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ABSTRACT

Uncertainty quantification is crucial in safety-critical systems, where decisions
must be made under uncertainty. In particular, we consider the problem of online
uncertainty quantification, where data points arrive sequentially. Online conformal
prediction is a principled online uncertainty quantification method that dynamically
constructs a prediction set at each time step. While existing methods for online
conformal prediction provide long-run coverage guarantees without any distribu-
tional assumptions, they typically assume a full-feedback setting in which the true
label is always observed. In this paper, we propose a novel learning method for
online conformal prediction with partial feedback from an adaptive adversary—a
more challenging setup where the true label is revealed only when it lies inside the
constructed prediction set. Specifically, we formulate online conformal prediction
as an adversarial bandit problem by treating each candidate prediction set as an arm.
Building on an existing algorithm for adversarial bandits, our method achieves a
long-run coverage guarantee by explicitly establishing its connection to the regret of
the learner. Finally, we empirically demonstrate the effectiveness of our method in
both independent and identically distributed (i.i.d.) and non-i.i.d. settings, showing
that it successfully controls the miscoverage rate while maintaining a reasonable
size of the prediction set.

1 INTRODUCTION

Uncertainty quantification is essential in safety-critical domains such as autonomous driving (Linde;
mann et al., [2023)), healthcare (Lin et al., [2022), and finance (Park & Cho, 2025), where uncertainty-
aware decision making is required. Unlike point prediction methods that return the most likely
outcome, conformal prediction (Vovk et al.,[2005) is a promising uncertainty quantification method
that constructs a conformal set for a given input, a set of outcomes that is guaranteed to contain the
true label with a user-specified probability. We refer to the guarantee as a coverage guarantee. Here,
the size of the conformal set quantifies the uncertainty in terms of making a prediction.

Moreover, the coverage guarantee is model-agnostic in the sense that the guarantee holds irrespective
of the choice of the prediction model. Exchangeability assumption on the data generating process
(Vovk et al. 20035) is the only requirement for the guarantee, where a typical independent and
identically distributed (i.i.d.) scenario is the case that satisfies such assumption. Specifically, under
the exchangeability assumption, the coverage guarantee of the conformal set constructed from training
samples holds for an unseen test sample (Vovkl |[2013)). Therefore, since the coverage guarantee holds
for arbitrary prediction models, conformal prediction has been applied to complex and large-scale
models such as large language models (Mohri & Hashimoto, 2024; (Cherian et al.,2024; Lee et al.|
2024).

However, the exchangeability assumption is easily violated under scenarios such as distribution shift,
where the training and test distributions differ. A number of conformal prediction methods have been
proposed to provide coverage guarantees under such settings (Tibshirani et al.,|2019; |Podkopaev &
Ramdas|, 2021 Park et al.| 2022 |Gendler et al.,|[2022;Si et al.,[2024])). In contrast to the aforementioned
batch conformal prediction methods, which require a batch of samples for training, methods for
online conformal prediction are proposed to tackle online uncertainty quantification problems, where
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data points arrive sequentially (Gibbs & Candes| 2021} Bastani et al., 2022} |Angelopoulos et al.|
2023;2024a)). Even in adversarial settings, where no distributional assumptions are made on the data
stream or on the functional form of the scoring functions, these methods provide a long-run coverage
guarantee such that the empirical coverage reaches the target level after sufficiently many time steps.

Meanwhile, existing methods for online conformal prediction typically assume a full feedback
scenario, where the true label is revealed every time step. Indeed, these methods are tailored to
the full feedback setting, since they require a scoring function evaluated on the true label either for
its quantile estimation or for the evaluation of the miscoverage loss over multiple conformal set
candidates. Recently, |Ge et al.|(2025) proposed a method for online conformal prediction with partial
feedback, specifically feedback referred to as semi-bandit feedback, where the true label is revealed
only when it lies within the chosen conformal set. While it is a more challenging learning setting
compared to the full feedback scenario, their coverage guarantee holds only under i.i.d. data streams.

In this paper, we present the first study of online conformal prediction with adversarial partial
feedback. Specifically, by discretizing the continuous hypothesis space of thresholds that parameterize
a conformal set, and then treating each candidate conformal set as an arm, we formulate the problem
as an adversarial bandit problem. A bandit problem is a sequential game between a learner and an
environment. In each round, the learner chooses an arm, and the environment provides feedback on the
chosen arm. In particular, the adversarial bandit problem removes almost all assumptions about how
the environment provides feedback, where the environment is often called the adversary accordingly.
The performance of the learner is evaluated based on the regret, which typically quantifies how well
the learner performs with respect to the best arm in hindsight (Bubeck et al. 2012} Lattimore &
Szepesvari, 2020). There is a rich literature on adversarial bandit problems, devising algorithms
with sublinear regret. EXP 3. P algorithm |Auer et al.|(2002) is one of the algorithms that provides a
high-probability sublinear regret even under the adaptive adversary, an adversary that can generate
feedback based on the previous history.

Building on the EXP 3. P algorithm, we propose a novel algorithm for online conformal prediction
with adversarial partial feedback, in which we consider a semi-bandit feedback scenario, similar
to|Ge et al.| (2025)). Specifically, by devising a loss function tailored to conformal prediction, we
explicitly establish a connection between the regret of the learner and a long-run coverage guarantee
(Lemma [T)), which in turn provides a long-run coverage guarantee of our algorithm. We further
improve the performance in terms of the speed approaching the target coverage, by fully exploiting
the monotonicity property of the miscoverage loss with respect to the threshold parameterizing a
conformal set. Specifically, it enables partial inference of feedback from candidate conformal sets that
are not chosen, even when the true label is unavailable. We empirically demonstrate the efficacy of
our method on both classification and regression tasks, conducting experiments in i.i.d. and non-i.i.d.
settings for each task. In particular, we show that our method approaches long-run coverage while
maintaining a moderate average conformal set size, achieving performance comparable to |Bastani
et al.|(2022), an online conformal prediction method with adversarial full feedback.

2 RELATED WORK

2.1 ONLINE CONFORMAL PREDICTION

Gibbs & Candes| (2021)) first proposed an online conformal prediction method for arbitrary data
streams. Based on online gradient descent, their method provides a long-run coverage guarantee
over arbitrary sequences. While the method relies only on a single step size parameter, the optimal
parameter requires knowledge of the degree of distribution shift, which is an unrealistic assumption.
The same authors have resolved the issue by aggregating results from multiple experts, running in
parallel with different step sizes, making the method adaptive to the type of distribution shift in a
data-driven manner |Gibbs & Candes|(2024)). While providing a biased result in terms of the long-run
coverage, they provide a local coverage guarantee over all time intervals of a given width, under mild
assumptions on the smoothness of the distribution of the scoring function and its quantile estimates.
Building on the strongly adaptive online learning method, Bhatnagar et al.|(2023) further improved
the method by providing a simultaneous coverage guarantee over all local intervals of arbitrary
window size. Unlike |Gibbs & Candes|(2024), they considered a dynamic set of experts, where each
expert is active only for a specific period of time. Inspired by control theory, |Angelopoulos et al.
(2023)) extended existing online gradient descent-based methods by incorporating online gradient
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descent steps, which they refer to as quantile tracking, as one of the components for the online
quantile update.

Besides, there have been works to provide stronger theoretical guarantees. Bastani et al.| (2022)
proposed a method with a threshold-calibrated multivalid coverage guarantee, a group- and threshold-
conditional coverage guarantee where a set of groups can be arbitrarily defined. [Angelopoulos et al.|
proposed a simple online gradient-descent method that has simultaneous guarantees both
on the adversarial and i.i.d. settings. Recently, [Zhang et al.| (2025)) devised an online conformal
prediction algorithm, providing both privacy and coverage guarantees under arbitrary data streams.

In this paper, we also consider an online conformal prediction problem under an arbitrary data stream.
Specifically, we consider an adaptive adversary that can generate data based on the learner’s past
actions.

2.2  ONLINE CONFORMAL PREDICTION WITH PARTIAL FEEDBACK

Existing methods for online conformal prediction with adversarial feedback typically assume the
full feedback setting, where the true label is revealed at every time step. One exceptional case is
|Angelopoulos et al.| (2024b)), where the algorithm itself only requires the feedback on whether a
chosen conformal set contains the true label. However, the authors are basically considering a full
feedback scenario, and some of their theoretical results assume a problem setup where the scoring
function is trained online, using the labeled data pairs from previous time steps.

On the other hand, there have been few papers addressing online conformal prediction with partial
feedback, a scenario where access to the true label is limited. [Wang & Qiaol| (2024) considered a
bandit feedback scenario, where the true label is observed only when the predicted label corresponds
to the true label. Recently, (2025)) proposed a method under a semi-bandit feedback scheme,
a less rigid partial feedback scenario where the true label is revealed as the true label lies within a
chosen conformal set. Although partial feedback is inherently more challenging than full feedback,
prior works still rely on the i.i.d. data-generating assumption, which restricts their applicability to
real-world, non-i.i.d. data streams.

As such, we consider an online conformal prediction with adversarial partial feedback, where data
streams deviate from the i.i.d. process and at the same time the true label is difficult to obtain.

3  ONLINE CONFORMAL PREDICTION WITH ADVERSARIAL FEEDBACK

We consider online conformal prediction with adversarial partial feedback. Let X" be a set of examples

and ) be a set of labels. At each time step ¢ € [T'], a learner chooses a conformal set C’m t X — 27,
which is parameterized by the threshold parameter 7; € [0, 1] as follows:

Cri(@) = {F € V| fi(2,5) > m}.

Here, f; : X x Y — [0, 1] is a scoring function that measures the conformity of a label for a given
input. Note that the functional form of f; (-, -) may evolve over time.

In conformal set learning, we consider the following standard learning protocol from adversarial
bandits. Specifically, an example (z, y;) € X x ) is chosen by an adversary, where only the input x;
is revealed to a learner. We assume that the adversary can be adaptive, in the sense that it may select
a sample based on the learner’s previous decisions. Once x; is given, the learner outputs a conformal
set CA’m (z¢), where a threshold parameter 7; is chosen by the learner’s current strategy. The learner’s
strategy can either be stochastic or deterministic, which can be updated online based on either the
learner’s previous interactions with the adversary or x;. Then, the learner receives feedback, chosen
before the learner’s choice of a conformal set, from the adversary on whether Cr . (z+) contains the

true label y;, which we denote as my(m;) == 1(y; ¢ CA’m (z¢)), called miscoverage henceforth.

Here, we consider a semi-bandit feedback scenario 2025)), one of the partial feedback
settings where a true label y; is additionally revealed when m;(m;) = 0. Having access to y; enables
the learner to evaluate the miscoverage m, () for all 7 € [0, 1], since the scoring function f; (¢, y:)
of the true label—a quantity sufficient to evaluate the miscoverage of a threshold-parameterized
conformal set—can be computed. Although we have coined the term partial feedback, in contrast to
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full feedback, to encompass both bandit and semi-bandit feedback settings, we will use it to refer
exclusively to the semi-bandit feedback scenario in the following sections for simplicity.

Under such online conformal prediction problems with adversarial partial feedback, our goal is to
design a learner that provides a long-run coverage guarantee by controlling the miscoverage rate
defined as follows:

1 T
MC(T) = > ma(m), (1)
t=1

where T is the time horizon. Specifically, given a target miscoverage level a € (0, 0.5), we aim to
upper bound the miscoverage rate as MC(T) < o+ &(T) such thate(T) — 0 as T — oo. As a

trivial conformal set achieves this goal, our secondary goal is to minimize inefficiency, also called

conformal set size, Ineff(T’) := £ Zthl S(Cy, (2)) for some size metric S.

4 ONLINE CONFORMAL PREDICTION AS ADVERSARIAL BANDIT PROBLEM

We formulate the online conformal prediction problem with adversarial partial feedback as a multi-
armed adversarial bandit problem, by treating each candidate conformal set as an arm (Section [.T)).
Defining a finely discretized subset IT of the continuous hypothesis space [0, 1] as an action space, we
leverage the EXP 3 . P algorithm (Auer et al.,2002), an algorithm that provides a sublinear regret under
adversarial bandit environments. It is a modified version of EXP 3 to encompass both non-adaptive
and adaptive adversary settings.

To this end, we first design a loss function tailored to conformal prediction (Section @, which in turn
provides an explicit learner-agnostic relationship between a regret from a learner and its miscoverage
rate MC(T') (Section . This relationship ensures the long-run coverage to achieve the target level
1 — «, for any learner that achieves a sublinear regret. However, directly applying an existing learner,
e.g., EXP3.P, does not make full use of the available information under the semi-bandit feedback
setting, since we can evaluate my () for all 7 € II when m¢(m;) = 0. Therefore, we further improve
the algorithm by fully exploiting such additional information and the monotonicity property of a
threshold-parameterized conformal set with respect to the miscoverage (Section [4.4).

4.1 PROBLEM REFORMULATION

We begin by reformulating the online conformal prediction problem with adversarial partial feedback
as an adversarial multi-armed bandit problem, specifying both the interaction protocol and the
performance metric. For each time ¢, (1) the learner chooses an arm 7; € II, where m; is drawn
from its current arm selection strategy p;, (2) the adversary simultaneously chooses a loss function
¢ : 11 — [0, 1], and (3) the learner observes the feedback ¢;(7;) on its chosen arm and uses it to
update its current strategy p;. Here, we consider an adaptive adversary who leverages the learner’s
previous interaction history, i.e., (71, ¢1(71)),. .., (m—1,%:—1(7m¢—1)), to choose the loss function ¢;.

We reduce the online confor- Table 1: Mapping between online conformal prediction and adversar-
mal prediction problem with ial bandits.

partial feedback to this adver- Online conformal prediction Bandi
sarial bandit formulation (see with adversarial feedback andit
Table E]) In our setting, each -

Option || Conformal set parameter: 7; | Arm: 7y

arm corresponds to a confor-
mal threshold that indexes a
prediction set, and the ad-
versary plays the role of an
adaptive data-generating pro-
cess that induces a loss vector
over these thresholds.

Miscoverage: mq ()

Feedback H True label: y; if my(m) =0

‘ Loss: £y ()

Metric || Miscoverage rate: MC(T') | Regret: Reg(T)

We restrict the arm set II to a finite collection of K candidate thresholds obtained by uniformly
discretizing the score range, that is, a uniform grid on [0, 1]. This choice reflects the adversarial setting:
since the sequence of scores may be chosen adaptively and need not obey any fixed distribution, we
avoid data—dependent thresholds and instead work with a fixed, distribution-free grid.
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Within this formulation, the performance of the learner is measured by its regret against the best fixed

arm in hindsight,
T

T
Reg(T) = ; by(me) — 2116111_[1 ; (), @)
which quantifies the excess cumulative loss incurred by the learner relative to the best static threshold.
In the following subsections, we design a loss function ¢; () tailored to online conformal prediction
and show how sublinear regret bounds for bandit algorithms translate into coverage guarantees for
the resulting conformal predictor.

4.2 DESIGN OF THE LOSS FUNCTION

To connect the feedback in online conformal prediction to the loss-based feedback in adversarial
bandits, we design a bandit loss for each threshold that summarizes the observable miscoverage
information m,(7) into a single scalar signal. Concretely, for each threshold 7 € II we fix a constant
¢ € (0,0.5) and a trade-off parameter A’ > 0, and define the loss

‘gt (71'7 C) = dt(ﬂ', C) + )\/at (71') S [gmina émax]a (3)

Miscoverage loss. The term d¢(m,c) € [0,1] is the miscoverage loss, which depends on the
miscoverage m; (7). We define
di(m, ¢) = |my(m) — cl.

This quantity measures how far the miscoverage m; () is from the scalar c. Because m;(w) € {0,1}
and ¢ € (0,0.5), the loss d(, ¢) equals c on coverage rounds (m(7) = 0) and 1 — ¢ on miscoverage
rounds (my(m) = 1), with ¢ < 1 — ¢. Thus, miscoverage always incurs a strictly larger penalty than
coverage, providing a simple mechanism that distinguishes between the two cases.

Inefficiency loss. The term a.(7) € [0, 1] is an inefficiency loss that regularizes the size of the
conformal set Cx (z¢). It is designed so that, on coverage rounds, it penalizes unnecessarily large
sets, while on miscoverage rounds, it encourages enlarging the set, thereby preferring thresholds
that are more likely to correct miscoverage. For the regret—coverage conversion in Section 4.3 we
only require a;(7) to be bounded and to satisfy this qualitative dependence on the set size; a specific
functional form will be introduced in Section [.4] when we instantiate our EXP 3 . P-style algorithms.

4.3 MISCOVERAGE GUARANTEES FROM REGRET BOUNDS

Here, we connect the miscoverage rate in online conformal prediction with the regret notion in
adversarial bandits, inspired by the conversion idea in selective generation (Lee et al.,2025)). Using
the loss 4;(7, ¢) from Section we show that a bound on the regret with respect to {£;(-, )},
yields an explicit upper bound on the empirical miscoverage rate in terms of the target level a. This
connection between regret and coverage is formalized in the following lemma. See Appendix [C|for a
proof.

Lemma 1. ForanyT € N, a € (0,0.5), and A > 0, let c = 555 and \' = 29 For losses {; of the

A2
Jorm @) with dy(w, c) = |my(m) — ¢|, and a;(w) € [0,1], any learner with bounded regret satisfies
the fo

owing empirical miscoverage guarantee:

1 o
MC(T) < —R T, —F.
D<otz eg( ’/\+2>
This implies that if the regret is bounded by a sublinear function of 7', then the excess miscoverage
e
bandit algorithm that achieves sublinear regret with respect to the loss (3) can be used as a conformal
set learner under our framework, regardless of whether it operates with full or partial feedback.

rate MC(T') — « is upper bounded by a vanishing term of order Reg (T ) /T In particular, any

Among such algorithms, we adopt EXP3.P (Auer et al.| 2002) in the adversarial bandit setting, as
it is known to achieve sublinear regret against an adaptive adversary and thus, by Lemmal[I] yields
conformal sets whose coverage shortfall relative to the target level « is asymptotically negligible.
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4.4 EXP3.P-STYLE ALGORITHMS AND THEIR REGRET BOUNDS

We first apply the adversarial bandit algorithm EXP 3. P (Auer et al.,|2002) to our setting, yielding
the baseline method EXP3.P—CP that runs on the threshold set II with the loss ¢;(w,c) from
Section d.2] By Lemma [I} this already provides coverage guarantees, but it still treats online
conformal prediction as a generic bandit problem and does not exploit the additional information
available under semi-bandit feedback. To leverage this structure, we further develop two strengthened
variants, EXP3 .P-CP-SEMI and EXP 3 .P-CP-UNLOCK, which reuse unlocked feedback across
thresholds by exploiting conformal monotonicity and pseudo-gain constructions, respectively. All
three bandit-based conformal learners in this subsection optimize the same loss ¢;(7, ¢); their
differences lie solely in how they construct gain estimates from the available (partial) feedback.

To make this loss concrete, we now specify the inefficiency term a;(7) used in all of our bandit-based
conformal learners. We set

at@ﬁ:z:ﬂ(nh(w)zzo)eXp(—l*;v) +—1(nu(ﬁ)==1)eXP(“Z&}?)’

where o(T) is a positive function of the horizon T". In our analysis we choose o(T") = /T, but more
generally any o(T) = T* with k € [0.5,1) and o(T)/T — 0 as T — oo suffices for our regret
bounds.

This choice ensures a;(7) € [0, 1] and has the following effect: on coverage rounds (m;(7) = 0),
a;(m) decreases in m, so larger thresholds—corresponding to smaller prediction sets C (z;)—are
preferred, whereas on miscoverage rounds (m;(w) = 1), a;(w) decreases in 1 — 7, so smaller
thresholds—corresponding to larger sets—are favored to correct miscoverage.

The miscoverage term d; (7, ¢) in ¢ (7, ¢) creates a fixed penalty gap between coverage (m;(w) = 0)
and miscoverage (m;(m) = 1) and ensures that miscoverage is penalized more heavily overall, while
the inefficiency term a;(7) only adjusts the set size within each miscoverage level.

EXP3.P-CP. Using our bandit reformulation together with the loss and its miscoverage and
inefficiency losses d;(m, ¢) and a;(7), we first apply the classical EXP 3. P algorithm (Auer et al.,
2002) directly to online conformal set learning.

As established in Theorem the EXP 3. P learner (Algorithm achieves a regret bound of Reg(7T") <

(’)( L& In(6~1) + 5.15V/TK In K) with probability at least 1 — &, where § € (0,1) is the

confidence parameter. We obtain EXP 3. P-CP (Algorithm[3)) by running EXP 3. P on the threshold
set IT with the loss function (3). By Lemmal|l] the resulting learner enjoys a corresponding high-
probability bound on the miscoverage rate.

However, EXP 3 .P—CP still treats conformal set learning as a generic adversarial bandit and does not
exploit conformal-specific structure (e.g., semi-bandit feedback or the characteristics of conformal
prediction), so corrections to coverage rely solely on bandit feedback, and in practice we observe that
the empirical coverage moves toward the target level 1 — « noticeably more slowly.

EXP3.P-CP-SEMI. Unlike EXP3.P-CP, which only uses the bandit feedback on the chosen arm,
EXP3.P-CP-SEMI explicitly exploits the semi-bandit feedback available in our setting: when the
constructed conformal set CA’Wt (2¢) covers the true label (my(m;) = 0), we additionally observe y;,
whereas when m;(m;) = 1 we only observe the binary coverage indicator for the chosen arm 7.
To take advantage of this information, the algorithm introduces an unlocking mechanism, originally
proposed in the context of selective generation (Lee et al., [2025), that leverages the monotonicity
of conformal miscoverage in 7 and proceeds differently depending on whether m;(m;) = 0 or
mye (7Tt) =1.

We first define the coverage-consistent subset 1Ty == {7 € I1 : ® < f;(x,y:)}, which consists of all
thresholds whose induced conformal sets include the true label y;. In the semi-bandit setup, the label
y¢ is observed exactly when m,(7;) = 0, so II} is implementable on such rounds. The unlocking set
I1;(m¢) is then defined by

H: 1fmt Tt) = 0
I (my) == { ()

(rel:r>m} ifm(m)=1
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This construction follows from the monotonicity of conformal prediction: larger thresholds produce
smaller conformal sets, so Cr, (¢) 2 Cyr, (¢) whenever r; < 5. Consequently, when m () = 0,
all thresholds 7 < fi (¢, y4) also satisfy my () = 0, whereas when my () = 1, all larger thresholds
7 >, incur the same miscoverage m(m) = 1.

Under semi-bandit feedback, we use the following biased gain estimator with unlocking:

Gt (m | We(my)) = 1(m € Uy(m)) {2} jt((ﬂ'))pt(ﬁ) + pf(ir) } + 1(m ¢ (7))

Here, p; is a probability distribution over the K candidate thresholds, so that p;(7) € [0, 1] and
> e Pe(m) = 1. If we disable unlocking by setting II;(m;) = {m}, this estimator reduces to

the standard EXP3.P gain estimator @ applied to the loss ¢;(m,c). Hence EXP3.P-CP—-SEMI
(Algorithm 4) reduces to EXP3.P—CP when IT;(m) = {m}.

B
pe(m)

“

EXP3.P-CP-SEMI (Algorithm|I)) combines the loss (3) with the unlocking estimator (4) to reuse
feedback across thresholds whenever monotonicity allows it. As established in Theorem [4] this
algorithm achieves a high-probability regret bound of Reg(7T) < O(5.15v/ K In KT), so that the
cumulative regret grows sublinearly with 7" and the learner’s performance remains close to that of the
best fixed threshold in hindsight. In practice, EXP3.P-CP—-SEMI adjusts the empirical coverage
toward the target level 1 — a more quickly than EXP3.P—CP, but it still treats all thresholds within
the unlocking set IT;(7r;) symmetrically and does not fully exploit the ordering induced by conformal
monotonicity; this motivates the pseudo-gain variant described next.

EXP3.P-CP-UNLOCK. Like EXP3.P-CP-SEMI, EXP3.P-CP-UNLOCK operates under the
same semi-bandit feedback, but it is more tightly aligned with the conformal structure. It sharpens
the unlocking rule and modifies the gain estimator so that, inside the unlocked region, more desirable
thresholds (in terms of set size and coverage correction) receive larger estimated gains.

First, we redefine the unlocking set II;(m;) C I as
II if my (ﬂ't) =0
I () = ) .
{rell:m>m} ifm(m) =1

On coverage rounds (m(7;) = 0), semi-bandit feedback reveals y;, so g;(7) is evaluable for every
7 € II; EXP3.P-CP-UNLOCK therefore unlocks the entire threshold set II;(m;) = II whenever
m¢(m:) = 0, enabling per-round updates on all arms whenever coverage occurs.

We then define the biased unlocking estimator g; (7 | IT; (7)) under this semi-bandit feedback as

ge (m | My(my)) = L(mu(m) = 0) x (A) + L(my(me) = 1) x (B). &)
full unlocking partial unlocking
Recalling ITy == {7 € IT : © < f;(x¢,y:)}, the full-unlocking branch (A) is given by
. gi(m) + B . B
A =1 1I = 1 11 = —
( ) (7'('6 t>{2ﬁ—el‘[z«pt(’fr> +5}+ (7T¢ t){gt(ﬂ>+2ﬁ§ﬂpt(ﬁ)},

while the partial-unlocking branch (B) is

B

(B) = 1(m € Iy(m)) {gt(”) T i)

} +1(r ¢ () {W) +8+ B} '

pe(T)

©

In the case of (C), the true gain cannot be unlocked. We therefore use a pseudo-gain §;(7), defined
by rescaling a plug-in loss £;(7) into [0, 1] using the known bounds [¢iin, £max]:

gmax - Zt(7.r7 C) 0 (_ L

gi(m) = , where li(m,c) == (1—c)+ Nexp o(T) ) from (3).

‘€max - Emin

where /,(7,¢) is a plug-in surrogate for the loss /,(, ) obtained by evaluating (3) under the
miscoverage branch m;(7w) = 1. By construction g:(w) € [0, 1], and since ¢;(m, c¢) is increasing
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in 7, the pseudo-gain g(m) is larger for smaller 7, which prioritizes correcting miscoverage by
favoring thresholds that expand Cx (2¢) on the locked side. In particular, we use the pseudo-gain only
inside branch (C) of the estimator (3)); the notation g; () there refers to this pseudo-gain, whereas
gi(m | II¢ (7)) denotes the overall biased estimator.

The biased unlocking estimator g;(7 | II;(;)) in (3 is designed to reflect this preference structure.
When coverage information is available, thresholds whose sets cover y; are assigned larger effective
gains than those whose sets exclude y,, and within each case (coverage or miscoverage), the estimator
favors thresholds that adjust the set size in the desired direction (shrinking the set when coverage holds
and expanding it when miscoverage occurs). Combining the loss (3) with this biased gain estimator
yields our method EXP 3 . P—CP-UNLOCK (Algorithm/[T), which fully exploits the additional feedback
available under semi-bandit feedback.

In comparison to EXP3.P-CP and EXP3.P-CP-SEMI, our unlocking-based learner

EXP3.P-CP-UNLOCK achieves a high-probability regret bound of the same order vV K In KT,
up to constant and logarithmic factors. Moreover, it admits an explicit, data-independent choice of
the trade-off parameter \ by setting o(T)~! = &(\, a) (Eq. @]), rather than treating A as a user-tuned
hyperparameter. The coverage guarantee is summarized in the following theorem.

Theorem 1. For any given § € (0,1) and £,(7) € [lmin, bmax), Suppose EXP3.P-CP-UNLOCK
(Algorithm is run with \ = \2}%;2,6 = /25 v =1.05,/5BE and n = 0.95,/ 2K then

the empirical miscoverage rate satisfies

MC(T) < o+ \/CI;K +4.15\/K1;K

with probability at least 1 — 6, where C' is the constant defined in Eq.

This theorem follows by combining the high-probability regret bound in Theorem 5| with our conver-
sion lemma (LemmalT)).

Algorithm 1 EXP 3. P Learner for Conformal Prediction with Unlocking and Pseudo gain

1: procedure EXP3.P-CP-UNLOCK(IL, T, 1,7, B, \, a, (f1)—1)
2: Initialize cumulative estimated gains G () <— 0 for all w € II

3 fort < 1,...,Tdo i
Titiac _ exp(nGi—1(r)) 1 _

4 Compute probabilities: p;(7) < (1 —7) S exp(1Gi 1 (7) + 7. where K = [T

5: Sample arm: m; ~ p;

6 Receive my () < 1 (yt ¢ Cr, (xt))

7 if m(m) =0 then (>) Exploit the structure of arms.
8: Ht(ﬂ't) !

9: else (>) Semi-bandit feedback: Observe the true label.
10: Oy(m) «~ {mw eIl | m > m}

11: for 7 € I1;(m;) do (>) Reuse feedback my ().
12: £i(7, ) < COMPUTELOSS(7, m4(7), A, @)

13: Compute normalized gain: g;(7) = W

14: Construct biased gain estimator g;(7|II; (7)), defined in

15: Update cumulative gain: G(m) <= Gi_1(m) + g(m)

16: procedure COMPUTELOSS(7, m, A, a)

17: return [m— 53|+ {1(m=0)exp(— % ) +1(m=D)exp( - 152 ) }

5 EXPERIMENT

In this section, we empirically evaluate the bandit-based conformal prediction methods EXP3.P-CP,
EXP3.P-CP-SEMI, and our main algorithm EXP 3 . P-CP-UNLOCK. We study how the theoretical
coverage guarantees derived from the regret bounds and the conversion lemma (Lemma|[T)) manifest
in practice under different data-generating regimes.
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Datasets. We evaluate one classification and one regression benchmark under three data-generating
regimes: i.i.d. streams, score-shifted streams, and covariate-shifted streams. For classification, we use
the ImageNet dataset with 1,000 classes, and for regression, the UCI Airfoil Self-Noise dataset (Dua
& Graffl 2017). Further details, including the underlying scoring functions, base predictors, and the
precise constructions of the shifted set-ups, are deferred to Appendix [E-2]and Appendix [E3]

Baselines. MultiValid Prediction (MVP) (Bastani et al., 2022) is an online conformal set learning
method that provides coverage guarantees under an adversarial set-up with full feedback, so that the
loss of all conformal set parameters can be evaluated each round. We also consider the Semi-bandit
Prediction Set (SPS) method (Ge et al., [2024), which leverages semi-bandit feedback and the nested
structure of conformal sets to estimate losses for all parameters from a single labeled example per
round. On top of these baselines, EXP3.P-CP (Algorithm[3) is a modification of EXP3. P tailored
to conformal set learning, and EXP3 . P-CP-SEMI (Algorithm[) and EXP3.P-CP-UNLOCK (Al-
gorithm [T) are semi-bandit variants incorporating an unlocking mechanism, with MVP serving as an
oracle baseline for our partial-feedback setting.

5.1 CLASSIFICATION: I.I.D. AND ADVERSARIAL SCORE SHIFTS

Figure 5.1 shows the ImageNet results under both the i.i.d. and adversarially score-shifted streams.

Under the i.i.d. set-up (target coverage 1 — a = 0.85), all methods attain empirical coverage close
to the nominal target but with different efficiency profiles. MVP achieves slightly sub-nominal
coverage with the smallest prediction sets, whereas SPS attains higher coverage at the cost of
substantially larger sets, illustrating a standard coverage—efficiency trade-off. Our bandit-based
methods (EXP3.P-CP,EXP3.P-CP-SEMI, EXP3.P-CP-UNLOCK) also reach coverage near the
target, with EXP3 . P—-CP-UNLOCK closest to the target while using wider sets than MVP due to the
partial-feedback constraint.

Under the adversarial score-shifted set-up, all methods exhibit some undercoverage relative to the
target. MVP remains competitive, preserving relatively high coverage with compact sets, whereas SPS
suffers a marked drop in coverage despite moderately large sets. The bandit-based methods respond
by enlarging their prediction sets to maintain reasonably high coverage under partial feedback, with
EXP3.P-CP-UNLOCK achieving the highest coverage among them at the expense of the widest
sets.
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Coverage
°
@
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Figure 1: Average coverage and prediction set size on the ImageNet dataset under the i.i.d. (top row)
and adversarially score-shifted (bottom row) set-ups, averaged over 50 independent runs.
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5.2 REGRESSION: I.I.D. AND COVARIATE SHIFT

Under the i.i.d. Airfoil set-up (target coverage 1 — o = 0.9), MVP attains slightly sub-nominal
coverage with the most compact prediction sets, whereas SPS achieves the highest coverage but with
substantially wider sets, again illustrating a clear coverage—efficiency trade-off. Our bandit-based
baselines EXP3.P—-CP and EXP3.P-CP-SEMI reach coverage very close to the nominal level with
intermediate set sizes between MVP and SPS, and EXP 3. P-CP-UNLOCK further increases coverage
to slightly above the target while incurring only a modest additional increase in width.

Under the covariate-shift set-up, all methods experience some degradation in coverage relative to
the i.i.d. case. MVP remains reasonably well-calibrated with a mild increase in set size, while SPS
continues to prioritize coverage, attaining near-perfect coverage at the cost of the largest widths.
Among the bandit-based methods, EXP3.P—-CP and EXP3.P-CP-SEMI maintain moderately wide
sets with somewhat reduced coverage, and EXP3.P-CP-UNLOCK again improves coverage relative
to these baselines with only a small increase in width. Taken together, the Airfoil experiments mirror
the classification results: semi-bandit variants and unlocking enhance coverage under both i.i.d. and
shifted regimes at the price of a moderate increase in prediction set size.
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2175
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125
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(a) Average coverage (i.i.d.) (b) Average set size (i.i.d.)
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MVP sPs EXP3.P-CP EXP3.P-CPSEMI  EXP3.P-CP-UNLOCK

(d) Average set size (covariate shift)

Figure 2: Average coverage and prediction set size on the Airfoil Self-Noise dataset under the i.i.d.
(top row) and covariate-shifted (bottom row) set-ups, averaged over 100 independent runs.

6 CONCLUSION

We introduce an online conformal prediction algorithm that operates with semi-bandit feedback in
both stochastic (i.i.d.) and adversarial settings. The method can be applied to several tasks, like clas-
sification and regression, constructing prediction sets while observing only partial information each
round. We establish that, under semi feedback coupled with adversarial bandit updates, minimizing
an appropriate regret objective implies coverage at least 1 — «, and that the coverage shortfall decays

at rate O(, IS 1}‘ K ) This contrasts with prior online CP approaches—which typically assume full

feedback to update thresholds—and supports more realistic human-in-the-loop workflows where the
ground-truth label may be unobservable unless it lies in the prediction set. Our method is currently
context-free—it does not leverage the context, z;; extending both the algorithm and its analysis to
contextual semi-bandit settings is a promising direction for future work.

10
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A PRELIMINARY

A.1 REGRET MINIMIZATION WITH PARTIAL FEEDBACK

Sequential prediction, represented by multi-armed bandits (Slivkins, [2019), is modeled by a game
between a learner and an adversary (also called an environment). For multi-armed bandits with K
arms IT = {my,..., 7K} over T rounds, at each round ¢ € [1,T7, a learner selects an arm m; € II
and an adversary provides a loss £;(m;) € [0, 1] on the selected arm as feedback, where the learner
leverages the feedback to update its arm-selection strategy. Here, we call the above feedback type
partial feedback as the adversary provides feedback on the selected arm, while full feedback represents
a setup where the adversary provides feedback on all arms. Note that the adversary may provide
feedback regardless of the learner’s arm selection. This adversary is called oblivious. However,
if the feedback at round ¢ depends on the learner’s previous selections 7y, ..., mT;—1, we say that
the adversary is adaptive. In this paper, we consider the adaptive adversary, which is stronger than
the oblivious one. For both oblivious and adaptive adversaries, we denote our bandit problem by
adversarial bandits.

In adversarial bandit problems, the objective of learning is modeled by regret, which is the gap
between the learner’s cumulative loss and the best arm’s cumulative loss in hindsight, which is
formally quantified as follows:

T T
Reg(T) := th(ﬁt) - ETHEIITTIZ ly(m).

Here, we have two sources of randomness: (1) a learner’s randomized strategy, i.e., an arm 7, is
drawn from an arm distribution updated by the learners and (2) an adversary’s randomized strategy,
i.e., the adversary’s feedback vector ¢; is drawn from a feedback distribution which depends on the
learner’s previously chosen arms 71, . .., m;—1 without looking at the current learner’s arm choice 7.

The goal of the adversarial bandit is to find a learner’s strategy such that the corresponding regret
is sub-linear in 7" with high probability. Note that we do not consider a deterministic learner, as it
is known that it cannot achieve the sub-linear regret bound |Bubeck et al.|(2012). In the following,
we introduce a known regret minimization method, called the Exponential-weight algorithm for
Exploration and Exploitation to control the regret variance (EXP 3. P), for the adversarial bandit
under the adaptive adversary.

A.2 EXP3.P FOR ADVERARIAL BANDITS

EXP3.P (Algorithm [2)) maintains an estimate of the cumulative biased gain for each arm 7 € II,
where |II| = K. Following the conventional descriptions on EXP 3. P, we illustrate the algorithm in
terms of gain instead of loss for clarity. In particular, at each round ¢, the learner updates a probability
distribution over arms as

exp(nGy-1(7)) 1
D wen eXP(UGt—l(fT)) * K

where v € (0, 1] is a mixing weight, > 0 is a learning rate, and G;_; () denotes the cumulative

estimated gain of arm 7 up to round ¢ — 1. The learner samples an arm m; ~ p;, observes the loss
Linax—L¢ (ﬂ-’%“)

pi(m) = (1 =7)

0i(mt) € [lmin, fmax| OF equivalently the gain g;(7) =
estimator:

, » and forms the biased gain

Linax —Lmin

. ge(m)1(my =) + B
ge(m) =
pi(m)
where 3 > 0 is a bias parameter. Then, the cumulative gain estimate for each arm is updated as
Gy¢(m) = Gy—1(m) + g(), which is then used to update the arm-selection strategy at round ¢ + 1.

Theorem [2] shows that EXP 3 . P achieves the high probability regret bound under the properly chosen
hyperparameters. See Appendix [B|for the proof.

Theorem 2 (High Probability Bound (Auer et al.l 2002)). For any given § € (0,1) and {;(7) €
[onins Linax)s ifAlgorithmis run with B = /25 n = 0.95,/ %,*y = 1.05,/ KljﬂlK, then the

; (6)

KT>

13
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Algorithm 2 EXP 3. P for Adversarial Bandits
1: procedure EXP3.P(IL, T, n,v, B)

2: Initialize cumulative gains Go(m) < 0 for all 7 € II
fort<1,...,7Tdo

exp(n@t,l(ﬂ'))
Zﬂ-gl‘[ CXP(nét—l(ﬁ'))

Compute probabilities: p; () + (1 — =) +y+ (>) K = 10|

3
4
5: Sample an arm: 7, ~ p;

6: Observe a loss: £¢(:) € [bmin, Lmax) (>) £e(7) € [liin, €max]) YV € M and Vt € N
7 Lonax— L1 (1)

8

9

Linax —Emin

Compute a normalized gain: g;(7m;) =

Construct a biased gain estimator: g;(m) < W forall m € II

Update cumulative gains: G () < G;_1 () + g¢(r) forall = € TI

following holds with probability at least 1 — §:

TK
Reg(T) < (bmar — Lmin) < e e+ 5.15¢m> :

Note that the original proof on the regret bound of EXP 3. P algorithm requires ¢,(7) € [0, 1] for
any t € N and 7 € II (Auer et al}2002). But, here we consider a simple loss normalization in the
algorithm and bound, providing the equivalent result for any bounded loss functions.

A.3 EXP3.P FOR CONFORMAL PREDICTION

Algorithm 3 EXP 3. P Learner for Conformal Prediction
1: procedure EXP3.P-CP(IL, T, 7,7, 3, A, o)

2: Initialize cumulative estimated gains G () <— 0 for all w € II
fort<1,...,7Tdo

Compute probabilities: p;(m) « (1 —

exp(nGy_1(r)) 1 _
NS, cpexpinte iy T Vi Where K= [T

3
4
5 Sample arm: m; ~ p;

6: Receive my () < 1 (yt ¢ C, (xt))
7 Observe loss: £, (¢, a) <~ COMPUTELOSS (7, my (7)), A, @)
8
9

Compute normalized gain: g¢(7m:) = L=y (m1,0)

Zmax - Zmin

Construct biased gain estimator: §;(m) + W%w

10 Update cumulative gain: Gy () < Gy_1 () + §¢(n)
11: procedure COMPUTELOSS(7, m, A, a)

12: return |m — o + )\’\—fQ {1(m = 0)exp(—m) + L(m =1)}

14
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A.4 EXP3.P FOR CONFORMAL PREDICTION WITH UNLOCKING

Algorithm 4 EXP 3. P Learner for Conformal Prediction with Unlocking

1:
2
3
4
5:
6
7
8:
9:

10:

11:
12:

13:

14:
15:

procedure ExP3.P-CP-SEMI(IL T, 7,7, B, A\, , (fi)i ;)

Initialize cumulative estimated gains G(7) < 0 for all 7 € TI
fort < 1,...,7T do

Compute probabilities: p;(7) < (1 — 7)2 eXpinf(:é(”))(~)) + v+, where K = [II|
7em X t—1(7T

Sample arm: m; ~ p;
Receive my(m;) <+ 1 <yt ¢ ém (If))

if m;(m;) =0 then (>) Exploit the structure of arms.
My(my) <= {m e D[ 7 < fe(we,ye)}

else (>) Semi-bandit feedback: Observe the true label.
Oy(m) < {rell|m>m}

for 7 € I1;(m;) do (>) Reuse feedback m; ().

£i(7r, o) <= COMPUTELOSS(7, my(mt), A, @)
Lmax — Lt (T?»Ot)

emaxfemin
Construct biased gain estimator g (7|II;(7;)), defined in
Update cumulative gain: Gy(7) < Gy_1(7) + g¢(m)

Compute normalized gain: g;(7) =

16: procedure COMPUTELOSS(7, m, A, o)

17:

return |m—AL_*_2 |+/\*—_"_)‘2 {l(mzo)exp(—%) +1(m:1)exp(—%) }

15
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B PROOF OF THEOREM 2]

This theorem is due to Auer et al. (Auer et al.||2002). For completeness, we reproduce their regret
analysis for EXP 3. P, adapting it to our normalized loss setting. We begin by recalling the following
key lemma.

Lemma 2. For § < 1 and g,(-) € [0,1], let g,(7) = W € (0,00). Then, for each
w € 11, the following holds with probability at least 1 — 0:

Proof. Let IE; be the expectation conditioned on 1, ...7;—1. Since exp(z) < 1+ z + x? forz <1,

for 8 < 1, by letting A¢(7t) :== Bge(m) — W < 1, we have

E, [exp <At(m) )} 1+ By [Ay ()] + B[ Ay () ]) exp (‘1,?;))
(1 + ) P (_ptﬁ(ﬂ)>
(145

) o (~2=) ¢ atr € )
1 1+u<exp( )).

IN

IN

1+

IN

By sequentially applying the double expectation rule fort =T, ..., 1,

T

(2= 55)

t=1

Eexp <1 @)

Moreover, from the Markov’s inequality, we have P (X > In(1/9)) = P(exp(X) > 1/§) <
SIE exp(X ). Combined with Eq.[7, we have

T
B> giln) <Bth ) +1In(5~1)
t=1

with probability at least 1 — §. This completes the proof. O

Now, we show the proof on the regret bound of EXP3.P for any bounded loss functions, which
consists of five steps.

First, our goal is to show that, if v < £ and (1 + 8)Kn < 7,

Reg(T) < (fmax — fmin) <BTK AT+ (14 Bk + BUELO) IHK) .

B n

Irrespective of the hyperparameter setup, note that Eq. [8|always holds if T > 5.15\/T KIn(K¢é—1).
If T < 5.15¢/TKIn(K§~! this implies that v < £ and (1 4+ 8)Kn < , which makes it suffice to
show that Eq. Iholds for v < < 5 and (1 + 3)Kn <.

Step 1: Simple equalities. By the definition of g;(7), the following holds:

®)

Ernp, ge(m) = ge(me) + BK. ©)
Here, the gain g;(7) € [0, 1] is defined with respect to the 10ss £;(7) € [min, fmax] as the following:
gmax - € m
gi(m) = 7t()

gmax - Emin

16
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Then, for all = € II, the following equality holds:

T T
= th(ﬂ't) — th(ﬂ')
t=1 t=1
T T
= ( max — Cmin <Z gt Z 71'15 > - Definition of gt(')) (10)

T
= (fmax — Cmin) </3KT + Z 9e(m) =Y By, Gie(7 ) (. Eq. H>

t=1 t=1
Using the definition of cumulant generating function and the relationship that p; = (1 — v)w; + yu
eXP(Uét—l(ﬂ'))

= — and v is the uniform distribution over K arms, the following
Sren op(nGeo1(7))

where w;(7) =
holds:
7]E7~T"‘Pt§t(ﬁ.) = *(1 - 'Y)]Eirwwtgt(ﬂ'i) - ’YEerugt(ﬁ’) ( Pt = (1 — ’y)wt + 'yu)

1 - - ~ ~
=1-7) [nlnEﬁwwtexp (9t(T) = Brrw, Gt (7)) — (1
1 o ~ [~
51“E;rwwteXP(ngt(7r)) — VE#~uG:(7)

Step 2: Bounding the first term of Eq. |11} Since ln:c < x—1,exp(xr) <1+z+a%forallz <1,

— p9(O+6 1+8
and 1g:(7) = 1% < Mg—ym T < o ,Y)w,(ﬂm <100 (1+B)nK <),

I Ezw, exp (1(g¢(T) — BErnw, G:(7))) = InEzvw,exp(nge (7)) — nEz~w, §¢ (T)
< Errw, {exp(nge(7)) — 1 —nge(7)} (- lnz <z —1)
< ]Eﬁ—,\,wtn2§t(ﬁ')2 (rexp(z) <l4z+ 51:2)

1+ 6 ~ /~ Wt <7~T) 1
< 772 Ge (7 < —~ < .
1*77;1 () pi(m) — 1=
12)
Step 3: Summing. Let G(7) = 0. Then, combining Eq Eq n and summing over ¢ yield

— Y Eap Ge(7) < (148D Y Gi(7) — Zlﬂ (Z 7) exp(nge (7 )))

t=1 7ell well
)

)

M|

M

—(1+8) ﬂzzgt 1_71 <Z7*‘GHQXP("(%T(

(.- Definition of w(7), Gy (7))
t=17ell > ren exp(nGol( )

InK 1- ~ ~
< (14 B)mK maXGT( ) + HT - Ty (Z exp(nGT(fr))) (-1—vy<1landGo(7)=0)
7ell
1
<—-(1-v-01+pMK) max Gr(7) + HT (" Property of log-sum-exponential)
d In(K6~') InK
< +

—(1—7—(1+5)77K)glgr>[<;gt(ﬁ)+ 5 —

(13)
where the last inequality holds due to the Lemma|2|, union bound (the reason for using the conﬁdence
term of K) and the initial assumption that 'y <! 5 and (1 + 3)Kn < ~. Plugging Eq. |1 1nt0 Eq.|1

the following holds with probability 1 — for all mell:

RTI'(T) S (gmax - mm) <ﬁTK + ’)/T+ (]. +6)77K’n, —+ IH(K/(;) + an) .

B n
Since Reg(T') := max R (T), this completes the proof by taking the union bound.
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C A PROOF ON LEMMA

b
(4
1))
N
H
\_/

)Eelot

v (s )

T T
! a fe! a
> A d —A— m)—T 14
—thl Aot t(m’)\+2)} /\+2Zt:1at(ﬁ) A+2 (14
a a a

= )\7 — T d -T

A+2;{at(m) at(ﬂ)}Jr; t<m’/\+2) A2

! ! !
> - \—-T d —T— 15
where 7T = argmin_ Zthl dy (77, )\%_2) and thus Zthl dy (7?, %H) T'555.80 l) holds as

T
(0%
i A d
Iﬁlelﬁlt_l{ 2+ t(

)y i{

+ t
T

PO

t

and holds as 7, T € R>o.

Thus, this implies
T

()

_ «
“”(”’m)}

Ti
)+ T3

o A+1 «
T <R T, —— 1
;dt<m’A+2) Atr2¢ = eg( ’/\+2> (16)
Thus, considering that
T
« A+1 « A+1
;dt <7Tt7A—|—2) A QT—; ]lyt¢C7rt(xt)) M'—M T
T
>3 " 1ys & Cr, (1)) — T

Dividing each side by 7', we have
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D EXP3.P,EXP3.P-CP-SEMI, AND EXP3.P-CP-UNLOCK

D.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES

Definition. First of all, we consider the following three different biased estimators g; (7| (7))
under the semi-bandit feedback scenario as the following:

gt (7T | Ht(ﬂ-t)) = ]l(mt(ﬂ't) = 0) X(A) + ]l(mt(ﬂ't) = 1) ><(B)7 (17)
—— —
full unlocking partial unlocking
where
* EXP3.P

* EXP3.P-CP-SEMI

(A) ::]l(weH;*){ o(m) | }+11(7re(n:)0)

Zﬁeng pe(T)  pe(m)

* EXP3.P-CP-UNLOCK

P G _r 7 e (I)%) gilm) + ———
(4) = 1( th){ZﬁEH:pt(ﬁﬁ<1+Zﬁ<wpt(ﬁ)>5}+1( E(Ht)){gt( )+Zﬁ<ﬂpt(ﬁ>}
and
e EXP3.P
1 = g¢(m) p T T B
B=1m=n {50 L f i A

* EXP3.P-CP-SEMI

= 1(r - gi(m) B - B
(B) = ]1( € Ht( t)) {Zﬁ—gnt(ﬂ—t)pt(ﬁ) + pt(ﬂ—) } + ]l( € Ht( t) )pt(’fr)
* EXP3.P-CP-UNLOCK
— T T T # e T ¢ q s 1
(B) = 1(r € T1( m{gt( >+Zﬁ<wpt(ﬁ)}+n< e () fam) + (14 ) ).

D.2 THEORETICAL ANALYSIS

Theorem 3 (EXP3.P). For any given 6 € (0,1) and £4(7) € [Lmin, bmax), if EXP3.P is run with

B =4/ %, v=1.05 Kl}‘K ,m=0.954/ 1;1(?, then the following holds with probability at least
1-04:

Reg(T) <515VKInKT.

Theorem 4 (EXP3.P-CP-SEMI). For any given § € (0,1) and li(w) € [lwin, lmax)s i
EXP3.P—-CP—-SEMI is run with § = / 1;‘(];77 = 1.054/ KIT“K,U = 0.95@/%, then the fol-
lowing holds with probability at least 1 — §:

Reg(T) <515VKInKT.

Theorem 5 (EXP3.P-CP-UNLOCK). For any given 6 € (0,1) and (7) € [lmin, bmax)s i

In K v = 1.05 Kln K

EXP3.P-CP-UNLOCK is run with e(\,a) = %,6 = /2, mE and n =

0.95 %, then the following holds with probability at least 1 — 0:
Reg(T) < VCIm KT 4+ 4.15VKIn KT,
where C and (A, «) are the terms defined in Eq.[49|and Eq. respectively.
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E EXPERIMENT SETUP

E.1 PARAMETER CHOICES

Our bandit-based methods depend on two main design parameters: the number K of candidate thresh-
olds and the trade-off parameter A in the loss function for EXP3.P-CP and EXP3.P-CP-SEMI.
We briefly summarize the theoretical and practical considerations that guide our choices, and specify
the values used in our experiments.

Number of thresholds K. For the EXP3.P-based algorithms, we adopt the standard exploration
parameter
KhnK
T 9
and the theoretical guarantees require v < % This condition implicitly upper-bounds the feasible

number of thresholds K for a given horizon T'; if K is chosen too large, then v would exceed % and
the original EXP3.P regret guarantees would no longer apply.

v =1.05

Even within this feasible range, there is a trade-off between coverage and efficiency. On the one
hand, taking K very small yields a coarse grid of thresholds, which makes it relatively easy for the
learned conformal sets to attain coverage at or above the target level, but typically at the cost of
larger prediction sets. On the other hand, taking K very large yields a much finer grid and can in
principle improve efficiency, but the regret bounds scale as (9(\ /KInK/T ) , so larger K slows the
convergence of the empirical coverage toward the target level. Consequently, for a fixed time horizon
T, K cannot be increased arbitrarily without degrading the finite-sample coverage behavior, and if T’
is too small, even a moderate value of K may not be sufficient to bring the empirical coverage close
to the target level.

In our main experiments, we balance these considerations by choosing K = 1,000 for the ImageNet
classification experiments and K = 20 for the Airfoil regression experiments. These choices satisfy
the EXP3.P constraint on 7 and provide a practically useful compromise between coverage and
prediction set size at the respective horizons.

Trade-off parameter \. The loss function for EXP3.P-CP and EXP3.P-CP-SEMI combines
a miscoverage term and an inefficiency term, weighted by a trade-off parameter A > 0. Smaller
values of A reduce the influence of the inefficiency loss, encouraging the algorithm to prioritize
eliminating miscoverage and thus reach the target coverage more quickly, typically at the expense of
larger prediction sets. Larger values of A\ place more weight on inefficiency, promoting smaller sets
once coverage has been largely stabilized. Empirically, we find that the algorithms are reasonably
robust to the precise choice of \; moderate changes in A tend not to qualitatively alter the coverage
trajectories.

In all of our main experiments (excluding the A-ablation in Section[F), we fix A = 1 for EXP3.P-CP
and EXP3.P-CP-SEMI. The EXP3.P-CP-UNLOCK algorithm does not introduce an additional
free trade-off parameter: its learning-rate and exploration parameters are fully determined by the
horizon 7" and the target coverage level 1 — « through our theoretical construction, so no separate
tuning of \ is required.

E.2 CLASSIFICATION: I.I.D. AND ADVERSARIAL SCORE SHIFTS

Setup. We consider ImageNet classification with a pre-trained ResNet-18 (He et al.,[2015)), and let
po(y | ) denote the softmax probability of label y given input x.

For the i.i.d. case, we use a time-homogeneous scoring function
iid . 1/3
Wz, y) =poly | 2)/%, t=1,...,T.

For the adversarial score-shifted case, we keep the underlying data stream fixed and i.i.d., but make
the scoring function time-varying by rescaling the probabilities with a piecewise-constant exponent
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Vi:
1/6 1 <t <10,000,
1/4 10,001 <t < 20,000,
=1<1/2 20,001 <t < 30,000,
1/1.2 30,001 < ¢ < 40,000,
1/3 40,001 <t < 50,000,
and define

adv

1 (@) =poly | 2)™.
Smaller values of -y, make the transformed scores pg(y | )7 more concentrated near 1, making the
true label harder to distinguish from competing labels and thus creating a challenging adversarial
score-shift scenario.

Protocol. We run experiments for 7' = 50,000 rounds with K = 1,000 candidate thresholds and
target coverage 1 —a = 0.85. The order of the data stream is fixed and shared across all baselines. For
all online baselines (MVP, SPS, EXP3.P-CP, EXP3.P-CP-SEMI, and EXP3 .P-CP-UNLOCK),
we use the full stream of 7' = 50,000 examples and update the conformal prediction sets online at
every round, under either fiid or fadv,

Metrics. We track the empirical marginal coverage and average prediction set size at each round
t =1,...,T. For both the i.i.d. and adversarial score-shifted cases, we plot the trajectories of these
two metrics over time 7" = 50,000 across 50 independent runs.

E.3 REGRESSION: I.I.D. AND COVARIATE SHIFT CASES

The UCI Airfoil Self-Noise dataset consists of five-dimensional features—frequency, angle of attack,
chord length, free-stream velocity, and suction-side displacement thickness—used to predict the

scaled sound pressure level (Dua & Graff, 2017).

Setup. We use a linear regression predictor §(z), trained using the recursive least squares algorithm.
As a scoring function, we use the residual-based score

u—ly— §(a)
u—1

flz,y) =

)

where [ and u denote lower and upper bounds, respectively, on the residuals |y — 3(z)].

Protocol. For the i.i.d. set-up, we run experiments for 7' = 1,127 rounds with K = 20 candidate
thresholds and target coverage 1 — a = 0.9. The order of the data stream is fixed and shared across
all baselines. All considered methods (MVP, SPS, and our bandit-based algorithms) use the entire
stream of 7" samples and update the conformal prediction sets in an online manner. For the covariate
shift set-up, we use the same total horizon and thresholds, but the first 33% of the samples are drawn
from a different input distribution than the remaining 67%, while the update protocol for all methods
remains identical.

Metrics. For the i.i.d. set-up, we evaluate empirical marginal coverage and average prediction set
size on the last two-thirds of the stream, discarding the first third. For the covariate shift set-up,
we compute these quantities over all 7" rounds. In both set-ups, we perform 100 independent trials
and summarize the results using box plots of the trial-wise empirical mean coverage and average
prediction set size for each method.
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F ABLATION STUDY

F.1 ABLATION ON THE NUMBER OF THRESHOLDS

We first study the effect of the number of candidate thresholds K, complementing the discussion in
Section [E-T} while fixing o = 0.1 and setting A = 1 for the bandit-based baselines EXP3 . P—CP and
EXP3.P-CP-SEMI. For the regression task on Airfoil, we consider K € {20, 40,60} and aggregate
results over 100 runs; for the classification task on ImageNet, we consider K € {200, 500, 1000} and
aggregate over 50 runs.

Across both the i.i.d. and shifted set-ups, all bandit-based methods exhibit a mild degradation in
coverage as K increases, while the average prediction set size consistently decreases with larger K,
reflecting the expected coverage—efficiency trade-off from the regret bounds. Among the proposed
methods, EXP3.P-CP-UNLOCK consistently achieves the highest coverage for all choices of K
in both tasks and under both i.i.d. and shifted regimes, with moderately larger prediction sets
compared to EXP3.P-CP and EXP3.P-CP-SEMI. Overall, the qualitative conclusions from the
main experiments are stable across this range of K. In particular, for the Airfoil regression task we
keep K = 20 in the main results, and for the ImageNet classification task we retain the finer grid
with K = 1,000; the additional curves for K = 200 and K = 500 in this section confirm that our
conclusions are robust to the specific choice of K.
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Figure 3: Ablation on the number of thresholds K for the Airfoil regression task under the i.i.d. (top)
and covariate-shift (bottom) set-ups, averaged over 100 independent runs.
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Figure 4: Ablation on the number of thresholds K for the ImageNet classification task under the
i.i.d. (top row) and distribution-shifted (bottom row) set-ups, averaged over 50 independent runs.
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F.2 ABLATION ON THE TRADE-OFF PARAMETER

Next, we investigate the sensitivity with respect to the trade-off parameter A in the loss, again
complementing the qualitative discussion in Section [E.I] while fixing a = 0.1 and focusing on the
bandit-based baselines EXP3.P—-CP and EXP3.P-CP-SEMI. For the Airfoil regression task, we
fix K = 20 and vary A over a range of values, aggregating results over 100 runs under both the i.i.d.
and covariate-shift set-ups. For the ImageNet classification task, we fix K = 200 (a coarser grid than
the main choice K = 1,000 to reduce computational cost), vary A € {0.1,0.5,1.0,2.0,5.0,10.0},
and aggregate over 50 runs under the i.i.d. set-up.

In both datasets, empirical coverage for EXP3.P-CP and EXP3.P-CP-SEMI remains very stable
across the tested values of A, varying only within a narrow range around the target level. The
average prediction set size exhibits only modest changes and tends to decrease mildly as A increases,
indicating that larger values of A\ mainly act to refine efficiency once coverage has been stabilized.
These ablations show that our bandit-based methods are quite robust to the choice of A\, which
justifies fixing A = 1.0 for EXP3.P~CP and EXP3.P-CP-SEMI throughout the main experiments.
To further streamline the design of this trade-off, our main algorithm EXP3.P-CP-UNLOCK is
constructed so that its internal trade-off parameter is given in closed form as a function of the
user-specified 7' (time horizon) and « (target miscoverage rate), while enjoying the same theoretical
guarantees.
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Figure 5: Ablation on the trade-off parameter \ for the Airfoil regression task under the i.i.d. (top)
and covariate-shift (bottom) set-ups, averaged over 100 independent runs.
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Figure 6: Ablation on the trade-off parameter \ for the ImageNet classification task under the i.i.d.
set-up, averaged over 50 independent runs.
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G PROOF OF THEOREM M| FOR EXP3.P-CP-SEMI

G.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES

Definition. First of all, we consider the following biased unlocking estimator g; (7 | II;(7;)) under
the semi-bandit feedback scenario as the following:

Gt (| () == L(me(me) = 0) X (A) + L(me(me) = 1) x(B). (18)
—_——— —_———
full unlocking partial unlocking

Letting IT} == {7 € I1: & < fi(ze, ye)},

mem @8 e
(4) =1 EHt){zﬁenzpm*mw}”( < )9
and
= 1(w s 9:(m) p i )€ p
(B) = L(m € IL( t)){z,}ent(m)?t(ﬁ) +Pt(7r)}+]l( € () )Pt(ﬂ

In addition, the unlocking set IT;(m;) C II is defined as follows:

IT; ifmy(m) =0
{Fell:7>m} ifmy(m) =1

1L (mr¢) :{

Note that m;(m1) < my(me) V m < mo due to the monotonicity property of the conformal set with
respect to the miscoverage, i.e., 1(y; ¢ Chr, (x4)) < 1(ys ¢ Cr,(x+)) whenever m; < ms.

Properties of the Unlocking Set. The followings are properties of the unlocking set I, (7):

* T E Ht (’ﬁ')
» When m(7) = 0 (full feedback), the unlocking set is 7-independent, IT = I} U (II})°.

G.2 Loss FUNCTION AND ITS PROPERTIES

Definition. Now, we introduce our loss estimator ¢; (7, ¢) = d(, c)+/\’\—_ﬁ‘2at(7r) (c€(0,0.5),\ >

0) and its intuition behind. First, d(m,¢) = |1(y; ¢ Cr(xt)) — c| is defined as the miscoverage

loss. Note that the conversion lemma (LemmalT)) ensures the convergence to target coverage 1 — «
«

when ¢ = 535. Second, a; (7) is the penalty term to optimize the set size.

Rationale for the Design of a;(7). Recalling that (1) the miscoverage loss is of primary importance
in conformal prediction and (2) the binary search-type algorithm is implemented in the batch learning
set-up (ref.), we define a;(7) as the following:

ay(r) = L(my(m) = 0) exp (0(7})) + L0mq(m) = Lexp ( 1o(TD

Here, we set denominator inside the exponential to be /T, which can be any of the form o(T") =

T* Vk € [0.5,1) such that %T) — 0 as T' — oo. Such denominator is necessary for the regret
analysis, which will be described in detail in subsequent sections.

Intuitively, if 7 € II}, i.e., y¢ € Cr(2¢), a; () takes small value as the size of the conformal set is
small (|C;(x+)| J). This has the effect to maintain the conformal set to be as small as possible as long
as y¢ € Cr(x¢). On the other hand, if 7 € (II})¢, i.e., yr ¢ Cr(z), a;(m) takes small value as the
size of the conformal set is large (|C'; (z¢)| 1). This ensures the penalty term to take the miscoverage
loss, instead of the set size efficiency, of priority importance when y; & Cy ().
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Properties of the Loss Estimator. Then, the followings are properties of our loss estimator
li(m,c) = de(m,c) + )\)‘—ant(W).

* By the definition of d; (7, ¢), di(m, ¢) = ¢ Vm € II and di(7,¢) = 1 — ¢V € (II})°. Note
that as long as ¢ € (0,0.5),

c<1l—ec 19)
* For all 1, mo € I} such that m; < 7o,

ar(m1) > ag(me) (. exp(—i) is monotonically decreasing).

VT

Therefore, for all 71, 7o € II} such that m; < 7o,
ly(my,¢) > Ly(m2, c). (20)

e For all 1, my € (II7)€ such that m; < 7o,

T . . . .
) is monotonically increasing).

VT

Therefore, for all 71, o € II} such that m; < o,

Et(m,c) Sgt(’ﬁg,c). (21)

a(m) < ag(ma) (. exp(—

o Let 440 = maxzen: £(7,c) and £, = mmﬂe(n ye £¢(7, ). Due to the two properties
above (Eq.[20) .-. by letting 7, ¢ = minzem: 7 = 0'and g1 = MiNg ez )e 7,

Et,o = ét(ﬂ—t,OaC)7
b1 =L(mpq,0).

Since controlling the miscoverage is of utmost importance before optimizing the set size in

conformal prediction, the loss estimator will be most satisfactory when ¢, o < ¢, 1 Vt € [T]].
o« 1—

This is true when £, — 0 = (1 — 2¢) + 2% {exp(—%) — exp(O)} > 0. Note that

it holds if we set ¢ = 155 as our proposed algorithm does:

+2

« Ao 1—m1
bii1—lio=(1—-—2—— — — =) —
= tra = (1= 2555 + 20 fep(- 1T — exp(0)
Ao
1-2 —

> (1-2795) + g {—ow(0)}

=1l-a

> 0.

Therefore,
«@ «
ét(ﬂ'l,m) Sét(ﬂ'z, )\+2)V7I'1 El_[f7 Vﬂ'Q € (H ) (22)

The properties of our proposed loss estimator ét(w ¢) above hold for all t € [T] and ¢ € (0,0.5).
However, we only consider the case where ¢ = 535 henceforth, since it is the condition that the

conversion lemma requires for the coverage guarantee (Lemmal[T).

Here, we define the normalized gain g;(7), which is the one used to define the biased unlocking
estimator (Eq.[I8) as follows:

gmax _ Et(ﬂ-, ALH) vﬂ' S Ha

émax - Emin

gi(m) =

— — (83 M 3 —_ (04
where {pax = (1 — /\+2) + 7>\+2 and l, = i3 Since we only consider the case where ¢ = 3

A2
in the algorithm, we use the notation g;(7) instead of g; (7, 555 ) for brevity.
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Useful Inequalities. Based on these properties of our proposed loss estimator, by letting ¢ = 535
as our algorithm, the following inequalities hold for each case:

* Case 1 (my(m) = 0)

Lomelly and m < 7 by(7, 555) = b7, 555) © 9:(m) < ge(me) (- Eq.2
2.7 € IIf and 7 > 7Tt~ (o 53s) < bl xSs) € gil(m) 2 gt(m), where

ft(ﬂ'tm+2) Ly (s T 7>\+2 {EXP o(%))*exp(fﬁ)}:o(T)_l (. Taylor expansion). Therefore,
) = Ra{ew= oo o)}

Linax —Lmin )

since g, () — gi(
g¢(m) = ge(m) + o(T) ™" (. Eq.[20).
Therefore,
gi(m) < g¢(my) + o(T) ™ Vrr € 115 (23)
* Case 2 (my(m) = 1)
1. me Ht(ﬂ't) C (H:)C Kt(ﬂ') > ét(ﬂ't) = gt( ) < gt 7Tt Eq .
Therefore,
gt(’ﬂ') < gt(ﬂ-t) V€ H(’]Tt). (24)
G.3 EXPECTATION AND ARM-WISE BOUNDS FOR THE UNLOCKING ESTIMATOR
Based on our preceding results, our biased unlocking estimator satisfies the following inequality:
* Case 1 (my(m;) =0)

Ernp, Gt (7|t (7)) =3 e Pt (m) e ([T (7¢))
:Zwenf Pt(ﬂ')gt(ﬂnt(”t))JFZ,re(n*)c pe(m)Ge (| ILe ()

— gt ()
=2 rem; pt(”){izwen* e }*Ewem*)c ({7

<ge(me)+o(T) ' +KB (.- Eq.[23)

(25)

* Case 2 (my(m) = 1)

Ermpy Gt (7Tt (7)) =2 ey Pt (1) G (7| TL¢ (711))
:Ewent(ﬂ) Pt(ﬂ)f]t(7"|Ht(ﬂ't))+zwent(m)c P () Ge (]I (7))
_ ()
_ZWEHt(ﬂ't) pt(ﬂ){ E-n—gnft(-n—t) pt () +Pt(ﬂ'> }_‘—ZWEHt(“t)C pe(m { pe(m) }

<gi(m)+Kp (. Eq.[249)

(26)

Combining Eq.[25]and Eq. 26] the following upper bound holds irrespective of the choice of m:
Errp, Gt (m (7)) < ge(mi) + o(T) ™" + KB. (27

Arm-wise High Probability Bound. Before moving on to the regret analysis, we provide the
following lemma, a variant of Lemma|2} which characterizes the property of our biased gain estimator
under the semi-bandit feedback scenario.

Lemma 3. For 8 < 1and g:(-) € [0, 1], define g:(m) € [0, 00) as Eq.|I8} Then, for each 7 € 11, the
following holds with probability at least 1 — §:

Proof. Step 1: Useful Decomposition.
Let IE; be the expectation conditioned on 71, ...m¢_1. First, we decompose the estimator in Eq. @ as
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the following:
e (m [ (7)) := L(me(me) = 0) X (A) + L(me(m) = 1) x(B)
full unlocking partial feedback
= L1(my(me) = 0) x{(A1) + (A2)} + L(me(m;) = 1) x{(B1) + (B2)}
full nlocking partial unlocking
= {1(m(74)=0) x (A1) +1(m¢ (m)=1)x (B1)} + {1(mq(7:)=0) x (A2)+1 (my (74)=1) x (B2)}
(C1) (C2)

where

gt(ﬂ') + B

Zﬁel‘[z‘ pe(T)  pe(m)
——

(A1) (42)

(4) = 1(r e II7)

and

(B) = 1(r € My(m)) ™ B

Zﬁeﬂt(m) pe(®)  pe(m)
——

(B1) (B2)

Step 2: Show At (ﬂ't) < 1.
Next, we show the following two claims are true:

* Claim 1 (my(m) = 0)

Bae(m) — B x (A1) = Bgy() _ﬁZg(;() =1

* Claim 2 (my(m) = 1):

-  Bar(n) — g 9™
Bgi(m) — B x (B1) = Bg(m) BZﬁth(m)pt(ﬁ') <1

Given 7 € 1I, Claim 1 and Claim 2 always hold irrespective of the choice of m; by the algorithm.
Then, by letting A () :== Bgi(m) — B x (C1), Ay(my) < 1.

Step 3: Show E exp [Zthl (Ay(my) — B % (C2))} <1
Therefore, since (1) exp(z) < 1+ + 22 forx < 1 and (2) A¢(m;) < 1, for B < 1, we have

Ex fexp (Au(me) = 8 x (C2)] < Be (1 + Au(m) + Ai(m)?) x exp(—8 x (C2))]

~E, [(1 + Ag(m) + At(”t)ﬂ " exp (p_t(ﬁ;))

Since 7 is fixed, we consider each case where 7 € II} and 7 € (II})°.

Now, our goal is to show that
E; [exp (A¢(m) — B8 x (C2))] < 1Vt e [T].

Step 3-1: 7w < II3.
Step 3-1-1: E, {At(m)} .

> pe(#) = Bgi(m) = > pe(7) x B(C1)

well well
g¢(m)
= 59t - gﬂ:* pt Zﬂ - pt( )
=0.
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Step 3-1-2: E, {At(m)ﬂ .

Zpt(ﬁ)At(fr)z = Z pe(7)A(7)? + Z pe(T) Ay ()

well Telly we(IIy)e
2
— T 2 T — 71 t\T 2 t T
= (B0im)* 3 ><1 zw/engptw)) + (Bou()) %E%p( )
g e ), gs (T
< m (. ge(m), gs(m) € [0,1])
/82
= pe(m)

Step 3-1-3: Combine. Combining the above results and applying the fact that 1 + = < exp(z) is
suffice as follows:

E, [exp (Ay(m) — 8 x (C2))] < E, [(1 £ A(m) 4+ Ag(m)?) X exp(—f x (02))}

<exp <_pt5(j1')> E; [(1 + Ay(m) + At(ﬂt)Q)}

<o (50) (55)

<1(. 142z <exp(x)).

Step 3-2: 7 € (II})°.
Step 3-2-1: E, {At(m)} .

Y p@A(F) = Baul(r) = Y pulF) x B(CL)

well el
g¢(m)
= Bgi(m) — B Z () ="
Fe(IF)e Zw EHt(ﬂ')pt( )
g¢(m)
<B!]t 5 Z pt IS\
Fe(1Ir)e Zw/e(ng)cpt(ﬂ/)
=0.

Step 3-2-2: E, {At(m)z} .

Cren PR A ()= s ey P () Ae(B)*+ ¢y ye P () Ae(7)*
=Y sremy P AT+ 5 rem, () PHE) A () + 5 mem, (7)e P () A7)
=Sy P B0 (M) H men (r) P (0 (B9 ()= 2y
+ S semem, (mye Pe () (Bge (1))
ST reny P(E) (B (M) >+ mem, () Pe(F) (Bge () — 524>
+ S semem, (e Pe(7)(Bge (1))
B2 (- gi(m),Ge(m)€0,1]).

— Pt
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Step 3-2-3: Combine. Combining the above results,
Ex [exp (Ae(m) = B (C2))] < Be[(1+ Aulm) + Ai(m)?) x exp(—8 x (C2)]

< exp(— L [(1+ Au(m) + A )|

) (5
< exp <— 14+ ——
pe() pe()
<1( 14z <exp(z)).
By sequentially applying the double expectation rulefort =1T,...,1,

Eexp (28)

Z (Ag(ms) — B % (C2))

Moreover, from the Markov’s inequality, we have P (X > In(1/9)) = P(exp(X) > 1/6) <
0IE exp(X). Combined with Eq.[28] we have

T
B> gilm) < 62% ) +1In(5~ 1)
t=1
with probability at least 1 — §. This completes the proof. O

Proof of the Theorem. We first provide the proof sketch of Theorem|T]as the following.

Proof Sketch. The proof on Theorem I]is complete, by substituting the above inequality (Eq. to
(Eq.P) in the proof of EXP3.P (Theorem [2)).

First, we re-express Eq. [27]for the simplicity of proof as the following:
~g¢(7mt) < ~Errop, Ge(nle(me)) + o(T) ™' + K3 (29)
Now, we show the proof on the regret bound of Algorithm[4] which consists of four steps.

First, our goal is to show that, if vy < £ and (1 + 8)Kn < 7,

Reg(T, @) < (Cmax — L) (KﬁT +o(T) T +~T + (14 BIKT + 1“”;5_1) + lnnK ) .

(30)

Irrespective of the hyperparameter setup, note that Eq.[30{always holds if T > 5.15/T KIn(Kd~1).
If T < 5.15y/TKIn(K6~1), this implies that 7 < 3 and (1 + 8)Kn < -, which makes it suffice to
show that Eq.holds fory < 1 and (1+ 8)Kn <.

Step 1: Simple equalities. Recall that the gain ¢;(7) € [0, 1] is defined with respect to the loss
6(, 555) € [bmins max] as the following:

Emax - Et(ﬂ-a )\LH)

gi(m) =

gmax - gmin

Then, for all = € II, the following equality holds:

T T
(0% (0%
= E Y/ R 75 Y/ -
a) £ t(ﬁt, )\+2) e t(ﬂa )\+2)

T T
= (Lmax — lmin) <Z ge(m) — th (ﬂ't)) (*. Definition of g (-))
t=1 t=1
< (Emax - Emin) <K6T + 0 1T + th Z]E Nptgt T | Ht(ﬂ't))> ( Eq

3
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Using the definition of cumulant generating function and the relationship that p; = (1 — v)w; + yu
eXP(n@-NW))

where w(7) = S row o0(1Ci (7)) and v is the uniform distribution over K arms, the following
holds:

_Eprtgt(ﬁ | i(me)) = —(1 = ¥)Ermw, G (mi | i(me)) — YEzmwfe(7 | We(me)) (o pe = (1 = y)ws + yu)

== %lnEﬁwteXp (G (7 [ Ty (74)) = Btonw, G2 (T [ T (70))) —

1 P o ~ ~
Bz, exp(nge (T | T (me))) | = vEa~ufie(F | e(m)) (32)
Step 2: Bounding the first term of Eq. @ First, we show that irrespective of the choice of ¢,
nge(m|Hy(m)) < 17 € 1L
* m(m) = 0,7 €II}

~ . ge(m) B
nge ([Tl (me)) = ”Zﬂen* @ pelm)

gie(m) + B
Sn( pe(m)
n(1+ B)
(1 = y)wq(7) +’Y%
1

IN

(- (14 B)nK <)

IN

. m(ﬂ't) = ]., S Ht(ﬂ‘t)

nge (m | ()

g¢() B
K <Z7‘ren,,(m)?9t(7~r) " Pt(7)>

ge(m) +
77( pe () )
n(1+ B)
(1= wi(7) + 7%
1

IN

IN

(- (14 B)nK <)

IN

e m(m) =0, 7 e (II})% m(m) = 1, m € I (m)°
B

pe(m)
1+06
=1 (ﬁ(ﬂ)
n(1+ B)
T (1= y)w(m) +’Y%
V&
(1 = y)w(m) + ’Y%
1.

nge(m|Ie () =1

IN

(- (1+B)nK <7)

IA

Since (1) Inz <z — 1, (2) exp(x) < 1+ + 22 forall z < 1, and (3) ng; (7| (7)) < 1,

Iz, exp (0(g(7 | e(mt)) — Brnw, §e (7 | We(mt))))
= InEsw,exp(nge(7 | He(mt))) — nErnw, Gt (7 | Le(me))
< Esrw, {exp(ge(7 | We(me))) — 1 = nge(7 | Mi(me))} (- Ina <z —1)
< ]E;thn2§t(7~r \ Ht(m))2 (cexp(z) <l4+z+ ;v2)

1+
< 77276 Z gt W‘Ht 7Tt
‘n'EH

(33)
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where the last inequality holds due to the following:
b m(ﬂ't) =0
Errw,n’ G (7| () ?=n> Zﬂgn wy (7)§e (7|, (7))
< S (M) EIT(m))? (0 2t < 1)

2

- (F)L(FEILS) o~
=155 Lren Pe(F) (WJF%)M’”WW)

" -~ (RL(FEN)+BY ~ -
<5 Sren pe(7) (LTS ) gi (7T (m))

§n2 %ﬁi Zﬁ-EH gt(ﬁ‘nt(ﬂ't))

e m(m) =1
Ermw, 0’ Gt (7 (70))2 =0 37 oy we (7) e (7| (1))

ST Sren (MG (R (re))? (- 2B <115

2 - 1 it
=5 Sren pe() [ HEREER 4 b )5, (Al ()

2 - ¢ (T)1(7EI)+6
<755 Ysen Pt(ﬂ)(%)gt(”mt(m))

<n? 8 = 2 ren Gt (7| ()

IN

Step 3: Summing. Let G(7) = 0. Then, combining Eq. Eq. and summing over ¢ yield

T
— > B, (7| (1))
T
< (14 B)n ZZ@ (7|4 (7)) Zln <Zwt ) exp ngt(ﬂﬂt(wt)))>
_ - & (FIL (n I e I Yosenexp(Gr(7T))\ nition of w (7
=(1+8)n ;ﬁen G (7|4 (7)) ; 1 (Z;renexp(ﬁéo(ﬁ)> (. Definition of wy(7),

<
N N well
In K
< =0 =7 = (14 B)) maxGr(7) + ==
In(Ké1') K
<

—(1—v—(1+ﬂ)nK)§gg;gt(fr)+ R

(34)
where the last inequality holds due to the Lemma@ union bound (the reason for using the conﬁdence

term of K) and the initial assumption that y < 1 5 and (1 + 3)Kn < ~. Plugging Eq.3 1nto Eq.[3

the following holds with probability 1 — i forall m € II:

T T
R (T, ) < (Lmax — ¥min) <KﬂT + O(T)ilT + th ZE ~pt9t 7| Ht@”)))
t= t=1

T

IN

T
(gmax - Emin) (KﬂT + O(T)ilT + th(ﬂ—) -

—1
S (fmax - gmin) <KBT + O(T)ilT—F’}/T—I— (1 —+ ﬂ)’[]KT—F 1H(K5 ) + IHK) .

B n

The last inequality holds when we set A > 0 to be the one such that e(\, @) = o(T") !, which we
set % in our algorithm. Since Reg(T, o) := max R, (T, «), this completes the proof by taking the

union bound.

33

1+ ﬁ)?’}KI;lEBﬁ(GT(fT) + K _ 177 In (Z exp(néﬂfr))) (1=~ < 1and Go(7) = 0)

In(Kd6~

Gi(7))

In K

— (1 + B)nK) glggzgt(ﬁ) +

B

1)+

n

)
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H PROOF OF THEOREM[3FOR EXP3.P-CP-UNLOCK

H.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES

Definition. First of all, we consider the following biased unlocking estimator g;(7 | II;(7;)) under
the semi-bandit feedback scenario as the following:

ge (m [ Ty (me)) = L(mu(me) = 0) X (A) + L(mu(m) = 1) x(B). (35)
—— —
full unlocking partial unlocking

Letting I} .= {7 € I1: 7 < fi(z¢,y)},
(4) = 1(r € II}) {Z;fen; o) T <1+ S pt(ﬁ)> B} + 1(m € (I17) ){gt( )+ Zﬁgﬂpt(ﬁ)}
and

= 1I(m s s —F ™ mt)%) § Ge(m :
(B) == 1(m € II( t)){gt( )+Zﬁgﬂpt(ﬁ)}+ﬂ( € () ){gt( )+ <1+pt(ﬂ)>ﬁ}‘

In addition, the unlocking set IT; () C II is defined as follows:

11 ifmt(m) =0
{mell:7>m} ifmy(m) =1

1L (mr¢) —{

Note that m;(m1) < my(me) V m < mo due to the monotonicity property of the conformal set with
respect to the miscoverage, i.e., 1(y; ¢ Chr, (x4)) < 1(ys ¢ Cr,(x¢)) whenever m; < ms.

Besides, we use a pseudo-gain §.(7) Vi € II; ()¢, since we only observe the true gain only
when 7 € I (m;) C (II})¢ if me(my) = 1, ice., yr & Cr, (x1). We will formally define the term in
subsequent sections.

Properties of the Unlocking Set. The followings are properties of the unlocking set I, (7):

. 7 I0L,(7)
* When m,(7) = 0 (full feedback), the unlocking set is 7-independent, IT = II} U (II})°.

H.2 Loss FUNCTION AND ITS PROPERTIES

Definition. Now, we introduce our loss estimator ¢ (7, ¢) = d(, c)—i—;‘—ant (m) (c € (0,0.5), A >
0) and its intuition behind. First, d; (7, ¢) == |1(y; ¢ Cr(z:)) — | is defined as the miscoverage
loss. Note that the conversion lemma (Lemma [I)) ensures the convergence to target coverage 1 — o
when ¢ = 5%5. Second, a;() is the penalty term to optimize the set size.

Rationale for the Design of a,(7). Recalling that (1) the miscoverage loss is of primary importance
in conformal prediction and (2) the binary search-type algorithm is implemented in the batch learning
set-up (ref.), we define a;(7) as the following:

1—
eulm) = 1) = O exp (7 ) + Ama() = Dewp (57 )
Here, we set denominator inside the exponential to be /7', which can be any of the form o(T) =

T* ¥k € [0.5,1) such that O(TT) — 0 as T — oco. Such denominator is necessary for the regret
analysis, which will be described in detail in subsequent sections.

Intuitively, if 7 € I}, i.e., y. € Cr(x:), ar(m) takes small value as the size of the conformal set is
small (|C(x,)| J). This has the effect to maintain the conformal set to be as small as possible as long
as y¢ € Cr(x+). On the other hand, if 7 € (II})¢, i.e., yr ¢ Cr(xt), ar(m) takes small value as the
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size of the conformal set is large (|C (z¢)| ). This ensures the penalty term to take the miscoverage
loss, instead of the set size efficiency, of priority importance when y; ¢ Cr ().

Actually, the same intuition is considered in the design of the biased unlocking estimator g (7|I1; (7))
(Eq. . Specifically, if we look at cases where (7 € II})°, 1(m € (II})°) {ﬁ} in (A)
and 1 (7 € T (m)) {ﬁ} in (B), we observe that the denominator of the bonus term [ is

defined as ) - __p;(7). Since it is a increasing function in , the bonus term is modeled to be large
when 7 € (I1)¢ (y¢ ¢ Cr(x4)) and 7 is small (|Cr (x¢)| 1).

Properties of the Loss Estimator. Then, the followings are properties of our loss estimator
li(m,c) = dy(m,c) + )\)‘—_&at(w).

* By the definition of d;(, ¢), d(m,¢) = ¢ Vm € IIf and di(7,¢) = 1 — ¢V € (II})°. Note
that as long as ¢ € (0,0.5),
c<l—ec (36)

* For all m1, mo € I} such that m; < 7o,

ar(my) > ag(me) (- exp(—i) is monotonically decreasing).

3

Therefore, for all 71, my € II} such that m; < o,
ly(my, ) > Ly(ma, c). (37)

e For all 1, my € (II})€ such that my < 7,

ag(m) < ag(ma) (. exp(— \/TW) is monotonically increasing).

Therefore, for all 7y, o € II} such that m; < o,
gt(ﬂ'l,C) Sgt(ﬂg,c). (38)

s Let 440 = maxzen: £(7,c) and £y = mm,re(n ye £s(7, ¢). Due to the two properties
above (Eq. [37 .-. by letting 74 o := minzem: T = 0'and M1 = Milge(my)e T,

lio= ét(ﬂ't,OaC)v
€t71 = ét(ﬂm, C).

Since controlling the miscoverage is of utmost importance before optimizing the set size in
conformal prediction, the loss estimator will be most satisfactory when ¢, o < ¢, 1 Vt € [T]].

This is true when ¢; 1 — ;o = (1 — 2¢) + )\%‘2 {exp(— Iomeay exp(O)} > 0. Note that

VT

it holds if we set ¢ = as our proposed algorithm does:

pw)
o pYe" 1—mq
_ — (19 % y, o 2% DTy
oy~ tho = (12525 + i+ ferp(- 12— explo)}
(1*2m)+m{ exp(0)}
=1l-a
> 0.
Therefore,
o (67 * *\cC
é(ﬂl,)\+2) e(ﬂ'g,m)VﬂjEHt,Vﬂ'QE(Ht) . 39)

The properties of our proposed loss estimator Zt(w ¢) above hold forall t € [T] and c € (0,0.5).
However, we only consider the case where ¢ = 5 +2
conversion lemma requires for the coverage guarantee (Lemma .
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Here, we define the normalized gain g;(7), which is the one used to define the biased unlocking
estimator (Eq. [35) as follows:

gmax - ét(Tr7 ALJ,_Q)

gmax - Emin

ge(m) = vr ell,

where £ = (1 — X +2) + /\ +2 and £, = ) +2 Since we only consider the case where ¢ = 55
in the algorithm, we use the notation g;(7) instead of g;(7, 555 ) for brevity.
Useful Inequalities. Based on these properties of our proposed loss estimator, by letting ¢ = 55
as our algorithm, the following inequalities hold for each case:

* Case | (my(m) =0)
1. WEH: andﬂ'g’ﬂ't:ft(ﬂ',)\iﬁ) th(ﬂ't,)\iﬁ)@gt( ) <gt 7Tt Eq .
2. € H* and T > T¢e ét(ﬂ',%”) < gt(ﬂ't,%”) <~ gt( ) Z gt(’ﬂ't) where

Lo(me, x52) —4e (T, )7%{@@(7%)7exp(fﬁ)}:o(T)_l (.- Taylor expansion). Therefore,

e
Qa oy (_O"t )—exp(— ¢ )

since g; () — gi(m¢) = 28 (o - emip AT }
ge(m) = ge(me) + - Eq.37).

3. me (1) gt()>£t(7rt)<:>gt()<gt7rt Eq.
- Additionally, for all = € (II})¢,

gt(7r) _ emax_ét(7ﬂ)\i+2)
9¢(mt)  lmax — (e, x55)
{(1-5x%)+ >\+2} {1-5%)+ %exp(—l_ﬁ)}

{(1_ )+ ,\+2} {,\+2 "’%GXP(_%)}
pes:
-1 _ 2o
A2
Ao
= A
Or2) —2a Ak
Therefore,
gt(m) = e(\, @) g (m¢) YV € (II5)°.
Therefore,
9¢(m) < gi(m) + o(T) ! vr € 11y, (40)
ge(m) < e(\, a)ge(m) Vo € (I17)°.

» Case2 (my(m) = 1)

1. WEHt(ﬂ't) C (HI)C Et(ﬂ') th(ﬂ't)@gt( ) <gt 7Tt Eq.
2. We use a pseudo-gain g () Vr € II;(m;)°, since we only observe the true gain only
when 7 € II;(m;) C (II})¢ if my(m) = 1. First, note that
Iy () = I} U [(IT7)© — My ()] -
Second, we define the pseudo-gain g;(m) Vr € II;(m;)¢ in our algorithm as follows:

fmax - g15 (7T)
émax - émin

_ Emax_{(]-_m)—" )\+26Xp( f)}7 (42)

Emax - gmin

which satisfies the following properties: For all = € II;(m;)¢,
29 fexp(— 1) — exp(— 12}
Zmax - gmin

< o(T)~* (.- Taylor expansion).

gi(m) = (41)

9(m) = gi(m) =
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Therefore,

9¢(m) < ge(me) Vmr € I(my),
Gi(m) < ge(me) +o(T) "t ¥ € T(my)“. (43)
H.3 EXPECTATION AND ARM-WISE BOUNDS FOR THE UNLOCKING ESTIMATOR
Based on our preceding results, our biased unlocking estimator satisfies the following inequality:
* Case 1 (my(m;) =0)

Brrp, Gt (m[e (7)) =22 ey P () Ge (|1l (7))

:ZWGH;‘ pt(”)!}t(ﬂ"nt(ﬂ't))""zne(n:)c pe(m)ge (7| e ()

=Trem; M”){ %‘FB}J"Ewe(HI)C Pt(”){9t<“>+m}

wemny Pe(7

(44)
1 Z;reu—l;ﬂ)c pt ()
<(1+4e(A,@))ge(me)+o(T) +(2+W>ﬁ (. Eq. j40)
e

e Case 2 (my(m) = 1)

Eormpy Ge (7|t (76)) =3 1 ep Pt () Ge (7| TLg (¢ )

=2 reny (ny) P (M)t (T (7)) 422 ety (g ye P (M) Ge ([ TLe (1))

=D nety (np) Pt(”){gt(’%m }+Zwent<mc pe(m {30+ 585 +6}

_ pIF x (7))
<ge(m)+o(T) 1+<1+|nt(m)6|+%)ﬂ C Eq.
(45)

Combining Eq. 4] and Eq. @3] the following upper bound holds irrespective of the choice of m:
Errp, e (m|Te(m1)) < (1+ (X, a))ge(me) + o(T) ™!

+ (1 + {1 (my(me) = 0)1 + L(my(me) = 1) [Ty (me) [} +

2reqy)e Pi(T)
Eﬁel‘[f pe(

>ﬂ

C
(46)

Arm-wise High Probability Bound. Before moving on to the regret analysis, we provide the
following lemma, a variant of Lemma[2} which characterizes the property of our biased gain estimator
under the semi-bandit feedback scenario.

Lemma 4. For 8 < 1and g:(-) € [0, 1], define g:(m) € [0, 00) as Eq.|35| Then, for each w € 11, the
following holds with probability at least 1 — §:

>l < Y ) + 0,

t=1 t=1

Proof. Step 1: Useful Decomposition.
Let IE; be the expectation conditioned on 71, ...m;—1. First, we decompose the estimator in Eq. [35|as
the following:
e (m | My(my)) = L(me(m) = 0) x(A) + L(ma(me) = 1) x(B)
= L(my(m) = 0) x{(A1) + (A2)} + L(me(m) = 1) x{(B1) + (B2)}
full unlocking partial unlocking
= {1(me(m)=0) x (A1) +1(my (me)=1) X (B1)} + {1(my(m:)=0) X (A2)+1 (¢ (me)=1) x (B2)}
(C1) (C2)
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where

(A)=1(r€ll}) 52T 1 (w € (I1]) ) ge (7) +

ey PR e TLTEIL)B

B
I(WEH?)EieH; Pt (F)+L(reMP)) Xr<n

(A1) (A2)

and

(B)=L(r€lLi(m))ge (m)+1(n€lL (1:))Ge (7) + Trem T Tr o sl M T e e +HL(TEL ()5

(B1)

(B2)

Step 2: Show A, (m;) < 1.
Next, we show the following two claims are true:

¢ Claim 1 (m¢(m) = 0)

- mellf

Bgi(m) — B x (A1) = Bgs(m) — B&Eg;i% =0

- 7 e (II})°
Bgi(m) — B x (A1) = Bgi(m) — Bgu(m) =
* Claim 2 (my(m;) = 1): We consider two cases where 7 € II;(m;) and 7 € II;(m)°.
- m € Iy(m)
Bgi(m) — B x (B1) = Bgs(m) — Bge(m) =
— 7 € I(my)©

Bgi(m) — B x (B1) = Bgs(m) — Bgs(m) <1 (. B < Land g4(m), g:(m) € [0,1])

Given 7 € 1I, Claim 1 and Claim 2 always hold irrespective of the choice of m; by the algorithm.
Then, by letting A;(7;) == Bge(m) — B x (C1), A¢(my) < 1.

Step 3: Show E exp [ZL (Ay(m,) — B x (02))} <1
Therefore, since (1) exp(z) < 1+ + 22 forx < 1 and (2) A¢(m;) < 1, for B < 1, we have

Eq [exp (Au(m) — B x (C2))] < B (1+ Aulm) + Au(m)?) x exp(—8 x (C2))]
S{H(WEH:)GXP<—#2M(;,)—52> +1(WE(H:)C)6XP(—%> }
Xy [(1+At(m)+At(m)2)}

Since 7 is fixed, we consider each case where 7 € I} and = € (II})°.
Now, our goal is to show that

E; [exp (A¢(m:) — B x (C2))] <1Vt € [T].

Step 3-1: = € II}.
Step 3-1-1: E, [At(m)].

> pe(#) = Bgi(m) = > pe(7) x B(C1)

well well
g¢(m)
< I
59t - B W;* pt Zﬂ - pt( )
=0.
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Step 3-1-2: E, {At(m)ﬂ .
ZPt(fT}At(ﬁ)z = Z pe(7) A (7)* + Z pe(7) A (7)?

well Felly Fe(Il;)e
2
= ))? T —71 T ) — B (7))?
= (Bge(m)) fgn:;pt( )(1 Zﬁenzpt(ﬁ)> +;re(;;)cpt( )(Bge(m) — Bge(m))
< LN
- Zfreﬂz‘ pe(7)

Step 3-1-3: Combine. Combining the above results and applying the fact that 1 + = < exp(x) is
suffice as follows:

B fexp (Au(m) = 6% (02))] < Be[(1+ Aum) + A(m)?) x exp(—5 x (C2)
=ex 7672 2 - Iy
- p( 2 wen; Pi(7T) b )Et {(1+At( t) + Ag(m) )}

ol P e
=P ( Eﬁeng pe(7) 0 ) (1 i Zfren; pu(7) 0 )
<1(.; 14z <exp(z)).

+ 8% (o ge(m), ge() €[0,1])

Step 3-2: 7 € (II})“.
Step 3-2-1: E, {At(m)].
Sren pe(MAUR) =25 iz Pe(R) A (F)+E e mpye Pe(F) A (F)
=2 semy Pe(F)Ae(F)+ 5 e, (7) Pe(F) B (F)+ 5 mem, (7)e P (F)Be(F)
=2 ren; Pe(F)(Bge(m)=Bge (M) +2X 5. ren, (z) Pe(F) (Bge(m)—Bge (7))
+simem, (e Pt(F) (Bge(m)— B3 (7))
=2 reny Pe(F)(Bge(m)=B9: (M) + 5 rem, (7) Pt (F)(Bge () —Bg: ()

+2 5 mem, (7ye Pe(F)(Bge(m)—Bge(m)) (- Eq4
=0.

Step 3-2-2: E, [At(wﬂ .
Zien pi(;")At(ﬁ'f:Zient* pt(ﬁ')At(ﬁ')?JFZﬁe(n;)c Pt(ﬁ')At(ﬁ')Z
=Z7‘ren§ pt(ﬁ)At(%V‘*‘E%;wgnt(%) Pt(fr)At(ﬁ)zﬁ‘Z,};ﬂent(;f)a pe(R)AL(7)?
= remy Pr() (B9t ()= B9t (1)) + Tz rem, (z) P+ (F) (Bgr (1) —Bge (m))?
ety oye P (F) (Bge () =B (7))
= reny P(F)(Bge (1) =Bt (M))*+ X7 em, (7) P+ (7) (Bge (m) =By (7))
+2qimen, (7)° pe(7)(Bge(m)—Bge (1)) (0 Eq.
=0.
Step 3-2-3: Combine. Combining the above results,
E; [exp (As(m) — B x (02))] < Eq|(1+ A(me) + As(mt)?) X exp(—f x (02))}
2
= eXp(—ﬁ7~
Z‘frgﬂ'pt(ﬂ-)
2
= exp(— i
>

<n Pt (7)

E:[(1+ Au(m) + Au(m)?)]

)

<1
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By sequentially applying the double expectation rulefort="1T,...,1,

E exp Z (Ay(m) — B x (C2))| < 1. (47)

Moreover, from the Markov’s inequality, we have P (X > In(1/d)) = P(exp(X) > 1/6) <
0IE exp(X). Combined with Eq. 47| we have

T
B> gi(m) < Bth +In(5Y)
t=1
with probability at least 1 — §. This completes the proof. O

Proof of the Theorem. We first provide the proof sketch of Theorem|T]as the following.

Proof Sketch. The proof on Theorem |[I]is complete, by substituting the above inequality (Eq. to
(Eq.P) in the proof of EXP 3. P (Theorem [2)).

First, we re-express Eq.[46] for the simplicity of proof as the following:

1 ~ -1
< ()\,Oé){ - Eﬂ'wptgt(ﬂ-lnt(ﬂ’t)) + O(T)

_ . ¢ Zire(r[ )cpt( )
+ (1 + {]l(mt(ﬂ't) = 0)1 + Il(mt(m) = 1)‘Ht(7Tt) |} + —Zﬂen* t(ﬁ') ) 5}

Cy
(48)

Now, we show the proof on the regret bound of Algorithm [T} which consists of four steps.

First, our goal is to show that, if ¥ < 1 and (1 + 28)Kn < v,

gmax - Emin _
Reg(T, ) < Xm0 (C’BT +30(T) ' T +~T + (1 + 26)nKT +

In(Ké1') InK
=T+e(na) " >

B
(49)

where C' = min (#’4)

Irrespective of the hyperparameter setup, note that Eq. @]always holds if T > 5.15/T KIn(K¢6—1).
If T < 5.15y/TKIn(K§~1), this implies that v < % and (1 4 28)Kn < v, which makes it suffice
to show that Eq.@]holds fory < 1and (1+28)Kn <~.

Step 1: Simple equalities. Recall that the gain g;(7) € [0, 1] is defined with respect to the loss
Oy (T, /\%ﬂ) € [lmin, fmax] as the following:

emax - et(’fra )\LJ,_Q)

gi(m) =

émax - gmin

Then, for all = € II, the following equality holds:

T T
(6% «Q
= Y ) = ¢/ =
@) ; t(”t’)\+2) ; t(ﬂa)\+2)
T

T
= (Lmax — lmin) <Z ge(m) — th (ﬂ't)) (*. Definition of g (-))

t=1

<€"“”‘_£"‘“‘<06T+0(T) 1T+ (1+e(\a)

Bz~ II -+ Eq.48).
T 14+e(M\ o) pe Gt (T | t(ﬂ't))) (. Eq ’

(50)

HMH
MH

t=1
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Using the definition of cumulant generating function and the relationship that p; = (1 — v)w; + yu
eXP(ﬂét—{(‘”))
Sren exp(nGeo1(7))

where w(7) =
holds:

and u is the uniform distribution over K arms, the following

—Eanp, Ge(7 | Hp(me)) = —(1 = y)Esmw, Ge(mi | We(me)) — YEzuGe (7 | i (me)) (o pe = (1 = y)wr +yu)

—(1-7) %mEMexp (507 | T1y(m0)) — B (7 | () —

1
ElnEfrWtexp(ﬂgt(ﬁ | (7)) | — YEz~ude (7 | (7)) (S1)

Step 2: Bounding the first term of Eq.[51] First, we show that irrespective of the choice of 7,
nge(w|e(m)) < 1Vr € IL
s m(m) =0,7 €I}

i (x|, (7)) = 772% B
n(1+28)
N Zﬁen;((l - 'Y)wt(ﬁ) + 7%)
<1.

(- (1+28)nK <7)

e m(m) =0, 7€ (I1})% m(m) = 1, m € ()

i Y e S -
nge(mLLe(me)) =1 (gt( )+ Zfrfﬂpt(ﬁ)>

gt (m) +
! (zﬁgﬂprr))
< nl+5)
T s (L= y)we(7) +7%)
o
B Zfrgﬂ((l — Y w () + ’7%)
<1.

IN

(o (428K <7)

o m(m) =1, m € Iy(m)°

nge(m () = n (gt(w) + pfﬂ)
gi(m) + 8
§77( pe(m) )
n(1+pB)
(1 = y)we () +,Y%
’Y% ..
: (1= y)we(m) + 7% (o (1+28)nK <7)
<1

Since (N Inz <x—1,12) exp(z) < 1+ + 2% forall x < 1, and (3) ng: (7| (7)) < 1,
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In Esnw, exp (0(Ge(7 [ Te(7t)) — Esrw, Ge(T | He(me))))
= InEzw,exp(nge(7 [ (7)) — nEz~w, g (7 | (7))
< Errw, {exp(mge(7 | We(me))) — 1 —nge(7 | Le(me))} (o Inz <z —1)
< B, 17 9¢(7 | Ty(m1))? (- exp(a) <142+ 2?)

211+f2ﬁK (¢ (0TLe(74)) + o(T) 1),

(52)

=7

where the last inequality holds due to the following:

e m(m) =0

2 2
IE;WW,,n2§t(ﬁ|nt(ﬂt))2:n2{z;rgn; wt(ﬁ(iz gt (FI L5 +ﬂ> T2 reqpe wt(ﬁ)<gt(7~f)+4z ,<.ﬁpt(«/)) }

/eIy pt(w’)
2 2
2 o[ —amras N S N
<n {Zien; we (7) (ZW'EH;‘ pt(ﬂl)> +Z7‘re(n;)L we(7) (gt(ﬂ)+2ﬂ/§,~, pt(ﬂ’)) }
2 wi (F) ¢ (7|t (74)) we (7)G¢ (7|4 (74))
<n (1+25){Zien§ Zw'EH;‘ pe () +E7?E(H;f)c P (7) }

21428 *\C . 1 L we(R) 1
<n? 422 . - Eq
<n? 522 (14 [(I1) ) (g0 0l +o() ) <125 Eq.fao]

N———

pt (%) =1-7"
<K

b m(ﬂ't) =1
2 2
Ehwm?ét(ﬁlm(m»?:n?{E%em(mwtﬁ)(gt(%)w/fw) +Esem (rope we(®) (3 + 5 +6) }
<7 t
<n? ~ ~ 8 2 N~ o~ 28 \2
<n* Tren i w0 (90Ot 525y )+ Drem rpe e (0 (3 0+ 577

2 wi (7)Gg (7| (74)) wi (7)Gg (7| Ty (74))
=n (1+25){ Yrem (ny) () T rem, (np)e B () }

<0 HE2 K (GOl (m0)+o(1) 1) (- 248 < 2 e f13)

Step 3: Summing. Let éo(fr) = 0. Then, combining Eq. Eq. and summing over ¢ yield

T
— Z Ezp, §e (7 | (7))

< (1 +28)nK Z(gt(o | Iy (7)) 4+ o(T) ™) — PTV Zln (Z wy () exp(nge (7 | Ht(ﬂ))))

t=1 =1 FEl
_ A NI e . ZﬁeHeXp<77GT<7~r)) . nition of w. (). €1 (7
= (14 28)0K (Gr(0) + To(1) ™) = =1 ( SRS ) (- Definition of w;(7), Gy (7))

IN

(1 +28)nK (Gr(0) 4+ To(T)™Y) + % 1 ;7 In (Z exp(néT(ﬁ))> (-1 -5 <1and Go(7) =0)
well

< —(1—7—1+28)nK)(Gr(0) +To(T)™ ) + In K (" Property of log-sum-exponential)
n
T
In(Ké~ 1) InK
< (= (4 28K) Y 0) + M) 4 B
t=1

5 T

(53)
where the last inequality holds due to the Lemmad] union bound (the reason for using the confidence
term of %), and the initial assumption that v < % and (1+28)Kn < . Plugging Eq. into Eq. ,
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the following holds with probability 1 — % forall m € II:

T
Re(T,0) < {me e (CBT Fo(T) T+ (142 ) Y 0em) = 3 By | Htm)))
) t=1 t=1

max — ‘min _ In(Ké 1 InK
Lmax = bin (06T+20(T) 1T 4 2\ )T + AT + (1 + 28)nKT + BT | In )

T 14+e(\ ) B Ui
—1
< (Conax — Lonin) <CBT - 30(T) T + AT + (1 + 28)yKT + 2O lnnK) .

The last inequality holds when we set A > 0 to be the one such that e(\, o) = o(T") !, which we
set ﬁ in our algorithm. Since Reg(T’, ) := max R, (T, ), this completes the proof by taking the

union bound.
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