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ABSTRACT

Robust generalization of brain state decoding across days remains a grand chal-
lenge for brain-computer interfaces (BCIs), throttling the real-world deployment of
applications like mental-workload (MWL) estimation. This long-standing problem
has been difficult to address, largely due to the scarcity of public corpora suitable
for rigorous long-term evaluation. To establish the first robust benchmark for this
challenge, we introduce CD-MWL, the longest public MWL dataset to date: 42
hours of EEG from 14 participants over three days. Building on this benchmark,
we argue that true generalization requires models that are not only high-performing
but also neuroscientifically plausible. We therefore propose GACET, a Graph-
Aware Cross-domain EEG Transformer that achieves superior generalization by
dynamically learning the brain’s underlying functional connectivity in a neurosci-
entifically plausible manner. Through topology-aware message passing on this
learned graph, GACET not only delivers significant performance gains over all
state-of-the-art methods but also provides a transparent window into its decision-
making process. Crucially, we demonstrate that the model’s learned connectivity
patterns align with established neuroscience, establishing a powerful, evidence-
based link between its interpretability and robust performance. All data, code,
training logs and a one-command reproduction script are publicly available at
https://anonymous.4open.science/r/GACET-B6F8.

1 INTRODUCTION

Brain state decoding with electroencephalography (EEG) plays a crucial role in brain–computer
interfaces (BCIs) (Zhang et al., 2021). Continuous monitoring of spontaneous EEG signals enables
inference of cognitive and affective states without explicit user intervention (Appriou et al., 2018;
Al-Nafjan et al., 2017). This paradigm has found applications in stress detection (Sharma et al., 2022),
fatigue monitoring (Othmani et al., 2023), sleep-stage classification (Wang et al., 2021), emotion
recognition (Peng et al., 2022), and mental workload (MWL) assessment (Värbu et al., 2022). While
a multitude of models have been developed to characterize dynamic brain states (Lotte et al., 2018),
their practical utility remains severely limited by a critical, unresolved challenge.

That challenge is the profound variability of EEG signals across days (Yin & Zhang, 2017; Wu et al.,
2022) and its even greater variability across subjects (Gibson et al., 2022) presents key obstacles
for real-world deployment. Most studies still rely on single-day recordings due to the scarcity of
large-scale, multi-day EEG datasets (Lin et al., 2017). As a result, decoding accuracy remains
insufficient, and both cross-day and cross-subject generalization remain largely unverified (Wang
et al., 2016; Kingphai & Moshfeghi, 2024). Systematically tackling this issue requires a two-pronged
approach. First, a rigorous benchmark is needed to measure progress, addressing the scarcity of
suitable multi-day EEG datasets. Second, a model architecture must be engineered for generalization
to overcome the profound variability of EEG signals across days.

To address this foundational gap, we begin by introducing CD-MWL, the longest public MWL dataset
to date. Comprising 42 h of EEG recordings from 14 participants over three days, it establishes
a rigorous benchmark for safety-critical applications like aviation and adaptive training. Building
upon this benchmark, we then propose GACET, a Graph-Aware Cross-domain EEG Transformer
architecturally designed for generalization. GACET employs bidirectional cross-attention to fuse
differential features, then dynamically learns a signal-dependent electrode graph via a Gumbel-
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Softmax estimator followed by TransformerConv for topology-aware message passing. This end-to-
end model achieves state-of-the-art (sota) accuracy and robustness in cross-day MWL recognition.

In summary, the main contributions of our paper are as follows:

1. Largest Public EEG Dataset for MWL Assessment: We present the largest publicly
available EEG dataset named CD-MWL (cross days) for MWL evaluation. This dataset
consists of recordings from 14 participants across three days and five difficulty levels,
providing a comprehensive resource for future MWL research and model development.

2. A Novel Interpretable Framework (GACET): We introduce GACET, an interpretable
framework that fuses spectral-temporal features using topology-aware graph reasoning.
The model autonomously learns neurophysiologically plausible brain connectivity pat-
terns, offering a transparent window into meaningful neural dynamics while achieving sota
classification performance.

3. A Rigorous, Transparent, and Reproducible Benchmark: We establish a stringent
benchmark to counteract common evaluation pitfalls like data leakage, ensuring fairness via
exhaustive hyperparameter tuning for all baselines, and full transparency and reproducibility
via publicly released code, training logs, and a one-click script.

2 RELATED WORK

2.1 PUBLIC EEG DATASETS FOR MWL

Table 1: Summary of Public EEG Datasets for MWL

Dataset Task Level CD Channels Sampling Rate P*D Duration

BVWM(2014) VWM 4 No 64 500 Hz 13×1 3 hours
EHCD(2018) N-BACK 4 No 30 1000 Hz 26×1 13 hours
STEW(2018) SIMKAP 4 No 14 128 Hz 48×1 16.8 hours
EEGMAT(2019) MA 2 No 23 500 Hz 36×1 2.4 hours
WM(2020) VWM 3 Yes 8 256 Hz 9×(2-7)* 6 hours
WAUC(2020) MATB-II 2 No 8 500 Hz 48×1 16 hours

COG(2023) MATB-II
4 Yes 64 500 Hz 29×3

28 hours
N-BACK 32 hours

CL-Drive(2024) VD 10 No 4 256 Hz 21×1 10.5 hours
CD-MWL MATB-II 5 Yes 64 1000 Hz 14×3 42 hours
Abbreviations: CD = Cross Days, P*D = number of participants × number of days and * means
that each participant performed the task over 2–7 separate days.

MWL is defined as the ratio of available resources to task demands (Wickens, 2008) and its paradigms
fall into two categories: one cognitive-oriented, which assesses pure cognitive processing load (e.g.,
visual working memory (VWM) (Bashivan et al., 2014; Boran et al., 2020), mental arithmetic (MA)
(Zyma et al., 2019) and n-back (Shin et al., 2018; Hinss et al., 2023)); and the other operation-oriented,
which simulates real-world work scenarios and emphasizes multitasking and resource allocation (e.g.,
simultaneous capacity test (SIMKAP) (Lim et al., 2018), multi-attribute task battery-II (MATB-II)
(Albuquerque et al., 2020; Hinss et al., 2023), vehicle driving (VD) (Angkan et al., 2024), and air
traffic management (Aricò et al., 2015)).

Table 1 summarizes publicly available datasets, most of which are limited by low channel counts or
single-day recordings, offering insufficient longitudinal data. This scarcity highlights the challenges
in cross-day generalization research. For instance, while the valuable COG dataset offers multi-day
recordings, its two tasks have non-equivalent difficulty scaling, which precludes their joint use for
training a unified MWL model—the reason they are listed separately in our summary table. Its fixed
task sequence may also introduce confounding fatigue effects. The WM dataset is unsuitable for our
graph-based approach due to its low channel density and for robust personalized modeling due to its
brief and highly variable per-subject recording times. Therefore, we selected the MATB-II task from
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COG as an external benchmark alongside our newly collected CD-MWL, and further validated our
model’s cross-task generalization on the COG N-back task.

2.2 DEEP LEARNING METHODS FOR BRAIN STATE DECODING

Convolutional Neural Networks (CNNs) remain essential in EEG–BCI research, thanks to their
capacity to extract spatial–temporal patterns directly from raw signals. Recent variants exemplify
this progression: TSLANet (Eldele et al., 2024) incorporates an adaptive spectral block that merges
FFT-based denoising with interaction convolutions to achieve robust performance on multi-channel
recordings, and SFT-Net (Gao et al., 2024) combines depth-wise separable convolutions with fre-
quency attention to facilitate lightweight fatigue detection.

Originally conceived for NLP and renowned for modeling long-range dependencies (Vaswani et al.,
2017), Transformers have been increasingly applied to EEG decoding: MAET (Zhao & Gu, 2024)
applies multi-head self-attention within an adaptive Transformer to compute attention weights over
different view embeddings and fuse them via a weighted sum.

Some have combined both methods: MCA (Jiang et al., 2023) leverages cross-attention to fuse
features, using bidirectional scaled dot-product attention within each band. The resulting fused 3D
tensor is then passed into a customized and optimized 3D-CNN backbone.

Inspired by foundation models in vision and language, researchers have recently begun pre-training
universal EEG backbones. EEGPT (Wang et al.) is trained on a diverse corpus to deliver task-agnostic
representations that can be fine-tuned with minimal labeled data; similarly, LaBraM (Jiang et al.,
2024) expands model capacity and capitalizes on roughly 2,500 hours of EEG signals to advance
general-purpose feature learning.

3 METHOD

3.1 DATASET AND PREPROCESSING

Dataset. We utilized the MATB–II in this study, given its realistic multitasking simulation and
adjustable difficulty levels. Originally developed at NASA’s Langley Research Center (Hancock
et al., 1995) and updated in 2011 as a modernized color version for Windows (Santiago-Espada et al.,
2011) (for task details, refer to Appendix C), MATB–II serves as a robust benchmark for cognitive
workload evaluation. To rigorously evaluate the performance of our model, we tested it on two EEG
datasets featuring the MATB–II task: one publicly available and one collected in our laboratory.

Dataset 1 utilized a subset of the COG_BCI (Hinss et al., 2023). It included 29 participants, consisting
of 11 females and 18 males, with a mean age of 23.9 ± 3.2 years. The participants completed three
days one week apart. The participants performed the MATB–II task with four difficulty levels (with
the resting state in the experiment designated as level 1). EEG data were recorded using a 64–channel
electrode cap with the international 10-20 system at a sampling rate of 500 Hz.

Dataset 2 was collected in our laboratory as a dedicated MATB–II dataset. It comprised 14 participants,
including 6 females and 8 males, aged 21–24 years. All experiments were run in a controlled
laboratory environment, and sessions were scheduled during the daytime to minimize fatigue. Each
participant completed three days at least 48 hours apart, with a 30-minute training session before the
first. In each session, they performed the MATB–II task under five difficulty levels (for details of
task difficulty design, see Appendix D), completing 3-minute blocks at each level with rest intervals
between. Task order was counterbalanced using a Latin square design, shown in Figure 1, except that
the resting level always appeared first. EEG data were recorded using a 64–channel electrode cap
with the international 10-20 system at a sampling rate of 1000 Hz.

Preprocessing. EEG recordings contain environmental and physiological artifacts, so we prepro-
cessed the data using the MNE-Python toolbox for cleaner and more reliable signals (Gramfort
et al., 2013). A 1–100 Hz bandpass filter was first applied, followed by a 50 Hz notch filter to
remove low-frequency drifts and powerline noise. Bad channels were interpolated, and signals
were re-referenced to the average of all channels. The data were then downsampled to 500 Hz and
independent component analysis (ICA) was performed for artifact removal. Finally, the data were
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Figure 1: Experimental Workflow

Figure 2: Overview of GACET architecture. : (1) spectral–temporal Feature Extraction (DE &
SampEn), (2) Axial Attention Fusion (AAF), and (3) Dynamic Graph Transformer Conv (DGTConv).
Bottom: detailed views of the AAF module (denoted AAF*) on the left and the DGTConv module
(denoted DGTConv*) on the right. Legend: Pool = pooling, Pos = electrode positions, EucDist =
Euclidean distance.

segmented into non-overlapping, 16-second windows. For details of preprocessing parameters, please
refer to Appendix E.

3.2 GACET

In this section we present GACET, a brain-state monitoring framework that takes MWL recognition
as its entry point and delivers an end-to-end solution spanning spectral–temporal feature derivation,
cross-domain representation learning and graph-aware spatial reasoning. The whole pipeline is
depicted in Figure 2; it is organised into three functional blocks:

1. Feature Extraction (Figure 3): every 16-s pre-processed EEG segment X∈RN×Nc×8000

is band-pass filtered into Delta, Theta, Alpha, Beta, and Gamma bands. Differential Entropy
(DE) and Sample Entropy (SampEn) are computed to form two token sequences that fully
capture frequency-domain power and time-domain complexity.
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2. Axial Attention Fusion (AAF)(Figure 2 AAF*): AAF first fuses DE and SampEn features
using cross-attention blocks, then uses cross-frequency attention along the frequency axis to
capture inter-band dependencies.

3. Dynamic Graph Transformer Conv (DGTConv) (Figure 2 DGTConv*): an electrode
graph is sampled on-the-fly via a Gumbel-softmax hard-concrete scheme that blends geo-
metric and latent distances. A shared TransformerConv propagates information through the
graph at every time step.

Figure 3: Feature extraction pipeline. N is the number of samples, and Nc is the number of channels.

Feature extraction. The preprocessed signals X ∈ RN×Nc×8000, where N and Nc denote the
number of samples and channels. With a uniform sampling rate of 500 Hz after preprocessing, each
16-second segment contains 8000 time points. Then we extract the Delta (1–4 Hz), Theta (4–8 Hz),
Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (30–100 Hz) bands. The 8000-point sequence
(T = 8000) is split into S = 4 non-overlapping temporal segments of length L = T/S = 2000, and
differential entropy (DE) and sample entropy (SampEn) are computed for each segment.

DE is a nonlinear frequency-domain feature that demonstrates significant effectiveness in MWL
evaluation (Wei et al., 2025). For a certain length of EEG signal that approximately obeys Gaussian
distribution N(µ, σ2), its DE can be defined as (Li-Chen Shi et al., 2013):

h(X) = −
∫ ∞
−∞

f(x) log f(x)dx =
1

2
log

(
2πeσ2

)
(1)

For a discrete time segment of length L, the signal energy in the i-th frequency band can be estimated
from the sample variance σ2

i as Pi = Lσ2
i , thus yielding:

hi(X) =
1

2
log

(
2πeσ2

i

)
=

1

2
log

(
Lσ2

i

)
+

1

2
log

2πe

L
=

1

2
log (Pi) +

1

2
log

2πe

L
(2)

SampEn is a nonlinear time-domain measure that improves the approximate entropy by addressing its
limitations (Richman & Moorman, 2000), and has been shown to be effective in MWL (Guan et al.,
2021). To compute it, the time series is first reconstructed into template vectors of length m. We then
count the number of vector pairs (i, j) whose Chebyshev distance is within a tolerance r. Let B be
the total count of such matching pairs for vectors of length m, and A be the total count for vectors of
length m+ 1. For a detailed derivation, please see Appendix F. The SampEn is then calculated as:

SampEn(m, r) = − ln
A

B
(3)

In practice, we use the algorithm’s default parameters (m = 2 and r = 0.2) (Raphael, 2023).

AAF. The AAF module is designed to synergistically fuse two complementary EEG-derived feature
sets: DE and SampEn. The input features, denoted as XDE and XSampEn, are enriched with
positional information by adding learnable positional embeddings, resulting in tensors of shape
(B,S,D), where B is the batch size, S is the sequence length, and D is the feature dimension. The
AAF module then operates on these feature representations in two primary stages.

The first stage focuses on facilitating bidirectional cross-domain interactions over several layers (LF ),
enabling the DE and SampEn representations to mutually inform and refine each other. Within each
layer l ∈ [1, LF ] (with X

(0)
DE = XDE and X

(0)
SampEn = XSampEn):

5
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The DE features, X(l−1)
DE , are updated by attending to the SampEn features, X(l−1)

SampEn. Specifically,

X
(l−1)
DE acts as the Q, while X

(l−1)
SampEn provides the K and V for a multi-head attention mechanism:

Attn
(l)
DE←SampEn = softmax

X
(l−1)
DE WQ

(
X

(l−1)
SampEnWK

)⊤
√
d

X
(l−1)
SampEnWV (4)

The output of this attention operation is combined via a residual connection followed by layer
normalization, and is then refined by a Feed-Forward Network (with residual connection and layer
normalization), yielding X

(l)
DE . Similarly, applying the same process to XSampEn yields X(l)

SampEn.

After LF such layers of iterative cross-domain refinement, the resulting advanced representations,
X

(LF )
DE and X

(LF )
SampEn, are integrated. This is achieved using a gated fusion mechanism. The two

refined representations are first concatenated, and this combined tensor is passed through a small
MLP to compute adaptive gating weights wa, wb via a softmax function:

[wa, wb] = softmax
(
reshape(B,S,2,D)

(
MLPfusion

(
[ x

(LF )
DE , x

(LF )
SampEn]

))
, dim = 2

)
(5)

These weights determine the contribution of each modality to the final fused representation, which is
formed as a weighted sum, followed by a final layer normalization:

xfused = LayerNorm(wa ⊙ x
(LF )
DE + wb ⊙ x

(LF )
SampEn) (6)

In the second stage, the Cross-Frequency Attention module ingests the fused representation Xfused,
whose embedding dimension D is factorized into NC × NF . T he tensor is then reshaped and
permuted from (B,S,D) to (B,S,NF , NC) where NF correspond to the numbers of frequency
bands, respectively. Axial self-attention is then applied along the frequency axis, where each band
attends to every other, enabling the model to capture rich inter-band dependencies and integrate
spectrum-wide contextual information. Through this, the network explicitly encodes interactions
among frequency bands by leveraging multi-frequency features aggregated across all channels.

In summary, the AAF module yields a synergistic feature representation by bidirectionally refining
the DE and SampEn streams and capturing spectrum-wide context, providing an optimized base for
the subsequent DGTConv module can effectively perform topology-aware spatial reasoning.

DGTConv. The DGTConv module operationalizes our central hypothesis: that explicitly modeling
the brain’s dynamic network topology is key to robust generalization. It transforms static electrode
coordinates into dynamic embeddings via positional projections plus context-driven offsets,computes
Gumbel-Softmax–based adjacency scores by fusing latent and geometric distances, hardens them
into a discrete adjacency matrix, and symmetrically normalizes it for graph convolution.

Initially, raw electrode positions pi are centered, L2-normalized, and passed through a projection
layer to produce basic positional embeddings si. Concurrently, pooled features g are fed into a
delta-MLP to generate dynamic offsets ∆i(g). The final dynamic latent representation of each node
is then the sum of these two components, zi = si +∆i(g).

Based on these dynamic representations, we compute the similarity logits ℓij between node pairs from
a weighted combination of two distance metrics. The first is the latent-space distance, dlatent(i, j) =
∥zi − zj∥2, and the second is the geometric distance between the static embeddings, dgeom(i, j) =
∥si − sj∥2. These are combined using a learnable scalar β to form the final logit:

ℓij = −
(
dlatent(i, j) + |β| dgeom(i, j)

)
. (7)

To address the non-differentiability caused by discrete sampling when constructing the adjacency ma-
trix, we draw on the Gumbel-Softmax method (Jang et al., 2017). Gumbel noise Gij ∼ Gumbel(0, 1)
is added to the similarity score ℓij , and the sum is divided by a learnable temperature parameter τ .

6
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Subsequently, soft adjacency probabilities Asoft
ij are obtained via the Softmax function:

Asoft
ij = softmaxj

(
ℓij +Gij

τ

)
(8)

where softmax j denotes normalization along the dimension of node j.

We extend the standard Gumbel–Softmax process by introducing learnable gating parameters α and
θ. First, given the soft adjacency value Asoft

ij produced by Gumbel–Softmax, we compute

γij = σ
(
α (Asoft

ij − θ)
)
∈ (0, 1). (9)

We then apply the straight-through estimator to “harden” γij into a binary decision:

Aij = stopgrad
(
[γij > 0.5]− γij

)
+ γij . (10)

In the forward pass, Aij = [γij > 0.5] yields a discrete 0/1 adjacency, while in the backward pass we
enforce ∂Aij

∂γij
= 1 by treating the thresholding operation as the identity mapping. This ensures that

we obtain a truly discrete adjacency matrix while preserving differentiability with respect to α and θ.

To ensure symmetry and scale consistency, we average the discrete adjacency matrix A with its
transpose to obtain A′sym = 1

2 (A + AT ), and then replace the diagonal entries of A′sym with
those of the soft adjacency matrix Asoft, i.e. (Asym)ii = Asoft

ii , while off-diagonal entries remain
(Asym)ij = (A′sym)ij for i ̸= j. Finally, we apply standard symmetric normalization to Asym:

Ã = D−
1
2AsymD

− 1
2 , Dii =

∑
j

(Asym)ij . (11)

Let the input be X ∈ RB×S×Nc×Nf . We first apply LayerNorm to X . We then replicate the
adjacency matrix Ã ∈ RNc×Nc along the S time steps and merge all S copies of each batch into a
single graph with BSNc nodes. This batched graph is processed by a TransformerConv module,
yielding an intermediate output of shape (BSNc) × Nf , which we reshape back to B × S × D.
Finally, we apply a residual connection and a second LayerNorm to produce dynamic graph feature.

Finally, we prepend a [CLS] token to the dynamic graph features and feed them into a Transformer-
based CLS encoder. We then extract the [CLS] representation for classification, with the depth of
the classification head increasing alongside the number of classes, producing the final predictions.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our experiments were conducted using Python 3.12.6, PyTorch 2.4.0, and CUDA 12.1 on two
NVIDIA GeForce RTX 3090 GPUs. For both our model and the baselines, we employed the AdamW
optimizer together with the standard cross-entropy loss function, ran a coarse grid search over 0.001,
0.0001, 0.00001, 0.000001 and used a fixed batch size of 32 throughout all experiments.

Because EEG signals are temporally autocorrelated, random shuffling before forming validation folds
leaks adjacent trials into training and thus inflates non-cross-time (validation) accuracy (Shim et al.,
2021). To prevent this, we used a two-stage split: first, leaving each recording day out in turn as an
external test set (three splits); then, on the remaining two days, partitioning each subject’s trials at
each difficulty into five sequential, non-overlapping folds—ensuring that within each fold samples
are temporally contiguous—yielding 3× 5 = 15 runs per subject.

We set the random seed to 42 and standardized inputs using the training set’s mean and variance
(applied to validation and test). We applied early stopping—training was terminated if the 5-epoch
average validation accuracy failed to improve by more than 0.01 for 10 epochs—and reduced the
learning rate by 10× whenever the 5-epoch average validation accuracy didn’t increase by over 0.01.

7
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4.2 PERFORMANCE EVALUATION

We evaluated the model performance on Dataset 1 (binary classification between levels 1 and 4, and
four-class classification across levels 1–4) and Dataset 2 (binary classification between levels 1 and 4,
and five-class classification across levels 1–5). The results are presented in Table 2. All comparative
models have undergone rigorous hyperparameter tuning to achieve their optimal performance. For
more details, please refer to Appendix G.

Table 2: Comparison of different methods on Dataset 1 and Dataset 2 (cross-day).

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

LaBraM(2024) 60.37±4.17 41.17±6.41 32.77±5.06 20.33±6.13 71.31±8.83 67.30±11.65 28.34±5.44 18.02±6.07
TSLANet(2024) 71.45±12.01 68.67±13.43 45.93±6.51 44.30±6.58 75.79±7.98 74.47±8.79 29.63±3.21 27.92±3.39
MAET(2023) 96.27±3.17 96.15±3.29 65.97±9.18 62.84±10.10 89.69±4.84 89.06±5.86 40.67±4.63 37.00±5.73
MCA(2024) 91.75±5.37 91.21±6.01 58.82±8.15 56.70±9.21 84.64±5.49 83.85±6.00 35.81±3.34 32.27±3.98
SFT-Net(2024) 95.49±3.93 95.11±4.39 56.16±7.16 52.77±7.85 83.82±6.62 82.35±7.78 35.84±4.69 31.84±4.70
GACET 97.34±2.96 97.20±3.31 67.66±9.03 64.46±10.19 92.75±3.76 92.52±4.10 42.77±4.29 38.01±5.22

Table 3: Comparison of different methods on Dataset 1 and Dataset 2 (cross-subjects).

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

LaBraM(2024) 79.89±10.27 76.69±13.58 45.83±10.93 42.73±13.45 58.62±11.72 49.54±18.28 23.57±5.01 11.93±7.89
TSLANet(2024) 83.32±9.11 82.76±9.42 58.50±10.84 58.53±11.24 83.16±10.10 82.58±10.69 32.00±3.94 30.73±4.50
MAET(2023) 97.07±6.90 96.99±7.15 64.39±13.91 63.50±14.71 82.77±10.59 81.72±12.33 35.49±5.84 30.49±7.25
MCA(2024) 94.16±6.09 93.99±6.35 57.74±14.13 57.17±14.61 71.83±11.22 69.15±13.19 31.26±5.21 27.89±6.87
SFT-Net(2024) 86.85±14.03 84.36±19.03 54.33±7.73 52.04±10.18 64.68±16.12 56.59±22.16 32.27±8.09 26.45±10.73
GACET 97.54±5.44 97.48±5.60 65.25±14.57 64.37±15.72 83.36±12.74 81.79±15.91 36.21±6.84 31.44±9.72

In our primary cross-day evaluation (Table 2), GACET demonstrated clear superiority across all tasks
on both datasets. For instance, it exceeded the next-best model by over 1.69 % on the four-class
task of Dataset 1 and led by at least 3 % on the binary task of Dataset 2. To test for statistical
significance, we fit a linear mixed-effects model for each comparison and confirmed that all of
GACET’s performance advantages are statistically significant, underscoring the reliability of its
outperformance (see Appendix I). As an additional test of robustness, we evaluated the model in the
more challenging leave-one-subject-out (LOSO) setting (Table 3), where GACET again achieved the
highest accuracy on all tasks despite high inter-subject variability.

4.3 GENERALIZATION ANALYSIS

Table 4: N-back task performance on Dataset 1.

Model 2-class 4-class

ACC (%) F1 (%) ACC (%) F1 (%)

GACET 99.94±0.14 99.94±0.15 58.35±11.49 57.61±12.33
MAET 99.71±0.63 99.70±0.66 57.08±10.71 56.05±11.58
MCA 93.14±3.88 92.87±4.02 47.24±6.09 47.91±6.58
TSLANet 94.45±2.92 93.58±3.65 45.28±3.45 44.76±4.74
SFT_NET 97.83±3.50 97.08±4.97 47.69±4.07 41.91±4.87
LaBraM 85.83±4.67 82.23±6.27 40.15±2.08 32.11±2.36

To validate our model’s generalization
capabilities, we benchmarked all mod-
els on the N-back task from Dataset
1 in a cross-time setting, following
an identical evaluation protocol. As
shown in Table 4, GACET again deliv-
ered the best performance with a sta-
tistically significant advantage over all
baselines, confirming its robust gener-
alization to a different cognitive work-
load paradigm.

4.4 ABLATION STUDY

As shown in Table 5, removing either of our core components individually degrades performance. The
removal of DGTConv (M3) results in a moderate accuracy drop of approximately 2.7–4.1% across
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Table 5: Ablation Study on Dataset 1 and Dataset 2. Methods: M1 = full model, M2 = w/o AAF, M3
= w/o DGTConv, M4 = w/o both modules.

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

M1 97.34±2.96 97.20±3.31 67.66±9.03 64.46±10.19 92.75±3.76 92.52±4.10 42.77±4.29 38.01±5.22
M2 92.80±6.20 92.36±6.96 59.22±9.10 56.00±10.23 89.15±3.77 88.78±3.94 39.31±3.14 34.31±3.87
M3 94.68±4.69 94.45±4.98 63.55±8.47 60.77±9.28 89.84±4.59 89.45±5.10 40.13±3.57 35.27±3.83
M4 94.17±4.62 93.94±4.88 62.69±8.68 59.75±9.31 89.31±4.57 88.96±5.04 39.99±3.23 35.11±3.61

tasks. The effect is more pronounced for AAF; removing it (M2) causes a substantial performance
drop, with accuracy decreasing by up to 8.44% on the four-class task of Dataset 1, confirming
its critical role. Of particular importance is the powerful synergistic effect our analysis revealed
between the AAF and DGTConv modules. The model lacking both components (M4) paradoxically
outperforms the model lacking only AAF (M2) on several tasks (e.g., 94.17% vs. 92.80% ). This
"module mismatch" strongly suggests that the DGTConv module’s effectiveness is contingent upon
receiving the refined, fused features produced by AAF. This finding moves beyond demonstrating the
independent contribution of each module; it validates the holistic architectural design of GACET,
where the components are not merely additive but mutually reinforcing.

4.5 NEUROPHYSIOLOGICAL ANALYSIS

Table 6: Node Degree Statistics by Re-
gion.

Brain
Region

Dataset 1 Dataset 2

(Sum/Mean) (Sum/Mean)

Parietal 9.16 / 0.54 8.81 / 0.55
Frontal 7.41 / 0.46 6.88 / 0.49
Central 6.60 / 0.51 7.58 / 0.54
Temporal 3.19 / 0.35 1.35 / 0.22
Occipital 1.99 / 0.28 5.53 / 0.55

To validate our central hypothesis—that GACET achieves
its superior performance by learning neurophysiologically
meaningful brain dynamics—we analyzed the functional
connectivity learned by the model. This was done by com-
puting node degrees from the subject-averaged adjacency
matrices of the binary classification tasks, followed by a
0-1 normalization. The structure represented by this matrix
is not a predefined anatomical map but rather a dynamic
representation of the brain’s functional state. This represen-
tation is learned end-to-end, guided solely by classification
loss, allowing the model to capture the inter-regional dy-
namics most salient for the cognitive task.

It reveals concentrated high connectivity in the Parietal, Frontal, and Central regions, a pattern
consistent with the Fronto-parietal network’s established role in managing cognitive workload (Marek
& Dosenbach, 2018). Table 6 provides a quantitative summary, presenting both sum and mean node
degrees to account for the differing number of electrodes per region. These statistics confirm this
pattern and also highlight a key difference in the Occipital region. Given that MATB-II is a highly
visual task, the substantially higher occipital connectivity in Dataset 2 (mean degree 0.55 vs. 0.28)
likely reflects a greater visual load imposed by our different difficulty settings. By autonomously
identifying a known functional network and sensitively capturing task-specific variations, GACET
demonstrates that it is not merely fitting statistical patterns, but learning an effective and interpretable
representation of the brain’s cognitive workload dynamics.

5 CONCLUSION

To systematically address the critical challenge of cross-day generalization in BCI, this work delivers a
unified solution. We first introduced CD-MWL, the largest public dataset for this purpose, establishing
a rigorous benchmark for the community. On this benchmark, our proposed GACET model achieves
state-of-the-art performance by learning neurophysiologically plausible brain connectivity. This
powerful, evidence-based link between interpretability and robust performance validates our core
hypothesis. By providing a complete package—a challenging dataset, a novel interpretable model,
and a fully reproducible protocol—we establish a new standard for rigor and transparency, fostering
progress towards real-world BCI applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All code, our newly proposed CD-MWL dataset, and full training logs are publicly available
at https://anonymous.4open.science/r/GACET-B6F8, including a one-click Jupyter
Notebook script for easy verification of our core results. Our research package includes a fully
programmatic preprocessing pipeline, which was applied to both the CD-MWL and the public COG
datasets. To ensure fairness and prevent data leakage, we employed a rigorous two-stage cross-
validation protocol and conducted exhaustive hyperparameter tuning for all baselines. Experiments
were conducted using PyTorch 2.4.0 on two NVIDIA GeForce RTX 3090 GPUs, with a fixed random
seed to ensure deterministic outcomes.

ETHICS STATEMENT

The experimental protocol for the data collection in this study was reviewed and approved by the
corresponding institutional review board. All participants provided written informed consent prior to
their participation and received monetary compensation for their time. All collected data, including
the publicly released CD-MWL dataset, have been fully anonymized to protect participant privacy.
We foresee no direct negative societal impacts from this research.
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A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a LLM was utilized as an assistive tool. Its use was strictly
limited to post-writing improvements of language and style for the manuscript text and standardization
of formatting for the source code. The LLM was not used for any aspect of research ideation, data
analysis, or the generation of substantive content.

B DETAILS OF PUBLIC EEG DATASET

BVWM Dataset

The BVWM dataset (Bashivan et al., 2014) comprises EEG recordings from 13 healthy participants
performing a visual working memory task. Each participant completed 240 trials, where each trial
lasted 3.5 seconds, including a 0.5-second character display and a 3-second maintenance period. In
total, the dataset contains 13 × 240 = 3,120 trials, corresponding to a total task duration of 10,920
seconds (approximately 3.03 hours). Note that only the correctly responded trials (2,670) were used
in model training and evaluation.EEG signals were recorded using 64 electrodes placed according to
the international 10–10 system, sampled at 500 Hz. The cognitive load levels were defined by the
number of characters to be memorized (2, 4, 6, or 8), corresponding to four workload conditions.

EHCD Dataset

The EEG–NIRS Hybrid Cognitive Dataset (EHCD) (Shin et al., 2018) comprises simultaneous EEG
and near-infrared spectroscopy recordings from 26 right-handed healthy volunteers. EEG signals
were captured using 30 active electrodes arranged according to the international 10–5 system and
sampled at 1 000 Hz, while NIRS data were recorded via a NIRScout system with 16 sources and 16
detectors configured into 36 channels spanning frontal, motor, parietal, and occipital regions at 10.4
Hz .

Participants completed three cognitive paradigms in separate sessions. The n-back task comprised
four difficulty levels (rest, 0-, 2-, and 3-back); each session consisted of nine series of 2 s instruction,
40 s of digit presentations (one every 2 s), and 20 s rest—totaling roughly 27 minutes per participant .
The DSR paradigm featured two difficulty conditions (target vs. non-target) and followed the identical
timing for about 27 minutes per participant . In the Word Generation paradigm, two conditions (word
generation vs. baseline) were presented in 20 trials per session—each trial including a 2 s cue, 10 s
task, and 13–15 s rest—also amounting to approximately 27 minutes of recording per participant .
With 26 participants, each paradigm yields on the order of 13 hours of combined EEG and NIRS data
across all participants.

STEW Dataset

The STEW dataset (Lim et al., 2018) comprises continuous EEG recordings from 48 graduate
participants, acquired with a 14-channel Emotiv EPOC headset (10–20 system) at 128 Hz . Each
session began with a 3-minute eyes-open resting-state baseline (one condition), followed by an
18-minute Simultaneous Capacity Test (SIMKAP). For workload analysis, the final 3 minutes of
SIMKAP were selected and trimmed by 15 seconds at both the start and end—yielding a 2.5-minute
“workload” segment . Participants rated their mental workload on a 1–9 scale after each segment;
these subjective scores were then binned into three levels—low (1–3), moderate (4–6), and high
(7–9)—resulting in four conditions (rest plus three workload levels) per participant.

EEGMAT Dataset

The EEGMAT dataset (Zyma et al., 2019) contains EEG recordings from 36 healthy volunteers. Data
were acquired with a 23-channel Neurocom monopolar EEG system (International 10/20 montage)
at a 500 Hz sampling rate. Each subject contributed artifact-free EEG segments of 180 s during
eyes-closed resting and 60 s during a continuous mental arithmetic task (serial subtraction of two-digit
numbers from four-digit numbers).

WM dataset The WM dataset (Boran et al., 2020) includes EEG recordings from 9 epilepsy patients
performing a verbal working memory task. Each subject completed multiple sessions (total 37), with
50 trials per session, yielding a total task duration of approximately 370 minutes (6.17 hours).EEG
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was recorded using the 10–20 system at 256 Hz. Each trial comprised a 2-second encoding phase, a
3-second maintenance period, and a response stage.

WAUC Dataset

The WAUC dataset (Albuquerque et al., 2020) includes recordings from 48 participants. It captures
seven synchronized modalities: EEG, ECG, respiration rate, skin temperature, galvanic skin response,
blood volume pulse, and three-axis accelerometry. EEG data were acquired with 8 channels at a
500 Hz sampling rate. Participants performed the MATB tasks under two levels of mental workload
(low vs. high) and three levels of physical activity. Each combined mental-physical task block lasted
approximately 10 minutes .

COG-BCI Dataset

The COG-BCI dataset (Hinss et al., 2023) comprises EEG recordings from 29 healthy volunteers
collected over three sessions spaced one week apart. Signals were acquired with a 64-channel ActiCap
cap following the international 10–20 layout, referenced at Fpz, and sampled at 500 Hz .

In each session, participants performed the MATB-II paradigm under four conditions — rest (4 min)
and easy, medium, and difficult runs of approximately 5 min each (≈ 19min total); the N-back
paradigm under four conditions —rest (4 min) and 0-, 1-, and 2-back blocks of approximately 6 min
each (≈ 22min total); the Psychomotor Vigilance Task lasting about 10 min ; and the Eriksen Flanker
task lasting about 10 min.

CL-Drive Dataset

The CL-Drive dataset (Angkan et al., 2024) comprises recordings from 21 participants, capturing
four synchronized modalities: EEG, ECG, electrodermal activity (EDA), and eye-tracking . EEG was
acquired via a Muse S headband with four channels (AF7, AF8, TP9, TP10) at a 256 Hz sampling
rate . Participants completed nine driving scenarios of graded complexity—and an interleaved resting
baseline—yielding a total of 10 difficulty conditions. Each scenario or rest block lasted three minutes,
separated by two-minute intervals, and during each driving block they self-reported cognitive load
every 10 seconds. Overall, each participant contributed approximately 45 minutes of recorded data,
including both task and baseline periods.

C MATB

Figure 4: MATB

This experiment simulates a multitasking environment to assess participants’ performance under
high workload conditions. The tasks are designed to reflect typical activities encountered in piloting
scenarios, including system monitoring, dynamic target control, communication handling, and
resource allocation. Participants are required to manage multiple modules simultaneously, switching
their attention effectively within a limited timeframe. The interface is organized into modular sections,
and interactions are facilitated through a keyboard and joystick. Performance is measured using
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metrics such as accuracy, response time, and task stability. Additionally, a timeline view assists
participants in planning task sequences, providing a realistic representation of decision-making and
mental workload in complex operational contexts (Cegarra et al., 2020).

1.The System Monitoring Task

Participants monitor multiple indicators on the screen and respond promptly to abnormalities. Two
light indicators (F5 and F6) at the top have default states: one green and one gray. When their
states change (e.g., the green light turns off or the gray light turns red), participants must press the
corresponding keys (F5 or F6) to restore them. Additionally, four gauges (F1 to F4) at the bottom
display pointers that are normally centered. If a pointer moves outside its central range, participants
need to recenter it by pressing the corresponding key. Actions must be completed within a set
timeframe; delays result in task failure.

2.The Tracking Task

Participants use a joystick to control a cursor on the screen, keeping it within a designated target area.
The cursor’s movement follows a sinusoidal path, which is complex but predetermined. Participants
must make precise adjustments to avoid the cursor leaving the target area. Performance is assessed
by calculating the RMS deviation of the cursor from the target area.

3.The Communication Task

Participants adjust communication channels and frequencies based on auditory instructions that
include their call sign (e.g., “GB54”). Instructions may specify actions such as “Adjust COM1 to
frequency 130.5.” Unrelated instructions must be ignored. Participants use the up/down arrow keys
to select the channel, the left/right keys to adjust the frequency, and the Enter key to confirm their
actions. Visual markers on the screen help participants verify their adjustments.

4.The Resource Management Task

Participants manage a fuel system consisting of six tanks, two of which deplete fuel at a constant
rate. They must operate eight pumps to redistribute fuel and maintain critical tank levels within a safe
range. Some supply tanks have capacity limits (e.g., 2000 units), while others have unlimited capacity.
Pump flow rates vary, with high-rate pumps transferring 800 units per minute and others operating
at 600 or 400 units. Participants actively control pump states to balance fuel levels. Performance is
measured by the time tank levels remain within the target range or by calculating RMS error.

5.The Scheduling View

The scheduling view, located at the top-right of the screen, provides a timeline of task events over the
next several minutes. Red and green markers indicate task statuses, such as inactive periods (red) and
active periods requiring action (green). A digital timer shows the elapsed time since the experiment
began. While participants do not interact directly with the scheduling view, it aids in anticipating task
changes and optimizing task prioritization.

D DETAILS OF DIFFICULTY DESIGN

Table 7: Task Parameter Settings Across Different Difficulty Levels
System Monitoring Task Tracking Task Communication Task Resource Management Task

Difficulty Event Interval (s) Interval Variability (s) Joystick Sensitivity Light Motion Speed Event Interval (s) Call Frequency (rate) Failure Interval (s) Failure Duration (s)

Level 1 Nan Nan Nan Nan Nan Nan Nan Nan
Level 2 30 5 0.5 0.06 40 0.5 40 10
Level 3 20 5 2.0 0.1 30 0.5 20 10
Level 4 10 2 5.0 0.45 20 0.8 5 15
Level 5 5 2 10.0 0.8 10 0.8 5 15

In Table 7, the task parameter settings across different difficulty levels are summarized.In Level 1
(resting state), no task is performed. Therefore, all task-related parameters are marked as ’NaN’ to
indicate no applicable values.

For Levels 2 to 5, the parameter settings are defined as follows:

The System Monitoring Task: The event interval and its variability decrease as the difficulty level
increases, making the system monitoring tasks more frequent and less predictable.
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The Tracking Task: Joystick sensitivity decreases (a larger value corresponds to lower sensitivity),
and the speed of the moving light increases, making precise control more difficult.

The Communication Task: The event interval shortens and the call frequency increases at higher
difficulty levels, requiring faster response times.

The Resource Management Task: The failure interval shortens, while the failure duration remains
constant or slightly increases, introducing more frequent and prolonged management challenges at
higher difficulty levels.

This design ensures that higher difficulty levels impose increasingly complex and demanding cognitive
loads, simulating real-world multitasking scenarios.

E DETAILS OF THE EEG PREPROCESSING

Channel exclusion:

raw.drop_channels([’Cz’]) (Dataset 1 only; Cz was not recorded for participants 1–9).

raw.drop_channels([’CB1’,’CB2’,’HEO’,’VEO’,’EMG’,’EKG’,’M1’,’M2’])
(Dataset 2 only; CB1/CB2 are non-standard, M1/M2 unused for referencing, others are non-EEG
signals).

Filtering:

raw.filter(l_freq=1, h_freq=100, picks=’eeg’);

raw.notch_filter(freqs=(48, 52), picks=’eeg’).

Bad-channel detection & interpolation:

bads = mne.preprocessing.find_bad_channels_lof(raw, threshold=2.0);

Re-referencing:

raw.set_eeg_reference(ref_channels=’average’, ch_type=’eeg’).

Down-sampling:

raw.resample(sfreq=500) (Dataset 2 only).

ICA artifact removal:

• Fit ICA:
ica = mne.preprocessing.ICA(method=’infomax’, extended=True,
max_iter=’auto’, random_state=42);

• Muscle artifacts:
ica.find_bads_muscle(raw, threshold=0.9).

• ECG artifacts (Dataset 1 only, as only Dataset 1 includes ECG recordings):
ica.find_bads_ecg()

• Eye-blink artifacts:
ICLabel probability > 0.9

• Exclude & apply:
ica.exclude = muscle_idx + ecg_idx + blink_idx;

F DETAILED DERIVATION OF SAMPLE ENTROPY (SampEn)

The calculation of SampEn for a scalar time series {x1, x2, . . . , xL} of length L with embedding
dimension m and tolerance r proceeds as follows:

Form Template Vectors The m- and (m+ 1)-dimensional template vectors are formed:

Xm(i) = [xi, xi+1, . . . , xi+m−1 ], i = 1, 2, . . . , L−m+ 1;

Xm+1(i) = [xi, xi+1, . . . , xi+m ], i = 1, 2, . . . , L−m.
(12)
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Measure Distance Similarity between any two vectors u and v is measured by the Chebyshev
distance:

d∞(u, v) = max
0≤k<dim(u)

∣∣uk − vk
∣∣. (13)

Count Pairs All pairs whose Chebyshev distance does not exceed r are counted and denoted as:

B = #{(i, j) : i ̸= j, d∞(Xm(i), Xm(j)) ≤ r},
A = #{(i, j) : i ̸= j, d∞(Xm+1(i), Xm+1(j)) ≤ r}. (14)

Define SampEn Finally, the SampEn is defined as shown in Equation 3:

SampEn(m, r) = − ln
(

A
B

)
. (15)

G OVERALL

This section presents the experimental results of all comparative models under different learning rates.
All models use the input tensor of shape (N,C, 8000) as illustrated in Figure 3 and keep N fixed.

For LaBraM, we adopted four approaches: arch_train uses only the network architecture and trains
from scratch on inputs of shape (N,C, 8000); eval_only loads the pre-trained weights and evaluates
without further training; finetune_full loads the pre-trained weights and fine-tunes all parameters;
and finetune_head loads the pre-trained weights and fine-tunes only the classification head. We
perform a coarse search over the learning rate set (0.001, 0.0001, 0.00001, 0.000001). All training
logs and detailed results are available in the log directory of the code.

Power Spectral Density (PSD) represents the distribution of power across different frequencies, which
has been used in MCA (Jiang et al., 2023).Since we computed PSD, we also evaluated its performance
as an input feature in other models. We employ a 512-point Short-Time Fourier Transform (STFT)
with the non-overlapping Hanning window to compute PSD. The specific calculation process is as
follows.

For a given one-dimensional signal x(n) which is divided into K segments, each of length L. The
i–th segment is denoted as xi(n) = x(1), x(2), . . . , x(L) , for i = 0, 1, . . . ,K − 1.

The periodogram for the i–th segment is calculated using the window function w(n) as follows:

p̂i(f) =
1∑L−1

n=0 |w(n)|2

L−1∑
n=0

∣∣w(n)xi(n)e
−j2πfn∣∣2 (16)

Here, f denotes the frequency, and j is the imaginary unit. The Welch-PSD is then obtained by
averaging the periodograms of all K segments:

p̂w(f) =
1

K

K−1∑
i=0

p̂i(f) (17)

G.1 LABRAM

For data utilizing pretrained weights, we followed the preprocessing protocol from the original work
(Jiang et al., 2024): applying a 0.1–75 Hz band-pass filter, a 50 Hz notch filter, downsampling to
200 Hz, and normalizing to the ±1 range.

G.2 TSLANET

TSLANet (Eldele et al., 2024) employs an adaptive spectral block (ASB), utilizing FFT-based
thresholding denoising to learn both long- and short-term dependencies; subsequently, an interaction
convolution block is applied to deepen spatiotemporal coupling. Since the original design uses a
limited number of physiological signal channels (two EEG channels and one ECG channel), we
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Table 8: LaBraM_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
eval_only 49.50±1.31 36.34±1.80 24.35±0.89 12.68±0.81 49.97±0.83 36.97±1.54 19.86±0.30 8.21±0.54
LaBraM_arch_train 63.82±3.13 41.16±5.34 28.97±2.43 14.91±3.27 52.52±1.82 36.75±2.61 29.68±3.90 20.83±4.58
LaBraM_finetune_full 55.99±4.13 43.49±5.81 29.30±4.13 19.91±4.92 57.43±8.69 46.10±12.11 23.45±4.86 12.06±6.21
LaBraM_finetune_head 55.22±4.39 44.56±6.14 27.95±2.77 21.68±2.93 61.17±8.79 58.26±10.11 24.57±3.81 20.36±3.80

1e-4
LaBraM_arch_train 60.37±4.17 41.17±6.41 32.77±5.06 20.33±6.13 71.31±8.83 67.30±11.65 28.34±5.44 18.02±6.07
LaBraM_finetune_full 56.91±4.33 44.80±6.93 31.22±5.37 24.26±6.03 67.98±10.48 64.81±12.84 27.48±6.11 20.33±7.03
LaBraM_finetune_head 55.70±0.52 35.79±0.22 26.37±1.19 13.30±1.43 55.11±6.84 45.85±10.01 22.99±3.55 15.62±3.44

1e-5
LaBraM_arch_train 62.50±0.00 38.46±0.00 34.33±4.83 21.29±6.22 67.51±9.86 62.62±13.10 29.16±4.46 19.60±3.84
LaBraM_finetune_full 56.22±1.03 37.48±1.83 27.62±2.20 15.58±2.47 60.46±9.57 54.74±12.35 24.90±5.37 15.90±5.42
LaBraM_finetune_head 55.70±0.53 35.77±0.22 26.22±0.60 11.92±0.99 52.90±3.84 40.49±5.65 22.14±2.91 12.57±3.04

1e-6
LaBraM_arch_train 62.16±1.49 39.63±2.09 28.21±1.42 13.11±1.42 56.08±4.94 45.16±7.15 24.98±3.28 15.08±3.38
LaBraM_finetune_full 54.54±1.92 38.43±1.85 27.10±1.69 15.76±1.67 56.26±6.55 47.81±8.96 21.61±1.90 10.62±2.25
LaBraM_finetune_head 55.70±0.53 35.77±0.22 26.36±1.03 12.33±1.48 52.45±3.44 39.80±5.08 21.71±2.89 11.56±3.09

explored extending its network depth. Here, TSLANet n denotes the variant in which both the
embedding dimension and the model depth are scaled by a factor of n (with n = 1 corresponding to
the original model).

G.3 MAET

MAET (Zhao & Gu, 2024) (Multi-view Embedding Module + Adaptive Transformer) utilizes
differential entropy (DE) as the input feature; additionally, we evaluated power spectral density
(PSD) and sample entropy (SampEn), and ultimately selected DE with a learning rate of 5× 10−4 as
yielding the best performance.

G.4 MCA

MCA (Jiang et al., 2023) employs DE and PSD as dual features, fusing them via cross attention
mechanisms before classification with a customized 3D convolutional neural network.In addition to
DE+PSD, we also explored the results of DE+ SampEn and PSD+ SampEn.

G.5 SFT-NET

SFT(Gao et al., 2024) employs spatial and frequency attention mechanisms, followed by depthwise
separable convolution with contextual structures, and a two-layer LSTM—thereby balancing inter-
preta bility and lightweight design . In the original model, each sample requires 16 DE segments.
Through our feature computation, each sample contains only 4 segments. Since no interface was
provided, we modified the code accordingly, naming the variant SFT4. We also computed SFT16

using a 1 s window—keeping the total number of segments per sample constant—to adapt the model.
Additionally, we evaluated the network’s performance when using PSD and SampEn as input features.

G.6 GACET

Our model also explored strategies beyond the combination of DE and SampEn, but the results
showed that the combination of DE and SampEn still achieved the best performance, confirming the
validity of our feature selection.
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Table 9: TSLANet_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
TSLANet_1 53.38±5.43 51.33±5.53 29.57±3.71 28.48±3.82 62.72±5.52 62.16±5.38 25.69±2.51 25.11±2.52
TSLANet_2 58.85±7.72 55.42±8.61 33.69±4.28 32.66±4.69 68.57±6.49 67.84±6.71 26.99±3.02 26.18±2.99
TSLANet_3 62.97±10.79 59.95±11.92 37.12±5.48 35.76±5.78 70.74±6.85 69.81±7.33 27.81±2.76 26.85±2.86
TSLANet_4 67.79±12.65 65.38±13.58 40.53±6.01 39.16±6.17 72.99±6.92 72.01±7.41 28.48±2.79 27.39±2.96
TSLANet_5 70.14±12.60 67.60±14.04 42.34±6.14 40.91±6.50 73.59±6.84 72.64±7.27 28.65±2.84 27.32±3.05
TSLANet_6 70.36±13.34 67.71±14.91 44.23±6.47 42.85±6.42 74.50±7.68 73.36±8.49 29.27±3.17 27.93±3.32
TSLANet_7 71.84±12.43 69.22±13.93 44.73±6.22 43.05±6.38 75.76±7.00 74.73±7.63 29.02±2.91 27.52±2.94
TSLANet_8 71.45±12.01 68.67±13.43 45.93±6.51 44.30±6.58 75.79±7.98 74.47±8.79 29.63±3.21 27.92±3.39

1e-4
TSLANet_1 55.71±7.01 53.24±7.12 31.38±4.09 30.56±4.33 63.93±5.46 63.46±5.35 24.66±2.56 24.37±2.55
TSLANet_2 60.91±8.76 57.99±9.33 35.80±4.95 35.04±5.18 69.95±5.75 69.30±5.95 27.46±3.16 26.76±3.19
TSLANet_3 62.84±10.00 59.79±10.74 38.77±5.83 38.19±6.03 71.66±6.32 70.91±6.75 28.92±3.17 27.90±3.16
TSLANet_4 63.75±9.86 61.03±10.45 40.22±6.35 39.70±6.48 72.47±6.75 71.76±7.10 29.40±3.49 28.22±3.41
TSLANet_5 64.27±10.75 61.55±11.48 41.78±6.66 41.14±6.77 72.72±6.53 71.92±7.09 29.88±3.24 28.62±3.21
TSLANet_6 64.47±11.25 62.07±11.72 42.21±7.07 41.56±7.15 73.32±6.08 72.58±6.50 30.37±3.46 28.99±3.40
TSLANet_7 65.16±11.46 62.75±12.27 42.47±7.26 41.58±7.37 73.64±6.75 72.82±7.26 30.66±3.51 29.25±3.46
TSLANet_8 66.60±11.71 64.32±12.56 43.21±6.77 42.28±6.83 74.38±6.85 73.60±7.25 30.91±3.56 29.49±3.50

1e-5
TSLANet_1 58.00±7.45 55.78±7.66 31.54±4.64 30.66±4.81 61.29±4.76 60.55±4.77 23.01±2.01 22.61±1.98
TSLANet_2 62.56±9.46 60.29±9.84 35.15±5.12 34.50±5.53 68.56±6.45 67.80±6.60 25.93±2.41 25.50±2.57
TSLANet_3 65.21±10.41 62.92±11.00 38.24±6.16 37.86±6.56 73.00±7.10 72.27±7.42 27.92±3.18 27.33±3.30
TSLANet_4 66.80±11.44 64.54±12.22 40.16±6.53 39.87±6.96 74.46±7.23 73.72±7.66 29.05±3.34 28.27±3.39
TSLANet_5 67.68±11.77 65.42±12.65 41.32±6.74 41.07±7.01 75.20±7.23 74.47±7.67 29.80±3.35 28.83±3.46
TSLANet_6 68.39±11.68 66.24±12.61 41.75±7.04 41.40±7.31 75.63±7.52 74.92±7.93 30.54±3.47 29.44±3.43
TSLANet_7 68.61±11.91 66.41±12.79 42.55±6.99 42.24±7.25 75.98±7.53 75.28±7.98 31.03±3.83 29.76±3.78
TSLANet_8 69.34±11.71 67.09±12.85 42.67±7.01 42.31±7.32 76.39±7.59 75.70±7.95 31.13±3.78 29.76±3.60

1e-6
TSLANet_1 54.42±4.74 53.09±4.73 28.41±3.51 27.50±3.53 57.18±4.45 56.19±4.52 22.07±1.96 21.10±1.99
TSLANet_2 57.98±6.62 56.39±6.73 30.99±4.32 29.83±4.55 59.45±4.22 57.87±4.41 23.19±1.85 22.28±1.97
TSLANet_3 59.38±7.37 57.70±7.45 32.19±4.89 31.13±5.47 62.17±5.28 60.37±5.40 24.00±2.10 22.85±2.23
TSLANet_4 60.78±8.71 59.47±8.86 33.40±5.46 32.35±5.95 63.23±5.33 61.23±5.66 24.49±2.25 23.42±2.33
TSLANet_5 62.20±8.65 60.39±8.88 34.44±5.26 33.51±5.70 65.30±5.21 63.50±5.45 25.27±2.22 24.13±2.39
TSLANet_6 63.24±9.78 61.45±10.10 35.05±5.83 34.16±6.44 66.58±5.32 64.90±5.33 25.98±2.40 24.84±2.41
TSLANet_7 62.93±9.80 61.26±10.10 35.85±5.86 35.06±6.39 67.00±5.94 65.39±6.18 26.65±2.58 25.50±2.65
TSLANet_8 63.47±10.13 61.86±10.46 36.10±6.01 35.16±6.65 68.42±6.14 67.03±6.34 26.85±2.74 25.72±2.81
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Table 10: MAET_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
MAET_single_DE 96.27±3.17 96.15±3.29 65.97±9.18 62.84±10.10 89.69±4.84 89.06±5.86 40.67±4.63 37.00±5.73
MAET_single_PSD 95.88±2.69 95.69±2.85 62.96±9.00 60.91±9.57 86.09±6.23 85.49±7.12 37.22±3.56 34.42±3.89
MAET_single_SampEn 92.22±5.56 91.82±6.24 55.39±6.96 54.17±7.63 86.50±5.13 86.26±5.34 38.78±3.53 37.41±3.65

1e-4
MAET_single_DE 95.98±3.45 95.83±3.60 64.68±8.11 61.98±9.37 88.87±4.54 88.32±5.33 41.10±4.30 36.58±5.03
MAET_single_PSD 94.65±3.47 94.46±3.62 61.62±8.06 59.76±8.94 85.88±5.68 85.36±6.30 37.71±3.57 34.36±3.86
MAET_single_SampEn 88.12±6.50 87.61±7.06 51.63±6.28 49.84±7.01 84.79±5.45 84.37±5.81 38.06±4.32 35.21±4.36

1e-5
MAET_single_DE 82.04±5.82 80.93±6.38 52.90±6.41 49.82±7.24 81.23±7.35 80.22±8.08 35.35±4.35 31.15±4.34
MAET_single_PSD 76.41±5.43 75.28±5.73 46.00±5.75 43.09±6.37 75.13±7.99 74.01±8.58 32.01±4.18 28.93±4.04
MAET_single_SampEn 58.55±5.49 57.52±5.59 30.57±2.90 29.12±2.93 65.50±6.66 64.96±6.82 27.80±3.65 26.32±3.24

1e-6
MAET_single_DE 62.25±4.25 59.69±4.63 29.77±2.59 26.01±3.00 51.61±2.41 49.11±2.88 21.39±1.60 18.82±1.74
MAET_single_PSD 59.33±4.27 57.20±4.59 27.75±2.79 24.79±3.27 50.90±1.84 49.00±2.05 20.58±1.23 18.62±1.32
MAET_single_SampEn 49.44±2.94 48.20±2.99 25.21±1.54 23.95±1.38 49.58±2.01 48.84±2.02 20.33±0.79 19.55±0.87

Table 11: MCA_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
MCA_PSD_DE 91.75±5.37 91.21±6.01 58.82±8.15 56.70±9.21 84.64±5.49 83.85±6.00 35.81±3.34 32.27±3.98
MCA_SampEn_DE 86.27±6.74 85.44±7.55 55.75±7.44 53.34±8.00 81.71±5.43 81.20±5.73 35.71±3.27 32.24±3.62
MCA_SampEn_PSD 83.46±6.31 82.84±6.70 51.74±6.58 49.59±7.56 77.58±6.23 76.89±6.61 33.12±3.35 30.21±3.29

1e-4
MCA_PSD_DE 88.82±5.86 88.11±6.40 56.58±8.79 54.44±9.67 82.70±6.09 81.90±6.66 35.62±3.50 32.05±3.92
MCA_SampEn_DE 77.92±9.77 75.72±11.64 51.67±9.20 48.06±10.00 79.29±5.68 78.53±6.22 35.44±3.52 31.54±4.08
MCA_SampEn_PSD 76.29±9.64 74.48±10.61 48.69±7.49 45.38±8.28 72.31±6.85 71.05±7.74 32.22±3.44 28.78±3.94

1e-5
MCA_PSD_DE 80.21±10.07 77.92±11.88 43.90±8.04 36.04±9.13 72.66±8.42 69.92±10.27 29.33±3.79 19.72±3.66
MCA_SampEn_DE 58.31±10.71 50.74±13.71 33.14±7.27 23.18±7.51 65.09±10.05 59.80±13.02 24.61±3.86 13.58±3.86
MCA_SampEn_PSD 61.48±9.90 55.43±12.11 30.05±5.07 21.17±5.96 59.93±8.85 53.26±11.91 23.17±3.65 12.31±4.23

1e-6
MCA_PSD_DE 55.11±3.42 46.90±3.47 27.32±1.96 17.35±2.10 59.19±5.76 51.74±6.57 23.18±2.43 14.62±1.93
MCA_SampEn_DE 51.56±3.47 43.60±3.47 26.21±2.18 15.38±2.25 57.32±5.20 49.98±5.83 22.44±1.34 12.90±1.30
MCA_SampEn_PSD 52.14±2.40 44.20±2.84 25.58±1.11 15.12±1.35 53.57±3.61 45.88±3.93 21.03±1.40 12.51±1.35
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Table 12: SFT_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
SFT_16_DE 95.49±3.93 95.11±4.39 56.16±7.16 52.77±7.85 83.82±6.62 82.35±7.78 35.84±4.69 31.84±4.70
SFT_16_PSD 82.59±9.20 78.63±12.55 50.86±7.72 46.38±8.75 77.10±7.28 73.84±8.92 33.64±4.39 28.68±5.18
SFT_16_SampEn 80.07±11.35 75.26±14.74 43.23±7.47 39.58±8.64 74.24±6.16 71.97±7.00 31.52±3.75 28.73±3.78
SFT_4_DE 92.65±4.76 91.71±5.67 50.68±6.65 45.45±7.69 83.44±6.48 82.08±7.69 35.60±4.15 30.66±4.86
SFT_4_PSD 84.72±7.39 81.09±10.50 48.38±6.06 42.64±7.33 76.97±9.31 74.39±11.26 32.68±4.97 27.49±5.68
SFT_4_SampEn 71.80±9.44 63.02±12.86 41.40±6.99 35.88±8.33 76.80±6.70 75.35±7.42 31.56±3.51 27.60±4.07

1e-4
SFT_16_DE 61.42±2.67 45.50±4.45 36.08±4.65 25.03±5.74 69.51±9.69 63.91±12.79 32.27±4.53 25.02±5.36
SFT_16_PSD 58.65±3.22 41.28±5.91 34.80±4.06 23.63±5.64 61.15±8.18 52.37±11.25 27.46±4.44 18.50±5.49
SFT_16_SampEn 55.70±0.53 35.77±0.22 27.90±1.53 12.87±1.84 53.72±5.47 40.20±7.94 23.13±3.52 12.58±4.52
SFT_4_DE 54.51±1.27 36.70±2.00 28.48±1.27 14.07±1.63 58.99±6.02 47.84±8.24 26.06±3.73 14.63±4.22
SFT_4_PSD 54.70±1.04 37.16±1.80 27.98±1.47 13.64±2.05 54.90±5.42 42.60±7.55 23.72±3.08 12.36±3.70
SFT_4_SampEn 53.45±0.32 34.82±0.22 26.22±0.43 11.09±0.57 51.73±2.42 37.10±3.96 21.10±1.22 9.12±1.41

1e-5
SFT_16_DE 48.88±0.20 32.80±0.24 27.20±0.94 12.74±1.08 50.70±0.94 34.77±1.65 20.60±0.56 7.77±0.63
SFT_16_PSD 48.87±0.21 32.83±0.22 26.77±0.94 12.37±0.96 50.86±1.71 35.29±2.37 20.15±0.43 7.41±0.53
SFT_16_SampEn 49.04±0.52 32.96±0.55 25.77±0.68 10.93±0.52 50.17±0.34 33.81±0.66 20.36±0.27 7.42±0.23
SFT_4_DE 52.72±0.29 34.54±0.29 24.91±0.07 9.96±0.03 50.28±0.95 34.26±1.44 20.44±0.52 7.43±0.49
SFT_4_PSD 52.87±0.47 34.90±0.72 24.90±0.11 9.98±0.07 49.96±0.92 33.85±1.14 20.11±0.48 7.20±0.42
SFT_4_SampEn 52.67±0.26 34.42±0.10 24.92±0.11 9.99±0.15 50.08±0.20 33.83±0.41 20.06±0.12 7.04±0.21

1e-6
SFT_16_DE 48.74±0.39 32.74±0.29 24.84±0.57 10.35±0.41 50.27±0.64 34.06±0.93 20.05±0.30 7.41±0.34
SFT_16_PSD 48.64±0.51 32.71±0.34 24.97±0.54 10.53±0.47 50.09±0.44 33.82±0.71 20.03±0.40 7.25±0.28
SFT_16_SampEn 48.86±0.17 32.73±0.09 24.81±0.28 10.35±0.18 50.01±0.03 33.36±0.06 20.24±0.23 7.47±0.24
SFT_4_DE 52.70±0.26 34.50±0.23 24.91±0.07 9.95±0.03 49.97±0.25 33.44±0.26 20.01±0.26 6.90±0.21
SFT_4_PSD 52.74±0.42 34.65±0.53 24.89±0.10 9.95±0.03 50.01±0.08 33.39±0.08 20.01±0.21 6.85±0.21
SFT_4_SampEn 52.67±0.27 34.44±0.14 24.91±0.07 9.96±0.04 50.02±0.05 33.46±0.15 19.98±0.09 6.81±0.11

Table 13: GACET_overall

Dataset 1 (2-class) Dataset 1 (4-class) Dataset 2 (2-class) Dataset 2 (5-class)

ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

1e-3
GACET_PSD_DE 95.98±3.92 95.70±4.49 61.14±8.15 57.18±9.11 87.83±5.49 87.02±6.52 35.17±2.67 25.40±3.82
GACET_SampEn_DE 95.73±3.95 95.47±4.54 61.11±8.19 57.18±8.83 89.90±3.67 89.64±3.87 36.54±3.23 26.80±4.67
GACET_SampEn_PSD 95.90±4.08 95.67±4.54 60.31±6.78 57.42±7.39 87.61±4.37 87.23±4.67 35.72±3.09 26.59±4.56

1e-4
GACET_PSD_DE 97.33±3.26 97.18±3.71 65.40±9.37 61.85±10.67 90.45±5.12 89.88±6.07 40.78±4.32 35.73±5.04
GACET_SampEn_DE 97.34±2.96 97.20±3.31 67.66±9.03 64.46±10.19 92.75±3.76 92.52±4.10 42.77±4.29 38.01±5.22
GACET_SampEn_PSD 97.69±2.28 97.62±2.37 66.29±8.60 63.57±9.67 92.04±3.57 91.88±3.74 41.73±3.76 37.61±4.37

1e-5
GACET_PSD_DE 94.86±4.13 94.52±4.66 61.00±8.93 57.81±9.83 89.40±4.79 88.94±5.29 38.00±3.38 32.46±3.68
GACET_SampEn_DE 95.07±3.98 94.84±4.33 60.98±8.31 58.20±9.11 90.56±3.45 90.25±3.74 38.87±2.98 33.20±3.41
GACET_SampEn_PSD 94.63±3.66 94.40±3.90 59.19±7.77 56.79±8.55 88.78±3.99 88.39±4.35 37.46±2.56 32.48±2.62

1e-6
GACET_PSD_DE 65.90±7.31 61.03±8.45 29.51±2.93 23.17±3.25 75.33±9.08 73.33±10.16 24.22±2.67 19.99±3.17
GACET_SampEn_DE 65.37±6.00 60.55±7.23 30.33±3.05 24.57±3.23 74.24±8.66 72.23±9.88 23.85±2.68 20.05±3.00
GACET_SampEn_PSD 61.70±4.21 56.64±5.11 29.86±2.04 24.24±2.24 68.13±6.92 66.03±7.76 22.89±1.90 19.33±2.05
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H GACET PERFORMANCE DETAILS

H.1 PERFORMANCE DETAILS AT DIFFERENT LEARNING RATES

H.1.1 1E-3

Table 14: Dataset 1 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 100.00 100.00 100.00 100.00
Subject_2 92.10 91.84 100.00 100.00
Subject_3 99.80 99.80 100.00 100.00
Subject_4 99.19 99.18 100.00 100.00
Subject_5 98.54 98.54 100.00 100.00
Subject_6 90.74 90.42 97.78 97.74
Subject_7 96.46 96.36 100.00 100.00
Subject_8 96.46 96.27 100.00 100.00
Subject_9 98.96 98.94 96.67 96.52
Subject_10 98.15 98.11 98.02 98.01
Subject_11 95.96 95.94 100.00 100.00
Subject_12 97.95 97.93 99.44 99.44
Subject_13 95.83 95.63 99.44 99.33
Subject_14 95.00 94.81 100.00 100.00
Subject_15 98.54 98.50 100.00 100.00
Subject_16 95.83 95.60 100.00 100.00
Subject_17 94.70 94.61 100.00 100.00
Subject_18 100.00 100.00 100.00 100.00
Subject_19 91.88 91.31 97.86 97.74
Subject_20 94.66 94.56 96.11 95.96
Subject_21 90.83 90.59 98.33 98.32
Subject_22 96.75 96.65 96.67 96.52
Subject_23 90.06 89.07 97.78 97.71
Subject_24 98.96 98.95 100.00 100.00
Subject_25 96.47 96.41 99.44 99.44
Subject_26 97.10 97.01 98.89 98.88
Subject_27 94.70 94.61 100.00 100.00
Subject_28 81.25 77.50 100.00 100.00
Subject_29 99.38 99.37 99.44 99.44

Summary 95.73±3.95 95.47±4.54 99.17±1.19 99.14±1.23

Table 15: Dataset 1 (4class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 65.05 61.59 98.02 98.17
Subject_2 62.07 56.37 92.05 92.17
Subject_3 66.14 63.09 97.36 97.44
Subject_4 72.75 68.85 95.13 95.11
Subject_5 61.57 55.71 95.88 95.27
Subject_6 54.91 48.63 93.06 92.50
Subject_7 68.24 63.45 98.75 98.75
Subject_8 58.82 56.40 96.54 96.63
Subject_9 57.06 55.31 96.72 96.29
Subject_10 52.25 49.90 97.09 97.04
Subject_11 70.82 67.60 96.81 96.74
Subject_12 65.13 61.63 98.04 97.97

Continued on next page
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Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_13 50.73 44.83 86.65 85.29
Subject_14 54.51 50.63 95.27 95.61
Subject_15 63.43 57.95 94.63 94.33
Subject_16 63.92 59.90 98.57 98.64
Subject_17 63.67 59.15 98.26 98.03
Subject_18 62.30 61.13 98.77 98.88
Subject_19 46.86 44.20 94.87 94.47
Subject_20 65.07 60.76 88.21 87.40
Subject_21 74.12 72.00 96.94 96.67
Subject_22 52.00 46.70 95.57 95.58
Subject_23 55.38 48.73 97.05 96.93
Subject_24 65.69 63.12 98.79 98.77
Subject_25 75.54 74.11 98.53 98.37
Subject_26 53.51 52.70 93.44 93.42
Subject_27 63.67 59.15 98.26 98.03
Subject_28 39.71 32.75 94.63 94.60
Subject_29 67.41 62.04 85.68 83.31

Summary 61.11±8.19 57.18±8.83 95.50±3.45 95.26±3.87

Table 16: Dataset 2 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 91.90 91.70 99.60 99.59
Subject_2 93.81 93.76 99.00 98.99
Subject_3 83.02 82.17 97.05 96.98
Subject_4 89.29 89.10 99.61 99.60
Subject_5 89.52 89.43 97.84 97.83
Subject_6 87.86 87.63 97.22 97.21
Subject_7 85.00 84.75 95.04 94.90
Subject_8 96.43 96.42 100.00 100.00
Subject_9 89.68 89.59 99.40 99.40
Subject_10 87.22 86.49 98.01 97.99
Subject_11 95.71 95.69 100.00 100.00
Subject_12 90.40 90.29 98.59 98.59
Subject_13 91.43 91.23 99.22 99.22
Subject_14 87.30 86.67 98.81 98.80

Summary 89.90±3.67 89.64±3.87 98.53±1.34 98.51±1.37

Table 17: Dataset 2 (5class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 36.63 27.39 45.16 36.57
Subject_2 40.32 33.04 53.49 46.20
Subject_3 32.06 21.02 40.40 30.93
Subject_4 39.33 30.96 50.48 44.00
Subject_5 38.51 30.69 53.33 48.34
Subject_6 33.08 22.40 41.35 29.27
Subject_7 32.98 21.38 39.92 28.77
Subject_8 39.14 26.75 43.49 32.77
Subject_9 32.86 21.70 44.52 34.27

Continued on next page
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Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_10 36.98 27.21 44.52 35.48
Subject_11 42.51 35.26 52.86 44.59
Subject_12 32.98 21.64 43.41 33.69
Subject_13 35.30 24.32 45.08 36.01
Subject_14 38.83 31.40 53.65 45.36

Summary 36.54±3.23 26.80±4.67 46.55±4.93 37.59±6.49

H.1.2 1E-4

Table 18: Dataset 1 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 100.00 100.00 100.00 100.00
Subject_2 98.78 98.76 97.78 97.66
Subject_3 100.00 100.00 100.00 100.00
Subject_4 100.00 100.00 100.00 100.00
Subject_5 100.00 100.00 100.00 100.00
Subject_6 92.32 92.04 98.33 98.30
Subject_7 98.75 98.75 100.00 100.00
Subject_8 98.75 98.73 99.44 99.44
Subject_9 98.33 98.28 96.11 95.94
Subject_10 98.78 98.76 99.44 99.44
Subject_11 97.98 97.96 98.89 98.88
Subject_12 97.58 97.50 97.78 97.74
Subject_13 98.14 98.10 100.00 100.00
Subject_14 92.92 92.80 99.52 99.52
Subject_15 98.96 98.93 100.00 100.00
Subject_16 94.17 93.95 98.89 98.86
Subject_17 97.97 97.95 100.00 100.00
Subject_18 100.00 100.00 100.00 100.00
Subject_19 95.62 95.46 96.67 96.44
Subject_20 95.52 95.39 93.89 93.39
Subject_21 94.79 94.71 97.78 97.66
Subject_22 96.14 96.06 93.89 93.08
Subject_23 95.48 95.40 98.33 98.30
Subject_24 100.00 100.00 100.00 100.00
Subject_25 98.99 98.96 99.44 99.44
Subject_26 98.34 98.29 95.56 95.16
Subject_27 97.97 97.95 100.00 100.00
Subject_28 86.67 84.18 100.00 100.00
Subject_29 100.00 100.00 100.00 100.00

Summary 97.34±2.96 97.20±3.31 98.68±1.80 98.59±1.97

Table 19: Dataset 1 (4class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 68.94 66.70 98.52 98.61
Subject_2 71.27 68.56 96.04 95.44
Subject_3 75.00 73.43 96.17 96.24
Subject_4 77.00 73.15 96.59 96.70

Continued on next page

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Continued from previous page

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_5 73.14 66.98 98.79 98.86
Subject_6 61.60 56.15 93.00 92.92
Subject_7 77.65 74.11 97.44 96.79
Subject_8 66.27 62.01 98.00 98.12
Subject_9 67.06 63.89 96.72 96.45
Subject_10 58.79 56.79 95.64 95.65
Subject_11 74.20 70.78 97.77 97.73
Subject_12 75.01 73.37 96.08 95.99
Subject_13 49.25 43.23 95.59 95.73
Subject_14 56.47 53.82 98.99 99.05
Subject_15 70.98 67.84 97.51 97.43
Subject_16 73.63 72.60 98.79 98.78
Subject_17 74.26 72.28 97.78 97.56
Subject_18 64.81 64.00 99.29 99.37
Subject_19 51.47 46.74 93.96 93.84
Subject_20 67.21 63.17 91.10 90.56
Subject_21 83.04 81.91 98.74 98.49
Subject_22 55.42 51.40 95.75 95.50
Subject_23 64.13 59.14 97.49 97.26
Subject_24 70.49 67.01 98.55 98.57
Subject_25 80.90 79.63 99.27 99.20
Subject_26 62.03 60.70 90.53 90.52
Subject_27 74.26 72.28 97.78 97.56
Subject_28 48.24 39.39 98.26 98.15
Subject_29 69.47 68.29 98.75 98.80

Summary 67.66±9.03 64.46±10.19 96.86±2.24 96.75±2.31

Table 20: Dataset 2 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 92.46 92.26 98.81 98.80
Subject_2 96.35 96.34 98.59 98.58
Subject_3 82.30 81.03 97.25 97.23
Subject_4 90.32 90.12 98.42 98.40
Subject_5 92.22 92.10 98.24 98.22
Subject_6 95.79 95.78 99.41 99.41
Subject_7 93.10 92.94 98.00 97.99
Subject_8 98.57 98.57 100.00 100.00
Subject_9 93.89 93.85 99.80 99.80
Subject_10 93.10 93.07 98.82 98.82
Subject_11 95.24 95.21 99.22 99.22
Subject_12 91.90 91.84 98.39 98.39
Subject_13 94.44 94.39 98.24 98.23
Subject_14 88.81 87.81 99.40 99.40

Summary 92.75±3.76 92.52±4.10 98.76±0.72 98.75±0.73

Table 21: Dataset 2 (5class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 44.41 39.99 61.67 59.66
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Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_2 44.16 41.07 62.38 60.39
Subject_3 36.44 30.06 48.97 46.43
Subject_4 46.95 43.50 59.05 56.63
Subject_5 40.19 35.19 60.08 57.73
Subject_6 40.19 36.15 58.89 56.28
Subject_7 36.44 31.55 52.94 50.03
Subject_8 49.59 46.44 57.06 55.13
Subject_9 42.57 37.77 59.76 57.31
Subject_10 42.89 37.33 54.92 53.11
Subject_11 47.68 43.42 65.08 63.94
Subject_12 40.89 35.20 58.57 57.07
Subject_13 37.40 29.80 55.00 50.74
Subject_14 49.02 44.75 62.78 60.43

Summary 42.77±4.29 38.01±5.22 58.37±4.14 56.06±4.52

H.1.3 1E-5

Table 22: Dataset 1 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 98.99 98.98 100.00 100.00
Subject_2 93.54 93.26 96.75 96.60
Subject_3 96.35 96.29 99.44 99.44
Subject_4 98.99 98.97 99.44 99.44
Subject_5 99.17 99.15 100.00 100.00
Subject_6 91.12 90.97 95.56 95.33
Subject_7 98.75 98.73 97.22 97.08
Subject_8 95.21 95.10 100.00 100.00
Subject_9 96.46 96.32 96.67 96.38
Subject_10 98.36 98.32 99.44 99.44
Subject_11 94.14 94.08 98.89 98.88
Subject_12 95.93 95.78 95.56 95.38
Subject_13 86.40 85.19 100.00 100.00
Subject_14 83.96 82.27 97.86 97.74
Subject_15 98.96 98.93 100.00 100.00
Subject_16 93.12 92.84 98.97 98.94
Subject_17 95.92 95.80 98.33 98.30
Subject_18 99.17 99.15 100.00 100.00
Subject_19 93.96 93.82 96.11 95.77
Subject_20 94.48 94.30 92.78 92.02
Subject_21 92.92 92.77 97.78 97.66
Subject_22 93.66 93.47 94.44 93.72
Subject_23 90.56 90.18 96.11 96.01
Subject_24 99.58 99.58 100.00 100.00
Subject_25 97.56 97.45 98.89 98.88
Subject_26 97.30 97.22 96.67 96.08
Subject_27 95.92 95.80 98.33 98.30
Subject_28 87.71 86.64 97.78 97.66
Subject_29 98.96 98.94 98.89 98.86

Summary 95.07±3.98 94.84±4.33 98.00±1.88 97.86±2.06
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Table 23: Dataset 1 (4class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 64.58 62.00 87.66 87.22
Subject_2 64.20 60.76 86.19 83.68
Subject_3 67.50 65.44 94.65 94.79
Subject_4 69.18 66.13 88.86 89.00
Subject_5 61.86 56.51 92.62 92.54
Subject_6 58.32 54.97 87.18 86.08
Subject_7 68.33 65.88 91.87 90.68
Subject_8 62.94 59.41 91.12 91.22
Subject_9 62.06 60.28 91.30 90.90
Subject_10 55.46 53.47 91.23 90.78
Subject_11 70.05 67.54 93.74 93.60
Subject_12 64.50 63.57 86.74 86.77
Subject_13 47.18 42.50 86.19 86.36
Subject_14 52.45 49.69 89.71 89.87
Subject_15 63.73 59.78 86.37 86.03
Subject_16 65.29 64.63 95.84 95.62
Subject_17 67.28 65.79 90.20 89.72
Subject_18 58.90 55.52 92.14 92.29
Subject_19 49.02 45.57 88.59 87.58
Subject_20 65.76 62.45 81.28 79.73
Subject_21 74.22 71.69 89.32 87.15
Subject_22 46.43 44.92 88.94 89.03
Subject_23 51.12 46.47 90.92 91.00
Subject_24 58.73 55.55 87.11 85.76
Subject_25 73.79 72.48 95.57 95.69
Subject_26 55.60 54.16 81.21 81.11
Subject_27 67.28 65.79 90.20 89.72
Subject_28 39.71 32.61 90.48 90.38
Subject_29 63.03 62.17 89.95 90.11

Summary 60.98±8.31 58.20±9.11 89.56±3.47 89.12±3.78

Table 24: Dataset 2 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 93.33 93.29 96.41 96.38
Subject_2 94.05 93.99 97.01 96.99
Subject_3 83.89 83.22 93.31 93.11
Subject_4 91.27 91.16 97.05 97.00
Subject_5 89.60 89.47 94.51 94.32
Subject_6 89.52 89.41 96.46 96.44
Subject_7 87.14 86.37 92.28 91.98
Subject_8 96.90 96.89 99.22 99.22
Subject_9 92.46 92.36 99.02 99.02
Subject_10 87.22 86.11 97.45 97.44
Subject_11 94.05 94.00 97.65 97.64
Subject_12 90.95 90.87 98.62 98.61
Subject_13 91.35 91.19 97.45 97.45
Subject_14 86.11 85.23 94.88 94.74

Summary 90.56±3.45 90.25±3.74 96.52±2.01 96.45±2.10
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Table 25: Dataset 2 (5class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 40.51 34.94 51.19 47.21
Subject_2 40.92 35.61 50.24 45.69
Subject_3 34.41 28.70 42.70 38.59
Subject_4 42.83 38.13 47.30 41.82
Subject_5 36.89 30.62 48.33 43.17
Subject_6 35.43 29.88 41.75 37.01
Subject_7 34.25 29.06 39.52 34.87
Subject_8 42.98 39.03 47.46 43.97
Subject_9 39.71 32.79 49.68 45.67
Subject_10 37.27 30.94 45.08 42.03
Subject_11 43.43 38.42 51.51 47.81
Subject_12 37.40 31.72 44.92 40.82
Subject_13 38.10 30.85 48.33 43.40
Subject_14 40.00 34.12 50.71 46.63

Summary 38.87±2.98 33.20±3.41 47.05±3.62 42.76±3.75

H.1.4 1E-6

Table 26: Dataset 1 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 70.23 66.05 80.87 76.45
Subject_2 58.38 52.20 65.63 60.36
Subject_3 61.48 54.70 72.22 67.53
Subject_4 69.29 65.16 78.81 76.43
Subject_5 58.75 53.45 74.44 70.85
Subject_6 62.83 58.37 71.19 68.57
Subject_7 67.08 64.26 73.89 70.36
Subject_8 63.33 58.50 73.33 69.76
Subject_9 74.38 72.09 78.02 74.23
Subject_10 64.13 57.09 70.63 65.47
Subject_11 59.19 55.42 74.13 72.17
Subject_12 64.76 57.93 78.97 75.00
Subject_13 48.77 39.47 63.65 57.18
Subject_14 64.17 58.08 75.40 71.16
Subject_15 77.29 74.98 85.16 81.37
Subject_16 60.00 54.50 69.52 65.08
Subject_17 66.00 62.10 78.17 74.94
Subject_18 72.27 69.13 84.76 81.78
Subject_19 72.50 68.66 73.81 69.48
Subject_20 61.86 55.72 68.17 62.85
Subject_21 56.46 50.80 63.49 58.28
Subject_22 67.45 61.98 74.68 69.87
Subject_23 67.03 62.82 78.81 74.47
Subject_24 63.12 58.65 71.03 65.67
Subject_25 71.72 67.57 81.11 79.51
Subject_26 69.84 65.37 73.73 69.28
Subject_27 66.00 62.10 78.17 74.94
Subject_28 65.00 60.11 73.81 70.70
Subject_29 72.41 68.80 79.21 75.97

Summary 65.37±6.00 60.55±7.23 74.65±5.42 70.68±6.16
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Table 27: Dataset 1 (4class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 30.55 24.65 39.65 34.87
Subject_2 27.57 21.00 38.11 32.04
Subject_3 33.99 27.28 39.38 33.10
Subject_4 35.17 30.23 39.07 34.85
Subject_5 23.24 17.52 44.89 39.99
Subject_6 32.43 25.13 43.02 38.47
Subject_7 35.69 30.21 41.30 34.60
Subject_8 30.39 23.98 40.22 36.38
Subject_9 29.31 24.31 44.25 37.97
Subject_10 32.40 26.34 43.24 36.68
Subject_11 31.11 25.10 41.70 35.77
Subject_12 30.24 26.42 36.48 31.74
Subject_13 28.67 20.89 35.88 28.96
Subject_14 27.75 21.71 37.05 32.10
Subject_15 31.96 27.43 39.45 35.66
Subject_16 30.59 24.68 34.40 28.54
Subject_17 32.82 26.65 39.01 33.52
Subject_18 28.46 22.48 38.17 33.16
Subject_19 30.00 24.61 41.79 36.00
Subject_20 29.86 23.55 37.01 32.42
Subject_21 34.61 29.78 37.88 31.61
Subject_22 31.41 26.14 37.86 33.11
Subject_23 28.40 22.95 43.64 38.44
Subject_24 27.55 22.28 36.10 30.51
Subject_25 32.46 27.67 36.83 32.56
Subject_26 28.57 22.32 39.25 32.81
Subject_27 32.82 26.65 39.01 33.52
Subject_28 22.06 16.48 31.32 25.94
Subject_29 29.56 24.19 36.54 31.39

Summary 30.33±3.05 24.57±3.23 39.05±3.04 33.68±3.10

Table 28: Dataset 2 (2class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 73.49 71.94 79.11 76.85
Subject_2 84.37 83.95 91.79 91.70
Subject_3 64.13 60.96 72.95 71.52
Subject_4 79.92 79.27 87.78 86.88
Subject_5 62.94 59.24 69.25 65.97
Subject_6 65.24 61.12 69.29 66.60
Subject_7 60.56 56.83 67.02 63.08
Subject_8 88.65 88.54 95.66 95.64
Subject_9 80.48 79.65 93.42 93.14
Subject_10 69.92 67.44 79.33 77.27
Subject_11 85.00 83.78 91.13 89.84
Subject_12 79.44 77.92 92.10 91.98
Subject_13 71.19 68.63 84.64 83.62
Subject_14 74.05 71.89 82.97 82.18

Summary 74.24±8.66 72.23±9.88 82.60±9.56 81.16±10.67
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Table 29: Dataset 2 (5class)

Subject Cross Acc (%) Cross F1 (%) In-time Acc (%) In-time F1 (%)
Subject_1 23.49 19.21 26.75 23.50
Subject_2 26.89 23.82 31.83 28.36
Subject_3 22.83 17.42 24.84 22.49
Subject_4 23.17 19.59 27.46 24.57
Subject_5 22.51 19.38 26.59 23.51
Subject_6 21.49 18.11 25.32 22.20
Subject_7 20.29 16.31 22.30 17.85
Subject_8 28.41 24.72 36.51 33.96
Subject_9 24.38 20.03 29.60 26.68
Subject_10 22.54 18.02 28.57 25.03
Subject_11 29.65 26.66 34.21 29.99
Subject_12 25.24 22.03 29.44 26.42
Subject_13 21.40 17.06 26.35 22.58
Subject_14 21.62 18.29 24.44 20.33

Summary 23.85±2.68 20.05±3.00 28.16±3.77 24.82±3.95

H.2 INDIVIDUAL PERFORMANCE AT THE BEST LEARNING RATE

H.2.1 DATASET 1 (2-CLASS)
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H.2.2 DATASET 1 (4-CLASS)
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H.2.3 DATASET 2 (2-CLASS)
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H.2.4 DATASET 2 (5-CLASS)
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I SIGNIFICANCE ANALYSIS

In our study, we fit the following linear mixed-effects model:

yjk = β0 + β1 Mjk + uj + fk + εjk, (18)

where yjk is the performance metric (Accuracy or F1) for subject j on fold k (of 15), and

Mjk =

{
0, GACET,
1, comparator model.

Here uj ∼ N (0, σ2
u) is the subject-level random intercept capturing between-subject variability;

fk ∼ N (0, σ2
f ) is the fold-level random effect controlling for variability across the 15 folds; εjk ∼

N (0, σ2) is the residual error.

We test the null hypothesis

H0 : β1 = 0 versus H1 : β1 ̸= 0 (19)

At a significance level of α = 0.05, all analysis results are available in the log/significance_
analysis directory.
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