

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE CONFORMAL PREDICTION WITH ADVERSARIAL SEMI-BANDIT FEEDBACK VIA REGRET MINIMIZATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Uncertainty quantification is crucial in safety-critical systems, where decisions
014 must be made under uncertainty. In particular, we consider the problem of online
015 uncertainty quantification, where data points arrive sequentially. Online conformal
016 prediction is a principled online uncertainty quantification method that dynamically
017 constructs a prediction set at each time step. While existing methods for online
018 conformal prediction provide long-run coverage guarantees without any distribu-
019 tional assumptions, they typically assume a *full-feedback* setting in which the true
020 label is always observed. In this paper, we propose a novel learning method for
021 online conformal prediction with *partial feedback* from an adaptive adversary—a
022 more challenging setup where the true label is revealed only when it lies inside the
023 constructed prediction set. Specifically, we formulate online conformal prediction
024 as an adversarial bandit problem by treating each candidate prediction set as an arm.
025 Building on an existing algorithm for adversarial bandits, our method achieves a
026 long-run coverage guarantee by explicitly establishing its connection to the regret of
027 the learner. Finally, we empirically demonstrate the effectiveness of our method in
028 both independent and identically distributed (i.i.d.) and non-i.i.d. settings, showing
029 that it successfully controls the miscoverage rate while maintaining a reasonable
030 size of the prediction set.

1 INTRODUCTION

031 Uncertainty quantification is essential in safety-critical domains such as autonomous driving (Linde-
032 man et al., 2023), healthcare (Lin et al., 2022), and finance (Park & Cho, 2025), where uncertainty-
033 aware decision making is required. Unlike point prediction methods that return the most likely
034 outcome, conformal prediction (Vovk et al., 2005) is a promising uncertainty quantification method
035 that constructs a *conformal set* for a given input, a set of outcomes that is guaranteed to contain the
036 true label with a user-specified probability. We refer to the guarantee as a *coverage guarantee*. Here,
037 the size of the conformal set quantifies the uncertainty in terms of making a prediction.

038 Moreover, the coverage guarantee is model-agnostic in the sense that the guarantee holds irrespective
039 of the choice of the prediction model. Exchangeability assumption on the data generating process
040 (Vovk et al., 2005) is the only requirement for the guarantee, where a typical independent and
041 identically distributed (i.i.d.) scenario is the case that satisfies such assumption. Specifically, under
042 the exchangeability assumption, the coverage guarantee of the conformal set constructed from training
043 samples holds for an unseen test sample (Vovk, 2013). Therefore, since the coverage guarantee holds
044 for arbitrary prediction models, conformal prediction has been applied to complex and large-scale
045 models such as large language models (Mohri & Hashimoto, 2024; Cherian et al., 2024; Lee et al.,
046 2024).

047 However, the exchangeability assumption is easily violated under scenarios such as distribution shift,
048 where the training and test distributions differ. A number of conformal prediction methods have been
049 proposed to provide coverage guarantees under such settings (Tibshirani et al., 2019; Podkopaev &
050 Ramdas, 2021; Park et al., 2022; Gendler et al., 2022; Si et al., 2024). In contrast to the aforementioned
051 batch conformal prediction methods, which require a batch of samples for training, methods for
052 online conformal prediction are proposed to tackle online uncertainty quantification problems, where

054 data points arrive sequentially (Gibbs & Candès, 2021; Bastani et al., 2022; Angelopoulos et al.,
 055 2023; 2024a). Even in adversarial settings, where no distributional assumptions are made on the data
 056 stream or on the functional form of the scoring functions, these methods provide a long-run coverage
 057 guarantee such that the empirical coverage reaches the target level after sufficiently many time steps.
 058

059 Meanwhile, existing methods for online conformal prediction typically assume a *full feedback*
 060 scenario, where the true label is revealed every time step. Indeed, these methods are tailored to
 061 the full feedback setting, since they require a scoring function evaluated on the true label either for
 062 its quantile estimation or for the evaluation of the miscoverage loss over multiple conformal set
 063 candidates. Recently, Ge et al. (2025) proposed a method for online conformal prediction with *partial*
 064 *feedback*, specifically feedback referred to as *semi-bandit feedback*, where the true label is revealed
 065 only when it lies within the chosen conformal set. While it is a more challenging learning setting
 066 compared to the full feedback scenario, their coverage guarantee holds only under i.i.d. data streams.
 067

068 In this paper, we present the first study of online conformal prediction with adversarial partial
 069 feedback. Specifically, by discretizing the continuous hypothesis space of thresholds that parameterize
 070 a conformal set, and then treating each candidate conformal set as an arm, we formulate the problem
 071 as an adversarial bandit problem. A bandit problem is a sequential game between a learner and an
 072 environment. In each round, the learner chooses an arm, and the environment provides feedback on the
 073 chosen arm. In particular, the adversarial bandit problem removes almost all assumptions about how
 074 the environment provides feedback, where the environment is often called the adversary accordingly.
 075 The performance of the learner is evaluated based on the regret, which typically quantifies how well
 076 the learner performs with respect to the best arm in hindsight (Bubeck et al., 2012; Lattimore &
 077 Szepesvári, 2020). There is a rich literature on adversarial bandit problems, devising algorithms
 078 with sublinear regret. EXP3.P algorithm Auer et al. (2002) is one of the algorithms that provides a
 079 high-probability sublinear regret even under the adaptive adversary, an adversary that can generate
 080 feedback based on the previous history.
 081

082 Building on the EXP3.P algorithm, we propose a novel algorithm for online conformal prediction
 083 with adversarial partial feedback, in which we consider a semi-bandit feedback scenario, similar
 084 to Ge et al. (2025). Specifically, by devising a loss function tailored to conformal prediction, we
 085 explicitly establish a connection between the regret of the learner and a long-run coverage guarantee
 086 (Lemma 1), which in turn provides a long-run coverage guarantee of our algorithm. We further
 087 improve the performance in terms of the speed approaching the target coverage, by fully exploiting
 088 the monotonicity property of the miscoverage loss with respect to the threshold parameterizing a
 089 conformal set. Specifically, it enables partial inference of feedback from candidate conformal sets that
 090 are not chosen, even when the true label is unavailable. We empirically demonstrate the efficacy of
 091 our method on both classification and regression tasks, conducting experiments in i.i.d. and non-i.i.d.
 092 settings for each task. In particular, we show that our method approaches long-run coverage while
 093 maintaining a moderate average conformal set size, achieving performance comparable to Bastani
 094 et al. (2022), an online conformal prediction method with adversarial full feedback.
 095

096 2 RELATED WORK

097 2.1 ONLINE CONFORMAL PREDICTION

098 Gibbs & Candès (2021) first proposed an online conformal prediction method for arbitrary data
 099 streams. Based on online gradient descent, their method provides a long-run coverage guarantee
 100 over arbitrary sequences. While the method relies only on a single step size parameter, the optimal
 101 parameter requires knowledge of the degree of distribution shift, which is an unrealistic assumption.
 102 The same authors have resolved the issue by aggregating results from multiple experts, running in
 103 parallel with different step sizes, making the method adaptive to the type of distribution shift in a
 104 data-driven manner Gibbs & Candès (2024). While providing a biased result in terms of the long-run
 105 coverage, they provide a local coverage guarantee over all time intervals of a given width, under mild
 106 assumptions on the smoothness of the distribution of the scoring function and its quantile estimates.
 107 Building on the strongly adaptive online learning method, Bhatnagar et al. (2023) further improved
 108 the method by providing a simultaneous coverage guarantee over all local intervals of arbitrary
 109 window size. Unlike Gibbs & Candès (2024), they considered a dynamic set of experts, where each
 110 expert is active only for a specific period of time. Inspired by control theory, Angelopoulos et al.
 111 (2023) extended existing online gradient descent-based methods by incorporating online gradient
 112

108 descent steps, which they refer to as quantile tracking, as one of the components for the online
 109 quantile update.

110 Besides, there have been works to provide stronger theoretical guarantees. Bastani et al. (2022)
 111 proposed a method with a threshold-calibrated multivalid coverage guarantee, a group- and threshold-
 112 conditional coverage guarantee where a set of groups can be arbitrarily defined. Angelopoulos et al.
 113 (2024b) proposed a simple online gradient-descent method that has simultaneous guarantees both
 114 on the adversarial and i.i.d. settings. Recently, Zhang et al. (2025) devised an online conformal
 115 prediction algorithm, providing both privacy and coverage guarantees under arbitrary data streams.
 116

117 In this paper, we also consider an online conformal prediction problem under an arbitrary data stream.
 118 Specifically, we consider an adaptive adversary that can generate data based on the learner’s past
 119 actions.

120 2.2 ONLINE CONFORMAL PREDICTION WITH PARTIAL FEEDBACK

121 Existing methods for online conformal prediction with adversarial feedback typically assume the
 122 full feedback setting, where the true label is revealed at every time step. One exceptional case is
 123 Angelopoulos et al. (2024b), where the algorithm itself only requires the feedback on whether a
 124 chosen conformal set contains the true label. However, the authors are basically considering a full
 125 feedback scenario, and some of their theoretical results assume a problem setup where the scoring
 126 function is trained online, using the labeled data pairs from previous time steps.
 127

128 On the other hand, there have been few papers addressing online conformal prediction with partial
 129 feedback, a scenario where access to the true label is limited. Wang & Qiao (2024) considered a
 130 bandit feedback scenario, where the true label is observed only when the predicted label corresponds
 131 to the true label. Recently, Ge et al. (2025) proposed a method under a semi-bandit feedback scheme,
 132 a less rigid partial feedback scenario where the true label is revealed as the true label lies within a
 133 chosen conformal set. Although partial feedback is inherently more challenging than full feedback,
 134 prior works still rely on the i.i.d. data-generating assumption, which restricts their applicability to
 135 real-world, non-i.i.d. data streams.

136 As such, we consider an online conformal prediction with adversarial partial feedback, where data
 137 streams deviate from the i.i.d. process and at the same time the true label is difficult to obtain.
 138

139 3 ONLINE CONFORMAL PREDICTION WITH ADVERSARIAL FEEDBACK

140 We consider online conformal prediction with adversarial partial feedback. Let \mathcal{X} be a set of examples
 141 and \mathcal{Y} be a set of labels. At each time step $t \in [T]$, a learner chooses a conformal set $\hat{C}_{\pi_t} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$,
 142 which is parameterized by the threshold parameter $\pi_t \in [0, 1]$ as follows:
 143

$$145 \hat{C}_{\pi_t}(x) := \{\tilde{y} \in \mathcal{Y} \mid f_t(x, \tilde{y}) \geq \pi_t\}.$$

146 Here, $f_t : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$ is a scoring function that measures the conformity of a label for a given
 147 input. Note that the functional form of $f_t(\cdot, \cdot)$ may evolve over time.
 148

149 In conformal set learning, we consider the following standard learning protocol from adversarial
 150 bandits. Specifically, an example $(x_t, y_t) \in \mathcal{X} \times \mathcal{Y}$ is chosen by an adversary, where only the input x_t
 151 is revealed to a learner. We assume that the adversary can be adaptive, in the sense that it may select
 152 a sample based on the learner’s previous decisions. Once x_t is given, the learner outputs a conformal
 153 set $\hat{C}_{\pi_t}(x_t)$, where a threshold parameter π_t is chosen by the learner’s current strategy. The learner’s
 154 strategy can either be stochastic or deterministic, which can be updated online based on either the
 155 learner’s previous interactions with the adversary or x_t . Then, the learner receives feedback, chosen
 156 before the learner’s choice of a conformal set, from the adversary on whether $\hat{C}_{\pi_t}(x_t)$ contains the
 157 true label y_t , which we denote as $m_t(\pi_t) := \mathbb{1}(y_t \notin \hat{C}_{\pi_t}(x_t))$, called *miscoverage* henceforth.
 158

159 Here, we consider a *semi-bandit feedback* scenario (Ge et al., 2025), one of the partial feedback
 160 settings where a true label y_t is additionally revealed when $m_t(\pi_t) = 0$. Having access to y_t enables
 161 the learner to evaluate the miscoverage $m_t(\pi)$ for all $\pi \in [0, 1]$, since the scoring function $f_t(x_t, y_t)$
 of the true label—a quantity sufficient to evaluate the miscoverage of a threshold-parameterized
 conformal set—can be computed. Although we have coined the term partial feedback, in contrast to

162 full feedback, to encompass both bandit and semi-bandit feedback settings, we will use it to refer
 163 exclusively to the semi-bandit feedback scenario in the following sections for simplicity.
 164

165 Under such online conformal prediction problems with adversarial partial feedback, our goal is to
 166 design a learner that provides a long-run coverage guarantee by controlling the miscoverage rate
 167 defined as follows:

$$168 \quad \mathbf{MC}(T) := \frac{1}{T} \sum_{t=1}^T m_t(\pi_t), \quad (1)$$

170 where T is the time horizon. Specifically, given a target miscoverage level $\alpha \in (0, 0.5)$, we aim to
 171 upper bound the miscoverage rate as $\mathbf{MC}(T) \leq \alpha + \varepsilon(T)$ such that $\varepsilon(T) \rightarrow 0$ as $T \rightarrow \infty$. As a
 172 trivial conformal set achieves this goal, our secondary goal is to minimize inefficiency, also called
 173 conformal set size, $\mathbf{Ineff}(T) := \frac{1}{T} \sum_{t=1}^T S(\hat{C}_{\pi_t}(x_t))$ for some size metric S .
 174

175 4 ONLINE CONFORMAL PREDICTION AS ADVERSARIAL BANDIT PROBLEM

178 We formulate the online conformal prediction problem with adversarial partial feedback as a multi-
 179 armed adversarial bandit problem, by treating each candidate conformal set as an arm (Section 4.1).
 180 Defining a finely discretized subset Π of the continuous hypothesis space $[0, 1]$ as an action space, we
 181 leverage the EXP3.P algorithm (Auer et al., 2002), an algorithm that provides a sublinear regret under
 182 adversarial bandit environments. It is a modified version of EXP3 to encompass both non-adaptive
 183 and adaptive adversary settings.

184 To this end, we first design a loss function tailored to conformal prediction (Section 4.2), which in turn
 185 provides an explicit learner-agnostic relationship between a regret from a learner and its miscoverage
 186 rate $\mathbf{MC}(T)$ (Section 4.3). This relationship ensures the long-run coverage to achieve the target level
 187 $1 - \alpha$, for any learner that achieves a sublinear regret. However, directly applying an existing learner,
 188 e.g., EXP3.P, does not make full use of the available information under the semi-bandit feedback
 189 setting, since we can evaluate $m_t(\pi)$ for all $\pi \in \Pi$ when $m_t(\pi_t) = 0$. Therefore, we further improve
 190 the algorithm by fully exploiting such additional information and the monotonicity property of a
 191 threshold-parameterized conformal set with respect to the miscoverage (Section 4.4).
 192

193 4.1 PROBLEM REFORMULATION

194 We begin by reformulating the online conformal prediction problem with adversarial partial feedback
 195 as an adversarial multi-armed bandit problem, specifying both the interaction protocol and the
 196 performance metric. For each time t , (1) the learner chooses an arm $\pi_t \in \Pi$, where π_t is drawn
 197 from its current arm selection strategy p_t , (2) the adversary simultaneously chooses a loss function
 198 $\ell_t : \Pi \rightarrow [0, 1]$, and (3) the learner observes the feedback $\ell_t(\pi_t)$ on its chosen arm and uses it to
 199 update its current strategy p_t . Here, we consider an adaptive adversary who leverages the learner's
 200 previous interaction history, i.e., $(\pi_1, \ell_1(\pi_1)), \dots, (\pi_{t-1}, \ell_{t-1}(\pi_{t-1}))$, to choose the loss function ℓ_t .
 201

202 We reduce the online conformal
 203 prediction problem with
 204 partial feedback to this adver-
 205 sarial bandit formulation (see
 206 Table 1). In our setting, each
 207 arm corresponds to a confor-
 208 mal threshold that indexes a
 209 prediction set, and the ad-
 210 versary plays the role of an
 211 adaptive data-generating pro-
 212 cess that induces a loss vector
 213 over these thresholds.

214 We restrict the arm set Π to a finite collection of K candidate thresholds obtained by uniformly
 215 discretizing the score range, that is, a uniform grid on $[0, 1]$. This choice reflects the adversarial setting:
 since the sequence of scores may be chosen adaptively and need not obey any fixed distribution, we
 avoid data-dependent thresholds and instead work with a fixed, distribution-free grid.

Table 1: Mapping between online conformal prediction and adversarial bandits.

	Online conformal prediction with adversarial feedback	Bandit
Option	Conformal set parameter: π_t	Arm: π_t
Feedback	Miscoverage: $m_t(\pi_t)$ True label: y_t if $m_t(\pi_t) = 0$	Loss: $\ell_t(\pi_t)$
Metric	Miscoverage rate: $\mathbf{MC}(T)$	Regret: $\mathbf{Reg}(T)$

216 Within this formulation, the performance of the learner is measured by its regret against the best fixed
 217 arm in hindsight,

$$218 \quad \mathbf{Reg}(T) := \sum_{t=1}^T \ell_t(\pi_t) - \min_{\pi \in \Pi} \sum_{t=1}^T \ell_t(\pi), \quad (2)$$

221 which quantifies the excess cumulative loss incurred by the learner relative to the best static threshold.
 222 In the following subsections, we design a loss function $\ell_t(\pi)$ tailored to online conformal prediction
 223 and show how sublinear regret bounds for bandit algorithms translate into coverage guarantees for
 224 the resulting conformal predictor.

226 4.2 DESIGN OF THE LOSS FUNCTION

228 To connect the feedback in online conformal prediction to the loss-based feedback in adversarial
 229 bandits, we design a bandit loss for each threshold that summarizes the observable miscoverage
 230 information $m_t(\pi)$ into a single scalar signal. Concretely, for each threshold $\pi \in \Pi$ we fix a constant
 231 $c \in (0, 0.5)$ and a trade-off parameter $\lambda' > 0$, and define the loss

$$232 \quad \ell_t(\pi, c) := d_t(\pi, c) + \lambda' a_t(\pi) \in [\ell_{\min}, \ell_{\max}], \quad (3)$$

234 **Miscoverage loss.** The term $d_t(\pi, c) \in [0, 1]$ is the *miscoverage loss*, which depends on the
 235 miscoverage $m_t(\pi)$. We define

$$236 \quad d_t(\pi, c) := |m_t(\pi) - c|.$$

237 This quantity measures how far the miscoverage $m_t(\pi)$ is from the scalar c . Because $m_t(\pi) \in \{0, 1\}$
 238 and $c \in (0, 0.5)$, the loss $d_t(\pi, c)$ equals c on coverage rounds ($m_t(\pi) = 0$) and $1 - c$ on miscoverage
 239 rounds ($m_t(\pi) = 1$), with $c < 1 - c$. Thus, miscoverage always incurs a strictly larger penalty than
 240 coverage, providing a simple mechanism that distinguishes between the two cases.

242 **Inefficiency loss.** The term $a_t(\pi) \in [0, 1]$ is an *inefficiency loss* that regularizes the size of the
 243 conformal set $\hat{C}_\pi(x_t)$. It is designed so that, on coverage rounds, it penalizes unnecessarily large
 244 sets, while on miscoverage rounds, it encourages enlarging the set, thereby preferring thresholds
 245 that are more likely to correct miscoverage. For the regret–coverage conversion in Section 4.3, we
 246 only require $a_t(\pi)$ to be bounded and to satisfy this qualitative dependence on the set size; a specific
 247 functional form will be introduced in Section 4.4 when we instantiate our EXP3.P-style algorithms.

248 4.3 MISCOVERAGE GUARANTEES FROM REGRET BOUNDS

250 Here, we connect the miscoverage rate in online conformal prediction with the regret notion in
 251 adversarial bandits, inspired by the conversion idea in selective generation (Lee et al., 2025). Using
 252 the loss $\ell_t(\pi, c)$ from Section 4.2, we show that a bound on the regret with respect to $\{\ell_t(\cdot, c)\}_{t=1}^T$
 253 yields an explicit upper bound on the empirical miscoverage rate in terms of the target level α . This
 254 connection between regret and coverage is formalized in the following lemma. See Appendix C for a
 255 proof.

256 **Lemma 1.** *For any $T \in \mathbb{N}$, $\alpha \in (0, 0.5)$, and $\lambda > 0$, let $c = \frac{\alpha}{\lambda+2}$ and $\lambda' = \frac{\lambda\alpha}{\lambda+2}$. For losses ℓ_t of the
 257 form (3) with $d_t(\pi, c) = |m_t(\pi) - c|$, and $a_t(\pi) \in [0, 1]$, any learner with bounded regret satisfies
 258 the following empirical miscoverage guarantee:*

$$260 \quad \mathbf{MC}(T) \leq \alpha + \frac{1}{T} \mathbf{Reg} \left(T, \frac{\alpha}{\lambda+2} \right).$$

263 This implies that if the regret is bounded by a sublinear function of T , then the excess miscoverage
 264 rate $\mathbf{MC}(T) - \alpha$ is upper bounded by a vanishing term of order $\mathbf{Reg} \left(T, \frac{\alpha}{\lambda+2} \right) / T$. In particular, any
 265 bandit algorithm that achieves sublinear regret with respect to the loss (3) can be used as a conformal
 266 set learner under our framework, regardless of whether it operates with full or partial feedback.

268 Among such algorithms, we adopt EXP3.P (Auer et al., 2002) in the adversarial bandit setting, as
 269 it is known to achieve sublinear regret against an adaptive adversary and thus, by Lemma 1, yields
 270 conformal sets whose coverage shortfall relative to the target level α is asymptotically negligible.

270 4.4 EXP3.P-STYLE ALGORITHMS AND THEIR REGRET BOUNDS
271

272 We first apply the adversarial bandit algorithm EXP3.P (Auer et al., 2002) to our setting, yielding
273 the baseline method EXP3.P-CP that runs on the threshold set Π with the loss $\ell_t(\pi, c)$ from
274 Section 4.2. By Lemma 1, this already provides coverage guarantees, but it still treats online
275 conformal prediction as a generic bandit problem and does not exploit the additional information
276 available under semi-bandit feedback. To leverage this structure, we further develop two strengthened
277 variants, EXP3.P-CP-SEMI and EXP3.P-CP-UNLOCK, which reuse unlocked feedback across
278 thresholds by exploiting conformal monotonicity and pseudo-gain constructions, respectively. All
279 three bandit-based conformal learners in this subsection optimize the same loss $\ell_t(\pi, c)$; their
280 differences lie solely in how they construct gain estimates from the available (partial) feedback.

281 To make this loss concrete, we now specify the inefficiency term $a_t(\pi)$ used in all of our bandit-based
282 conformal learners. We set

$$283 a_t(\pi) := \mathbb{1}(m_t(\pi) = 0) \exp\left(-\frac{\pi}{o(T)}\right) + \mathbb{1}(m_t(\pi) = 1) \exp\left(-\frac{1-\pi}{o(T)}\right),$$

286 where $o(T)$ is a positive function of the horizon T . In our analysis we choose $o(T) = \sqrt{T}$, but more
287 generally any $o(T) = T^k$ with $k \in [0.5, 1)$ and $o(T)/T \rightarrow 0$ as $T \rightarrow \infty$ suffices for our regret
288 bounds.

289 This choice ensures $a_t(\pi) \in [0, 1]$ and has the following effect: on coverage rounds ($m_t(\pi) = 0$),
290 $a_t(\pi)$ decreases in π , so larger thresholds—corresponding to smaller prediction sets $\hat{C}_\pi(x_t)$ —are
291 preferred, whereas on miscoverage rounds ($m_t(\pi) = 1$), $a_t(\pi)$ decreases in $1 - \pi$, so smaller
292 thresholds—corresponding to larger sets—are favored to correct miscoverage.

293 The miscoverage term $d_t(\pi, c)$ in $\ell_t(\pi, c)$ creates a fixed penalty gap between coverage ($m_t(\pi) = 0$)
294 and miscoverage ($m_t(\pi) = 1$) and ensures that miscoverage is penalized more heavily overall, while
295 the inefficiency term $a_t(\pi)$ only adjusts the set size within each miscoverage level.

296 **EXP3.P-CP.** Using our bandit reformulation together with the loss (3) and its miscoverage and
297 inefficiency losses $d_t(\pi, c)$ and $a_t(\pi)$, we first apply the classical EXP3.P algorithm (Auer et al.,
298 2002) directly to online conformal set learning.

300 As established in Theorem 2, the EXP3.P learner (Algorithm 2) achieves a regret bound of $\mathbf{Reg}(T) \leq$
301 $\mathcal{O}\left(\sqrt{\frac{TK}{\ln K}} \ln(\delta^{-1}) + 5.15\sqrt{TK \ln K}\right)$ with probability at least $1 - \delta$, where $\delta \in (0, 1)$ is the
302 confidence parameter. We obtain EXP3.P-CP (Algorithm 3) by running EXP3.P on the threshold
303 set Π with the loss function (3). By Lemma 1, the resulting learner enjoys a corresponding high-
304 probability bound on the miscoverage rate.

306 However, EXP3.P-CP still treats conformal set learning as a generic adversarial bandit and does not
307 exploit conformal-specific structure (e.g., semi-bandit feedback or the characteristics of conformal
308 prediction), so corrections to coverage rely solely on bandit feedback, and in practice we observe that
309 the empirical coverage moves toward the target level $1 - \alpha$ noticeably more slowly.

310 **EXP3.P-CP-SEMI.** Unlike EXP3.P-CP, which only uses the bandit feedback on the chosen arm,
311 EXP3.P-CP-SEMI explicitly exploits the semi-bandit feedback available in our setting: when the
312 constructed conformal set $\hat{C}_{\pi_t}(x_t)$ covers the true label ($m_t(\pi_t) = 0$), we additionally observe y_t ,
313 whereas when $m_t(\pi_t) = 1$ we only observe the binary coverage indicator for the chosen arm π_t .
314 To take advantage of this information, the algorithm introduces an *unlocking mechanism*, originally
315 proposed in the context of selective generation (Lee et al., 2025), that leverages the monotonicity
316 of conformal miscoverage in π and proceeds differently depending on whether $m_t(\pi_t) = 0$ or
317 $m_t(\pi_t) = 1$.

318 We first define the *coverage-consistent* subset $\Pi_t^* := \{\pi \in \Pi : \pi \leq f_t(x_t, y_t)\}$, which consists of all
319 thresholds whose induced conformal sets include the true label y_t . In the semi-bandit setup, the label
320 y_t is observed exactly when $m_t(\pi_t) = 0$, so Π_t^* is implementable on such rounds. The unlocking set
321 $\Pi_t(\pi_t)$ is then defined by

$$322 \Pi_t(\pi_t) := \begin{cases} \Pi_t^* & \text{if } m_t(\pi_t) = 0 \\ \{\pi \in \Pi : \pi \geq \pi_t\} & \text{if } m_t(\pi_t) = 1 \end{cases}.$$

This construction follows from the monotonicity of conformal prediction: larger thresholds produce smaller conformal sets, so $\hat{C}_{\pi_1}(x_t) \supseteq \hat{C}_{\pi_2}(x_t)$ whenever $\pi_1 \leq \pi_2$. Consequently, when $m_t(\pi_t) = 0$, all thresholds $\pi \leq f_t(x_t, y_t)$ also satisfy $m_t(\pi) = 0$, whereas when $m_t(\pi_t) = 1$, all larger thresholds $\pi \geq \pi_t$ incur the same miscoverage $m_t(\pi) = 1$.

Under semi-bandit feedback, we use the following biased gain estimator with unlocking:

$$\tilde{g}_t(\pi | \Pi_t(\pi_t)) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi \notin \Pi_t(\pi_t)) \frac{\beta}{p_t(\pi)}. \quad (4)$$

Here, p_t is a probability distribution over the K candidate thresholds, so that $p_t(\pi) \in [0, 1]$ and $\sum_{\pi \in \Pi} p_t(\pi) = 1$. If we disable unlocking by setting $\Pi_t(\pi_t) = \{\pi_t\}$, this estimator reduces to the standard EXP3.P gain estimator (6) applied to the loss $\ell_t(\pi, c)$. Hence EXP3.P-CP-SEMI (Algorithm 4) reduces to EXP3.P-CP when $\Pi_t(\pi_t) = \{\pi_t\}$.

EXP3.P-CP-SEMI (Algorithm 1) combines the loss (3) with the unlocking estimator (4) to reuse feedback across thresholds whenever monotonicity allows it. As established in Theorem 4, this algorithm achieves a high-probability regret bound of $\mathbf{Reg}(T) \leq \mathcal{O}(5.15\sqrt{K \ln KT})$, so that the cumulative regret grows sublinearly with T and the learner's performance remains close to that of the best fixed threshold in hindsight. In practice, EXP3.P-CP-SEMI adjusts the empirical coverage toward the target level $1 - \alpha$ more quickly than EXP3.P-CP, but it still treats all thresholds within the unlocking set $\Pi_t(\pi_t)$ symmetrically and does not fully exploit the ordering induced by conformal monotonicity; this motivates the pseudo-gain variant described next.

EXP3.P-CP-UNLOCK. Like EXP3.P-CP-SEMI, EXP3.P-CP-UNLOCK operates under the same semi-bandit feedback, but it is more tightly aligned with the conformal structure. It sharpens the unlocking rule and modifies the gain estimator so that, inside the unlocked region, more desirable thresholds (in terms of set size and coverage correction) receive larger estimated gains.

First, we redefine the unlocking set $\Pi_t(\pi_t) \subset \Pi$ as

$$\Pi_t(\pi_t) := \begin{cases} \Pi & \text{if } m_t(\pi_t) = 0 \\ \{\pi \in \Pi : \pi \geq \pi_t\} & \text{if } m_t(\pi_t) = 1 \end{cases}.$$

On coverage rounds ($m_t(\pi_t) = 0$), semi-bandit feedback reveals y_t , so $g_t(\pi)$ is evaluable for every $\pi \in \Pi$; EXP3.P-CP-UNLOCK therefore unlocks the entire threshold set $\Pi_t(\pi_t) = \Pi$ whenever $m_t(\pi_t) = 0$, enabling per-round updates on all arms whenever coverage occurs.

We then define the biased unlocking estimator $\tilde{g}_t(\pi | \Pi_t(\pi_t))$ under this semi-bandit feedback as

$$\tilde{g}_t(\pi | \Pi_t(\pi_t)) := \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A)}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times (B)}_{\text{partial unlocking}}. \quad (5)$$

Recalling $\Pi_t^* := \{\tilde{\pi} \in \Pi : \tilde{\pi} \leq f_t(x_t, y_t)\}$, the full-unlocking branch (A) is given by

$$(A) := \mathbb{1}(\pi \in \Pi_t^*) \left\{ \frac{g_t(\pi) + \beta}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \beta \right\} + \mathbb{1}(\pi \notin \Pi_t^*) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\},$$

while the partial-unlocking branch (B) is

$$(B) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\} + \underbrace{\mathbb{1}(\pi \notin \Pi_t(\pi_t)) \left\{ \tilde{g}_t(\pi) + \beta + \frac{\beta}{p_t(\pi)} \right\}}_{(C)}.$$

In the case of (C), the true gain cannot be unlocked. We therefore use a **pseudo-gain** $\tilde{g}_t(\pi)$, defined by rescaling a plug-in loss $\tilde{\ell}_t(\pi)$ into $[0, 1]$ using the known bounds $[\ell_{\min}, \ell_{\max}]$:

$$\tilde{g}_t(\pi) = \frac{\ell_{\max} - \tilde{\ell}_t(\pi, c)}{\ell_{\max} - \ell_{\min}}, \quad \text{where} \quad \tilde{\ell}_t(\pi, c) := (1 - c) + \lambda' \exp\left(-\frac{1 - \pi}{o(T)}\right) \text{ from (3).}$$

where $\tilde{\ell}_t(\pi, c)$ is a plug-in surrogate for the loss $\ell_t(\pi, c)$ obtained by evaluating (3) under the miscoverage branch $m_t(\pi) = 1$. By construction $\tilde{g}_t(\pi) \in [0, 1]$, and since $\tilde{\ell}_t(\pi, c)$ is increasing

378 in π , the pseudo-gain $\tilde{g}_t(\pi)$ is larger for smaller π , which prioritizes correcting miscoverage by
 379 favoring thresholds that expand $\hat{C}_\pi(x_t)$ on the locked side. In particular, we use the pseudo-gain only
 380 inside branch (C) of the estimator (5); the notation $\tilde{g}_t(\pi)$ there refers to this pseudo-gain, whereas
 381 $\tilde{g}_t(\pi \mid \Pi_t(\pi_t))$ denotes the overall biased estimator.
 382

383 The biased unlocking estimator $\tilde{g}_t(\pi \mid \Pi_t(\pi_t))$ in (5) is designed to reflect this preference structure.
 384 When coverage information is available, thresholds whose sets cover y_t are assigned larger effective
 385 gains than those whose sets exclude y_t , and within each case (coverage or miscoverage), the estimator
 386 favors thresholds that adjust the set size in the desired direction (shrinking the set when coverage holds
 387 and expanding it when miscoverage occurs). Combining the loss (3) with this biased gain estimator
 388 yields our method EXP3.P-CP-UNLOCK (Algorithm 1), which fully exploits the additional feedback
 389 available under semi-bandit feedback.

390 In comparison to EXP3.P-CP and EXP3.P-CP-SEMI, our unlocking-based learner
 391 EXP3.P-CP-UNLOCK achieves a high-probability regret bound of the same order $\sqrt{K \ln KT}$,
 392 up to constant and logarithmic factors. **Moreover, it admits an explicit, data-independent choice of**
 393 **the trade-off parameter λ by setting $o(T)^{-1} = \varepsilon(\lambda, \alpha)$ (Eq. 40), rather than treating λ as a user-tuned**
 394 **hyperparameter.** The coverage guarantee is summarized in the following theorem.

395 **Theorem 1.** *For any given $\delta \in (0, 1)$ and $\ell_t(\pi) \in [\ell_{\min}, \ell_{\max}]$, suppose EXP3.P-CP-UNLOCK
 396 (Algorithm 1) is run with $\lambda = \frac{2(1-\alpha)}{\sqrt{T}\alpha-1}$, $\beta = \sqrt{\frac{\ln K}{CT}}$, $\gamma = 1.05\sqrt{\frac{K \ln K}{T}}$, and $\eta = 0.95\sqrt{\frac{\ln K}{KT}}$, then
 397 the empirical miscoverage rate satisfies*

$$398 \mathbf{MC}(T) \leq \alpha + \sqrt{\frac{C \ln K}{T}} + 4.15\sqrt{\frac{K \ln K}{T}}$$

401 with probability at least $1 - \delta$, where C is the constant defined in Eq. 49.

402 This theorem follows by combining the high-probability regret bound in Theorem 5 with our conver-
 403 sion lemma (Lemma 1).
 404

405 **Algorithm 1** EXP3.P Learner for Conformal Prediction with Unlocking and Pseudo gain

406 1: **procedure** EXP3.P-CP-UNLOCK($\Pi, T, \eta, \gamma, \beta, \lambda, \alpha, (f_t)_{t=1}^T$)
 407 2: Initialize cumulative estimated gains $\tilde{G}_0(\pi) \leftarrow 0$ for all $\pi \in \Pi$
 408 3: **for** $t \leftarrow 1, \dots, T$ **do**
 409 4: Compute probabilities: $p_t(\pi) \leftarrow (1 - \gamma) \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))} + \gamma \frac{1}{K}$, where $K = |\Pi|$
 410 5: Sample arm: $\pi_t \sim p_t$
 411 6: Receive $m_t(\pi_t) \leftarrow \mathbb{1}(y_t \notin \hat{C}_{\pi_t}(x_t))$
 412 7: **if** $m_t(\pi_t) = 0$ **then** (▷) Exploit the structure of arms.
 413 8: $\Pi_t(\pi_t) \leftarrow \Pi$
 414 9: **else** (▷) Semi-bandit feedback: Observe the true label.
 415 10: $\Pi_t(\pi_t) \leftarrow \{\pi \in \Pi \mid \pi \geq \pi_t\}$
 416 11: **for** $\tilde{\pi} \in \Pi_t(\pi_t)$ **do** (▷) Reuse feedback $m_t(\pi_t)$.
 417 12: $\ell_t(\tilde{\pi}, \alpha) \leftarrow \text{COMPUTELOSS}(\tilde{\pi}, m_t(\tilde{\pi}), \lambda, \alpha)$
 418 13: Compute normalized gain: $g_t(\tilde{\pi}) = \frac{\ell_{\max} - \ell_t(\tilde{\pi}, \alpha)}{\ell_{\max} - \ell_{\min}}$
 419 14: Construct biased gain estimator $\tilde{g}_t(\pi \mid \Pi_t(\pi_t))$, defined in (5)
 420 15: Update cumulative gain: $\tilde{G}_t(\pi) \leftarrow \tilde{G}_{t-1}(\pi) + \tilde{g}_t(\pi)$
 421 16: **procedure** COMPUTELOSS(π, m, λ, α)
 422 17: **return** $|m - \frac{\alpha}{\lambda+2}| + \frac{\lambda\alpha}{\lambda+2} \left\{ \mathbb{1}(m=0) \exp\left(-\frac{\pi}{\sqrt{T}}\right) + \mathbb{1}(m=1) \exp\left(-\frac{1-\pi}{\sqrt{T}}\right) \right\}$

423 5 EXPERIMENT

424 In this section, we empirically evaluate the bandit-based conformal prediction methods EXP3.P-CP,
 425 EXP3.P-CP-SEMI, and our main algorithm EXP3.P-CP-UNLOCK. We study how the theoretical
 426 coverage guarantees derived from the regret bounds and the conversion lemma (Lemma 1) manifest
 427 in practice under different data-generating regimes.

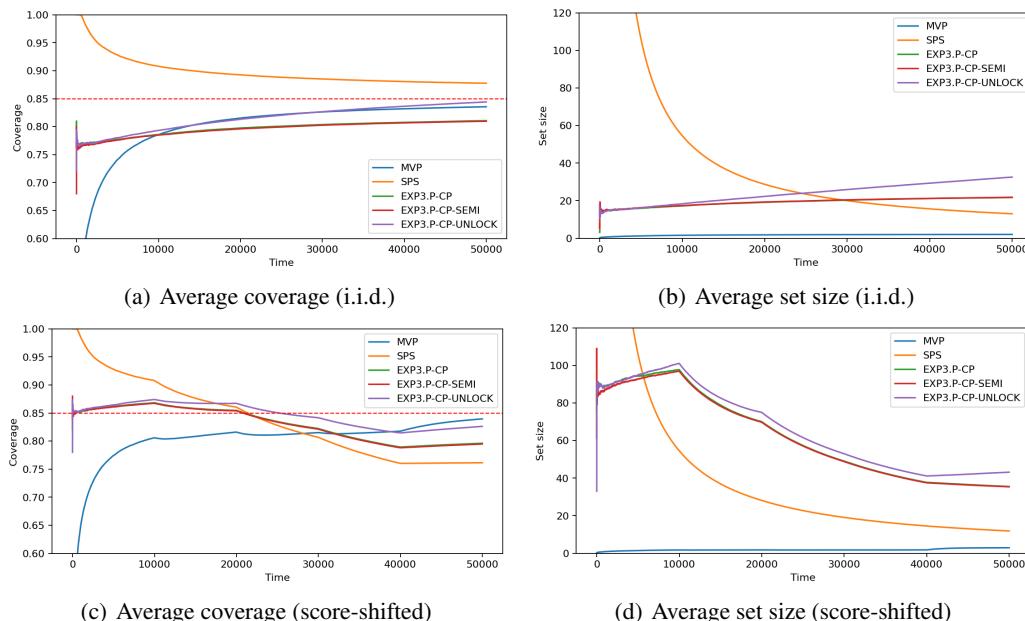
432 **Datasets.** We evaluate one classification and one regression benchmark under three data-generating
 433 regimes: i.i.d. streams, score-shifted streams, and covariate-shifted streams. For classification, we use
 434 the *ImageNet* dataset with 1,000 classes, and for regression, the *UCI Airfoil Self-Noise* dataset (Dua
 435 & Graff, 2017). Further details, including the underlying scoring functions, base predictors, and the
 436 precise constructions of the shifted set-ups, are deferred to Appendix E.2 and Appendix E.3.
 437

438 **Baselines.** *MultiValid Prediction* (MVP) (Bastani et al., 2022) is an online conformal set learning
 439 method that provides coverage guarantees under an adversarial set-up with full feedback, so that the
 440 loss of all conformal set parameters can be evaluated each round. We also consider the *Semi-bandit*
 441 *Prediction Set* (SPS) method (Ge et al., 2024), which leverages semi-bandit feedback and the nested
 442 structure of conformal sets to estimate losses for all parameters from a single labeled example per
 443 round. On top of these baselines, EXP3.P-CP (Algorithm 3) is a modification of EXP3.P tailored
 444 to conformal set learning, and EXP3.P-CP-SEMI (Algorithm 4) and EXP3.P-CP-UNLOCK (Al-
 445 gorithm 1) are semi-bandit variants incorporating an unlocking mechanism, with MVP serving as an
 446 oracle baseline for our partial-feedback setting.
 447

447 5.1 CLASSIFICATION: I.I.D. AND ADVERSARIAL SCORE SHIFTS

449 Figure 5.1 shows the ImageNet results under both the i.i.d. and adversarially score-shifted streams.
 450 Under the i.i.d. set-up (target coverage $1 - \alpha = 0.85$), all methods attain empirical coverage close
 451 to the nominal target but with different efficiency profiles. MVP achieves slightly sub-nominal
 452 coverage with the smallest prediction sets, whereas SPS attains higher coverage at the cost of
 453 substantially larger sets, illustrating a standard coverage–efficiency trade-off. Our bandit-based
 454 methods (EXP3.P-CP, EXP3.P-CP-SEMI, EXP3.P-CP-UNLOCK) also reach coverage near the
 455 target, with EXP3.P-CP-UNLOCK closest to the target while using wider sets than MVP due to the
 456 partial-feedback constraint.
 457

458 Under the adversarial score-shifted set-up, all methods exhibit some undercoverage relative to the
 459 target. MVP remains competitive, preserving relatively high coverage with compact sets, whereas SPS
 460 suffers a marked drop in coverage despite moderately large sets. The bandit-based methods respond
 461 by enlarging their prediction sets to maintain reasonably high coverage under partial feedback, with
 462 EXP3.P-CP-UNLOCK achieving the highest coverage among them at the expense of the widest
 463 sets.
 464

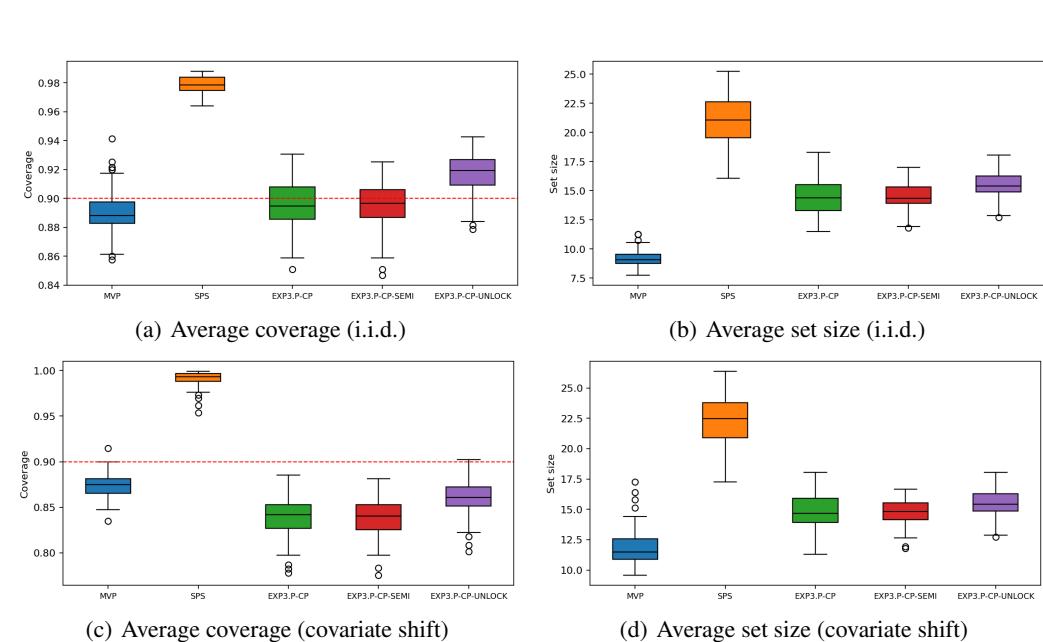


484 **Figure 1:** Average coverage and prediction set size on the *ImageNet* dataset under the i.i.d. (top row)
 485 and adversarially score-shifted (bottom row) set-ups, averaged over 50 independent runs.
 486

486 5.2 REGRESSION: I.I.D. AND COVARIATE SHIFT
487

488 Under the i.i.d. *Airfoil* set-up (target coverage $1 - \alpha = 0.9$), MVP attains slightly sub-nominal
489 coverage with the most compact prediction sets, whereas SPS achieves the highest coverage but with
490 substantially wider sets, again illustrating a clear coverage–efficiency trade-off. Our bandit-based
491 baselines EXP3.P-CP and EXP3.P-CP-SEMI reach coverage very close to the nominal level with
492 intermediate set sizes between MVP and SPS, and EXP3.P-CP-UNLOCK further increases coverage
493 to slightly above the target while incurring only a modest additional increase in width.

494 Under the covariate-shift set-up, all methods experience some degradation in coverage relative to
495 the i.i.d. case. MVP remains reasonably well-calibrated with a mild increase in set size, while SPS
496 continues to prioritize coverage, attaining near-perfect coverage at the cost of the largest widths.
497 Among the bandit-based methods, EXP3.P-CP and EXP3.P-CP-SEMI maintain moderately wide
498 sets with somewhat reduced coverage, and EXP3.P-CP-UNLOCK again improves coverage relative
499 to these baselines with only a small increase in width. Taken together, the Airfoil experiments mirror
500 the classification results: semi-bandit variants and unlocking enhance coverage under both i.i.d. and
501 shifted regimes at the price of a moderate increase in prediction set size.



523 **Figure 2:** Average coverage and prediction set size on the *Airfoil Self-Noise* dataset under the i.i.d.
524 (top row) and covariate-shifted (bottom row) set-ups, averaged over 100 independent runs.
525
526
527

528 **6 CONCLUSION**
529

530 We introduce an online conformal prediction algorithm that operates with semi-bandit feedback in
531 both stochastic (i.i.d.) and adversarial settings. The method can be applied to several tasks, like clas-
532 sification and regression, constructing prediction sets while observing only partial information each
533 round. We establish that, under semi feedback coupled with adversarial bandit updates, minimizing
534 an appropriate regret objective implies coverage at least $1 - \alpha$, and that the coverage shortfall decays
535 at rate $\mathcal{O}(\sqrt{\frac{K \ln K}{T}})$. This contrasts with prior online CP approaches—which typically assume full
536 feedback to update thresholds—and supports more realistic human-in-the-loop workflows where the
537 ground-truth label may be unobservable unless it lies in the prediction set. Our method is currently
538 context-free—it does not leverage the context, x_t ; extending both the algorithm and its analysis to
539 contextual semi-bandit settings is a promising direction for future work.

540 REFERENCES
541

542 Anastasios Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for time
543 series prediction. *Advances in neural information processing systems*, 36:23047–23074, 2023.

544 Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. Online conformal prediction
545 with decaying step sizes, 2024a. URL <https://arxiv.org/abs/2402.01139>.

546 Anastasios Nikolas Angelopoulos, Rina Barber, and Stephen Bates. Online conformal prediction with
547 decaying step sizes. In *International Conference on Machine Learning*, pp. 1616–1630. PMLR,
548 2024b.

549 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
550 bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.

551 Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron
552 Roth. Practical adversarial multivalid conformal prediction. *Advances in neural information
553 processing systems*, 35:29362–29373, 2022.

554 Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved online conformal prediction
555 via strongly adaptive online learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
556 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International
557 Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.
558 2337–2363. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/bhatnagar23a.html>.

559 Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
560 multi-armed bandit problems. *Foundations and Trends® in Machine Learning*, 5(1):1–122, 2012.

561 John J. Cherian, Isaac Gibbs, and Emmanuel J. Candès. Large language model validity via enhanced
562 conformal prediction methods, June 2024. URL [http://arxiv.org/abs/2406.09714](https://arxiv.org/abs/2406.09714).
563 arXiv:2406.09714 [cs, stat].

564 Dheeru Dua and Casey Graff. Uci machine learning repository. <https://archive.ics.uci.edu/ml>, 2017. Accessed: 2025-09-22.

565 Haosen Ge, Hamsa Bastani, and Osbert Bastani. Stochastic online conformal prediction with
566 semi-bandit feedback. *arXiv preprint arXiv:2405.13268*, 2024.

567 Haosen Ge, Hamsa Bastani, and Osbert Bastani. Stochastic online conformal prediction with semi-
568 bandit feedback. In *Forty-second International Conference on Machine Learning*, 2025. URL
569 <https://openreview.net/forum?id=IdRrKDstZ8>.

570 Asaf Gendler, Tsui-Wei Weng, Luca Daniel, and Yaniv Romano. Adversarially robust conformal
571 prediction. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=9L1Bsi4wP1H>.

572 Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift, 2021.

573 Isaac Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
574 distribution shifts. *Journal of Machine Learning Research*, 25(162):1–36, 2024.

575 Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift, 2021.
576 URL <https://arxiv.org/abs/2106.00170>.

577 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
578 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

579 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

580 Minjae Lee, Kyungmin Kim, Taesoo Kim, and Sangdon Park. Selective generation for controllable
581 language models. In *The Thirty-eighth Annual Conference on Neural Information Processing
582 Systems*, 2024. URL <https://openreview.net/forum?id=g1fYOAzh2f>.

594 Minjae Lee, Yoonjae Jung, and Sangdon Park. A regret perspective on online selective generation,
 595 2025. URL <https://arxiv.org/abs/2506.14067>.

596

597 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Conformal prediction with temporal quantile
 598 adjustments. *Advances in Neural Information Processing Systems*, 35:31017–31030, 2022.

599 Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dynamic
 600 environments using conformal prediction. *IEEE Robotics and Automation Letters*, 8(8):5116–5123,
 601 2023.

602

603 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guarantees.
 604 *arXiv preprint arXiv:2402.10978*, 2024.

605

606 Ji Won Park and Kyunghyun Cho. Semiparametric conformal prediction. In *International Conference
 607 on Artificial Intelligence and Statistics*, pp. 3880–3888. PMLR, 2025.

608 Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets under co-
 609 variate shift. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=DhP9L8vIyLc>.

610

611 Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for classifi-
 612 cation under label shift. *arXiv preprint arXiv:2103.03323*, 2021.

613

614 Wenwen Si, Sangdon Park, Insup Lee, Edgar Dobriban, and Osbert Bastani. PAC prediction sets
 615 under label shift. In *The Twelfth International Conference on Learning Representations*, 2024.
 616 URL <https://openreview.net/forum?id=4vPVBh3fhz>.

617 Aleksandrs Slivkins. Introduction to multi-armed bandits. *Foundations and Trends® in Machine
 618 Learning*, 12(1-2):1–286, 2019. ISSN 1935-8237. doi: 10.1561/2200000068. URL <http://dx.doi.org/10.1561/2200000068>.

619

620 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
 621 prediction under covariate shift. *Advances in Neural Information Processing Systems*, 32:2530–
 622 2540, 2019.

623

624 Vladimir Vovk. Conditional validity of inductive conformal predictors. *Machine learning*, 92(2-3):
 625 349–376, 2013.

626

627 Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 628 Springer Science & Business Media, 2005.

629

630 Zhou Wang and Xingye Qiao. Efficient online set-valued classification with bandit feedback. *arXiv
 631 preprint arXiv:2405.04393*, 2024.

632

633 Qiangqiang Zhang, Ting Li, Xinwei Feng, Xiaodong Yan, and Jinhan Xie. Online differentially private
 634 conformal prediction for uncertainty quantification. In *Forty-second International Conference on
 635 Machine Learning*, 2025. URL <https://openreview.net/forum?id=dmZQrojdVU>.

636

637

638

639

640

641

642

643

644

645

646

647

648 A PRELIMINARY
649650 A.1 REGRET MINIMIZATION WITH PARTIAL FEEDBACK
651

652 Sequential prediction, represented by multi-armed bandits (Slivkins, 2019), is modeled by a game
653 between a learner and an adversary (also called an environment). For multi-armed bandits with K
654 arms $\Pi = \{\pi_1, \dots, \pi_K\}$ over T rounds, at each round $t \in [1, T]$, a learner selects an arm $\pi_t \in \Pi$
655 and an adversary provides a loss $\ell_t(\pi_t) \in [0, 1]$ on the selected arm as feedback, where the learner
656 leverages the feedback to update its arm-selection strategy. Here, we call the above feedback type
657 *partial feedback* as the adversary provides feedback on the selected arm, while *full feedback* represents
658 a setup where the adversary provides feedback on all arms. Note that the adversary may provide
659 feedback regardless of the learner’s arm selection. This adversary is called *oblivious*. However,
660 if the feedback at round t depends on the learner’s previous selections π_1, \dots, π_{t-1} , we say that
661 the adversary is *adaptive*. In this paper, we consider the adaptive adversary, which is stronger than
662 the oblivious one. For both oblivious and adaptive adversaries, we denote our bandit problem by
663 *adversarial bandits*.

664 In adversarial bandit problems, the objective of learning is modeled by regret, which is the gap
665 between the learner’s cumulative loss and the best arm’s cumulative loss in hindsight, which is
666 formally quantified as follows:

$$667 \mathbf{Reg}(T) := \sum_{t=1}^T \ell_t(\pi_t) - \min_{\pi \in \Pi} \sum_{t=1}^T \ell_t(\pi).$$

668 Here, we have two sources of randomness: (1) a learner’s randomized strategy, *i.e.*, an arm π_t is
669 drawn from an arm distribution updated by the learners and (2) an adversary’s randomized strategy,
670 *i.e.*, the adversary’s feedback vector ℓ_t is drawn from a feedback distribution which depends on the
671 learner’s previously chosen arms π_1, \dots, π_{t-1} without looking at the current learner’s arm choice π_t .

672 The goal of the adversarial bandit is to find a learner’s strategy such that the corresponding regret
673 is sub-linear in T with high probability. Note that we do not consider a deterministic learner, as it
674 is known that it cannot achieve the sub-linear regret bound Bubeck et al. (2012). In the following,
675 we introduce a known regret minimization method, called the Exponential-weight algorithm for
676 Exploration and Exploitation to control the regret variance (EXP3.P), for the adversarial bandit
677 under the adaptive adversary.

680 A.2 EXP3.P FOR ADVERARIAL BANDITS
681

682 EXP3.P (Algorithm 2) maintains an estimate of the cumulative biased gain for each arm $\pi \in \Pi$,
683 where $|\Pi| = K$. Following the conventional descriptions on EXP3.P, we illustrate the algorithm in
684 terms of gain instead of loss for clarity. In particular, at each round t , the learner updates a probability
685 distribution over arms as

$$686 p_t(\pi) = (1 - \gamma) \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))} + \gamma \frac{1}{K},$$

687 where $\gamma \in (0, 1]$ is a mixing weight, $\eta > 0$ is a learning rate, and $\tilde{G}_{t-1}(\pi)$ denotes the cumulative
688 estimated gain of arm π up to round $t - 1$. The learner samples an arm $\pi_t \sim p_t$, observes the loss
689 $\ell_t(\pi_t) \in [\ell_{\min}, \ell_{\max}]$ or equivalently the gain $g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\gamma+2})}{\ell_{\max} - \ell_{\min}}$, , and forms the biased gain
690 estimator:

$$691 \tilde{g}_t(\pi) = \frac{g_t(\pi) \mathbb{1}(\pi_t = \pi) + \beta}{p_t(\pi)}, \quad (6)$$

692 where $\beta > 0$ is a bias parameter. Then, the cumulative gain estimate for each arm is updated as
693 $\tilde{G}_t(\pi) = \tilde{G}_{t-1}(\pi) + \tilde{g}_t(\pi)$, which is then used to update the arm-selection strategy at round $t + 1$.
694 Theorem 2 shows that EXP3.P achieves the high probability regret bound under the properly chosen
695 hyperparameters. See Appendix B for the proof.

696 **Theorem 2** (High Probability Bound (Auer et al., 2002)). *For any given $\delta \in (0, 1)$ and $\ell_t(\pi) \in$
697 $[\ell_{\min}, \ell_{\max}]$, if Algorithm 2 is run with $\beta = \sqrt{\frac{\ln K}{KT}}$, $\eta = 0.95\sqrt{\frac{\ln K}{KT}}$, $\gamma = 1.05\sqrt{\frac{K \ln K}{T}}$, then the*

Algorithm 2 EXP3.P for Adversarial Bandits

```

702 1: procedure EXP3.P( $\Pi, T, \eta, \gamma, \beta$ )
703 2:   Initialize cumulative gains  $\tilde{G}_0(\pi) \leftarrow 0$  for all  $\pi \in \Pi$ 
704 3:   for  $t \leftarrow 1, \dots, T$  do
705 4:     Compute probabilities:  $p_t(\pi) \leftarrow (1 - \gamma) \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))} + \gamma \frac{1}{K}$   $(\triangleright) K = |\Pi|$ 
706 5:     Sample an arm:  $\pi_t \sim p_t$ 
707 6:     Observe a loss:  $\ell_t(\pi_t) \in [\ell_{\min}, \ell_{\max}]$   $(\triangleright) \ell_t(\pi) \in [\ell_{\min}, \ell_{\max}] \forall \pi \in \Pi \text{ and } \forall t \in \mathbb{N}$ 
708 7:     Compute a normalized gain:  $g_t(\pi_t) = \frac{\ell_{\max} - \ell_t(\pi_t)}{\ell_{\max} - \ell_{\min}}$ 
709 8:     Construct a biased gain estimator:  $\tilde{g}_t(\pi) \leftarrow \frac{g_t(\pi) \mathbb{1}(\pi_t = \pi) + \beta}{p_t(\pi)}$  for all  $\pi \in \Pi$ 
710 9:     Update cumulative gains:  $\tilde{G}_t(\pi) \leftarrow \tilde{G}_{t-1}(\pi) + \tilde{g}_t(\pi)$  for all  $\pi \in \Pi$ 
711
712
713
714
715
716
  
```

following holds with probability at least $1 - \delta$:

$$\mathbf{Reg}(T) \leq (\ell_{\max} - \ell_{\min}) \left(\sqrt{\frac{TK}{\ln K}} \ln(\delta^{-1}) + 5.15\sqrt{TK \ln K} \right).$$

Note that the original proof on the regret bound of EXP3.P algorithm requires $\ell_t(\pi) \in [0, 1]$ for any $t \in \mathbb{N}$ and $\pi \in \Pi$ (Auer et al., 2002). But, here we consider a simple loss normalization in the algorithm and bound, providing the equivalent result for any bounded loss functions.

A.3 EXP3.P FOR CONFORMAL PREDICTION

Algorithm 3 EXP3.P Learner for Conformal Prediction

```

721 1: procedure EXP3.P-CP( $\Pi, T, \eta, \gamma, \beta, \lambda, \alpha$ )
722 2:   Initialize cumulative estimated gains  $\tilde{G}_0(\pi) \leftarrow 0$  for all  $\pi \in \Pi$ 
723 3:   for  $t \leftarrow 1, \dots, T$  do
724 4:     Compute probabilities:  $p_t(\pi) \leftarrow (1 - \gamma) \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))} + \gamma \frac{1}{K}$ , where  $K = |\Pi|$ 
725 5:     Sample arm:  $\pi_t \sim p_t$ 
726 6:     Receive  $m_t(\pi_t) \leftarrow \mathbb{1}(y_t \notin \hat{C}_{\pi_t}(x_t))$ 
727 7:     Observe loss:  $\ell_t(\pi_t, \alpha) \leftarrow \text{COMPUTELOSS}(\pi_t, m_t(\pi_t), \lambda, \alpha)$ 
728 8:     Compute normalized gain:  $g_t(\pi_t) = \frac{\ell_{\max} - \ell_t(\pi_t, \alpha)}{\ell_{\max} - \ell_{\min}}$ 
729 9:     Construct biased gain estimator:  $\tilde{g}_t(\pi) \leftarrow \frac{g_t(\pi) \mathbb{1}(\pi_t = \pi) + \beta}{p_t(\pi)}$ 
730 10:    Update cumulative gain:  $\tilde{G}_t(\pi) \leftarrow \tilde{G}_{t-1}(\pi) + \tilde{g}_t(\pi)$ 
731
732
733
734
735
736
737
738
739
740 11: procedure COMPUTELOSS( $\pi, m, \lambda, \alpha$ )
741 12:   return  $|m - \alpha| + \frac{\lambda \alpha}{\lambda + 2} \{ \mathbb{1}(m = 0) \exp(-\pi) + \mathbb{1}(m = 1) \}$ 
  
```

742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A.4 EXP3.P FOR CONFORMAL PREDICTION WITH UNLOCKING
757758 **Algorithm 4** EXP3.P Learner for Conformal Prediction with Unlocking
759

760 1: **procedure** EXP3.P-CP-SEMI($\Pi, T, \eta, \gamma, \beta, \lambda, \alpha, (f_t)_{t=1}^T$)
 761 2: Initialize cumulative estimated gains $\tilde{G}_0(\pi) \leftarrow 0$ for all $\pi \in \Pi$
 762 3: **for** $t \leftarrow 1, \dots, T$ **do**
 763 4: Compute probabilities: $p_t(\pi) \leftarrow (1 - \gamma) \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))} + \gamma \frac{1}{K}$, where $K = |\Pi|$
 764 5: Sample arm: $\pi_t \sim p_t$
 765 6: Receive $m_t(\pi_t) \leftarrow \mathbb{1}(y_t \notin \hat{C}_{\pi_t}(x_t))$
 766 7: **if** $m_t(\pi_t) = 0$ **then** (▷) Exploit the structure of arms.
 767 8: $\Pi_t(\pi_t) \leftarrow \{\pi \in \Pi \mid \pi \leq f_t(x_t, y_t)\}$
 768 9: **else** (▷) Semi-bandit feedback: Observe the true label.
 769 10: $\Pi_t(\pi_t) \leftarrow \{\pi \in \Pi \mid \pi \geq \pi_t\}$
 770 11: **for** $\tilde{\pi} \in \Pi_t(\pi_t)$ **do** (▷) Reuse feedback $m_t(\pi_t)$.
 771 12: $\ell_t(\tilde{\pi}, \alpha) \leftarrow \text{COMPUTELOSS}(\tilde{\pi}, m_t(\pi_t), \lambda, \alpha)$
 772 13: Compute normalized gain: $g_t(\tilde{\pi}) = \frac{\ell_{\max} - \ell_t(\tilde{\pi}, \alpha)}{\ell_{\max} - \ell_{\min}}$
 773 14: Construct biased gain estimator $\tilde{g}_t(\pi | \Pi_t(\pi_t))$, defined in (18)
 774 15: Update cumulative gain: $\tilde{G}_t(\pi) \leftarrow \tilde{G}_{t-1}(\pi) + \tilde{g}_t(\pi)$
 775 16: **procedure** COMPUTELOSS(π, m, λ, α)
 776 17: **return** $|m - \frac{\alpha}{\lambda+2}| + \frac{\lambda\alpha}{\lambda+2} \left\{ \mathbb{1}(m=0)\exp\left(-\frac{\pi}{\sqrt{T}}\right) + \mathbb{1}(m=1)\exp\left(-\frac{1-\pi}{\sqrt{T}}\right) \right\}$

777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **B PROOF OF THEOREM 2**
 811

812 This theorem is due to Auer et al. (Auer et al., 2002). For completeness, we reproduce their regret
 813 analysis for EXP3.P, adapting it to our normalized loss setting. We begin by recalling the following
 814 key lemma.

815 **Lemma 2.** For $\beta \leq 1$ and $g_t(\cdot) \in [0, 1]$, let $\tilde{g}_t(\pi) = \frac{g_t(\pi)\mathbb{1}(\pi_t=\pi)+\beta}{p_t(\pi)} \in (0, \infty)$. Then, for each
 816 $\pi \in \Pi$, the following holds with probability at least $1 - \delta$:

817

$$\sum_{t=1}^T g_t(\pi) \leq \sum_{t=1}^T \tilde{g}_t(\pi) + \frac{\ln(\delta^{-1})}{\beta}.$$

818

819 *Proof.* Let \mathbb{E}_t be the expectation conditioned on π_1, \dots, π_{t-1} . Since $\exp(x) \leq 1 + x + x^2$ for $x \leq 1$,
 820 for $\beta \leq 1$, by letting $\Delta_t(\pi_t) := \beta g_t(\pi) - \frac{\beta g_t(\pi)\mathbb{1}(\pi_t=\pi)}{p_t(\pi)} \leq 1$, we have
 821

822

$$\begin{aligned} \mathbb{E}_t \left[\exp \left(\Delta_t(\pi_t) - \frac{\beta^2}{p_t(\pi)} \right) \right] &\leq \left(1 + \mathbb{E}_t[\Delta_t(\pi_t)] + \mathbb{E}_t[\Delta_t(\pi_t)^2] \right) \exp \left(-\frac{\beta^2}{p_t(\pi)} \right) \\ &\leq \left(1 + \frac{\beta^2 g_t(\pi)^2}{p_t(\pi)} \right) \exp \left(-\frac{\beta^2}{p_t(\pi)} \right) \\ &\leq \left(1 + \frac{\beta^2}{p_t(\pi)} \right) \exp \left(-\frac{\beta^2}{p_t(\pi)} \right) \quad (\because g_t(\cdot) \in [0, 1]) \\ &\leq 1 \quad (\because 1 + u \leq \exp(u)). \end{aligned}$$

823

824 By sequentially applying the double expectation rule for $t = T, \dots, 1$,

825

$$\mathbb{E} \exp \left[\sum_{t=1}^T \left(\Delta_t(\pi_t) - \frac{\beta^2}{p_t(\pi)} \right) \right] \leq 1. \quad (7)$$

826

827 Moreover, from the Markov's inequality, we have $\mathbb{P}(X > \ln(1/\delta)) = \mathbb{P}(\exp(X) > 1/\delta) \leq$
 828 $\delta \mathbb{E} \exp(X)$. Combined with Eq. 7, we have
 829

830

$$\beta \sum_{t=1}^T g_t(\pi) \leq \beta \sum_{t=1}^T \tilde{g}_t(\pi) + \ln(\delta^{-1})$$

831

832 with probability at least $1 - \delta$. This completes the proof. \square
 833

834 Now, we show the proof on the regret bound of EXP3.P for any bounded loss functions, which
 835 consists of five steps.

836 First, our goal is to show that, if $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$,

837

$$\mathbf{Reg}(T) \leq (\ell_{\max} - \ell_{\min}) \left(\beta T K + \gamma T + (1 + \beta)\eta K n + \frac{\ln(K/\delta)}{\beta} + \frac{\ln K}{\eta} \right). \quad (8)$$

838

839 Irrespective of the hyperparameter setup, note that Eq. 8 always holds if $T \geq 5.15\sqrt{TK\ln(K\delta^{-1})}$.
 840 If $T < 5.15\sqrt{TK\ln(K\delta^{-1})}$, this implies that $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$, which makes it suffice to
 841 show that Eq. 8 holds for $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$.

842 **Step 1: Simple equalities.** By the definition of $\tilde{g}_t(\pi)$, the following holds:

843

$$\mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi) = g_t(\pi_t) + \beta K. \quad (9)$$

844

845 Here, the gain $g_t(\pi) \in [0, 1]$ is defined with respect to the loss $\ell_t(\pi) \in [\ell_{\min}, \ell_{\max}]$ as the following:

846

$$g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi)}{\ell_{\max} - \ell_{\min}}.$$

847

864 Then, for all $\pi \in \Pi$, the following equality holds:
865

$$\begin{aligned}
 866 \quad R_\pi(T) &= \sum_{t=1}^T \ell_t(\pi_t) - \sum_{t=1}^T \ell_t(\pi) \\
 867 \\
 868 \quad &= (\ell_{\max} - \ell_{\min}) \left(\sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T g_t(\pi_t) \right) \quad (\because \text{Definition of } g_t(\cdot)) \\
 869 \\
 870 \quad &= (\ell_{\max} - \ell_{\min}) \left(\beta KT + \sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi}) \right) \quad (\because \text{Eq. 9}). \\
 871
 \end{aligned} \tag{10}$$

872 Using the definition of cumulant generating function and the relationship that $p_t = (1 - \gamma)\omega_t + \gamma u$
873 where $\omega_t(\pi) = \frac{\exp(\eta \tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_{t-1}(\tilde{\pi}))}$ and u is the uniform distribution over K arms, the following
874 holds:
875

$$\begin{aligned}
 876 \quad -\mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi}) &= -(1 - \gamma) \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\pi_t) - \gamma \mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi}) \quad (\because p_t = (1 - \gamma)\omega_t + \gamma u) \\
 877 \\
 878 \quad &= (1 - \gamma) \left[\frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\tilde{g}_t(\tilde{\pi}) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi})) - \right. \\
 879 \\
 880 \quad &\quad \left. \frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta \tilde{g}_t(\tilde{\pi})) \right] - \gamma \mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi}) \\
 881
 \end{aligned} \tag{11}$$

882 **Step 2: Bounding the first term of Eq. 11.** Since $\ln x \leq x - 1$, $\exp(x) \leq 1 + x + x^2$ for all $x \leq 1$,
883 and $\eta \tilde{g}_t(\tilde{\pi}) = \eta \frac{g_t(\tilde{\pi}) + \beta}{p_t(\tilde{\pi})} \leq \eta \frac{1 + \beta}{(1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K}} \leq \frac{\gamma \frac{1}{K}}{(1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K}} \leq 1$ ($\because (1 + \beta)\eta K \leq \gamma$),
884

$$\begin{aligned}
 885 \quad \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta(\tilde{g}_t(\tilde{\pi}) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi}))) &= \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta \tilde{g}_t(\tilde{\pi})) - \eta \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi}) \\
 886 \\
 887 \quad &\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \{ \exp(\eta \tilde{g}_t(\tilde{\pi})) - 1 - \eta \tilde{g}_t(\tilde{\pi}) \} \quad (\because \ln x \leq x - 1) \\
 888 \\
 889 \quad &\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi})^2 \quad (\because \exp(x) \leq 1 + x + x^2) \\
 890 \\
 891 \quad &\leq \eta^2 \frac{1 + \beta}{1 - \gamma} \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi}) \quad \left(\because \frac{w_t(\tilde{\pi})}{p_t(\tilde{\pi})} \leq \frac{1}{1 - \gamma} \right). \\
 892 \\
 893
 \end{aligned} \tag{12}$$

894 **Step 3: Summing.** Let $\tilde{G}_0(\tilde{\pi}) = 0$. Then, combining Eq. 11-Eq. 12 and summing over t yield
895

$$\begin{aligned}
 896 \quad -\sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi}) &\leq (1 + \beta)\eta \sum_{t=1}^T \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi}) - \frac{1 - \gamma}{\eta} \sum_{t=1}^T \ln \left(\sum_{\tilde{\pi} \in \Pi} w_t(\tilde{\pi}) \exp(\eta \tilde{g}_t(\tilde{\pi})) \right) \\
 897 \\
 898 \quad &= (1 + \beta)\eta \sum_{t=1}^T \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi}) - \frac{1 - \gamma}{\eta} \ln \left(\frac{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi}))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_0(\tilde{\pi}))} \right) \quad (\because \text{Definition of } \omega_t(\tilde{\pi}), \tilde{G}_t(\tilde{\pi})) \\
 899 \\
 900 \quad &\leq (1 + \beta)\eta K \max_{\tilde{\pi} \in \Pi} \tilde{G}_T(\tilde{\pi}) + \frac{\ln K}{\eta} - \frac{1 - \gamma}{\eta} \ln \left(\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi})) \right) \quad (\because 1 - \gamma \leq 1 \text{ and } \tilde{G}_0(\tilde{\pi}) = 0) \\
 901 \\
 902 \quad &\leq -(1 - \gamma - (1 + \beta)\eta K) \max_{\tilde{\pi} \in \Pi} \tilde{G}_T(\tilde{\pi}) + \frac{\ln K}{\eta} \quad (\because \text{Property of log-sum-exponential}) \\
 903 \\
 904 \quad &\leq -(1 - \gamma - (1 + \beta)\eta K) \max_{\tilde{\pi} \in \Pi} \sum_{t=1}^T g_t(\tilde{\pi}) + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta}, \\
 905 \\
 906
 \end{aligned} \tag{13}$$

907 where the last inequality holds due to the Lemma 2, union bound (the reason for using the confidence
908 term of $\frac{\delta}{K}$), and the initial assumption that $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$. Plugging Eq. 13 into Eq. 10,
909 the following holds with probability $1 - \frac{\delta}{K}$ for all $\pi \in \Pi$:

$$R_\pi(T) \leq (\ell_{\max} - \ell_{\min}) \left(\beta TK + \gamma T + (1 + \beta)\eta K n + \frac{\ln(K/\delta)}{\beta} + \frac{\ln K}{\eta} \right).$$

910 Since $\mathbf{Reg}(T) := \max R_\pi(T)$, this completes the proof by taking the union bound.
911

918 C A PROOF ON LEMMA 1
919920 We have
921

922
$$\mathbf{Reg}\left(T, \frac{\alpha}{\lambda+2}\right) := \sum_{t=1}^T \ell_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) - \min_{\pi \in \Pi} \sum_{t=1}^T \ell_t\left(\pi, \frac{\alpha}{\lambda+2}\right)$$

923
$$= \sum_{t=1}^T \left\{ \lambda \frac{\alpha}{\lambda+2} a_t(\pi_t) + d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) \right\} - \min_{\pi \in \Pi} \sum_{t=1}^T \left\{ \lambda \frac{\alpha}{\lambda+2} a_t(\pi) + d_t\left(\pi, \frac{\alpha}{\lambda+2}\right) \right\}$$

924
$$\geq \sum_{t=1}^T \left\{ \lambda \frac{\alpha}{\lambda+2} a_t(\pi_t) + d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) \right\} - \lambda \frac{\alpha}{\lambda+2} \sum_{t=1}^T a_t(\bar{\pi}) - T \frac{\alpha}{\lambda+2} \quad (14)$$

925

926
$$= \lambda \frac{\alpha}{\lambda+2} \sum_{t=1}^T \{a_t(\pi_t) - a_t(\bar{\pi})\} + \sum_{t=1}^T d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) - T \frac{\alpha}{\lambda+2}$$

927
$$\geq -\lambda \frac{\alpha}{\lambda+2} T + \sum_{t=1}^T d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) - T \frac{\alpha}{\lambda+2}, \quad (15)$$

928

929 where $\bar{\pi} = \operatorname{argmin}_{\pi \in \Pi} \sum_{t=1}^T d_t\left(\pi, \frac{\alpha}{\lambda+2}\right)$ and thus $\sum_{t=1}^T d_t\left(\bar{\pi}, \frac{\alpha}{\lambda+2}\right) = T \frac{\alpha}{\lambda+2}$, so (14) holds as
930

931
$$\min_{\pi \in \Pi} \sum_{t=1}^T \left\{ \lambda \frac{\alpha}{\lambda+2} a_t(\pi) + d_t\left(\pi, \frac{\alpha}{\lambda+2}\right) \right\} \leq \sum_{t=1}^T \left\{ \lambda \frac{\alpha}{\lambda+2} a_t(\bar{\pi}) + d_t\left(\bar{\pi}, \frac{\alpha}{\lambda+2}\right) \right\}$$

932
$$= \lambda \frac{\alpha}{\lambda+2} \sum_{t=1}^T a_t(\bar{\pi}) + T \frac{\alpha}{\lambda+2}$$

933

934 and (15) holds as $\pi_t, \bar{\pi} \in \mathbb{R}_{\geq 0}$.
935936 Thus, this implies
937

938
$$\sum_{t=1}^T d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) - \frac{\lambda+1}{\lambda+2} \alpha T \leq \mathbf{Reg}\left(T, \frac{\alpha}{\lambda+2}\right) \quad (16)$$

939

940 Thus, considering that
941

942
$$\sum_{t=1}^T d_t\left(\pi_t, \frac{\alpha}{\lambda+2}\right) - \frac{\lambda+1}{\lambda+2} \alpha T = \sum_{t=1}^T \left| \mathbb{1}(\mathbf{y}_t \notin \hat{C}_{\pi_t}(\mathbf{x}_t)) - \frac{\alpha}{\lambda+2} \right| - \frac{\lambda+1}{\lambda+2} \alpha T$$

943
$$\geq \sum_{t=1}^T \mathbb{1}(\mathbf{y}_t \notin \hat{C}_{\pi_t}(\mathbf{x}_t)) - \alpha T.$$

944

945 Dividing each side by T , we have
946

947
$$\mathbf{MC}(T) - \alpha \leq \frac{\mathbf{Reg}\left(T, \frac{\alpha}{\lambda+2}\right)}{T}.$$

948

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 D EXP3.P, EXP3.P-CP-SEMI, AND EXP3.P-CP-UNLOCK
973974 D.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES
975976 **Definition.** First of all, we consider the following three different biased estimators $\tilde{g}_t(\pi|\Pi_t(\pi_t))$
977 under the semi-bandit feedback scenario as the following:

978
$$\tilde{g}_t(\pi | \Pi_t(\pi_t)) := \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A)}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times (B),}_{\text{partial unlocking}} \quad (17)$$

979
980 where
981

982 • EXP3.P

983
$$(A) := \mathbb{1}(\pi_t = \pi) \left\{ \frac{g_t(\pi)}{p_t(\pi)} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi_t \neq \pi) \frac{\beta}{p_t(\pi)}$$

984
985 • EXP3.P-CP-SEMI

986
$$(A) := \mathbb{1}(\pi \in \Pi_t^*) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi \in (\Pi_t^*)^c) \frac{\beta}{p_t(\pi)}$$

987
988 • EXP3.P-CP-UNLOCK

989
$$(A) := \mathbb{1}(\pi \in \Pi_t^*) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \left(1 + \frac{1}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \beta \right\} + \mathbb{1}(\pi \in (\Pi_t^*)^c) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\}$$

990
991 and
992

993 • EXP3.P

994
$$(B) := \mathbb{1}(\pi_t = \pi) \left\{ \frac{g_t(\pi)}{p_t(\pi)} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi_t \neq \pi) \frac{\beta}{p_t(\pi)}$$

995
996 • EXP3.P-CP-SEMI

997
$$(B) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \frac{\beta}{p_t(\pi)}$$

998
999 • EXP3.P-CP-UNLOCK

1000
$$(B) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\} + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \left\{ \tilde{g}_t(\pi) + \left(1 + \frac{1}{p_t(\pi)} \right) \beta \right\}.$$

1001
1002
1003
1004
1005

1006 D.2 THEORETICAL ANALYSIS
10071008 **Theorem 3** (EXP3.P). *For any given $\delta \in (0, 1)$ and $\ell_t(\pi) \in [\ell_{\min}, \ell_{\max}]$, if EXP3.P is run with
1009 $\beta = \sqrt{\frac{\ln K}{KT}}$, $\gamma = 1.05\sqrt{\frac{K \ln K}{T}}$, $\eta = 0.95\sqrt{\frac{\ln K}{KT}}$, then the following holds with probability at least
1010 $1 - \delta$:*

1011
$$\mathbf{Reg}(T) \leq 5.15\sqrt{K \ln KT}.$$

1012

1013 **Theorem 4** (EXP3.P-CP-SEMI). *For any given $\delta \in (0, 1)$ and $\ell_t(\pi) \in [\ell_{\min}, \ell_{\max}]$, if
1014 EXP3.P-CP-SEMI is run with $\beta = \sqrt{\frac{\ln K}{KT}}$, $\gamma = 1.05\sqrt{\frac{K \ln K}{T}}$, $\eta = 0.95\sqrt{\frac{\ln K}{KT}}$, then the fol-
1015 lowing holds with probability at least $1 - \delta$:*

1016
$$\mathbf{Reg}(T) \leq 5.15\sqrt{K \ln KT}.$$

1017

1018 **Theorem 5** (EXP3.P-CP-UNLOCK). *For any given $\delta \in (0, 1)$ and $\ell_t(\pi) \in [\ell_{\min}, \ell_{\max}]$, if
1019 EXP3.P-CP-UNLOCK is run with $\varepsilon(\lambda, \alpha) = \frac{1}{\sqrt{T}}$, $\beta = \sqrt{\frac{\ln K}{CT}}$, $\gamma = 1.05\sqrt{\frac{K \ln K}{T}}$, and $\eta =$
1020 $0.95\sqrt{\frac{\ln K}{KT}}$, then the following holds with probability at least $1 - \delta$:*

1021
$$\mathbf{Reg}(T) \leq \sqrt{C \ln KT} + 4.15\sqrt{K \ln KT},$$

1022
1023 where C and $\varepsilon(\lambda, \alpha)$ are the terms defined in Eq. 49 and Eq. 40, respectively.

1026 **E EXPERIMENT SETUP**
10271028 **E.1 PARAMETER CHOICES**
10291030 Our bandit-based methods depend on two main design parameters: the number K of candidate thresh-
1031 olds and the trade-off parameter λ in the loss function for EXP3.P-CP and EXP3.P-CP-SEMI.
1032 We briefly summarize the theoretical and practical considerations that guide our choices, and specify
1033 the values used in our experiments.
10341035 **Number of thresholds K .** For the EXP3.P-based algorithms, we adopt the standard exploration
1036 parameter

1037
$$\gamma = 1.05 \sqrt{\frac{K \ln K}{T}},$$

1038

1039 and the theoretical guarantees require $\gamma \leq \frac{1}{2}$. This condition implicitly upper-bounds the feasible
1040 number of thresholds K for a given horizon T ; if K is chosen too large, then γ would exceed $\frac{1}{2}$ and
1041 the original EXP3.P regret guarantees would no longer apply.
10421043 Even within this feasible range, there is a trade-off between coverage and efficiency. On the one
1044 hand, taking K very small yields a coarse grid of thresholds, which makes it relatively easy for the
1045 learned conformal sets to attain coverage at or above the target level, but typically at the cost of
1046 larger prediction sets. On the other hand, taking K very large yields a much finer grid and can in
1047 principle improve efficiency, but the regret bounds scale as $\mathcal{O}(\sqrt{K \ln K / T})$, so larger K slows the
1048 convergence of the empirical coverage toward the target level. Consequently, for a fixed time horizon
1049 T , K cannot be increased arbitrarily without degrading the finite-sample coverage behavior, and if T
1050 is too small, even a moderate value of K may not be sufficient to bring the empirical coverage close
1051 to the target level.
10521053 In our main experiments, we balance these considerations by choosing $K = 1,000$ for the ImageNet
1054 classification experiments and $K = 20$ for the Airfoil regression experiments. These choices satisfy
1055 the EXP3.P constraint on γ and provide a practically useful compromise between coverage and
1056 prediction set size at the respective horizons.
10571058 **Trade-off parameter λ .** The loss function for EXP3.P-CP and EXP3.P-CP-SEMI combines
1059 a miscoverage term and an inefficiency term, weighted by a trade-off parameter $\lambda > 0$. Smaller
1060 values of λ reduce the influence of the inefficiency loss, encouraging the algorithm to prioritize
1061 eliminating miscoverage and thus reach the target coverage more quickly, typically at the expense of
1062 larger prediction sets. Larger values of λ place more weight on inefficiency, promoting smaller sets
1063 once coverage has been largely stabilized. Empirically, we find that the algorithms are reasonably
1064 robust to the precise choice of λ ; moderate changes in λ tend not to qualitatively alter the coverage
1065 trajectories.
10661067 In all of our main experiments (excluding the λ -ablation in Section F), we fix $\lambda = 1$ for EXP3.P-CP
1068 and EXP3.P-CP-SEMI. The EXP3.P-CP-UNLOCK algorithm does not introduce an additional
1069 free trade-off parameter: its learning-rate and exploration parameters are fully determined by the
1070 horizon T and the target coverage level $1 - \alpha$ through our theoretical construction, so no separate
1071 tuning of λ is required.
10721073 **E.2 CLASSIFICATION: I.I.D. AND ADVERSARIAL SCORE SHIFTS**
10741075 **Setup.** We consider ImageNet classification with a pre-trained ResNet-18 (He et al., 2015), and let
1076 $p_\theta(y | x)$ denote the softmax probability of label y given input x .
10771078 For the *i.i.d.* case, we use a time-homogeneous scoring function
1079

1080
$$f_t^{\text{iid}}(x, y) := p_\theta(y | x)^{1/3}, \quad t = 1, \dots, T.$$

1081

1082 For the *adversarial score-shifted* case, we keep the underlying data stream fixed and i.i.d., but make
1083 the scoring function time-varying by rescaling the probabilities with a piecewise-constant exponent
1084

1080

 γ_t :

1081

1082

1083

1084

1085

1086

1087

and define

1088

$$f_t^{\text{adv}}(x, y) := p_\theta(y | x)^{\gamma_t}.$$

1089

1090

1091

1092

Smaller values of γ_t make the transformed scores $p_\theta(y | x)^{\gamma_t}$ more concentrated near 1, making the true label harder to distinguish from competing labels and thus creating a challenging adversarial score-shift scenario.

1093

1094

1095

1096

1097

Protocol. We run experiments for $T = 50,000$ rounds with $K = 1,000$ candidate thresholds and target coverage $1 - \alpha = 0.85$. The order of the data stream is fixed and shared across all baselines. For all online baselines (MVP, SPS, EXP3.P-CP, EXP3.P-CP-SEMI, and EXP3.P-CP-UNLOCK), we use the full stream of $T = 50,000$ examples and update the conformal prediction sets online at every round, under either f_t^{iid} or f_t^{adv} .

1098

1099

1100

1101

Metrics. We track the empirical marginal coverage and average prediction set size at each round $t = 1, \dots, T$. For both the i.i.d. and adversarial score-shifted cases, we plot the trajectories of these two metrics over time $T = 50,000$ across 50 independent runs.

1102

1103

E.3 REGRESSION: I.I.D. AND COVARIATE SHIFT CASES

1104

1105

1106

The *UCI Airfoil Self-Noise* dataset consists of five-dimensional features—frequency, angle of attack, chord length, free-stream velocity, and suction-side displacement thickness—used to predict the scaled sound pressure level (Dua & Graff, 2017).

1107

1108

1109

Setup. We use a linear regression predictor $\hat{y}(x)$, trained using the recursive least squares algorithm. As a scoring function, we use the residual-based score

1110

1111

1112

$$f(x, y) = \frac{u - |y - \hat{y}(x)|}{u - l},$$

1113

where l and u denote lower and upper bounds, respectively, on the residuals $|y - \hat{y}(x)|$.

1114

1115

1116

1117

1118

1119

1120

1121

Protocol. For the i.i.d. set-up, we run experiments for $T = 1,127$ rounds with $K = 20$ candidate thresholds and target coverage $1 - \alpha = 0.9$. The order of the data stream is fixed and shared across all baselines. All considered methods (MVP, SPS, and our bandit-based algorithms) use the entire stream of T samples and update the conformal prediction sets in an online manner. For the covariate shift set-up, we use the same total horizon and thresholds, but the first 33% of the samples are drawn from a different input distribution than the remaining 67%, while the update protocol for all methods remains identical.

1122

1123

1124

1125

1126

Metrics. For the i.i.d. set-up, we evaluate empirical marginal coverage and average prediction set size on the last two-thirds of the stream, discarding the first third. For the covariate shift set-up, we compute these quantities over all T rounds. In both set-ups, we perform 100 independent trials and summarize the results using box plots of the trial-wise empirical mean coverage and average prediction set size for each method.

1127

1128

1129

1130

1131

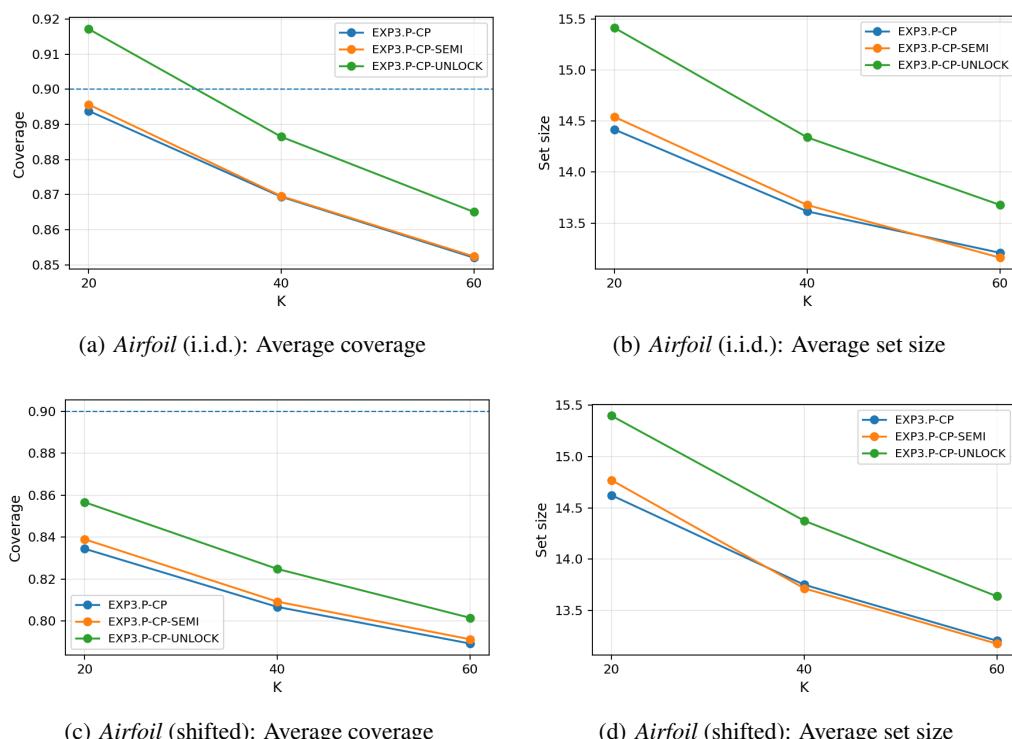
1132

1133

1134 **F ABLATION STUDY**
1135

1136 **F.1 ABLATION ON THE NUMBER OF THRESHOLDS**
1137

1138 We first study the effect of the number of candidate thresholds K , complementing the discussion in
1139 Section E.1, while fixing $\alpha = 0.1$ and setting $\lambda = 1$ for the bandit-based baselines EXP3.P-CP and
1140 EXP3.P-CP-SEMI. For the regression task on *Airfoil*, we consider $K \in \{20, 40, 60\}$ and aggregate
1141 results over 100 runs; for the classification task on *ImageNet*, we consider $K \in \{200, 500, 1000\}$ and
1142 aggregate over 50 runs.

1143 Across both the i.i.d. and shifted set-ups, all bandit-based methods exhibit a mild degradation in
1144 coverage as K increases, while the average prediction set size consistently decreases with larger K ,
1145 reflecting the expected coverage–efficiency trade-off from the regret bounds. Among the proposed
1146 methods, EXP3.P-CP-UNLOCK consistently achieves the highest coverage for all choices of K
1147 in both tasks and under both i.i.d. and shifted regimes, with moderately larger prediction sets
1148 compared to EXP3.P-CP and EXP3.P-CP-SEMI. Overall, the qualitative conclusions from the
1149 main experiments are stable across this range of K . In particular, for the *Airfoil* regression task we
1150 keep $K = 20$ in the main results, and for the *ImageNet* classification task we retain the finer grid
1151 with $K = 1,000$; the additional curves for $K = 200$ and $K = 500$ in this section confirm that our
1152 conclusions are robust to the specific choice of K .

1178 **Figure 3: Ablation on the number of thresholds K for the *Airfoil* regression task under the i.i.d. (top)
1179 and covariate-shift (bottom) set-ups, averaged over 100 independent runs.**

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

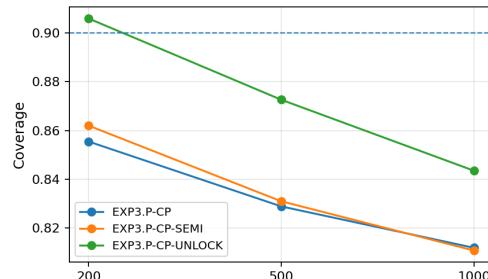
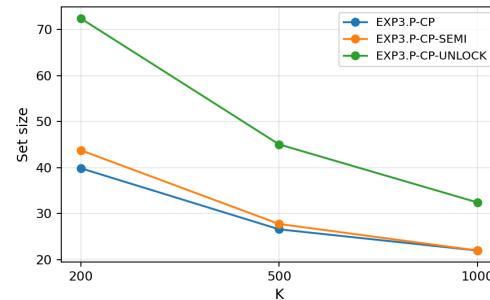
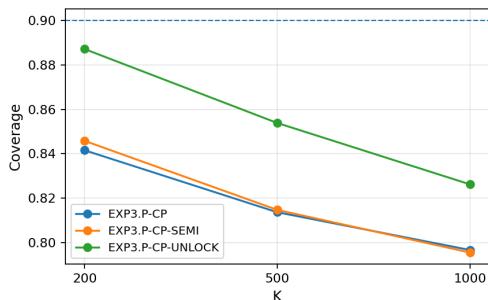
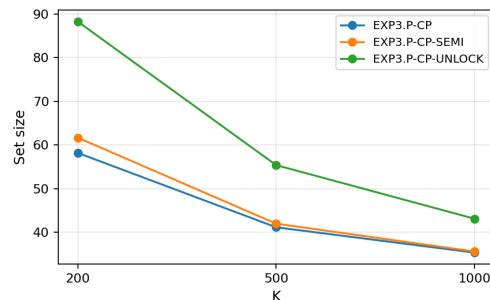
1199

1200

1201

1202

1203

(a) *ImageNet* (i.i.d.): Average coverage(b) *ImageNet* (i.i.d.): Average set size(c) *ImageNet* (shifted): Average coverage(d) *ImageNet* (shifted): Average set sizeFigure 4: Ablation on the number of thresholds K for the *ImageNet* classification task under the i.i.d. (top row) and distribution-shifted (bottom row) set-ups, averaged over 50 independent runs.

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

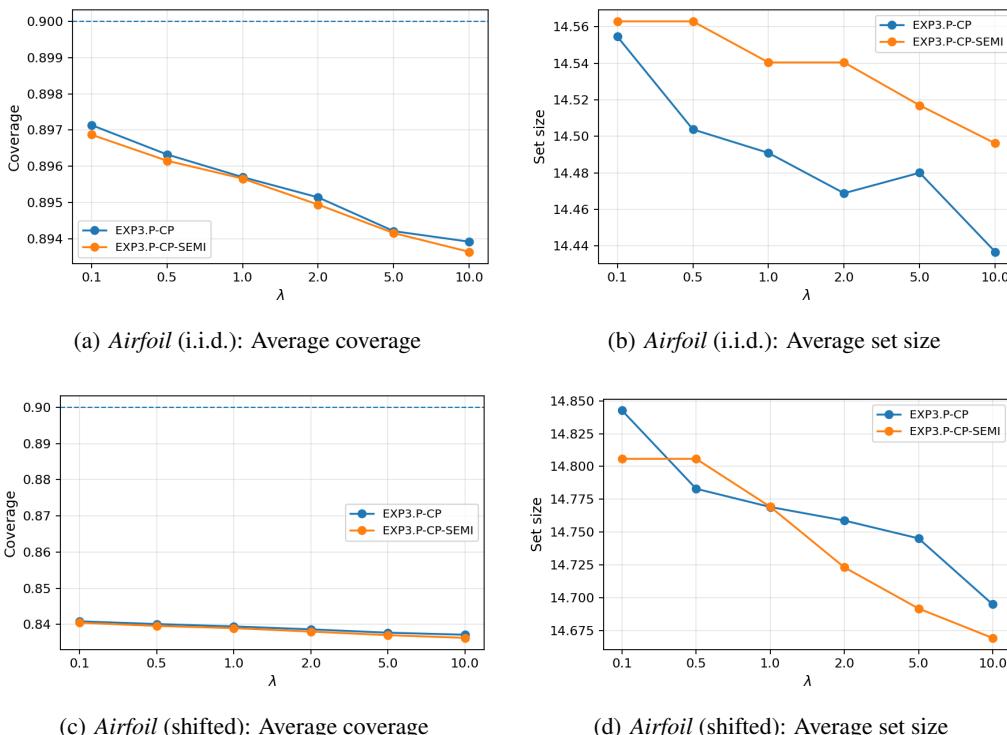
1240

1241

1242 F.2 ABLATION ON THE TRADE-OFF PARAMETER
1243

1244 Next, we investigate the sensitivity with respect to the trade-off parameter λ in the loss, again
1245 complementing the qualitative discussion in Section E.1, while fixing $\alpha = 0.1$ and focusing on the
1246 bandit-based baselines EXP3.P-CP and EXP3.P-CP-SEMI. For the *Airfoil* regression task, we
1247 fix $K = 20$ and vary λ over a range of values, aggregating results over 100 runs under both the i.i.d.
1248 and covariate-shift set-ups. For the *ImageNet* classification task, we fix $K = 200$ (a coarser grid than
1249 the main choice $K = 1,000$ to reduce computational cost), vary $\lambda \in \{0.1, 0.5, 1.0, 2.0, 5.0, 10.0\}$,
1250 and aggregate over 50 runs under the i.i.d. set-up.

1251 In both datasets, empirical coverage for EXP3.P-CP and EXP3.P-CP-SEMI remains very stable
1252 across the tested values of λ , varying only within a narrow range around the target level. The
1253 average prediction set size exhibits only modest changes and tends to decrease mildly as λ increases,
1254 indicating that larger values of λ mainly act to refine efficiency once coverage has been stabilized.
1255 These ablations show that our bandit-based methods are quite robust to the choice of λ , which
1256 justifies fixing $\lambda = 1.0$ for EXP3.P-CP and EXP3.P-CP-SEMI throughout the main experiments.
1257 To further streamline the design of this trade-off, our main algorithm EXP3.P-CP-UNLOCK is
1258 constructed so that its internal trade-off parameter is given in closed form as a function of the
1259 user-specified T (time horizon) and α (target miscoverage rate), while enjoying the same theoretical
1260 guarantees.



1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Figure 5: Ablation on the trade-off parameter λ for the *Airfoil* regression task under the i.i.d. (top)
and covariate-shift (bottom) set-ups, averaged over 100 independent runs.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

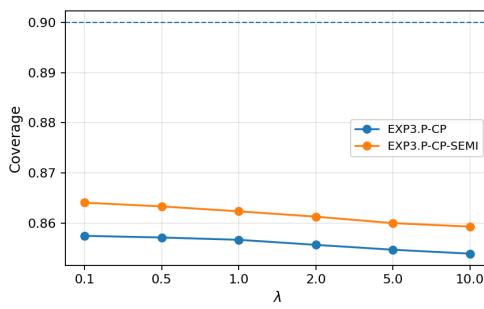
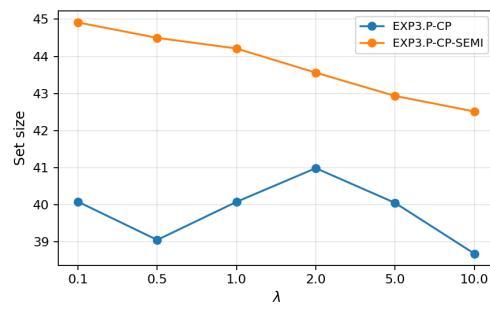
(a) *ImageNet* (i.i.d.): Average coverage(b) *ImageNet* (i.i.d.): Average set size

Figure 6: Ablation on the trade-off parameter λ for the *ImageNet* classification task under the i.i.d. set-up, averaged over 50 independent runs.

1350 **G PROOF OF THEOREM 4 FOR EXP3.P-CP-SEMI**
13511352 **G.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES**
13531354 **Definition.** First of all, we consider the following biased unlocking estimator $\tilde{g}_t(\pi \mid \Pi_t(\pi_t))$ under
1355 the semi-bandit feedback scenario as the following:
1356

1357
$$\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) := \underbrace{\mathbb{1}(m_t(\pi_t) = 0)}_{\text{full unlocking}} \times (A) + \underbrace{\mathbb{1}(m_t(\pi_t) = 1)}_{\text{partial unlocking}} \times (B). \quad (18)$$

1358

1359 Letting $\Pi_t^* := \{\tilde{\pi} \in \Pi : \tilde{\pi} \leq f_t(x_t, y_t)\}$,
1360

1361
$$(A) := \mathbb{1}(\pi \in \Pi_t^*) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi \in (\Pi_t^*)^c) \frac{\beta}{p_t(\pi)}$$

1362

1363 and
1364

1365
$$(B) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \frac{\beta}{p_t(\pi)}$$

1366

1367 In addition, the unlocking set $\Pi_t(\pi_t) \subset \Pi$ is defined as follows:
1368

1369
$$\Pi_t(\pi_t) = \begin{cases} \Pi_t^* & \text{if } m_t(\pi_t) = 0 \\ \{\tilde{\pi} \in \Pi : \tilde{\pi} \geq \pi_t\} & \text{if } m_t(\pi_t) = 1. \end{cases}$$

1370

1371 Note that $m_t(\pi_1) \leq m_t(\pi_2) \forall \pi_1 \leq \pi_2$ due to the monotonicity property of the conformal set with
1372 respect to the miscoverage, i.e., $\mathbb{1}(y_t \notin C_{\pi_1}(x_t)) \leq \mathbb{1}(y_t \notin C_{\pi_2}(x_t))$ whenever $\pi_1 \leq \pi_2$.
13731374 **Properties of the Unlocking Set.** The followings are properties of the unlocking set $\Pi_t(\tilde{\pi})$:
13751376

- $\tilde{\pi} \in \Pi_t(\tilde{\pi})$
- When $m_t(\tilde{\pi}) = 0$ (full feedback), the unlocking set is $\tilde{\pi}$ -independent, $\Pi = \Pi_t^* \cup (\Pi_t^*)^c$.

13771378 **G.2 LOSS FUNCTION AND ITS PROPERTIES**
13791380 **Definition.** Now, we introduce our loss estimator $\ell_t(\pi, c) = d_t(\pi, c) + \frac{\lambda\alpha}{\lambda+2} a_t(\pi)$ ($c \in (0, 0.5)$, $\lambda >$
1381 0) and its intuition behind. First, $d_t(\pi, c) := |\mathbb{1}(y_t \notin C_{\pi}(x_t)) - c|$ is defined as the **miscoverage**
1382 **loss**. Note that the conversion lemma (Lemma 1) ensures the convergence to target coverage $1 - \alpha$
1383 when $c = \frac{\alpha}{\lambda+2}$. Second, $a_t(\pi)$ is the **penalty term to optimize the set size**.
13841385 **Rationale for the Design of $a_t(\pi)$.** Recalling that (1) the miscoverage loss is of primary importance
1386 in conformal prediction and (2) the binary search-type algorithm is implemented in the batch learning
1387 set-up (ref.), we define $a_t(\pi)$ as the following:
1388

1389
$$a_t(\pi) := \mathbb{1}(m_t(\pi) = 0) \exp \left(-\frac{\pi}{o(T)} \right) + \mathbb{1}(m_t(\pi) = 1) \exp \left(-\frac{1 - \pi}{o(T)} \right)$$

1390

1391 Here, we set denominator inside the exponential to be \sqrt{T} , which can be any of the form $o(T) =$
1392 $T^k \forall k \in [0.5, 1)$ such that $\frac{o(T)}{T} \rightarrow 0$ as $T \rightarrow \infty$. Such denominator is necessary for the regret
1393 analysis, which will be described in detail in subsequent sections.
13941395 Intuitively, if $\pi \in \Pi_t^*$, i.e., $y_t \in C_{\pi}(x_t)$, $a_t(\pi)$ takes small value as the size of the conformal set is
1396 **small** ($|C_{\pi}(x_t)| \downarrow$). This has the effect to maintain the conformal set to be as small as possible as long
1397 as $y_t \in C_{\pi}(x_t)$. On the other hand, if $\pi \in (\Pi_t^*)^c$, i.e., $y_t \notin C_{\pi}(x_t)$, $a_t(\pi)$ takes small value as the
1398 size of the conformal set is **large** ($|C_{\pi}(x_t)| \uparrow$). This ensures the penalty term to take the miscoverage
1399 loss, instead of the set size efficiency, of priority importance when $y_t \notin C_{\pi}(x_t)$.
1400

Properties of the Loss Estimator. Then, the followings are properties of our loss estimator $\ell_t(\pi, c) = d_t(\pi, c) + \frac{\lambda\alpha}{\lambda+2}a_t(\pi)$.

- By the definition of $d_t(\pi, c)$, $d_t(\pi, c) = c \forall \pi \in \Pi_t^*$ and $d_t(\pi, c) = 1 - c \forall \pi \in (\Pi_t^*)^c$. Note that as long as $c \in (0, 0.5)$,

$$c < 1 - c. \quad (19)$$

- For all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 \leq \pi_2$,

$a_t(\pi_1) \geq a_t(\pi_2)$ ($\because \exp(-\frac{\pi}{\sqrt{T}})$ is monotonically decreasing).

Therefore, for all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 \leq \pi_2$,

$$\ell_t(\pi_1, c) \geq \ell_t(\pi_2, c), \quad (20)$$

- For all $\pi_1, \pi_2 \in (\Pi_t^*)^c$ such that $\pi_1 \leq \pi_2$,

$a_t(\pi_1) \leq a_t(\pi_2)$ ($\because \exp(-\frac{1-\pi}{\sqrt{T}})$ is monotonically increasing).

Therefore, for all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 < \pi_2$,

$$\ell_t(\pi_1, c) \leq \ell_t(\pi_2, c), \quad (21)$$

- Let $\ell_{t,0} := \max_{\tilde{\pi} \in \Pi_t^*} \ell_t(\tilde{\pi}, c)$ and $\ell_{t,1} := \min_{\tilde{\pi} \in (\Pi_t^*)^c} \ell_t(\tilde{\pi}, c)$. Due to the two properties above (Eq. 20-21), by letting $\pi_{t,0} := \min_{\tilde{\pi} \in \Pi_t^*} \tilde{\pi} = 0$ and $\pi_{t,1} := \min_{\tilde{\pi} \in (\Pi_t^*)^c} \tilde{\pi}$,

$$\ell_{t,0} = \ell_t(\pi_{t,0}, c),$$

Since controlling the miscoverage is of utmost importance before optimizing the set size in conformal prediction, the loss estimator will be most satisfactory when $\ell_{t+0} \leq \ell_{t+1} \forall t \in [T]$.

This is true when $\ell_{t,1} - \ell_{t,0} = (1 - 2c) + \frac{\lambda\alpha}{\lambda+2} \left\{ \exp\left(-\frac{1-\pi_{t,1}}{\sqrt{T}}\right) - \exp(0) \right\} \geq 0$. Note that it holds if we set $c = \frac{\alpha}{\lambda+2}$ as our proposed algorithm does:

$$\begin{aligned}
\ell_{t,1} - \ell_{t,0} &= \left(1 - 2\frac{\alpha}{\lambda+2}\right) + \frac{\lambda\alpha}{\lambda+2} \left\{ \exp\left(-\frac{1-\pi_{t,1}}{\sqrt{T}}\right) - \exp(0) \right\} \\
&\geq \left(1 - 2\frac{\alpha}{\lambda+2}\right) + \frac{\lambda\alpha}{\lambda+2} \{-\exp(0)\} \\
&= 1 - \alpha \\
&\geq 0.
\end{aligned}$$

Therefore,

$$\ell_t(\pi_1, \frac{\alpha}{\lambda+2}) \leq \ell_t(\pi_2, \frac{\alpha}{\lambda+2}) \quad \forall \pi_1 \in \Pi_t^*, \quad \forall \pi_2 \in (\Pi_t^*)^c. \quad (22)$$

The properties of our proposed loss estimator $\ell_t(\pi, c)$ above hold for all $t \in [T]$ and $c \in (0, 0.5)$. However, we only consider the case where $c = \frac{\alpha}{\lambda+2}$ henceforth, since it is the condition that the conversion lemma requires for the coverage guarantee (Lemma 1).

Here, we define the normalized gain $g_t(\pi)$, which is the one used to define the biased unlocking estimator (Eq. 18) as follows:

$$g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\lambda+2})}{\ell_{\max} - \ell_{\min}} \quad \forall \pi \in \Pi,$$

where $\ell_{\max} := (1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2}$ and $\ell_{\min} := \frac{\alpha}{\lambda+2}$. Since we only consider the case where $c = \frac{\alpha}{\lambda+2}$ in the algorithm, we use the notation $q_t(\pi)$ instead of $q_t(\pi, \frac{\alpha}{\lambda+2})$ for brevity.

1458
1459 **Useful Inequalities.** Based on these properties of our proposed loss estimator, by letting $c = \frac{\alpha}{\lambda+2}$
1460 as our algorithm, the following inequalities hold for each case:

- 1461 • Case 1 ($m_t(\pi_t) = 0$)

1462 1. $\pi \in \Pi_t^*$ and $\pi \leq \pi_t$: $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \geq \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) \Leftrightarrow g_t(\pi) \leq g_t(\pi_t)$ (\because Eq. 20)
1463 2. $\pi \in \Pi_t^*$ and $\pi > \pi_t$: $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \leq \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) \Leftrightarrow g_t(\pi) \geq g_t(\pi_t)$, where
1464 $\ell_t(\pi_t, \frac{\alpha}{\lambda+2}) - \ell_t(\pi, \frac{\alpha}{\lambda+2}) = \frac{\lambda\alpha}{\lambda+2} \left\{ \exp(-\frac{\pi_t}{o(T)}) - \exp(-\frac{\pi}{o(T)}) \right\} = o(T)^{-1}$ (\because Taylor expansion). Therefore,
1465 since $g_t(\pi) - g_t(\pi_t) = \frac{\frac{\lambda\alpha}{\lambda+2} \left\{ \exp(-\frac{\pi_t}{o(T)}) - \exp(-\frac{\pi}{o(T)}) \right\}}{\ell_{\max} - \ell_{\min}}$,

$$1466 1467 1468 g_t(\pi) = g_t(\pi_t) + o(T)^{-1} \quad (\because \text{Eq. 20}).$$

1469 Therefore,

$$1470 1471 1472 g_t(\pi) \leq g_t(\pi_t) + o(T)^{-1} \quad \forall \pi \in \Pi_t^*. \quad (23)$$

- 1473 • Case 2 ($m_t(\pi_t) = 1$)

1474 1. $\pi \in \Pi_t(\pi_t) \subset (\Pi_t^*)^c$: $\ell_t(\pi) \geq \ell_t(\pi_t) \Leftrightarrow g_t(\pi) \leq g_t(\pi_t)$ (\because Eq. 21)

1475 Therefore,

$$1476 1477 1478 g_t(\pi) \leq g_t(\pi_t) \quad \forall \pi \in \Pi(\pi_t). \quad (24)$$

1479 G.3 EXPECTATION AND ARM-WISE BOUNDS FOR THE UNLOCKING ESTIMATOR

1480 Based on our preceding results, our biased unlocking estimator satisfies the following inequality:

- 1481 • Case 1 ($m_t(\pi_t) = 0$)

$$1482 1483 1484 \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) = \sum_{\pi \in \Pi} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1485 = \sum_{\pi \in \Pi_t^*} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) + \sum_{\pi \in (\Pi_t^*)^c} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1486 = \sum_{\pi \in \Pi_t^*} p_t(\pi) \left\{ \frac{g_t(\pi)}{\sum_{\bar{\pi} \in \Pi_t^*} p_t(\bar{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \sum_{\pi \in (\Pi_t^*)^c} p_t(\pi) \left\{ \frac{\beta}{p_t(\pi)} \right\} \\ 1487 \leq g_t(\pi_t) + o(T)^{-1} + K\beta \quad (\because \text{Eq. 23}) \quad (25)$$

- 1488 • Case 2 ($m_t(\pi_t) = 1$)

$$1489 1490 1491 \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) = \sum_{\pi \in \Pi} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1492 = \sum_{\pi \in \Pi_t(\pi_t)} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) + \sum_{\pi \in \Pi_t(\pi_t)^c} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1493 = \sum_{\pi \in \Pi_t(\pi_t)} p_t(\pi) \left\{ \frac{g_t(\pi)}{\sum_{\bar{\pi} \in \Pi_t(\pi_t)} p_t(\bar{\pi})} + \frac{\beta}{p_t(\pi)} \right\} + \sum_{\pi \in \Pi_t(\pi_t)^c} p_t(\pi) \left\{ \frac{\beta}{p_t(\pi)} \right\} \\ 1494 \leq g_t(\pi_t) + K\beta \quad (\because \text{Eq. 24}) \quad (26)$$

1495 Combining Eq. 25 and Eq. 26, the following upper bound holds irrespective of the choice of π_t :

$$1496 1497 1498 \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) \leq g_t(\pi_t) + o(T)^{-1} + K\beta. \quad (27)$$

1501 **Arm-wise High Probability Bound.** Before moving on to the regret analysis, we provide the
1502 following lemma, a variant of Lemma 2, which characterizes the property of our biased gain estimator
1503 under the semi-bandit feedback scenario.

1504 **Lemma 3.** For $\beta \leq 1$ and $g_t(\cdot) \in [0, 1]$, define $\tilde{g}_t(\pi) \in [0, \infty)$ as Eq. 18. Then, for each $\pi \in \Pi$, the
1505 following holds with probability at least $1 - \delta$:

$$1506 1507 1508 \sum_{t=1}^T g_t(\pi) \leq \sum_{t=1}^T \tilde{g}_t(\pi) + \frac{\ln(\delta^{-1})}{\beta}.$$

1509 **Proof. Step 1: Useful Decomposition.**

1510 Let \mathbb{E}_t be the expectation conditioned on π_1, \dots, π_{t-1} . First, we decompose the estimator in Eq. 18 as

1512

the following:

1513

$$\begin{aligned}
\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &:= \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A)}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times (B)}_{\text{partial feedback}} \\
&= \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times \{(A1) + (A2)\}}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times \{(B1) + (B2)\}}_{\text{partial unlocking}} \\
&= \underbrace{\{\mathbb{1}(m_t(\pi_t) = 0) \times (A1) + \mathbb{1}(m_t(\pi_t) = 1) \times (B1)\}}_{(C1)} + \underbrace{\{\mathbb{1}(m_t(\pi_t) = 0) \times (A2) + \mathbb{1}(m_t(\pi_t) = 1) \times (B2)\}}_{(C2)}
\end{aligned}$$

1514

where

1515

$$(A) = \underbrace{\mathbb{1}(\pi \in \Pi_t^*) \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})}}_{(A1)} + \underbrace{\frac{\beta}{p_t(\pi)}}_{(A2)}$$

1516

and

1517

$$(B) = \underbrace{\mathbb{1}(\pi \in \Pi_t(\pi_t)) \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})}}_{(B1)} + \underbrace{\frac{\beta}{p_t(\pi)}}_{(B2)}.$$

1518

Step 2: Show $\Delta_t(\pi_t) \leq 1$.

1519

Next, we show the following two claims are true:

1520

- Claim 1 ($m_t(\pi_t) = 0$)

1521

$$\beta g_t(\pi) - \beta \times (A1) = \beta g_t(\pi) - \beta \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \leq 1$$

1522

- Claim 2 ($m_t(\pi_t) = 1$):

1523

$$\beta g_t(\pi) - \beta \times (B1) = \beta g_t(\pi) - \beta \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})} \leq 1$$

1524

Given $\pi \in \Pi$, Claim 1 and Claim 2 always hold irrespective of the choice of π_t by the algorithm. Then, by letting $\Delta_t(\pi_t) := \beta g_t(\pi) - \beta \times (C1)$, $\Delta_t(\pi_t) \leq 1$.

1525

Step 3: Show $\mathbb{E} \exp \left[\sum_{t=1}^T (\Delta_t(\pi_t) - \beta \times (C2)) \right] \leq 1$.

1526

Therefore, since (1) $\exp(x) \leq 1 + x + x^2$ for $x \leq 1$ and (2) $\Delta_t(\pi_t) \leq 1$, for $\beta \leq 1$, we have

1527

$$\begin{aligned}
\mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] &\leq \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2)) \right] \\
&= \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \right] \times \exp \left(\frac{-\beta^2}{p_t(\pi)} \right)
\end{aligned}$$

1528

Since π is fixed, we consider each case where $\pi \in \Pi_t^*$ and $\pi \in (\Pi_t^*)^c$.

1529

Now, our goal is to show that

1530

$$\mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] \leq 1 \quad \forall t \in [T].$$

1531

Step 3-1: $\pi \in \Pi_t^*$.

1532

Step 3-1-1: $\mathbb{E}_t [\Delta_t(\pi_t)]$.

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

$$\begin{aligned}
\sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) &= \beta g_t(\pi) - \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \times \beta (C1) \\
&= \beta g_t(\pi) - \beta \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \frac{g_t(\pi)}{\sum_{\pi' \in \Pi_t^*} p_t(\pi')} \\
&= 0.
\end{aligned}$$

1566
1567 **Step 3-1-2:** $\mathbb{E}_t[\Delta_t(\pi_t)^2]$.

1568

$$\begin{aligned}
 1569 \quad \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 &= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 \\
 1570 \quad &= (\beta g_t(\pi))^2 \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \left(1 - \frac{1}{\sum_{\pi' \in \Pi_t^*} p_t(\pi')}\right)^2 + (\beta g_t(\pi))^2 \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \\
 1571 \quad &\leq \frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \quad (\because g_t(\pi), \tilde{g}_t(\pi) \in [0, 1]) \\
 1572 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1573 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1574 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1575 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1576 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1577 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1578 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1579 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1580 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1581 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1582 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1583 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1584 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1585 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1586 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1587 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1588 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1589 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1590 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1591 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1592 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1593 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1594 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1595 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1596 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1597 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1598 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1599 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1600 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1601 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1602 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1603 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1604 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1605 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1606 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1607 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1608 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1609 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1610 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1611 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1612 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1613 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1614 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1615 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1616 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1617 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1618 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 1619 \quad &\leq \frac{\beta^2}{p_t(\pi)} \\
 \end{aligned}$$

1581 **Step 3-1-3: Combine.** Combining the above results and applying the fact that $1 + x \leq \exp(x)$ is
1582 suffice as follows:

1583

$$\begin{aligned}
 1584 \quad \mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] &\leq \mathbb{E}_t [(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2))] \\
 1585 \quad &\leq \exp\left(-\frac{\beta^2}{p_t(\pi)}\right) \mathbb{E}_t [(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2)] \\
 1586 \quad &\leq \exp\left(-\frac{\beta^2}{p_t(\pi)}\right) \left(1 + \frac{\beta^2}{p_t(\pi)}\right) \\
 1587 \quad &\leq 1 \quad (\because 1 + x \leq \exp(x)).
 \end{aligned}$$

1592

1593 **Step 3-2:** $\pi \in (\Pi_t^*)^c$.

1594

1595 **Step 3-2-1:** $\mathbb{E}_t[\Delta_t(\pi_t)]$.

1596

$$\begin{aligned}
 1597 \quad \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) &= \beta g_t(\pi) - \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \times \beta(C1) \\
 1598 \quad &= \beta g_t(\pi) - \beta \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \frac{g_t(\pi)}{\sum_{\pi' \in \Pi_t(\tilde{\pi})} p_t(\pi')} \\
 1599 \quad &\leq \beta g_t(\pi) - \beta \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \frac{g_t(\pi)}{\sum_{\pi' \in (\Pi_t^*)^c} p_t(\pi')} \\
 1600 \quad &\leq 0.
 \end{aligned}$$

1607

1608 **Step 3-2-2:** $\mathbb{E}_t[\Delta_t(\pi_t)^2]$.

1609

$$\begin{aligned}
 1610 \quad \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 &= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 \\
 1611 \quad &= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 \\
 1612 \quad &= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi))^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \frac{\beta g_t(\pi)}{\sum_{\pi' \in \Pi_t(\tilde{\pi})} p_t(\pi')})^2 \\
 1613 \quad &\quad + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi))^2 \\
 1614 \quad &\leq \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi))^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \frac{\beta g_t(\pi)}{p_t(\tilde{\pi})})^2 \\
 1615 \quad &\quad + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi))^2 \\
 1616 \quad &\leq \frac{\beta^2}{p_t(\pi)} \quad (\because g_t(\pi), \tilde{g}_t(\pi) \in [0, 1]).
 \end{aligned}$$

1620 **Step 3-2-3: Combine.** Combining the above results,
 1621

$$\begin{aligned}
 1622 \quad \mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] &\leq \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2)) \right] \\
 1623 \quad &\leq \exp\left(-\frac{\beta^2}{p_t(\pi)}\right) \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \right] \\
 1624 \quad &\leq \exp\left(-\frac{\beta^2}{p_t(\pi)}\right) \left(1 + \frac{\beta^2}{p_t(\pi)}\right) \\
 1625 \quad &\leq 1 \quad (\because 1 + x \leq \exp(x)).
 \end{aligned}$$

1626 By sequentially applying the double expectation rule for $t = T, \dots, 1$,
 1627

$$\mathbb{E} \exp \left[\sum_{t=1}^T (\Delta_t(\pi_t) - \beta \times (C2)) \right] \leq 1. \quad (28)$$

1628 Moreover, from the Markov's inequality, we have $\mathbb{P}(X > \ln(1/\delta)) = \mathbb{P}(\exp(X) > 1/\delta) \leq \delta \mathbb{E} \exp(X)$. Combined with Eq. 28, we have
 1629

$$\beta \sum_{t=1}^T g_t(\pi) \leq \beta \sum_{t=1}^T \tilde{g}_t(\pi) + \ln(\delta^{-1})$$

1630 with probability at least $1 - \delta$. This completes the proof. \square
 1631

1632 **Proof of the Theorem.** We first provide the proof sketch of Theorem 1 as the following.
 1633

1634 *Proof Sketch.* The proof on Theorem 1 is complete, by substituting the above inequality (Eq. 27) to
 1635 (Eq. 9) in the proof of EXP3.P (Theorem 2).
 1636

1637 First, we re-express Eq. 27 for the simplicity of proof as the following:
 1638

$$-g_t(\pi_t) \leq -\mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) + o(T)^{-1} + K\beta \quad (29)$$

1639 Now, we show the proof on the regret bound of Algorithm 4, which consists of four steps.
 1640

1641 First, our goal is to show that, if $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$,
 1642

$$\mathbf{Reg}(T, \alpha) \leq (\ell_{\max} - \ell_{\min}) \left(K\beta T + o(T)^{-1}T + \gamma T + (1 + \beta)\eta KT + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right). \quad (30)$$

1643 Irrespective of the hyperparameter setup, note that Eq. 30 always holds if $T \geq 5.15\sqrt{TK\ln(K\delta^{-1})}$.
 1644 If $T < 5.15\sqrt{TK\ln(K\delta^{-1})}$, this implies that $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$, which makes it suffice to
 1645 show that Eq. 30 holds for $\gamma \leq \frac{1}{2}$ and $(1 + \beta)K\eta \leq \gamma$.
 1646

1647 **Step 1: Simple equalities.** Recall that the gain $g_t(\pi) \in [0, 1]$ is defined with respect to the loss
 1648 $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \in [\ell_{\min}, \ell_{\max}]$ as the following:
 1649

$$g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\lambda+2})}{\ell_{\max} - \ell_{\min}}.$$

1650 Then, for all $\pi \in \Pi$, the following equality holds:
 1651

$$\begin{aligned}
 1652 \quad R_{\pi}(T, \alpha) &= \sum_{t=1}^T \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) - \sum_{t=1}^T \ell_t(\pi, \frac{\alpha}{\lambda+2}) \\
 1653 \quad &= (\ell_{\max} - \ell_{\min}) \left(\sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T g_t(\pi_t) \right) \quad (\because \text{Definition of } g_t(\cdot)) \\
 1654 \quad &\leq (\ell_{\max} - \ell_{\min}) \left(K\beta T + o(T)^{-1}T + \sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \right) \quad (\because \text{Eq. 29}). \quad (31)
 \end{aligned}$$

1674
 1675
 1676
 1677
 Using the definition of cumulant generating function and the relationship that $p_t = (1 - \gamma)\omega_t + \gamma u$
 where $\omega_t(\pi) = \frac{\exp(\eta\tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta\tilde{G}_{t-1}(\tilde{\pi}))}$ and u is the uniform distribution over K arms, the following
 holds:

$$\begin{aligned} -\mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) &= -(1 - \gamma)\mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) - \gamma\mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \quad (\because p_t = (1 - \gamma)\omega_t + \gamma u) \\ &= (1 - \gamma) \left[\frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) - \right. \\ &\quad \left. \frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) \right] - \gamma\mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \quad (32) \end{aligned}$$

1684
 1685
Step 2: Bounding the first term of Eq. 32. First, we show that irrespective of the choice of π_t ,

$$\eta\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) \leq 1 \quad \forall \pi \in \Pi.$$

- $m(\pi_t) = 0, \pi \in \Pi_t^*$

$$\begin{aligned} \eta\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \eta \frac{\beta}{p_t(\pi)} \\ &\leq \eta \left(\frac{g_t(\pi) + \beta}{p_t(\pi)} \right) \\ &\leq \frac{\eta(1 + \beta)}{(1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K}} \quad (\because (1 + \beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

- $m(\pi_t) = 1, \pi \in \Pi_t(\pi_t)$

$$\begin{aligned} \eta\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \left(\frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)} p_t(\tilde{\pi})} + \frac{\beta}{p_t(\pi)} \right) \\ &\leq \eta \left(\frac{g_t(\pi) + \beta}{p_t(\pi)} \right) \\ &\leq \frac{\eta(1 + \beta)}{(1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K}} \quad (\because (1 + \beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

- $m(\pi_t) = 0, \pi \in (\Pi_t^*)^c; m(\pi_t) = 1, \pi \in \Pi_t(\pi_t)^c$

$$\begin{aligned} \eta\tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \frac{\beta}{p_t(\pi)} \\ &\leq \eta \left(\frac{1 + \beta}{p_t(\pi)} \right) \\ &\leq \frac{\eta(1 + \beta)}{(1 - \gamma)w_t(\pi) + \gamma \frac{1}{K}} \\ &\leq \frac{\gamma \frac{1}{K}}{(1 - \gamma)w_t(\pi) + \gamma \frac{1}{K}} \quad (\because (1 + \beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

1719
 1720
 Since (1) $\ln x \leq x - 1$, (2) $\exp(x) \leq 1 + x + x^2$ for all $x \leq 1$, and (3) $\eta\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \leq 1$,

$$\begin{aligned} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta(\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)))) \\ &= \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) - \eta\mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \\ &\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \{\exp(\eta\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) - 1 - \eta\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))\} \quad (\because \ln x \leq x - 1) \\ &\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))^2 \quad (\because \exp(x) \leq 1 + x + x^2) \\ &\leq \eta^2 \frac{1 + \beta}{1 - \gamma} \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)), \end{aligned} \quad (33)$$

1728 where the last inequality holds due to the following:
1729

$$\begin{aligned}
 1730 \quad & \bullet \quad m(\pi_t) = 0 \\
 1731 \quad & \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 = \eta^2 \sum_{\tilde{\pi} \in \Pi} w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 \\
 1732 \quad & \leq \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 \left(\because \frac{w_t(\tilde{\pi})}{p_t(\tilde{\pi})} \leq \frac{1}{1-\gamma} \right) \\
 1733 \quad & = \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) \mathbb{1}(\tilde{\pi} \in \Pi_t^*)}{\sum_{\pi' \in \Pi_t^*} p_t(\pi')} + \frac{\beta}{p_t(\tilde{\pi})} \right) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1734 \quad & \leq \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) \mathbb{1}(\tilde{\pi} \in \Pi_t^*) + \beta}{p_t(\tilde{\pi})} \right) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1735 \quad & \leq \eta^2 \frac{1+\beta}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1736 \quad & \\
 1737 \quad & \\
 1738 \quad & \\
 1739 \quad & \\
 1740 \quad & \bullet \quad m(\pi_t) = 1 \\
 1741 \quad & \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 = \eta^2 \sum_{\tilde{\pi} \in \Pi} w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 \\
 1742 \quad & \leq \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 \left(\because \frac{w_t(\tilde{\pi})}{p_t(\tilde{\pi})} \leq \frac{1}{1-\gamma} \right) \\
 1743 \quad & = \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) \mathbb{1}(\tilde{\pi} \in \Pi_t(\pi_t))}{\sum_{\pi \in \Pi_t(\pi_t)} p_t(\pi')} + \frac{\beta}{p_t(\tilde{\pi})} \right) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1744 \quad & \leq \frac{\eta^2}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) \mathbb{1}(\tilde{\pi} \in \Pi_t^*) + \beta}{p_t(\tilde{\pi})} \right) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1745 \quad & \leq \eta^2 \frac{1+\beta}{1-\gamma} \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1746 \quad & \\
 1747 \quad & \\
 1748 \quad & \\
 1749 \quad & \\
 1750 \quad & \textbf{Step 3: Summing.} Let $\tilde{G}_0(\tilde{\pi}) = 0$. Then, combining Eq. 32-Eq. 33 and summing over t yield
 1751 \quad & - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
 1752 \quad & \leq (1+\beta)\eta \sum_{t=1}^T \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) - \frac{1-\gamma}{\eta} \sum_{t=1}^T \ln \left(\sum_{\tilde{\pi} \in \Pi} w_t(\tilde{\pi}) \exp(\eta \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))) \right) \\
 1753 \quad & = (1+\beta)\eta \sum_{t=1}^T \sum_{\tilde{\pi} \in \Pi} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) - \frac{1-\gamma}{\eta} \ln \left(\frac{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi}))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_0(\tilde{\pi}))} \right) \left(\because \text{Definition of } \omega_t(\tilde{\pi}), \tilde{G}_t(\tilde{\pi}) \right) \\
 1754 \quad & \leq (1+\beta)\eta K \max_{\tilde{\pi} \in \Pi} \tilde{G}_T(\tilde{\pi}) + \frac{\ln K}{\eta} - \frac{1-\gamma}{\eta} \ln \left(\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi})) \right) \left(\because 1-\gamma \leq 1 \text{ and } \tilde{G}_0(\tilde{\pi}) = 0 \right) \\
 1755 \quad & \leq -(1-\gamma - (1+\beta)\eta K) \max_{\tilde{\pi} \in \Pi} \tilde{G}_T(\tilde{\pi}) + \frac{\ln K}{\eta} \\
 1756 \quad & \leq -(1-\gamma - (1+\beta)\eta K) \max_{\tilde{\pi} \in \Pi} \sum_{t=1}^T g_t(\tilde{\pi}) + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta}, \\
 1757 \quad & \\
 1758 \quad & \\
 1759 \quad & \\
 1760 \quad & \\
 1761 \quad & \\
 1762 \quad & \\
 1763 \quad & \\
 1764 \quad & \\
 1765 \quad & \\
 1766 \quad & \\
 1767 \quad & \\
 1768 \quad & \\
 1769 \quad & \\
 1770 \quad & \\
 1771 \quad & \\
 1772 \quad & \\
 1773 \quad & \\
 1774 \quad & \\
 1775 \quad & \\
 1776 \quad & \\
 1777 \quad & \\
 1778 \quad & \\
 1779 \quad & \\
 1780 \quad & \\
 1781 \quad &
 \end{aligned} \tag{34}$$

1768 where the last inequality holds due to the Lemma 3, union bound (the reason for using the confidence
1769 term of $\frac{\delta}{K}$), and the initial assumption that $\gamma \leq \frac{1}{2}$ and $(1+\beta)K\eta \leq \gamma$. Plugging Eq. 34 into Eq. 31,
1770 the following holds with probability $1 - \frac{\delta}{K}$ for all $\pi \in \Pi$:

$$\begin{aligned}
 1771 \quad & R_\pi(T, \alpha) \leq (\ell_{\max} - \ell_{\min}) \left(K\beta T + o(T)^{-1}T + \sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \right) \\
 1772 \quad & \leq (\ell_{\max} - \ell_{\min}) \left(K\beta T + o(T)^{-1}T + \sum_{t=1}^T g_t(\pi) - (1-\gamma - (1+\beta)\eta K) \max_{\tilde{\pi} \in \Pi} \sum_{t=1}^T g_t(\tilde{\pi}) + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right) \\
 1773 \quad & \leq (\ell_{\max} - \ell_{\min}) \left(K\beta T + o(T)^{-1}T + \gamma T + (1+\beta)\eta K T + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right).
 1774 \quad & \\
 1775 \quad & \\
 1776 \quad & \\
 1777 \quad & \\
 1778 \quad & \\
 1779 \quad &
 \end{aligned}$$

1780 The last inequality holds when we set $\lambda > 0$ to be the one such that $\varepsilon(\lambda, \alpha) = o(T)^{-1}$, which we
1781 set $\frac{1}{\sqrt{T}}$ in our algorithm. Since $\text{Reg}(T, \alpha) := \max R_\pi(T, \alpha)$, this completes the proof by taking the
union bound.

1782 H PROOF OF THEOREM 5 FOR EXP3.P-CP-UNLOCK

1784 H.1 BIASED UNLOCKING ESTIMATOR AND ITS PROPERTIES

1786 **Definition.** First of all, we consider the following biased unlocking estimator $\tilde{g}_t(\pi \mid \Pi_t(\pi_t))$ under
1787 the semi-bandit feedback scenario as the following:

$$1788 \tilde{g}_t(\pi \mid \Pi_t(\pi_t)) := \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A)}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times (B)}_{\text{partial unlocking}}. \quad (35)$$

1791 Letting $\Pi_t^* := \{\tilde{\pi} \in \Pi : \tilde{\pi} \leq f_t(x_t, y_t)\}$,

$$1793 (A) := \mathbb{1}(\pi \in \Pi_t^*) \left\{ \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \left(1 + \frac{1}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})}\right) \beta \right\} + \mathbb{1}(\pi \in (\Pi_t^*)^c) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\}$$

1796 and

$$1798 (B) := \mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\} + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \left\{ \tilde{g}_t(\pi) + \left(1 + \frac{1}{p_t(\pi)}\right) \beta \right\}.$$

1801 In addition, the unlocking set $\Pi_t(\pi_t) \subset \Pi$ is defined as follows:

$$1803 \Pi_t(\pi_t) = \begin{cases} \Pi & \text{if } m_t(\pi_t) = 0 \\ \{\tilde{\pi} \in \Pi : \tilde{\pi} \geq \pi_t\} & \text{if } m_t(\pi_t) = 1. \end{cases}$$

1806 Note that $m_t(\pi_1) \leq m_t(\pi_2) \forall \pi_1 \leq \pi_2$ due to the monotonicity property of the conformal set with
1807 respect to the miscoverage, i.e., $\mathbb{1}(y_t \notin C_{\pi_1}(x_t)) \leq \mathbb{1}(y_t \notin C_{\pi_2}(x_t))$ whenever $\pi_1 \leq \pi_2$.

1808 Besides, we use a **pseudo-gain** $\tilde{g}_t(\pi) \forall \pi \in \Pi_t(\pi_t)^c$, since we only observe the true gain only
1809 when $\pi \in \Pi_t(\pi_t) \subset (\Pi_t^*)^c$ if $m_t(\pi_t) = 1$, i.e., $y_t \notin C_{\pi_t}(x_t)$. We will formally define the term in
1810 subsequent sections.

1812 **Properties of the Unlocking Set.** The followings are properties of the unlocking set $\Pi_t(\tilde{\pi})$:

- 1814 • $\tilde{\pi} \in \Pi_t(\tilde{\pi})$
- 1815 • When $m_t(\tilde{\pi}) = 0$ (full feedback), the unlocking set is $\tilde{\pi}$ -independent, $\Pi = \Pi_t^* \cup (\Pi_t^*)^c$.

1817 H.2 LOSS FUNCTION AND ITS PROPERTIES

1819 **Definition.** Now, we introduce our loss estimator $\ell_t(\pi, c) = d_t(\pi, c) + \frac{\lambda\alpha}{\lambda+2} a_t(\pi)$ ($c \in (0, 0.5)$, $\lambda >$
1820 0) and its intuition behind. First, $d_t(\pi, c) := |\mathbb{1}(y_t \notin C_{\pi}(x_t)) - c|$ is defined as the **miscoverage**
1821 **loss**. Note that the conversion lemma (Lemma 1) ensures the convergence to target coverage $1 - \alpha$
1822 when $c = \frac{\alpha}{\lambda+2}$. Second, $a_t(\pi)$ is the **penalty term to optimize the set size**.

1824 **Rationale for the Design of $a_t(\pi)$.** Recalling that (1) the miscoverage loss is of primary importance
1825 in conformal prediction and (2) the binary search-type algorithm is implemented in the batch learning
1826 set-up (ref.), we define $a_t(\pi)$ as the following:

$$1828 a_t(\pi) := \mathbb{1}(m_t(\pi) = 0) \exp\left(-\frac{\pi}{o(T)}\right) + \mathbb{1}(m_t(\pi) = 1) \exp\left(-\frac{1 - \pi}{o(T)}\right)$$

1830 Here, we set denominator inside the exponential to be \sqrt{T} , which can be any of the form $o(T) =$
1831 $T^k \forall k \in [0.5, 1)$ such that $\frac{o(T)}{T} \rightarrow 0$ as $T \rightarrow \infty$. Such denominator is necessary for the regret
1832 analysis, which will be described in detail in subsequent sections.

1834 Intuitively, if $\pi \in \Pi_t^*$, i.e., $y_t \in C_{\pi}(x_t)$, $a_t(\pi)$ takes small value as the size of the conformal set is
1835 **small** ($|C_{\pi}(x_t)| \downarrow$). This has the effect to maintain the conformal set to be as small as possible as long
as $y_t \in C_{\pi}(x_t)$. On the other hand, if $\pi \in (\Pi_t^*)^c$, i.e., $y_t \notin C_{\pi}(x_t)$, $a_t(\pi)$ takes small value as the

size of the conformal set is **large** ($|C_\pi(x_t)| \uparrow$). This ensures the penalty term to take the miscoverage loss, instead of the set size efficiency, of priority importance when $y_t \notin C_\pi(x_t)$.

Actually, the same intuition is considered in the design of the biased unlocking estimator $\tilde{g}_t(\pi|\Pi_t(\pi_t))$ (Eq. 35). Specifically, if we look at cases where $(\pi \in \Pi_t^*)^c$, $\mathbb{1}(\pi \in (\Pi_t^*)^c) \left\{ \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\}$ in (A) and $\mathbb{1}(\pi \in \Pi_t(\pi_t)) \left\{ \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\}$ in (B), we observe that the denominator of the bonus term β is defined as $\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})$. Since it is a increasing function in π , the bonus term is modeled to be large when $\pi \in (\Pi_t^*)^c$ ($y_t \notin C_\pi(x_t)$) and π is small ($|C_\pi(x_t)| \uparrow$).

Properties of the Loss Estimator. Then, the followings are properties of our loss estimator $\ell_t(\pi, c) = d_t(\pi, c) + \frac{\lambda\alpha}{\lambda+2} a_t(\pi)$.

- By the definition of $d_t(\pi, c)$, $d_t(\pi, c) = c \forall \pi \in \Pi_t^*$ and $d_t(\pi, c) = 1 - c \forall \pi \in (\Pi_t^*)^c$. Note that as long as $c \in (0, 0.5)$,

$$c < 1 - c. \quad (36)$$

- For all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 \leq \pi_2$,

$$a_t(\pi_1) \geq a_t(\pi_2) (\because \exp(-\frac{\pi}{\sqrt{T}}) \text{ is monotonically decreasing}).$$

Therefore, for all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 \leq \pi_2$,

$$\ell_t(\pi_1, c) \geq \ell_t(\pi_2, c). \quad (37)$$

- For all $\pi_1, \pi_2 \in (\Pi_t^*)^c$ such that $\pi_1 \leq \pi_2$,

$$a_t(\pi_1) \leq a_t(\pi_2) (\because \exp(-\frac{1-\pi}{\sqrt{T}}) \text{ is monotonically increasing}).$$

Therefore, for all $\pi_1, \pi_2 \in \Pi_t^*$ such that $\pi_1 \leq \pi_2$,

$$\ell_t(\pi_1, c) \leq \ell_t(\pi_2, c). \quad (38)$$

- Let $\ell_{t,0} := \max_{\tilde{\pi} \in \Pi_t^*} \ell_t(\tilde{\pi}, c)$ and $\ell_{t,1} := \min_{\tilde{\pi} \in (\Pi_t^*)^c} \ell_t(\tilde{\pi}, c)$. Due to the two properties above (Eq. 37-38), by letting $\pi_{t,0} := \min_{\tilde{\pi} \in \Pi_t^*} \tilde{\pi} = 0$ and $\pi_{t,1} := \min_{\tilde{\pi} \in (\Pi_t^*)^c} \tilde{\pi}$,

$$\begin{aligned} \ell_{t,0} &= \ell_t(\pi_{t,0}, c), \\ \ell_{t,1} &= \ell_t(\pi_{t,1}, c). \end{aligned}$$

Since controlling the miscoverage is of utmost importance before optimizing the set size in conformal prediction, the loss estimator will be most satisfactory when $\ell_{t,0} \leq \ell_{t,1} \forall t \in [T]$.

This is true when $\ell_{t,1} - \ell_{t,0} = (1 - 2c) + \frac{\lambda\alpha}{\lambda+2} \left\{ \exp(-\frac{1-\pi_{t,1}}{\sqrt{T}}) - \exp(0) \right\} \geq 0$. Note that it holds if we set $c = \frac{\alpha}{\lambda+2}$ as our proposed algorithm does:

$$\begin{aligned} \ell_{t,1} - \ell_{t,0} &= (1 - 2\frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2} \left\{ \exp(-\frac{1-\pi_{t,1}}{\sqrt{T}}) - \exp(0) \right\} \\ &\geq (1 - 2\frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2} \{-\exp(0)\} \\ &= 1 - \alpha \\ &\geq 0. \end{aligned}$$

Therefore,

$$\ell_t(\pi_1, \frac{\alpha}{\lambda+2}) \leq \ell_t(\pi_2, \frac{\alpha}{\lambda+2}) \quad \forall \pi_1 \in \Pi_t^*, \forall \pi_2 \in (\Pi_t^*)^c. \quad (39)$$

The properties of our proposed loss estimator $\ell_t(\pi, c)$ above hold for all $t \in [T]$ and $c \in (0, 0.5)$. However, we only consider the case where $c = \frac{\alpha}{\lambda+2}$ henceforth, since it is the condition that the conversion lemma requires for the coverage guarantee (Lemma 1).

1890 Here, we define the normalized gain $g_t(\pi)$, which is the one used to define the biased unlocking
1891 estimator (Eq. 35) as follows:

$$1893 \quad g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\lambda+2})}{\ell_{\max} - \ell_{\min}} \quad \forall \pi \in \Pi,$$

1895 where $\ell_{\max} := (1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2}$ and $\ell_{\min} := \frac{\alpha}{\lambda+2}$. Since we only consider the case where $c = \frac{\alpha}{\lambda+2}$
1896 in the algorithm, we use the notation $g_t(\pi)$ instead of $g_t(\pi, \frac{\alpha}{\lambda+2})$ for brevity.
1897

1898 **Useful Inequalities.** Based on these properties of our proposed loss estimator, by letting $c = \frac{\alpha}{\lambda+2}$
1899 as our algorithm, the following inequalities hold for each case:

- 1901 • Case 1 ($m_t(\pi_t) = 0$)
 - 1902 1. $\pi \in \Pi_t^*$ and $\pi \leq \pi_t$: $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \geq \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) \Leftrightarrow g_t(\pi) \leq g_t(\pi_t)$ (\because Eq. 37)
 - 1903 2. $\pi \in \Pi_t^*$ and $\pi > \pi_t$: $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \leq \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) \Leftrightarrow g_t(\pi) \geq g_t(\pi_t)$, where
1904 $\ell_t(\pi_t, \frac{\alpha}{\lambda+2}) - \ell_t(\pi, \frac{\alpha}{\lambda+2}) = \frac{\lambda\alpha}{\lambda+2} \left\{ \exp\left(-\frac{\pi_t}{\sigma(T)}\right) - \exp\left(-\frac{\pi}{\sigma(T)}\right) \right\} = o(T)^{-1}$ (\because Taylor expansion). Therefore,
1905 since $g_t(\pi) - g_t(\pi_t) = \frac{\frac{\lambda\alpha}{\lambda+2} \left\{ \exp\left(-\frac{\pi_t}{\sigma(T)}\right) - \exp\left(-\frac{\pi}{\sigma(T)}\right) \right\}}{\ell_{\max} - \ell_{\min}}$,
1906 $g_t(\pi) = g_t(\pi_t) + o(T)^{-1}$ (\because Eq. 37).
 - 1907 3. $\pi \in (\Pi_t^*)^c$: $\ell_t(\pi) \geq \ell_t(\pi_t) \Leftrightarrow g_t(\pi) \leq g_t(\pi_t)$ (\because Eq. 39).
 - 1908 – Additionally, for all $\pi \in (\Pi_t^*)^c$,

$$\begin{aligned} 1911 \quad \frac{g_t(\pi)}{g_t(\pi_t)} &= \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\lambda+2})}{\ell_{\max} - \ell_t(\pi_t, \frac{\alpha}{\lambda+2})} \\ 1912 &= \frac{\{(1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2}\} - \{(1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2} \exp(-\frac{1-\pi}{\sqrt{T}})\}}{\{(1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2}\} - \{\frac{\alpha}{\lambda+2} + \frac{\lambda\alpha}{\lambda+2} \exp(-\frac{\pi}{\sqrt{T}})\}} \\ 1913 &\leq \frac{\frac{\lambda\alpha}{\lambda+2}}{1 - \frac{2\alpha}{\lambda+2}} \\ 1914 &= \frac{\lambda\alpha}{(\lambda+2) - 2\alpha} =: \varepsilon(\lambda, \alpha). \end{aligned}$$

1921 Therefore,

$$1922 \quad g_t(\pi) = \varepsilon(\lambda, \alpha) g_t(\pi_t) \quad \forall \pi \in (\Pi_t^*)^c.$$

1924 Therefore,

$$\begin{aligned} 1925 \quad g_t(\pi) &\leq g_t(\pi_t) + o(T)^{-1} \quad \forall \pi \in \Pi_t^*, \\ 1926 \quad g_t(\pi) &\leq \varepsilon(\lambda, \alpha) g_t(\pi_t) \quad \forall \pi \in (\Pi_t^*)^c. \end{aligned} \tag{40}$$

- 1928 • Case 2 ($m_t(\pi_t) = 1$)
 - 1929 1. $\pi \in \Pi_t(\pi_t) \subset (\Pi_t^*)^c$: $\ell_t(\pi) \geq \ell_t(\pi_t) \Leftrightarrow g_t(\pi) \leq g_t(\pi_t)$ (\because Eq. 38)
 - 1930 2. We use a **pseudo-gain** $\tilde{g}_t(\pi) \forall \pi \in \Pi_t(\pi_t)^c$, since we only observe the true gain only
1931 when $\pi \in \Pi_t(\pi_t) \subset (\Pi_t^*)^c$ if $m_t(\pi_t) = 1$. First, note that

$$1932 \quad \Pi_t(\pi_t)^c = \Pi_t^* \cup [(\Pi_t^*)^c - \Pi_t(\pi_t)].$$

1934 Second, we define the **pseudo-gain** $\tilde{g}_t(\pi) \forall \pi \in \Pi_t(\pi_t)^c$ in our algorithm as follows:

$$1935 \quad \tilde{g}_t(\pi) := \frac{\ell_{\max} - \tilde{\ell}_t(\pi)}{\ell_{\max} - \ell_{\min}} \tag{41}$$

$$1937 \quad = \frac{\ell_{\max} - \{(1 - \frac{\alpha}{\lambda+2}) + \frac{\lambda\alpha}{\lambda+2} \exp(-\frac{1-\pi}{\sqrt{T}})\}}{\ell_{\max} - \ell_{\min}}, \tag{42}$$

1940 which satisfies the following properties: For all $\pi \in \Pi_t(\pi_t)^c$,

$$\begin{aligned} 1941 \quad \tilde{g}_t(\pi) - g_t(\pi_t) &= \frac{\frac{\lambda\alpha}{\lambda+2} \left\{ \exp\left(-\frac{1-\pi}{\sqrt{T}}\right) - \exp\left(-\frac{1-\pi_t}{\sqrt{T}}\right) \right\}}{\ell_{\max} - \ell_{\min}} \\ 1942 &\leq o(T)^{-1} \quad (\because \text{Taylor expansion}). \end{aligned}$$

1944 Therefore,

1945

$$\begin{aligned} 1946 \quad g_t(\pi) &\leq g_t(\pi_t) \quad \forall \pi \in \Pi(\pi_t), \\ 1947 \quad \tilde{g}_t(\pi) &\leq g_t(\pi_t) + o(T)^{-1} \quad \forall \pi \in \Pi(\pi_t)^c. \end{aligned} \quad (43)$$

1948

1949 H.3 EXPECTATION AND ARM-WISE BOUNDS FOR THE UNLOCKING ESTIMATOR

1950

1951 Based on our preceding results, our biased unlocking estimator satisfies the following inequality:

1952

- 1953 • Case 1 ($m_t(\pi_t) = 0$)

1954

$$\begin{aligned} 1955 \quad \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) &= \sum_{\pi \in \Pi} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1956 &= \sum_{\pi \in \Pi_t^*} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) + \sum_{\pi \in (\Pi_t^*)^c} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1957 &= \sum_{\pi \in \Pi_t^*} p_t(\pi) \left\{ \frac{g_t(\pi) + \beta}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \beta \right\} + \sum_{\pi \in (\Pi_t^*)^c} p_t(\pi) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\} \quad (44) \\ 1958 &\leq (1 + \varepsilon(\lambda, \alpha)) g_t(\pi_t) + o(T)^{-1} + \left(2 + \frac{\sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi})}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \right) \beta \quad (\because \text{Eq. 40}) \\ 1959 \end{aligned}$$

1960

- 1961 • Case 2 ($m_t(\pi_t) = 1$)

1962

$$\begin{aligned} 1963 \quad \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) &= \sum_{\pi \in \Pi} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1964 &= \sum_{\pi \in \Pi_t(\pi_t)} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) + \sum_{\pi \in \Pi_t(\pi_t)^c} p_t(\pi) \tilde{g}_t(\pi | \Pi_t(\pi_t)) \\ 1965 &= \sum_{\pi \in \Pi_t(\pi_t)} p_t(\pi) \left\{ g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right\} + \sum_{\pi \in \Pi_t(\pi_t)^c} p_t(\pi) \left\{ \tilde{g}_t(\pi) + \frac{\beta}{p_t(\pi)} + \beta \right\} \\ 1966 &\leq g_t(\pi_t) + o(T)^{-1} + \left(1 + |\Pi_t(\pi_t)^c| + \frac{\sum_{\tilde{\pi} \in \Pi_t(\pi_t)^c} p_t(\tilde{\pi})}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \beta \quad (\because \text{Eq. 43}) \\ 1967 \end{aligned} \quad (45)$$

1968

1969 Combining Eq. 44 and Eq. 45, the following upper bound holds irrespective of the choice of π_t :

1970

$$\begin{aligned} 1971 \quad \mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) &\leq (1 + \varepsilon(\lambda, \alpha)) g_t(\pi_t) + o(T)^{-1} \\ 1972 &\quad + \underbrace{\left(1 + \{\mathbb{1}(m_t(\pi_t) = 0)1 + \mathbb{1}(m_t(\pi_t) = 1)|\Pi_t(\pi_t)^c|\} + \frac{\sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi})}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \right) \beta}_{C_t}. \\ 1973 \end{aligned} \quad (46)$$

1974

1975 **Arm-wise High Probability Bound.** Before moving on to the regret analysis, we provide the
1976 following lemma, a variant of Lemma 2, which characterizes the property of our biased gain estimator
1977 under the semi-bandit feedback scenario.

1978

1979 **Lemma 4.** For $\beta \leq 1$ and $g_t(\cdot) \in [0, 1]$, define $\tilde{g}_t(\pi) \in [0, \infty)$ as Eq. 35. Then, for each $\pi \in \Pi$, the
1980 following holds with probability at least $1 - \delta$:

1981

1982

$$\sum_{t=1}^T g_t(\pi) \leq \sum_{t=1}^T \tilde{g}_t(\pi) + \frac{\ln(\delta^{-1})}{\beta}.$$

1983

1984 **Proof. Step 1: Useful Decomposition.**

1985

1986 Let \mathbb{E}_t be the expectation conditioned on π_1, \dots, π_{t-1} . First, we decompose the estimator in Eq. 35 as
1987 the following:

1988

$$\begin{aligned} 1989 \quad \tilde{g}_t(\pi | \Pi_t(\pi_t)) &:= \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A)}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times (B)}_{\text{partial unlocking}} \\ 1990 &= \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times \{(A1) + (A2)\}}_{\text{full unlocking}} + \underbrace{\mathbb{1}(m_t(\pi_t) = 1) \times \{(B1) + (B2)\}}_{\text{partial unlocking}} \\ 1991 &= \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A1) + \mathbb{1}(m_t(\pi_t) = 1) \times (B1)}_{(C1)} + \underbrace{\mathbb{1}(m_t(\pi_t) = 0) \times (A2) + \mathbb{1}(m_t(\pi_t) = 1) \times (B2)}_{(C2)} \\ 1992 \end{aligned}$$

1993

1998

1999 where

2000

$$(A) = \underbrace{\mathbb{1}(\pi \in \Pi_t^*) \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \mathbb{1}(\pi \in (\Pi_t^*)^c) g_t(\pi)}_{(A1)} + \underbrace{\frac{\beta}{\mathbb{1}(\pi \in \Pi_t^*) \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) + \mathbb{1}(\pi \in (\Pi_t^*)^c) \sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} + \mathbb{1}(\pi \in \Pi_t^*) \beta}_{(A2)}$$

2001

2002

2003

and

2004

2005

2006

$$(B) = \underbrace{\mathbb{1}(\pi \in \Pi_t(\pi_t)) g_t(\pi) + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \tilde{g}_t(\pi)}_{(B1)} + \underbrace{\frac{\beta}{\mathbb{1}(\pi \in \Pi_t(\pi_t)) \sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi}) + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) p_t(\pi)} + \mathbb{1}(\pi \in \Pi_t(\pi_t)^c) \beta}_{(B2)}$$

2007

Step 2: Show $\Delta_t(\pi_t) \leq 1$.

2008

Next, we show the following two claims are true:

2009

2010

- Claim 1 ($m_t(\pi_t) = 0$)
 - $\pi \in \Pi_t^*$

2011

2012

$$\beta g_t(\pi) - \beta \times (A1) = \beta g_t(\pi) - \beta \frac{g_t(\pi)}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \leq 0$$

2013

2014

2015

2016

$$- \pi \in (\Pi_t^*)^c$$

2017

2018

$$\beta g_t(\pi) - \beta \times (A1) = \beta g_t(\pi) - \beta g_t(\pi) = 0$$

2019

2020

2021

- Claim 2 ($m_t(\pi_t) = 1$): We consider two cases where $\pi \in \Pi_t(\pi_t)$ and $\pi \in \Pi_t(\pi_t)^c$.

2022

2023

2024

$$- \pi \in \Pi_t(\pi_t)$$

2025

2026

$$\beta g_t(\pi) - \beta \times (B1) = \beta g_t(\pi) - \beta g_t(\pi) = 0$$

2027

2028

Given $\pi \in \Pi$, Claim 1 and Claim 2 always hold irrespective of the choice of π_t by the algorithm. Then, by letting $\Delta_t(\pi_t) := \beta g_t(\pi) - \beta \times (C1)$, $\Delta_t(\pi_t) \leq 1$.

2029

2030

Step 3: Show $\mathbb{E} \exp \left[\sum_{t=1}^T (\Delta_t(\pi_t) - \beta \times (C2)) \right] \leq 1$.

2031

Therefore, since (1) $\exp(x) \leq 1 + x + x^2$ for $x \leq 1$ and (2) $\Delta_t(\pi_t) \leq 1$, for $\beta \leq 1$, we have

2032

2033

2034

2035

2036

2037

$$\begin{aligned} \mathbb{E}_t [\exp (\Delta_t(\pi_t) - \beta \times (C2))] &\leq \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2)) \right] \\ &\leq \left\{ \mathbb{1}(\pi \in \Pi_t^*) \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} - \beta^2 \right) + \mathbb{1}(\pi \in (\Pi_t^*)^c) \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \right\} \\ &\quad \times \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \right] \end{aligned}$$

2038

Since π is fixed, we consider each case where $\pi \in \Pi_t^*$ and $\pi \in (\Pi_t^*)^c$.

2039

Now, our goal is to show that

2040

2041

2042

$$\mathbb{E}_t [\exp (\Delta_t(\pi_t) - \beta \times (C2))] \leq 1 \quad \forall t \in [T].$$

2043

Step 3-1: $\pi \in \Pi_t^*$.

2044

Step 3-1-1: $\mathbb{E}_t [\Delta_t(\pi_t)]$.

2045

2046

2047

2048

2049

2050

2051

$$\begin{aligned} \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) &= \beta g_t(\pi) - \sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \times \beta (C1) \\ &\leq \beta g_t(\pi) - \beta \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \frac{g_t(\pi)}{\sum_{\pi' \in \Pi_t^*} p_t(\pi')} \\ &= 0. \end{aligned}$$

2052 **Step 3-1-2:** $\mathbb{E}_t \left[\Delta_t(\pi_t)^2 \right]$.
 2053
 2054 $\sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 = \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2$
 2055
 2056
 2057 $= (\beta g_t(\pi))^2 \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \left(1 - \frac{1}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \right)^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta \tilde{g}_t(\pi))^2$
 2058
 2059
 2060 $\leq \frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \beta^2 (\because g_t(\pi), \tilde{g}_t(\pi) \in [0, 1])$
 2061
 2062

2063 **Step 3-1-3: Combine.** Combining the above results and applying the fact that $1 + x \leq \exp(x)$ is
 2064 suffice as follows:

2065 $\mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] \leq \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2)) \right]$
 2066
 2067 $= \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} - \beta^2 \right) \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \right]$
 2068
 2069
 2070 $\leq \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} - \beta^2 \right) \left(1 + \frac{\beta^2}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \beta^2 \right)$
 2071
 2072 $\leq 1 (\because 1 + x \leq \exp(x)).$
 2073

2074 **Step 3-2:** $\pi \in (\Pi_t^*)^c$.
 2075 **Step 3-2-1:** $\mathbb{E}_t \left[\Delta_t(\pi_t) \right]$.
 2076

2077 $\sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) = \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})$
 2078 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi}) + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})$
 2079 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi)) + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))$
 2080 $+ \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))$
 2081 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi)) + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))$
 2082 $+ \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi)) (\because \text{Eq. 41})$
 2083
 2084 $= 0.$
 2085

2086 **Step 3-2-2:** $\mathbb{E}_t \left[\Delta_t(\pi_t)^2 \right]$.
 2087

2088 $\sum_{\tilde{\pi} \in \Pi} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 = \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2$
 2089 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) \Delta_t(\tilde{\pi})^2$
 2090 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2$
 2091 $+ \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2$
 2092 $= \sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2 + \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2$
 2093 $+ \sum_{\tilde{\pi}: \pi \in \Pi_t(\tilde{\pi})^c} p_t(\tilde{\pi}) (\beta g_t(\pi) - \beta g_t(\pi))^2 (\because \text{Eq. 41})$
 2094
 2095 $= 0.$
 2096

2097 **Step 3-2-3: Combine.** Combining the above results,
 2098

2099 $\mathbb{E}_t [\exp(\Delta_t(\pi_t) - \beta \times (C2))] \leq \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \times \exp(-\beta \times (C2)) \right]$
 2100
 2101 $= \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \mathbb{E}_t \left[(1 + \Delta_t(\pi_t) + \Delta_t(\pi_t)^2) \right]$
 2102
 2103
 2104 $= \exp \left(-\frac{\beta^2}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right)$
 2105 $\leq 1.$

By sequentially applying the double expectation rule for $t = T, \dots, 1$,

$$\mathbb{E} \exp \left[\sum_{t=1}^T (\Delta_t(\pi_t) - \beta \times (C2)) \right] \leq 1. \quad (47)$$

Moreover, from the Markov's inequality, we have $\mathbb{P}(X > \ln(1/\delta)) = \mathbb{P}(\exp(X) > 1/\delta) \leq \delta \mathbb{E} \exp(X)$. Combined with Eq. 47, we have

$$\beta \sum_{t=1}^T g_t(\pi) \leq \beta \sum_{t=1}^T \tilde{g}_t(\pi) + \ln(\delta^{-1})$$

with probability at least $1 - \delta$. This completes the proof. \square

Proof of the Theorem. We first provide the proof sketch of Theorem 1 as the following.

Proof Sketch. The proof on Theorem 1 is complete, by substituting the above inequality (Eq. 46) to (Eq. 9) in the proof of EXP 3.P (Theorem 2).

First, we re-express Eq. 46 for the simplicity of proof as the following:

$$\begin{aligned}
-g_t(\pi_t) \leq & \frac{1}{1 + \varepsilon(\lambda, \alpha)} \left\{ -\mathbb{E}_{\pi \sim p_t} \tilde{g}_t(\pi | \Pi_t(\pi_t)) + o(T)^{-1} \right. \\
& \left. + \underbrace{\left(1 + \{ \mathbb{1}(m_t(\pi_t) = 0) 1 + \mathbb{1}(m_t(\pi_t) = 1) |\Pi_t(\pi_t)^c| \} + \frac{\sum_{\tilde{\pi} \in (\Pi_t^*)^c} p_t(\tilde{\pi})}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} \right) \beta}_{C_t} \right\}. \tag{48}
\end{aligned}$$

Now, we show the proof on the regret bound of Algorithm 1, which consists of four steps.

First, our goal is to show that, if $\gamma \leq \frac{1}{2}$ and $(1 + 2\beta)K\eta \leq \gamma$,

$$\mathbf{Reg}(T, \alpha) \leq \frac{\ell_{\max} - \ell_{\min}}{1 + \varepsilon(\lambda, \alpha)} \left(C\beta T + 3o(T)^{-1}T + \gamma T + (1 + 2\beta)\eta KT + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right), \quad (49)$$

where $C = \min\left(\frac{\sum_{t=1}^T C_t}{T}, 4\right)$.

Irrespective of the hyperparameter setup, note that Eq. 49 always holds if $T \geq 5.15\sqrt{TK\ln(K\delta^{-1})}$. If $T < 5.15\sqrt{TK\ln(K\delta^{-1})}$, this implies that $\gamma \leq \frac{1}{2}$ and $(1+2\beta)K\eta \leq \gamma$, which makes it suffice to show that Eq. 49 holds for $\gamma \leq \frac{1}{2}$ and $(1+2\beta)K\eta \leq \gamma$.

Step 1: Simple equalities. Recall that the gain $g_t(\pi) \in [0, 1]$ is defined with respect to the loss $\ell_t(\pi, \frac{\alpha}{\lambda+2}) \in [\ell_{\min}, \ell_{\max}]$ as the following:

$$g_t(\pi) = \frac{\ell_{\max} - \ell_t(\pi, \frac{\alpha}{\lambda+2})}{\ell_{\max} - \ell_{\min}}.$$

Then, for all $\pi \in \Pi$, the following equality holds:

$$\begin{aligned}
R_\pi(T, \alpha) &= \sum_{t=1}^T \ell_t(\pi_t, \frac{\alpha}{\lambda+2}) - \sum_{t=1}^T \ell_t(\pi, \frac{\alpha}{\lambda+2}) \\
&= (\ell_{\max} - \ell_{\min}) \left(\sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T g_t(\pi_t) \right) \quad (\because \text{Definition of } g_t(\cdot)) \\
&\leq \frac{\ell_{\max} - \ell_{\min}}{1 + \varepsilon(\lambda, \alpha)} \left(C\beta T + o(T)^{-1}T + (1 + \varepsilon(\lambda, \alpha)) \sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \right) \quad (\because \text{Eq. 48}). \tag{50}
\end{aligned}$$

Using the definition of cumulant generating function and the relationship that $p_t = (1 - \gamma)\omega_t + \gamma u$ where $\omega_t(\pi) = \frac{\exp(\eta\tilde{G}_{t-1}(\pi))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta\tilde{G}_{t-1}(\tilde{\pi}))}$ and u is the uniform distribution over K arms, the following holds:

$$\begin{aligned} -\mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) &= -(1 - \gamma)\mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\pi_i \mid \Pi_t(\pi_t)) - \gamma\mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \quad (\because p_t = (1 - \gamma)\omega_t + \gamma u) \\ &= (1 - \gamma) \left[\frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) - \right. \\ &\quad \left. \frac{1}{\eta} \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t))) \right] - \gamma\mathbb{E}_{\tilde{\pi} \sim u} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \quad (51) \end{aligned}$$

Step 2: Bounding the first term of Eq. 51. First, we show that irrespective of the choice of π_t ,

$$\eta \tilde{g}_t(\pi \mid \Pi_t(\pi_t)) \leq 1 \quad \forall \pi \in \Pi.$$

- $m(\pi_t) = 0, \pi \in \Pi_t^*$

$$\begin{aligned} \eta \tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \frac{g_t(\pi) + \beta}{\sum_{\tilde{\pi} \in \Pi_t^*} p_t(\tilde{\pi})} + \eta \beta \\ &\leq \frac{\eta(1 + 2\beta)}{\sum_{\tilde{\pi} \in \Pi_t^*} ((1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K})} \quad (\because (1 + 2\beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

- $m(\pi_t) = 0, \pi \in (\Pi_t^*)^c; m(\pi_t) = 1, \pi \in \Pi_t(\pi_t)$

$$\begin{aligned} \eta \tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \left(g_t(\pi) + \frac{\beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \\ &\leq \eta \left(\frac{g_t(\pi) + \beta}{\sum_{\tilde{\pi} \leq \pi} p_t(\tilde{\pi})} \right) \\ &\leq \frac{\eta(1 + \beta)}{\sum_{\tilde{\pi} \leq \pi} ((1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K})} \\ &\leq \frac{\gamma \frac{1}{K}}{\sum_{\tilde{\pi} \leq \pi} ((1 - \gamma)w_t(\tilde{\pi}) + \gamma \frac{1}{K})} \quad (\because (1 + 2\beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

- $m(\pi_t) = 1, \pi \in \Pi_t(\pi_t)^c$

$$\begin{aligned} \eta \tilde{g}_t(\pi \mid \Pi_t(\pi_t)) &= \eta \left(\tilde{g}_t(\pi) + \frac{\beta}{p_t(\pi)} \right) \\ &\leq \eta \left(\frac{g_t(\pi) + \beta}{p_t(\pi)} \right) \\ &\leq \frac{\eta(1 + \beta)}{(1 - \gamma)w_t(\pi) + \gamma \frac{1}{K}} \\ &\leq \frac{\gamma \frac{1}{K}}{(1 - \gamma)w_t(\pi) + \gamma \frac{1}{K}} \quad (\because (1 + 2\beta)\eta K \leq \gamma) \\ &\leq 1. \end{aligned}$$

Since (1) $\ln x \leq x - 1$, (2) $\exp(x) \leq 1 + x + x^2$ for all $x \leq 1$, and (3) $\eta \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \leq 1$,

$$\begin{aligned}
& \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta(\tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) - \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)))) \\
&= \ln \mathbb{E}_{\tilde{\pi} \sim \omega_t} \exp(\eta \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))) - \eta \mathbb{E}_{\tilde{\pi} \sim \omega_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
&\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \{\exp(\eta \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))) - 1 - \eta \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))\} \quad (\because \ln x \leq x - 1) \\
&\leq \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 \quad (\because \exp(x) \leq 1 + x + x^2) \\
&\leq \eta^2 \frac{1+2\beta}{1-\gamma} K (\tilde{g}_t(0 | \Pi_t(\pi_t)) + o(T)^{-1}),
\end{aligned} \tag{52}$$

where the last inequality holds due to the following:

$$\begin{aligned}
& \bullet m(\pi_t) = 0 \\
& \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 = \eta^2 \left\{ \sum_{\tilde{\pi} \in \Pi_t^*} w_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) + \beta}{\sum_{\pi' \in \Pi_t^* p_t(\pi')} + \beta} \right)^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} w_t(\tilde{\pi}) \left(g_t(\tilde{\pi}) + \frac{\beta}{\sum_{\pi' \leq \tilde{\pi}} p_t(\pi')} \right)^2 \right\} \\
&\leq \eta^2 \left\{ \sum_{\tilde{\pi} \in \Pi_t^*} w_t(\tilde{\pi}) \left(\frac{g_t(\tilde{\pi}) + 2\beta}{\sum_{\pi' \in \Pi_t^* p_t(\pi')} + 2\beta} \right)^2 + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} w_t(\tilde{\pi}) \left(g_t(\tilde{\pi}) + \frac{\beta}{\sum_{\pi' \leq \tilde{\pi}} p_t(\pi')} \right)^2 \right\} \\
&\leq \eta^2 (1+2\beta) \left\{ \sum_{\tilde{\pi} \in \Pi_t^*} \frac{w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))}{\sum_{\pi' \in \Pi_t^* p_t(\pi')} + \sum_{\tilde{\pi} \in (\Pi_t^*)^c} \frac{w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))}{p_t(\tilde{\pi})}} \right\} \\
&\leq \eta^2 \frac{1+2\beta}{1-\gamma} \underbrace{\left(1 + \left| (\Pi_t^*)^c \right| \right)}_{\leq K} (\tilde{g}_t(0 | \Pi_t(\pi_t)) + o(T)^{-1}) \quad (\because \frac{w_t(\tilde{\pi})}{p_t(\tilde{\pi})} \leq \frac{1}{1-\gamma}, \text{Eq. 40})
\end{aligned}$$

$$\begin{aligned}
& \bullet m(\pi_t) = 1 \\
& \mathbb{E}_{\tilde{\pi} \sim \omega_t} \eta^2 \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))^2 = \eta^2 \left\{ \sum_{\tilde{\pi} \in \Pi_t(\pi_t)} w_t(\tilde{\pi}) \left(g_t(\tilde{\pi}) + \frac{\beta}{\sum_{\pi' \leq \tilde{\pi}} p_t(\pi')} \right)^2 + \sum_{\tilde{\pi} \in \Pi_t(\pi_t)^c} w_t(\tilde{\pi}) \left(\tilde{g}_t(\tilde{\pi}) + \frac{\beta}{p_t(\tilde{\pi})} + \beta \right)^2 \right\} \\
&\leq \eta^2 \left\{ \sum_{\tilde{\pi} \in \Pi_t(\pi_t)} w_t(\tilde{\pi}) \left(g_t(\tilde{\pi}) + \frac{\beta}{\sum_{\pi' \leq \tilde{\pi}} p_t(\pi')} \right)^2 + \sum_{\tilde{\pi} \in \Pi_t(\pi_t)^c} w_t(\tilde{\pi}) \left(\tilde{g}_t(\tilde{\pi}) + \frac{2\beta}{p_t(\tilde{\pi})} \right)^2 \right\} \\
&\leq \eta^2 (1+2\beta) \left\{ \sum_{\tilde{\pi} \in \Pi_t(\pi_t)} \frac{w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))}{p_t(\tilde{\pi})} + \sum_{\tilde{\pi} \in \Pi_t(\pi_t)^c} \frac{w_t(\tilde{\pi}) \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))}{p_t(\tilde{\pi})} \right\} \\
&\leq \eta^2 \frac{1+2\beta}{1-\gamma} K (\tilde{g}_t(0 | \Pi_t(\pi_t)) + o(T)^{-1}) \quad (\because \frac{w_t(\tilde{\pi})}{p_t(\tilde{\pi})} \leq \frac{1}{1-\gamma}, \text{Eq. 43})
\end{aligned}$$

Step 3: Summing. Let $\tilde{G}_0(\tilde{\pi}) = 0$. Then, combining Eq. 51-Eq. 52 and summing over t yield

$$\begin{aligned}
& - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t)) \\
&\leq (1+2\beta)\eta K \sum_{t=1}^T (\tilde{g}_t(0 | \Pi_t(\pi_t)) + o(T)^{-1}) - \frac{1-\gamma}{\eta} \sum_{t=1}^T \ln \left(\sum_{\tilde{\pi} \in \Pi} w_t(\tilde{\pi}) \exp(\eta \tilde{g}_t(\tilde{\pi} | \Pi_t(\pi_t))) \right) \\
&= (1+2\beta)\eta K (\tilde{G}_T(0) + T o(T)^{-1}) - \frac{1-\gamma}{\eta} \ln \left(\frac{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi}))}{\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_0(\tilde{\pi}))} \right) \quad (\because \text{Definition of } \omega_t(\tilde{\pi}), \tilde{G}_t(\tilde{\pi})) \\
&\leq (1+2\beta)\eta K (\tilde{G}_T(0) + T o(T)^{-1}) + \frac{\ln K}{\eta} - \frac{1-\gamma}{\eta} \ln \left(\sum_{\tilde{\pi} \in \Pi} \exp(\eta \tilde{G}_T(\tilde{\pi})) \right) \quad (\because 1-\gamma \leq 1 \text{ and } \tilde{G}_0(\tilde{\pi}) = 0) \\
&\leq -(1-r-(1+2\beta)\eta K) (\tilde{G}_T(0) + T o(T)^{-1}) + \frac{\ln K}{\eta} \quad (\because \text{Property of log-sum-exponential}) \\
&\leq -(1-r-(1+2\beta)\eta K) \sum_{t=1}^T g_t(0) + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta},
\end{aligned} \tag{53}$$

where the last inequality holds due to the Lemma 4, union bound (the reason for using the confidence term of $\frac{\delta}{K}$), and the initial assumption that $\gamma \leq \frac{1}{2}$ and $(1+2\beta)K\eta \leq \gamma$. Plugging Eq. 53 into Eq. 50,

2268 the following holds with probability $1 - \frac{\delta}{K}$ for all $\pi \in \Pi$:
 2269

$$\begin{aligned}
 2270 \quad R_\pi(T, \alpha) &\leq \frac{\ell_{\max} - \ell_{\min}}{1 + \varepsilon(\lambda, \alpha)} \left(C\beta T + o(T)^{-1}T + (1 + \varepsilon(\lambda, \alpha)) \sum_{t=1}^T g_t(\pi) - \sum_{t=1}^T \mathbb{E}_{\tilde{\pi} \sim p_t} \tilde{g}_t(\tilde{\pi} \mid \Pi_t(\pi_t)) \right) \\
 2271 \quad &\leq \frac{\ell_{\max} - \ell_{\min}}{1 + \varepsilon(\lambda, \alpha)} \left(C\beta T + 2o(T)^{-1}T + \varepsilon(\lambda, \alpha)T + \gamma T + (1 + 2\beta)\eta KT + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right) \\
 2272 \quad &\leq (\ell_{\max} - \ell_{\min}) \left(C\beta T + 3o(T)^{-1}T + \gamma T + (1 + 2\beta)\eta KT + \frac{\ln(K\delta^{-1})}{\beta} + \frac{\ln K}{\eta} \right).
 \end{aligned}$$

2273 The last inequality holds when we set $\lambda > 0$ to be the one such that $\varepsilon(\lambda, \alpha) = o(T)^{-1}$, which we
 2274 set $\frac{1}{\sqrt{T}}$ in our algorithm. Since $\mathbf{Reg}(T, \alpha) := \max R_\pi(T, \alpha)$, this completes the proof by taking the
 2275 union bound.

2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321