Modulation

Require: video latent sequence length f, current training sampled timestep ¢
Output: discrete audio mask M4 € {0,1}f

Get added ¢-th noise sigma o € [0, 1] via noise scheduler;
Compute maximum masked probability PM = 1 — oy;

Sample a masking ratio p™ ~ /(0, PM);

Compute the number of masked audio tokens n™M = | f x pM|;

Select mask indices ™M C {1,..., f}, randomly and uniquely, where [IM| = nM;
0 ifieM

1 ifig ™ fori =1,2,...,f

Return M*¢ where M*9[j] = {

Specifically, at a given timestep ¢ with a continuous noise scale o;, we first establish the maximum
audio-masking probability PM based on o}, linking the discrete and continuous diffusion processes.
We then sample the masking ratio pM ~ /(0, PM) to enable diverse task combinations that foster
stable learning. Using pM, we determine the number of masked audio tokens n™ and uniformly
sample n™ unique indices I™ to construct a binary audio mask M with entries in {0, 1} (0 masked,
1 unmasked) for the discrete-masking operation.

Physical state supervision. Building on the proposed noise-based audio masked ratio modulation
strategy and adhering to REPA’s representation-alignment principle (Yu et al., 2025), we introduce
physical state supervision within a specific intermediate DiT block, utilizing a discrete diffusion-based
objective to internalize human behavioral knowledge. First, we define that physical state tokens are
generated by the SOTA pose estimator X-Pose (Yang et al., 2024), which captures essential video
information regarding body gesture, facial expressions, and hand movements across F' video frames.
Next, conditioned on the generated audio masks, we integrate a multi-layer perceptron (MLP)-based
physical state projector Pro jphys(-) into the intermediate DiT block to predict these masked physical
state tokens eP™* based on the unmasked audio context. The audio mask also modulates the loss,
ensuring that gradients are applied only at masked positions, thus compelling the model to infer
temporal dynamics from the surrounding audio input. Let e2'T = Ug (x;, e, ™, eM-M, 1) denote
the representation at block j of a J-block DiT; the corresponding discrete diffusion-based physical
state loss at the Jppys-th block is given by:

2
aud : DiT Phys
Loiserete = 1[M™9 = 0] HPmJPhyS(eJPhys) Y

“

3.4 MLLM-BASED PHYSICAL PLANNING GUIDANCE

Despite offering physical state supervision, video DiT models still lack high-level, physically
grounded behavioral priors. To tackle this issue, we leverage the SOTA audio-visual omni MLLM,
i.e. Qwen2.5-Omni Thinker, which enables joint analysis of audio and visual inputs and the planning
of future states, thus offering high-level semantic guidance for avatar behaviors. We subsequently
integrate MLLM embeddings into each VACE transformer block through cross-attention, effectively
refining the context tokens e, derived from reference images and frame masks M** € {0, 1}

that indicate generative frame positions. This integration employs an MLP-based MLLM projector
Projym(-) that maps the combined continuous MLLM embeddings eMLIM ¢ RE™ <G
tokenized MLLM embeddings eMIM e RL™<C™™ (6 the video latent dimension C, resulting in

the final MLLM-guided embeddings eM"M ¢ RLM*C:

and

MM = Projyim(eden ™ + etr ). (5)
where CMHM 5 the MLLM channel dimension. The integration of continuous and tokenized MLLM

embeddings enhances the granularity of context and reduces ambiguities arising from semantically
similar embeddings (Xu et al., 2025), thereby improving guidance accuracy. Additionally, the MLLM
output provides an interpretable intermediate representation of the generated video.
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3.5 OBIECTIVE FUNCTION AND LONG-FORM VIDEO INFERENCE STRATEGY

Objective function. During training, we optimize our PhysAvatar via (i) a discrete diffusion-based
physical state loss applied at an intermediate Jpose-th block and (ii) a continuous diffusion-based
visual loss applied at the final J-th DiT block. The continuous and overall objectives are:

DiT 2
£Continuous = ”eJl — V¢ H s and (6)
L= EContinuous + ADiscreteEDiscretey (7)

where Apjscree balances the two terms; we set it to 10 to ensure their consistent magnitude.

Efficient long-form inference with interleaved video interpolation. The inference process aligns
with the standard video DiT model, with no audio tokens being masked. To enable long-form video
avatar generation while preserving identity, we utilize the inertia of human movement—specifically,
the persistence of speaker-specific gestural patterns during speech—and implement an interleaved

interpolation-based inference strategy, as shown in Figure 3. Chunk I-1 Chunk I+1
Given long audio tokens a € RF™™C™ with Flone > O S [ 1 ] [ I ]
F', we partition them into contiguous chunks of length Fom M HeadaTail N Fn
LChunk First, we generate all odd video chunks in par- ¥ Guided ' ¥
allel (non-overlapping). We then generate the even Even Chunk f [:] | chunk1

. . . g - Generation | J
chunks via VACE frame interpolation, conditioning ‘ o !
on adjacent odd chunks to enforce inter-chunk conti-  gyiengtn
nuity. Concretely, each even chunk V; is conditioned cOncatenate[ I I I I ]

1 from the preceding odd Figure 3: Illustration of the proposed infer-
chunk and n head frames V;[iln] from the subsequent "¢® strategy using three example chunks.
odd chunk, where the superscripts indicate frame ranges. Finally, we iteratively concatenate the
generated odd and even chunks to create the full-length video. With sufficient memory, our inference
strategy permits a minimum of two passes—first generating the odd chunks followed by the even
chunks—enabling parallel processing of non-overlapping chunks for improved efficiency.

on m tail frames Vl[fl_m

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Datasets. We curated ~ 200 hours of video for training. Evaluation uses three disjoint test sets:
15 identities from our in-house dataset, 15 from PATS dataset (Ahuja et al., 2020), and 12 from
the Vlogger project (Corona et al., 2025). PATS typically exhibits smaller subject-to-frame ratios,
whereas Vlogger occupies a larger fraction, with both datasets predominantly featuring simple
background. In contrast, our in-house test set offers greater subject-scale variation and more complex
backgrounds. Notably, the evaluation is performed in a zero-shot setting with no test identities (IDs)
were seen during training; further details on dataset curation are available in Appendix A.

Implementation details. Our PhysAvatar is built on Wan2.1-VACE-1.3B with .J =30 DiT blocks
in the main branch and 15 in the VACE branch, with VACE-to-main additions applied in a distributed
manner. All projectors (MLLM, audio, and physical state) along with audio and MLLM cross-
attention module are trained in full, whereas the remaining modules are fine-tuned with Low-Rank
Adaptation (LoRA) (Hu et al., 2022) with a rank of 128 and an alpha of 64. Experiments run on 32
H20 GPUs using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 2 x 10~°; training uses
512 x 512 resolution clips of 81 frames at 25 fps. Discrete diffusion-based physical state supervision
was applied to the 15-th DiT block (Jpnys = 15) of the main branch to align instance-level body,
facial, and hand embeddings from X-Pose (1024-d). During inference, we use odd—even overlaps
m=>5,n=4 and classifier-free guidance (Ho & Salimans, 2021) with 50 denoising steps, audio scale
2.0, and VACE context scale 1.1. Further details on physical state token extraction and projection, as
well as the MLLM input prompt, are available in Appendix B and Appendix C, respectively.

Evaluation metrics. We quantitatively evaluate three aspects—yvisual, gesture, and facial quality—
to enable comprehensive comparison with prior work. For visual quality, we report FID (Heusel
et al., 2017) for frame-level fidelity and FVD (Unterthiner et al., 2018) for video-level temporal
coherence, and use Q-Align for LLM-based VQA and aesthetic evaluation (ASE). For gesture quality,
we compute FGD (Yoon et al., 2020) for gesture realism and DiV (Lee et al., 2019) for gesture
variability; following Guan et al. (2025), we report Hand-C (hand landmark detection confidence)
and Hand-V (variance of hand landmarks) to assess hand movement expressiveness and diversity. For
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Table 1: Quantitative comparison results across different test sets. The abnormally superior
performance metrics due to poor image quality in S2G-Diffusion and EchoMimic V2 are grayed.

METHODS ‘ Visual Quality Gesture Quality Facial Quality
FID, FVD] VQAT ASEt | FGD, DIVY  Hand-Ct  Hand-V{ | Sync-Ct  Sync-D]  CSIM?T
IN-HOUSE DATASET
S2G-Diffusion 201.9 2426 2.34 1.79 2.73 2.76 0.61 1.27 3.72 7.32 0.884
EchoMimic V2 148.6 2110 3.01 1.88 21.08 7.37 0.36 7.04 4.31 6.21 0.955
HunyuanVideo-Avatar 98.8 715 2.70 1.55 2.60 3.85 0.59 1.68 4.89 5.85 0.943
FantasyTalking 68.8 760 2.98 1.74 224 3.78 0.65 2.04 4.12 6.81 0.960
OmniAvatar 62.8 730 2.97 1.91 1.67 3.98 0.65 2.11 4.55 7.94 0.959
EchoMimic V3 68.6 691 3.13 2.01 161 4.05 0.70 1.89 4.46 8.02 0.931
PhysAvatar (Ours) 62.3 713 3.29 213 1.57 4.33 0.72 233 4.76 6.02 0.955
PATS DATASET
S2G-Diffusion 107.2 1301 2.82 1.92 0.40 1.60 0.74 2.07 3.52 6.75 0.909
EchoMimic V2 60.6 1083 3.07 2.04 4.55 3.83 0.64 2.89 4.43 6.64 0.964
HunyuanVideo-Avatar 419 581 2.53 1.64 0.21 1.33 0.74 2.01 4.34 721 0.951
FantasyTalking 29.8 654 3.00 1.86 0.39 1.53 0.82 1.93 3.81 5.98 0.970
OmniAvatar 27.1 630 2.98 2.00 0.27 1.32 0.83 2.08 427 7.24 0.962
EchoMimic V3 30.8 620 3.12 2.07 0.22 1.16 0.79 1.44 4.24 7.27 0.940
PhysAvatar (Ours) 26.9 583 3.28 2.26 0.19 1.72 0.83 235 4.34 5.56 0.953
VLOGGER DATASET

S2G-Diffusion - - 2.28 1.83 - 322 0.54 2.01 2.40 5.89 0.892
Vlogger - - 348 2.08 - 1.14 0.86 1.60 539 742 0.960
EchoMimic V2 - - 3.26 1.97 - 5.66 0.47 4.84 5.00 5.97 0.966
HunyuanVideo-Avatar - - 2.57 1.41 - 1.15 0.79 1.05 5.14 6.21 0.954
FantasyTalking - - 3.18 1.82 - 1.50 0.86 0.87 4.61 597 0.968
OmniAvatar - - 3.25 2.01 - 1.18 0.86 1.18 543 6.56 0.965
EchoMimic V3 - - 3.50 2.19 - 133 0.78 1.59 5.55 6.77 0.954
PhysAvatar (Ours) - - 3.66 2.30 - 1.69 0.90 1.86 5155 543 0.961

facial quality, we measure audio-lip synchronization using Sync-C and Sync-D (Chung & Zisserman,
2016), and facial fidelity with cosine similarity (CSIM) (Guan et al., 2025) via a face recognition
model. The visual Turing test scoring standard is detailed in Appendix D. FID, FVD, and FGD
metrics were excluded from the Vlogger dataset due to the absence of authentic video data. The top
two results in the table are marked with bold for the best and underlined for the second-best result.

4.2 COMPARISON WITH SOTA METHODS

We systematically evaluate our PhysAvatar against several SOTA baselines with two categories: (i)
explicit pose-intermediated methods (audio to pose to video), which include S2G-Diffusion (He
et al., 2024), Vlogger (Corona et al., 2025), and EchoMimic V2 (Meng et al., 2025b), and (ii)
end-to-end methods (audio to video), comprising HunyuanVideo-Avatar (Chen et al., 2025), Fanta-
syTalking (Wang et al., 2025), OmniAvatar (Gan et al., 2025), and EchoMimic V3 (Meng et al., 2025a).
To ensure a fair comparison, we employ DiffGesture (Zhu et al., 2023) to obtain audio-aligned pose
sequences for EchoMimic V2. Notably, HunyuanVideo-Avatar is built upon HunyuanVideo (Kong
et al., 2024), whereas FantasyTalking and OmniAvatar are built on the more advanced Wan 2.1.

Results on in-house dataset. Drawing on the quantitative results of our in-house dataset in Table 1,
we present five observations. (i) Explicit pose-intermediated methods, e.g. S2G-Diffusion and
EchoMimic V2, leverage audio to generate poses, which are then transformed into videos. This
approach inevitably introduces cumulative errors, degrading visual quality. Notably, S2G-Diffusion
overfits small datasets, resulting in poor generalization to zero-shot person IDs. (ii) In contrast, end-to-
end methods generally achieve higher visual quality. Although HunyuanVideo-Avatar underperforms
overall due to its weaker base model, its face-aware audio injection strategy yields relatively better
audio-lip synchronization. (iii) FantasyTalking and OmniAvatar exhibit restricted motion diversity
as their ID injection in the initial patchify layer constrains dynamic movement. (iv) EchoMimic V3
exhibits weak ID preservation due to the unified fusion of ID, audio, and text signals in a shared
cross-attention module, which adversely affects the ID preservation. (v) By integrating discrete
diffusion-based physical state supervision with MLLM physical planning guidance, our PhysAvatar
generates more realistic videos and enhances physically grounded human behavior.

The qualitative results presented in Figure 4(a) corroborate these findings. Explicit pose-intermediated
methods incur cumulative errors that degrade visual fidelity, as exemplified by S2G-Diffusion, which
reveals significant hand artifacts. By contrast, end-to-end methods largely mitigate these artifacts,
and models employing stronger base models further improve realism. However, FantasyTalking and
OmniAvatar exhibit limited motion and weak audio-lip synchronization, while EchoMimic V3 shows
poor ID preservation. In light of these challenges, our PhysAvatar surpasses all baselines, delivering
enhanced visual quality along with more realistic facial expressions and body movements.
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Figure 4: Qualitative comparisons of our PhysAvatar with competing methods across datasets.

Results on PATS dataset. Quantitative results of PATS dataset in Table | report that, despite its
in-house superior performance, HunyuanVideo-Avatar exhibits marked audio-lip desynchronization
when human subjects occupy only a small fraction of the frame. By contrast, our PhysAvatar remains
stable under these conditions, underscoring the robustness and adaptability of our framework.

Qualitative PATS results in Figure 4(b) show that baseline methods struggle to synthesize fine-grained
lip motions and handle large gesture variations, particularly when the reference image features a
small mouth. By contrast, our PhysAvatar faithfully captures subtle facial dynamics and robustly
handles large gesture variations while more effectively preserving subject ID.

Results on Vlogger dataset. Quantitative and qualitative Vlogger results in Table 1 and Figure 4(c)
further confirm the effectiveness of PhysAvatar. Specifically, it outperforms all baselines, yielding
richer facial detail and more expressive gesture dynamics, even in subject-dominant frames.

Figure 4 also hightlights that our PhysAvatar generates additional MLLM outputs beyond video
production, thereby enhancing interpretability. The visualization of predicted physical state tokens,
re-inputted through the X-Pose during the final denoising step, demonstrates strong behavioral
consistency with the corresponding generated video, illustrating the effectiveness of our physical
state supervision; refer to Appendix E for more qualitative results. However, the parsed hand outputs
remain suboptimal due to inherent limitations and restricted parameter count of the base model.

Visual Turing test. Figure 1(e) displays the visual Turing test results from 15 participants evaluating
our PhysAvatar against competing methods. Participants assessed five dimensions—gesture plausibil-
ity, expression appropriateness, visual quality, identity consistency, and lip synchronization—on a 1-5
scale with 0.5-point increments. The results show that our PhysAvatar achieves superior performance,
particularly in gesture plausibility and expression appropriateness, confirming its effectiveness.

4.3 ABLATION STUDY

Ablation on physical state supervision. Quantitative ablation results in Table 2 show that incor-
porating physical state supervision consistently increases gesture quality. And qualitative results
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Table 2: Quantitative Ablation results of our PhysAvatar on the in-house dataset.

VARIENTS Visual Quality Gesture Quality Facial Quality
FID] FVD| VQAT ASET FGDJ] DIVt Hand-C1 Hand-V1 Sync-Ct Sync-DJ CSIMT
Only Continuous 66.6 746 3.16 2.01 2.68 3.67 0.69 1.24 4.55 6.23 0.978
Jphys = 10 (Discrete) 64.8 732 3.12 2.08 1.70 4.31 0.68 227 4.65 6.12 0.956
Jphys = 15 (Discrete) 62.3 713 3.29 2.13 1.57 4.33 0.72 2.33 4.76 6.02 0.955
Jphys = 15( Full ) 66.6 762 3.15 2.01 2.60 4.22 0.66 2.14 4.40 6.29 0.956
Jphys = 20 (Discrete) 66.9 752 3.16 2.03 2.15 4.08 0.67 2.20 4.46 6.31 0.975
w/o MLLM 67.1 730 3.10 1.95 1.74 3.82 0.71 1.44 4.36 6.19 0.958
MLLM via T5 66.1 749 3.17 2.03 1.64 3.96 0.68 173 4.51 6.00 0.954
MLLM via MLP 62.3 713 3.29 2.13 1.57 4.33 0.72 2.33 4.76 6.02 0.955
vanilla AR 64.8 748 3.21 2.10 1.85 4.27 0.70 2.02 4.61 6.04 0.948
Our Inference 62.3 713 3.29 2.13 1.57 4.33 0.72 2.33 4.76 6.02 0.955
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Figure 5: Qualitative ablation results of our PhysAvatar on the in-house dataset.

in Figure 5(a) further reveals that extreme Jppys values induce undesirable trade-offs and weaken
gesture—visual alignment: e.g. Jppys = 10 leads to exaggerated motion with blurred fingers, whereas
Jphys = 20 yields clear imagery but diminishes motion. By contrast, Jppys = 15 achieves a favorable
balance—delivering larger gesture dynamics in the first 15 blocks while emphasizing gesture—visual
coupling in subsequent blocks. However, we find that full physical state supervision can nega-
tively impact certain metrics due to individual gesture variability, even with identical audio content,
highlighting the effectiveness of our discrete diffusion strategy in capturing behavioral changes.

Ablation on MLLM guidance. Table 2 and Figure 5(b) collectively illustrate the benefits of
integrating MLLMs. Quantitative results show that MLLM integration enhances performance
across nearly all evaluation metrics, with our MLP variant consistently surpassing its TS counterpart.
Qualitatively, MLLMs enable a better understanding of human-environment interactions by accurately
identifying clothing patterns and minimizing texture misalignment, e.g. avoiding the placement of
red patterns on hands. Furthermore, subjects exhibit a wider range of facial expressions with MLP
integration, unlike the T5 variant, which primarily associates happiness with simplistic smiles.

Ablation on the proposed inference strategy. Quantitative and qualitative results in Table 2
and Figure 5(c) both highlight that the proposed inference strategy improve ID preservation and
temporal coherence while maintaining gesture diversity, outperforming conventional single-direction
auto-regressive (AR) motion inference. See Appendix F for a detailed discussion of our PhysAvatar.

5 CONCLUSIONS

In this paper, we present PhysAvatar, a novel physically grounded DiT model that generates realistic,
contextually coherent, long-form avatars exhibiting human-like behavioral fidelity. By integrating
discrete diffusion-based physical state supervision with multimodal language model-based physical
planning guidance, we largely enhanced traditional DiT avatar training methodologies, enabling
avatars to display authentic human behaviors. Our interleaved interpolation-based inference strategy
further improves temporal coherence and identity preservation in long-form video generation. Ex-
perimental results demonstrate that PhysAvatar not only surpasses existing approaches in generative
quality but also excels in behavioral realism across different datasets. Moving forward, we aim
to enhance generative performance through the improved base model and richer datasets while
optimizing real-time applications for a balance between computational efficiency and visual fidelity.
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ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics throughout all aspects of our research.
Our work does not involve studies with human subjects or data derived from sensitive personal
information, thereby minimizing ethical concerns related to privacy and consent. We strive to ensure
fairness and mitigate bias in our methodologies, especially in experimental design and data analysis.

REPRODUCIBILITY STATEMENT

This work is grounded in the VACE and VideoX-Fun' frameworks. To enhance reproducibility, we
include comprehensive documentation of our experimental setup, along with detailed descriptions of
the specific modules and the data curation process in both the main text and appendix. Furthermore,
we will organize the associated training and inference code and ensure its public accessibility,
facilitating the replication of our findings by the research community.

LLM USAGE STATEMENT

We employed the LLM exclusively for language refinement, including grammar correction and
stylistic enhancement, to improve readability. All research ideas, methodologies, experiments,
analyses, and conclusions are the exclusive work of the authors.
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Appendix of Paper:
‘“ Physically Grounded Avatar Generation”

This appendix presents essential elements to enhance understanding of our PhysAvatar: the data
curation process detailed in Appendix A, the physical state token extraction and projection in
Appendix B, additional analysis related to MLLM in Appendix C, detailed information about the
visual Turing test scoring standard in Appendix D, more qualitative results presented in Appendix E,
and a discussion of the proposed PhysAvatar in Appendix F.

A  DATASET CURATION

Our dataset builds on a curated subset of AVSpeech (Ephrat et al., 2018) and is further enriched
with high-quality, self-collected videos covering diverse scenarios such as speeches, interviews, and
news reports. To guarantee consistency and reliability for downstream training, we design a rigorous
multi-stage filtering pipeline to exclude low-quality or unsuitable samples.

Specifically, we remove clips with abrupt scene transitions using PySceneDetect (Castellano, 2025),
as discontinuities disrupt video temporal coherence. Speaker identity is verified with Insight-
Face (Deeplnsight, 2025), and only single-speaker clips are retained to avoid complications from
speaker alternation. To ensure precise audio—visual alignment, we further discard clips with poor
audio—lip synchronization using SyncNet (Chung & Zisserman, 2016). The filtered clips are then
standardized into uniform segments: single-person, upper-body shots that focus on the most informa-
tive regions—facial expressions, lip movements, and upper-body gestures. Each video is cropped and
resized to 512 x 512 resolution, 25 fps, and a duration of 3—15 seconds.

The dataset consists of approximately 200 hours of meticulously curated high-quality audio—visual
content. Its scale, diversity, and standardization make it a robust benchmark for advancing audio-
driven avatar video generation. To accelerate training, we employ an offline feature extraction
pipeline. Whisper is used to derive audio tokens that capture speech content and prosody, while
X-Pose provides detailed physical state tokens spanning the body, face, and hands.

B PHYSICAL STATE TOKENS EXTRACTION AND PROJECTION

Physical state tokens extraction. To integrate human behavioral dynamics into PhysAvatar, we
employ the SOTA pose estimator X-Pose (Yang et al., 2024) to extract essential physical state
information, including body, facial, and hand movements. As illustrated in Figure S1, X-Pose is
an end-to-end multimodal pose estimation framework that can accurately detect any keypoints in
complex real-world scenarios. It accepts an image or video clip as input and processes it through
an encoder and an enhancer to improve feature extraction by leveraging information from various
modalities. Subsequently, it employs two different levels of decoders, i.e. the object-level and
keypoint-level decoders, to generate the final keypoints. The body, face, and hand keypoints are
represented by the numbers 17, 68, and 21, respectively, with a detailed description in Figure S2.

In this context, we define physical state tokens using the output tokens from the object-level decoder.
Specifically, we select the top-k tokens after the object-level decoding process: the top-1 token for both
body and face, along with the top-2 tokens for each hand. Given that each token is 256-dimensional,
these selections constitute the final 1024-dimensional physical state tokens for each video frame.
Notably, we can input predicted physical state tokens along with their keypoint descriptions into the
keypoint-level decoder during the denoising process to achieve visualization.

Physical state token projection. In this work, we introduce a physical state projector that utilizes
a lightweight MLP architecture designed for translating each video latent into four corresponding
physical state tokens while maintaining adherence to the temporal compression ratio established by
the VAE. For example, in the f = 21-latent configuration of the VACE framework, consistent with
other models in the Wan series, the first latent token represents the initial frame. The subsequent
latents are derived by compressing four consecutive frames from a total of F' = 1 + 4 x 20 video
frames, resulting in ' = 81. To facilitate the discrete loss calculation, we replicate the physical state
token from the first frame four times, resulting in a total of 84 reference physical state tokens. During
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Figure S1: Illustration of pose token extraction and visualization.

“

ody (person) : [nose, left eye, right eye, left ear, right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist,\
right wrist, left hip, right hip, left knee, right knee, left ankle, right ankle]

Face : [right cheekbone 1, right cheekbone 2, right cheek 1, right cheek 2, right cheek 3, right cheek 4, right cheek 5, right
chin, chin center, left chin, left cheek 5, left cheek 4, left cheek 3, left cheek 2, left cheek 1, left cheekbone 2, left
cheekbone 1, right eyebrow 1, right eyebrow 2, right eyebrow 3, right eyebrow 4, right eyebrow 5, left eyebrow 1, left
eyebrow 2, left eyebrow 3, left eyebrow 4, left eyebrow 5, nasal bridge 1, nasal bridge 2, nasal bridge 3, nasal bridge 4,
right nasal wing 1, right nasal wing 2, nasal wing center, left nasal wing 1, left nasal wing 2, right eye eye corner 1, right
eye upper eyelid 1, right eye upper eyelid 2, right eye eye corner 2, right eye lower eyelid 2, right eye lower eyelid 1, left
eye eye corner 1, left eye upper eyelid 1, left eye upper eyelid 2, left eye eye corner 2, left eye lower eyelid 2, left eye lower
eyelid 1, right mouth corner, upper lip outer edge 1, upper lip outer edge 2, upper lip outer edge 3, upper lip outer edge 4,
upper lip outer edge 5, left mouth corner, lower lip outer edge 5, lower lip outer edge 4, lower lip outer edge 3, lower lip
outer edge 2, lower lip outer edge 1, upper lip inter edge 1, upper lip inter edge 2, upper lip inter edge 3, upper lip inter
edge 4, upper lip inter edge 5, lower lip inter edge 3, lower lip inter edge 2, lower lip inter edge 1]

Hand : [wrist, thumb root, thumb's third knuckle, thumb's second knuckle, thumb's first knuckle, forefinger's root,
forefinger's third knuckle, forefinger's second knuckle, forefinger's first knuckle, middle finger's root, middle finger's third
knuckle, middle finger's second knuckle, middle finger's first knuckle, ring finger's root, ring finger's third knuckle, ring
finger's second knuckle, ring finger's first knuckle, pinky finger's root, pinky finger's third knuckle, pinky finger's second

\knuckle, pinky finger's first knuckle] j

Figure S2: Detailed descriptions of keypoints for each body part.

the discrete diffusion process involving physical state supervision, we employ a noise-based masked
modulation strategy to randomly mask 21 audio tokens. Following this, we employ the physical state
projector to predict the corresponding 84 physical state tokens. Together, the reference and predicted
tokens form the basis for robust supervision in our discrete loss calculations, enabled by generated
audio masks that specifically target masked positions.

C MORE MLLM ANALYSIS

MLLM input prompt. Figure S3 illustrates the specific input prompt designed for the Qwen2.5-
Omni Thinker. This MLLM input prompt performs two primary functions: (i) analyzing the audio
input and the corresponding human image, denoted as [AUDIO] and [IMAGE] contents, respectively;
and (ii) facilitating the planning of future avatar videos, represented as [VIDEQ] content, while
adhering to a limited word count constraint.

4 )
You are a creative director. Analyze the audio and reference image together. Your output must consist entirely of concise
phrases and follow this fixed format:

- [AUDIO]: [Analyze the speaker's vocal tone, emotional huances, pacing, rhythm, intonation, and volume. Limit to
3-5 concise phrases without questions.]

- [IMAGE]: [Describe the person's key appearance, facial and pose expression, outfit, and environmental setting.
Limit to 3-5 concise phrases without questions.]

- [VIDEO]: [Focus on how audio influences future human changes: posture shifts, gaze alterations, and expression
dynamics. Indicate emotional states. Limit to 3-5 concise phrases without questions.]

- Constraints: All content combined must not exceed 80 words. No filler words, conjunctions, or articles are allowed.

o J

Figure S3: Input MLLM prompt.

2
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Text Editing Capability with MLLM. Figure S4 presents examples of emotion-related text editing,
indicating that the inherent text-conditioned editing capabilities are preserved even when the original
TS5 model is replaced with our MLLM-based guider. Specifically, to achieve precise text editing, we
can simply append the desired modifications as descriptions at the end of the MLLM input prompt.
Additionally, the generated video examples reveal that our PhysAvatar effectively produces realistic
gestures and plausible facial expressions in text-edited scenarios, highlighting its versatility.

Sad ;,

Figure S4: Emotion-related text editing results.

D VISUAL TURING TEST SCORING STANDARD

To evaluate our PhysAvatar more comprehensively beyond conventional quantitative evaluation, we
conducted blinded visual Turing tests with 15 participants. They assessed 30 randomly selected
avatar videos from three distinct test sets, rating each video on five key dimensions:

Gesture Plausibility: Assesses the semantic compatibility of gestures with the accompa-
nying audio. 5 — Gestures align naturally and convincingly with the audio. 4 — Gestures
generally reflect the audio’s intent, with minor inconsistencies; 3 — Gestures show partial or
ambiguous relevance to the audio; 2 — Gestures appear unrelated or incongruent with audio;
1 — Gestures are absent, static, or clearly contradict the audio.

Expression Appropriateness: Evaluates how well facial expressions convey the affective
content of the audio. 5 — Expressions consistently and convincingly reflect emotional
prosody; 4 — Generally appropriate with minor mismatches; 3 — Partially aligned but often
ambiguous; 2 — Weak or inconsistent affective cues; 1 — Expressions absent or clearly
misaligned with the audio.

Visual Quality: Captures the perceived realism and rendering quality of the generated video.
5 — High perceptual realism with minimal artifacts; 4 — Visually convincing with minor
imperfections; 3 — Moderate quality with visible artifacts; 2 — Noticeable degradation in
texture or stability; 1 — Severe visual artifacts and low overall quality.

Identity Consistency: Assesses whether the avatar’s facial identity remains stable through-
out the video. 5 — Identity is consistently preserved across all frames; 4 — Mostly stable with
minor temporal variations; 3 — Occasional drift but generally recognizable; 2 — Frequent
identity instability; 1 — Significant identity loss or distortion.

Lip Synchronization: Assesses how accurately lip movements correspond to the audio. 5 —
Precise phoneme-level alignment with natural articulation; 4 — Generally well-synchronized
with minor deviations; 3 — Adequate synchronization but with noticeable timing issues; 2
— Frequent desynchronization that disrupts perception; 1 — Severe mismatch between lip
motion and speech.
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E MORE QUALITATIVE RESULTS

Figure S5 presents more qualitative results that demonstrate the effectiveness of our PhysAvatar in
generating realistic avatar videos exhibiting physically grounded human behavior. However, we
acknowledge that some avatars still struggle to produce high-quality, fully articulated hands, which
may exhibit artifacts during complex gestures, rapid movements, or occlusions due to the constraints
of the pretrained model and the relatively limited number of model parameters employed.

¥

.. =

Figure S5: More qualitative results of our PhysAvatar.
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F DISCUSSION

This section discusses the selection of X-Pose, the advantages and limitations of our PhysAvatar,
social impact, and several aspects for future improvements.

Discussion on the selection of X-Pose. X-Pose provides a more comprehensive representation
of human dynamics by jointly predicting both coarse-grained object information and fine-grained
keypoints. This dual-level approach enables nuanced encoding of global object semantics and
keypoint geometric structures through intermediate features that act as physical state tokens. In
contrast, traditional methods like OpenPose (Cao et al., 2017) and DWPose (Yang et al., 2023)
are limited to generating keypoint coordinates alone, which primarily focus on local geometry and
fine-grained positioning, lacking the holistic understanding provided by X-Pose. Moreover, our
preliminary experimental results indicate that the final keypoints produced by X-Pose significantly
surpass those generated by OpenPose and DWPose.

Discussion on advantages and limitations. Our PhysAvatar framework outperforms existing SOTA
baselines in both generative quality and behavioral realism, consistently producing avatars that are
more physically grounded, expressive, and lifelike. However, we acknowledge a primary limitation:
the quality of hand generation, which can exhibit artifacts during complex gestures, rapid movements,
or occlusions due to constraints of the base VACE-1.3B model. Future iterations could benefit from
utilizing larger or stronger base models to further improve the realism and fluidity of hand animations.

Discussion on social impact. Our PhysAvatar unlocks substantial commercial opportunities as
virtual emotional companions, educational assistants, and live-streaming hosts, greatly enhancing user
engagement and creating diverse revenue streams. However, these advancements also bring significant
social implications. The use of advanced generative models raises concerns about misinformation,
emotional manipulation, and ethical treatment of digital identities. As users form attachments to
these digital entities, issues such as dependency and the erosion of real-world relationships become
critical. Moreover, without proper regulatory frameworks, there is a heightened risk of exploitation
or misuse. Therefore, it is essential to establish robust governance and ethical guidelines to ensure
responsible deployment, balancing commercial benefits with the imperative to safeguard societal
well-being and foster trust in Al technologies.

Discussion on future improvements. In summary, there are several key areas for improving our
PhysAvatar in the future. (i) Enhancements in Generative Performance. Given the constraints of
limited training datasets and computational resources, we utilized parameter-efficient methods, such
as LoRA, for fine-tuning. However, we can leverage more advanced models, such as Wan2.2 or
Wan2.2-based VACE, along with other robust base models, to achieve better performance. Addi-
tionally, expanding the dataset would allow for full model weight fine-tuning, further enhancing
performance and fully taking advantage of the scalability of transformers Peebles & Xie (2023).
(ii) Adapting for Real-Time Scenarios: Furthermore, tailoring PhysAvatar for real-time applications
introduces challenges in balancing computational efficiency with visual fidelity. Future work should
emphasize optimizing inference speed through methods such as Meanflow (Geng et al., 2025) or
video distillation (Huang et al., 2025), as well as improving resource utilization to enhance the
practicality of PhysAvatar in interactive environments.
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