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Abstract

Logical reasoning is central to human cogni-001
tion and intelligence. Past research of logical002
reasoning within AI uses formal language as003
knowledge representation (and symbolic rea-004
soners). However, reasoning with formal lan-005
guage has proved challenging (e.g., brittleness006
and knowledge-acquisition bottleneck). This007
paper provides a comprehensive overview on008
a new paradigm of logical reasoning, which009
uses natural language as knowledge represen-010
tation (and pretrained language models as rea-011
soners), including philosophical definition and012
categorization of logical reasoning, advantages013
of the new paradigm, benchmarks and methods,014
challenges of the new paradigm, desirable tasks015
& methods in the future, and relation to related016
NLP fields. This new paradigm is promising017
since it not only alleviates many challenges of018
formal representation but also has advantages019
over end-to-end neural methods.020

1 Introduction021

An argument consists of premise(s) and a conclu-022

sion. Logical reasoning is a form of thinking in023

which premises and relations between premises are024

used in a rigorous manner to infer conclusions that025

are entailed (or implied) by the premises and the re-026

lations (Nunes, 2012). It consists of three reasoning027

types, namely deductive reasoning, inductive rea-028

soning, and abductive reasoning (Flach and Kakas,029

2000) (more illustration on the categorization can030

be found in §2). It is important since the ability to031

reach logical conclusions on the basis of prior infor-032

mation is recognized as central to human cognition033

and intelligence (Goel et al., 2017).034

The past research of logical reasoning within035

AI uses formal language (e.g., first-order logic)036

as knowledge representation and symbolic reason-037

ers (Muggleton and Raedt, 1994). This paradigm038

has resulted in impressive applications such as ex-039

pert systems (Metaxiotis et al., 2002). However,040

building and reasoning over formal language have041

Figure 1: Comparison between the previous paradigm
which uses formal representation and symbolic reasoner,
and the new paradigm which uses natural language as
knowledge representation and PLM as reasoner.

proved challenging (Musen and Van der Lei, 1988), 042

with representative disadvantages of brittleness and 043

knowledge-acquisition bottleneck. 044

Since the rapidly developed NLP techniques, 045

natural language has been explored as a new 046

knowledge representation, and pretrained language 047

model (PLM) has been used as a new correspond- 048

ing reasoner for deductive reasoning (Clark et al., 049

2020), abductive reasoning (Bhagavatula et al., 050

2020), and inductive reasoning (Yang et al., 2022b). 051

Therefore, all three reasoning types of logical rea- 052

soning have been investigated with natural lan- 053

guage as knowledge representation. Recent re- 054

search also shows that PLMs can be finetuned or 055

prompted to have a good level of ability for each 056

of the reasoning types. 057

In this paper, we summarize the three previ- 058

ously separately investigated reasoning types to- 059

gether with a new overall concept, logical rea- 060

soning over natural language (LRNL) as knowl- 061

edge representation, and provide the first survey 062

of LRNL. Illustrated in Figure 1, LRNL means a 063

new paradigm for logical reasoning that uses new 064

knowledge representation (natural language) and 065

new reasoner (PLM). Recent methods in this area 066

are generally modular-based: multiple PLMs each 067
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as one module playing a different function, com-068

bined together to perform complex tasks. They069

make one step of reasoning with one inference of070

PLM. For complex problems, they usually have071

access to a knowledge base which stores relevant072

textual knowledge to be retrieved as premises to073

support the reasoning process to reach a conclu-074

sion, which might be used as a new premise for075

next step’s reasoning. By iteratively repeating this076

process, a final conclusion may be made. Although077

looks similar to expert systems, we discuss how078

LRNL is possible to overcome many main chal-079

lenges of the previous paradigm such as brittleness080

and knowledge-acquisition bottleneck in §3.1.081

In addition to the comparison with formal lan-082

guage, in §3.2 we discuss that LRNL could be083

viewed as a new type of neural-symbolic (NeSy)084

method, which has unique advantages over existing085

NeSy methods. We also discuss how LRNL, as a086

NeSy method, has advantages over existing end-to-087

end neural methods (e.g., explainability, controlla-088

bility, less catastrophic forgetting) in §3.3. These089

advantages make a LRNL system possible to deal090

with many challenging problems today.091

In the remaining sections of this survey, we re-092

view papers on LRNL (including deductive reason-093

ing §4, inductive reasoning §5, and abductive rea-094

soning §6), list challenges (§7), and possible future095

directions (§8). Our main focus is to understand096

language model’s logical reasoning ability through097

the three subtypes of logical reasoning to provide098

finer analysis and avoid ambiguity. Therefore we099

focus on papers that specialized on one (or more)100

of the three subtypes of logical reasoning (instead101

of only “reasoning”). We find that these papers102

generally use smaller, typically finetuned PLMs,103

and recent methods are generally modular-based.104

We do not intentionally cover out-of-box large lan-105

guage model (LLM) prompting techniques such106

as chain-of-thought (Wei et al., 2022) unless they107

have a specification. For each reasoning type, we108

summarize existing task formulations, datasets, and109

methods under each task. In §A.1 we also discuss110

the relation of LRNL to related NLP fields, which111

could help to form a clear shape of LRNL in NLP.112

2 Definition and Categorization of113

Logical Reasoning114

There are many subjects related to logical reason-115

ing, including philosophy, logic, and AI. Among116

them, the definition and categorization aspects of117

logical reasoning are handled by philosophy re- 118

search. However, debate exists in philosophy re- 119

search on the categorization of logical reasoning. 120

One group believes that every argument can be 121

classified as deduction argument, inductive argu- 122

ment, or fallacy (Salmon, 1989). Without con- 123

sidering fallacy, given that an argument consists 124

of premises and a conclusion, when the premises 125

can provide conclusively support to the conclu- 126

sion (which means that if the premises of the argu- 127

ment were all true, it would be impossible for the 128

conclusion of the argument to be false), this argu- 129

ment is a deductive argument. Conversely, when 130

the premises can not provide conclusively support 131

to the conclusion, the argument is inductive. 132

The other group has the same definition of de- 133

ductive reasoning, but they believe that further cat- 134

egorization of non-deductive reasoning is neces- 135

sary. Without considering fallacy, they believe in 136

a trichotomy of deductive, inductive, and abduc- 137

tive reasoning (Peirce, 1974). However, even for 138

the second group, the definition and difference be- 139

tween inductive and abductive reasoning are also 140

controversy (Flach and Kakas, 2000). 141

Nevertheless, Console and Saitta (2000) argue 142

that from the utility perspective of AI, a distinc- 143

tion between inductive and abductive reasoning is 144

possible: both inductive and abductive reasoning 145

provide explanations about the world but their ex- 146

planations differ in the degree of generality. For 147

instance, an inductive hypothesis allows the validity 148

of properties, observed on a set of individuals, to be 149

generalized to other individuals not in the observa- 150

tions, whereas an abductive one allows unobserved 151

properties to be applied to observed individuals. 152

More details about the difference and an example 153

can be found in §A.2. 154

Considering that inductive and abductive rea- 155

soning can be distinctive enough when formulated 156

in NLP, in this paper, we adopt the second group, 157

particularly Console and Saitta (2000)’s view of 158

definition and categorization of logical reasoning. 159

We survey deductive, inductive, and abductive rea- 160

soning in NLP separately in the following sections. 161

3 Advantages of LRNL 162

3.1 Advantages over Formal Language 163

Building and reasoning over formal language have 164

proved challenging (Musen and Van der Lei, 1988; 165

Cropper et al., 2022), with disadvantages such as 166

(1) brittleness (expert system fails when its knowl- 167
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edge base does not contain complete knowledge168

for a problem), (2) knowledge-acquisition bottle-169

neck (human experts are needed to encode their170

knowledge with formal representation), (3) inabil-171

ity to handle raw data such as natural language, (4)172

sensitivity to label errors, and (5) failure to recog-173

nize different symbols with similar meanings.174

Nevertheless, the new paradigm of logical rea-175

soning, LRNL, has systematic strengths over these176

challenges. Specifically, PLMs contain knowl-177

edge themselves (Davison et al., 2019), which178

makes it possible for them to provide good answers179

even when some required explicit knowledge is180

not present in a knowledge base (Talmor et al.,181

2020) (less brittle), and be less affected by input182

errors (Meng et al., 2021); with natural language as183

knowledge representation, such a system can natu-184

rally handle raw input, and is possible to utilize the185

enormous web corpora to automatically construct186

a rule base using information extraction (Ji, 2018)187

or inductive reasoning (Yang et al., 2022b) (less af-188

fected by knowledge-acquisition bottleneck); using189

embeddings for concepts (Mikolov et al., 2013), it190

semantically “understands” the meaning of sym-191

bols and therefore robust for paraphrasing.192

3.2 Advantages over Existing NeSy Systems193

LRNL could be seen as a new type of NeSy in addi-194

tion to the existing 6 types summarized by Kautz195

(2022), as its goal and design of methodology are196

typically symbolic (logical reasoning with knowl-197

edge bases), while avoiding any symbolic repre-198

sentation, using (currently pure) neural methods.199

Therefore LRNL can avoid many bottlenecks of200

the other NeSy methods caused by symbolic repre-201

sentation, such as symbolic knowledge acquisition202

and scalability (Wang and Yang, 2022).203

3.3 Advantages over E2E Neural Methods204

As a NeSy method, LRNL systematically has some205

advantages over end-to-end neural methods, such206

as interpretability (Cambria et al., 2023) (since207

its stepwise reasoning nature), more controllabil-208

ity (LRNL reasons following a given knowledge209

base), and less catastrophic forgetting (LRNL uses210

an explicit knowledge base to store knowledge).211

4 Deductive Reasoning212

4.1 Existing Task Formulations213

Existing tasks for deductive reasoning can be sum-214

marized as hypothesis classification, proof genera-215

Dataset Human
written Realistic Multi-

step
Theory

included
Theory

sufficient
Proof

generation Size

D* ✗ ✗ ✓ ✓ ✓ ✗ 500k
ParaRules ✓ ✗ ✓ ✓ ✓ ✗ 40k

Birds-electricity ✓ ✓ ✓ ✓ ✓ ✗ 5k
Leap-of-thought ✗ ✓ ✗ ✓ ✗ ✗ 33k

PARARULE-Plus ✗ ✗ ✓ ✓ ✓ ✗ 400k
FOLIO ✓ ✓ ✓ ✓ ✓ ✗ 1,435

D*(CWA) ✗ ✗ ✓ ✓ ✓ ✓ 500k
D*(OWA) ✗ ✗ ✓ ✓ ✗ ✓ 500k

EntailmentBank ✓ ✓ ✓ ✓ ✓ ✓ 1,840
ENWN ✓ ✓ ✓ ✓ ✓ ✓ 100

Table 1: Summary of deductive reasoning datasets: D*,
ParaRules, and birds-electricity (Clark et al., 2020);leap-
of-thought (Talmor et al., 2020); PARARULE-Plus (Bao
et al., 2022);FOLIO (Han et al., 2022);D*(CWA) and
D*(OWA) (Tafjord et al., 2021);EntailmentBank (Dalvi
et al., 2021);ENWN (Sprague et al., 2022).

tion, proof generation with incomplete information, 216

and implication enumeration. Datasets for the tasks 217

are summarized in Table 1. “Proof generation” tab 218

with ✗ means it is for hypothesis classification task. 219

Hypothesis Classification Each data exam- 220

ple for hypothesis classification task is a tu- 221

ple (theory, hypothesis, correctness), where 222

theory typically has the form (fact∗, rule∗), 223

hypothesis is a question, and correctness can be 224

True or False (or Unknown). This task requires 225

to predict the correctness for the hypothesis 226

given the theory. 227

Proof Generation The proof generation task 228

has the same setting as the hypothesis classifica- 229

tion task, except that in addition to predicting a 230

correctness, the proof generation task also re- 231

quires to provide a proof given theory to explain 232

the correctness. The proof is a directed tree 233

(N , E) with nodes n ∈ N and edges e ∈ E . Each 234

node is an item of knowledge in theory (usually 235

a fact or a rule), or a generated intermediate rea- 236

soning conclusion, or the hypothesis itself; Each 237

edge points from a premise node to a conclusion 238

node to form a deductive argument, which typically 239

needs one-step inference (not multi-step). 240

Proof Generation with Incomplete Information 241

This task is the same as the proof generation task, 242

except that theory lacks one node to form a com- 243

plete proof . Specifically, given theory, it requires 244

to predict the correctness of hypothesis with a 245

proof , as well as recovering the missing node. 246

Implication Enumeration Given a theory, this 247

task requires to enumerate implications of the 248

theory, using deductive reasoning. 249
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4.2 Methods250

4.2.1 Hypothesis Classification251

There are mainly three categories of methods252

for the hypothesis classification task regarding253

a multi-task aspect. The first category of meth-254

ods only conducts the classification task itself;255

Methods from the second category can predict256

correctness as well as generate a proof . How-257

ever, the correctness is not necessarily consistent258

with the predicted proof . The third category is sim-259

ilar to the second, except that correctness always260

follows proof .261

Until now, methods from the first category262

directly use transformer-based PLMs (Vaswani263

et al., 2017), with the target of analyzing and264

benchmarking their performance in different set-265

tings (datasets). Specifically, Clark et al. (2020)266

find that finetuned RoBERTa-large (Liu et al., 2019)267

can achieve 95%+ accuracy on the test set of D*268

and ParaRules datasets; Talmor et al. (2020) further269

demonstrate that LMs can be trained to reliably per-270

form deductive reasoning using both implicit, pre-271

trained knowledge and explicit natural language272

statements (theory) to make predictions; Han et al.273

(2022) evaluate finetuned medium-sized language274

models and few-shot prompting on LLMs on the275

FOLIO dataset. However, they find that LLM with276

few-shot prompting only performs slightly better277

than random results.278

The second category methods typically infer279

PLMs only once, and then utilize the final layer em-280

beddings or generations to obtain correctness and281

proof . Specifically, PRover (Saha et al., 2020) and282

multiPRover (Saha et al., 2021) use the [CLS] to-283

ken to predict correctness, and leverage the final284

layer embeddings of knowledge items in theory to285

generate proof ; All-At-Once ProofWriter (Tafjord286

et al., 2021) and EntailmentWriter (Dalvi et al.,287

2021) generate correctness and linearized proof288

at the same time.289

The third category methods create a proof first,290

and then predict correctness from the proof .291

§4.2.2 illustrates these methods in detail.292

4.2.2 Proof Generation293

Current methods for the proof generation task294

roughly consist of three stages. In each stage, one295

key new technique is considered and developed. In296

stage 1, PLMs are used for forming proof in one297

inference step. In stage 2, modular-based, stepwise298

frameworks are developed to create proof (each299

module is usually implemented with a single PLM). 300

In stage 3, a verifier is added as a new module to 301

make sure that each reasoning step reflects the be- 302

lief of PLMs. We will introduce the motivation and 303

typical method for each stage. 304

Methods for stage 1 typically utilize the last layer 305

embeddings (Saha et al., 2020, 2021) or genera- 306

tions (Tafjord et al., 2021; Dalvi et al., 2021) to cre- 307

ate proof . Methods utilizing embedding typically 308

(1) obtain an averaged embedding for each knowl- 309

edge item in theory, and (2) pass each embedding 310

to a node classifier, and each embedding pairs to 311

an edge classifier to predict nodes and edges for 312

proof . Constraints are usually used to enforce the 313

structure of proof . Generation methods directly 314

generate linearized correctness and full proof 315

given linearized theory and hypothesis. 316

The motivations of stage 2 methods are gener- 317

ally concerned with end-to-end methods, which 318

is considered to lack interpretability (Liang et al., 319

2021; Qu et al., 2022; Sanyal et al., 2022b; Bostrom 320

et al., 2022), suffer from compositional generaliza- 321

tion problems (Liang et al., 2021; Creswell et al., 322

2022), have limited input size (Ribeiro et al., 2022), 323

are not casual (Creswell et al., 2022), and lack con- 324

straints on the validity of each inference step (Hong 325

et al., 2022). 326

Methods in stage 2 can be summarized as hav- 327

ing two components, an inference module and 328

a reasoning controller. The inference module 329

can be a deduction module (Tafjord et al., 2021; 330

Ribeiro et al., 2022; Creswell et al., 2022; Sanyal 331

et al., 2022b; Bostrom et al., 2022), an abduction 332

module (Liang et al., 2021; Qu et al., 2022), or 333

both (Hong et al., 2022; Sprague et al., 2022). The 334

deduction module performs deductive reasoning, 335

and reasons forwardly from theory to hypothesis 336

to construct proof ; the abduction module per- 337

forms abductive reasoning, and reasons backwardly 338

from hypothesis to theory to construct proof . 339

The reasoning controller in general performs a 340

search process that each step it searches through 341

the theory and generated intermediate conclusions 342

space to select (retrieve) premises for next step 343

inference. The search processes include exhaus- 344

tive search (Tafjord et al., 2021; Liang et al., 2021) 345

or heuristic search (Qu et al., 2022; Ribeiro et al., 346

2022; Creswell et al., 2022; Sanyal et al., 2022b; 347

Bostrom et al., 2022; Hong et al., 2022; Sprague 348

et al., 2022). The reasoning controller usually can 349

also stop the search process if it detects the goal. 350
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Method Generation
based

Inference w/
hypothesis Stepwise Proof

direction
Heuristic

search Verifier Human-authored
realistic proof Stage

PRover (Saha et al., 2020) ✗ ✓ ✗ N/A N/A ✗ ✗ 1
multiPRover (Saha et al., 2021) ✗ ✓ ✗ N/A N/A ✗ ✗ 1

EntailmentWriter (Dalvi et al., 2021) ✓ ✓ ✗ N/A N/A ✗ ✓ 1

ProofWriter (Tafjord et al., 2021) ✓ ✗ ✓ → ✗ ✗ ✗ 2
EVR (Liang et al., 2021) ✓ ✗ ✓ ← ✗ ✗ ✗ 2

IBR (Qu et al., 2022) ✗ ✓ ✓ ← ✓ ✗ ✗ 2
IRGR (Ribeiro et al., 2022) ✓ ✓ ✓ → ✓ ✗ ✓ 2
SI (Creswell et al., 2022) ✓ ✗ ✓ → ✓ ✗ ✗ 2

FaiRR (Sanyal et al., 2022b) ✓ ✗ ✓ → ✓ ✗ ✗ 2
MetGen (Hong et al., 2022) ✓ ✗ ✓ Both ✓ ✗ ✓ 2

SCSearch (Bostrom et al., 2022) ✓ ✗ ✓ → ✓ ✗ ✓ 2

ADGV (Sprague et al., 2022) ✓ ✗ ✓ Both ✓ ✓ ✓ 3
NLProofS (Yang et al., 2022a) ✓ ✓ ✓ → ✓ ✓ ✓ 3
Entailer (Tafjord et al., 2022) ✓ ✓ ✓ ← ✓ ✓ ✓ 3
Teachme (Dalvi et al., 2022) ✓ ✓ ✓ ← ✓ ✓ ✗ 3

Table 2: Methods for Proof Generation task. “Generation based” means whether proof is created by generative
inference model, otherwise is by utilizing embeddings to classify nodes and edges of proof . “Inference w/
hypothesis” means whether hypothesis is provided during inference. → and ← denote forward/backward
stepwise proof generation. “Heuristic seach” with ✗ means exhaustive search. “Human-authored realistic proof”
means whether the dataset adopted uses human-authored proof , whose contents are consistent with the real world.

Motivation of stage 3 methods is similar, basi-351

cally that stage 2 methods lack explicit verifiers352

to avoid hallucinating invalid steps (Yang et al.,353

2022a), and to ensure that the inference processes354

reflect PLM’s own beliefs (Tafjord et al., 2022).355

Methods in stage 3 can be summarized as utiliz-356

ing explicit verifier(s) (implemented with a PLM)357

to check the validity of each inference step. One358

way is to add a new module (additional to the infer-359

ence module and reasoning controller in stage 2),360

working as a “fact checker” to verify the generated361

inference step (Yang et al., 2022a; Tafjord et al.,362

2022); The other one, called round-trip consistency,363

is only suitable for methods that use both deduc-364

tion and abduction modules, where deduction and365

abduction modules work as the verifier for each366

other (Sprague et al., 2022).367

In addition to the general 3 stages, a new aspect368

is attended to, which is whether teachable by hu-369

mans. Build based on Entailer (Tafjord et al., 2022),370

TeachMe (Dalvi et al., 2022) shows that user cor-371

rections can help override erroneous model beliefs,372

and that a system can gradually improve by accu-373

mulating user corrections. Compared to Entailer, it374

adds an interaction module and a dynamic memory375

module to obtain and store human corrections.376

We summarize and analyze the experiment re-377

sults of proof generation task in §A.4.378

4.2.3 Proof with Incomplete Information379

ADGV (Sprague et al., 2022) is the only method380

focusing on this task. It uses both deduction and381

abduction modules, and the reasoning controller 382

performs heuristic search. The abduction module 383

is used to recover the missing premise. 384

4.2.4 Implication Enumeration 385

Tafjord et al. (2021) is the only paper mentioned 386

this task. They compare the performance of “All- 387

At-Once” and “Iterative” ProofWriter on this task. 388

They find that “All-At-Once” performs worse, 389

mainly because it struggles with problems that are 390

more complex than training examples. 391

4.3 Robustness of PLM as Reasoner 392

The previously introduced methods only focus on 393

solving the deductive reasoning tasks, while it is 394

unclear whether PLMs can be used as robust deduc- 395

tive reasoners. To investigate the problem, Gaskell 396

et al. (2022) create a more challenging synthetic 397

dataset on hypothesis classification task in terms 398

of complexity, and test PLM’s performance on 399

it. They find that with large and complex enough 400

training examples, transformers can perform well 401

on the dataset. In addition, they find that trans- 402

formers exhibit some degree of generalization and 403

scale-invariance ability; Richardson and Sabharwal 404

(2022) propose an adversarial attack method for 405

synthetic datasets on the hypothesis classification 406

task. They find that transformers are often fooled if 407

the query literally appears within the body of a rule, 408

and transformers struggle to correctly bind vari- 409

ables on either side of a rule; Sanyal et al. (2022a) 410

proposed a synthetic deductive reasoning dataset to 411
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Dataset Human
written

Human
labeled Realistic Rule

provided
Not restricted

rule types Generation Size

property-norm ✗ ✗ ✓ ✗ ✗ ✗ 23k
DEERLET ✗ ✓ ✓ ✓ ✓ ✗ 846

DEER ✓ ✓ ✓ ✓ ✓ ✓ 1.2k

Table 3: Summary of inductive reasoning datasets:
property-norm (Misra et al., 2022), DEERLET and
DEER (Yang et al., 2022b). “Not restricted rule types”
means whether the data is not restricted in a specific
topic (e.g., taxonomic).

evaluate the robustness of language models to min-412

imal logical edits in the inputs and different logical413

equivalence conditions, and find that PLMs are not414

robust to their proposed logical perturbations.415

5 Inductive Reasoning416

5.1 Existing Task Formulations417

Existing tasks for inductive reasoning can be sum-418

marized as rule classification and rule generation419

tasks. Datasets for the tasks are summarized in420

Table 3. “Generation” tab with ✗ means it is for421

the rule classification task.422

Rule Classification Given a generated rule and423

facts where the rule is generated from, the task is424

to classify whether the rule can be accepted. The425

current evaluation aspects are from requirements426

of both inductive reasoning and natural language.427

Rule Generation Given multiple manually se-428

lected facts with similar patterns, the task is to429

induce a rule that (1) can entail the facts, and (2)430

is more general than all of the facts. Here “more431

general” means larger information coverage scope.432

More detailed illustrations can be found in §A.5.433

5.2 Methods434

5.2.1 Rule Classification435

Misra et al. (2022) analyze language model’s abil-436

ity to generalize novel property knowledge (has437

sesamoid bones) from concept(s) (robins) to oth-438

ers (sparrows, canaries). As illustrated in §A.5,439

they analyze the language models’ ability to clas-440

sify a new fact (but not a rule) as correct or not,441

given facts. It could be seen that the correctness442

of a rule is implicitly predicted by testing multiple443

facts entailed by the rule.444

Yang et al. (2022b) propose three require-445

ments of rule confirmation from philosophy litera-446

ture (rule and facts should not be in conflict; rule447

should reflect reality; rule should generalize over448

facts) on inductive reasoning and one requirement449

Dataset Human
written Realistic Multi-step Theory

included Generation Size

αNLI ✓ ✓ ✗ ✗ ✗ 22k

αNLG ✓ ✓ ✗ ✗ ✓ 76k

AbductionRules ✗ ✗ ✗ ✓ ✓ 114k
D*-Ab ✗ ✗ ✓ ✓ ✓ 14k

Table 4: Summary of abductive reasoning datasets:
αNLI and αNLG (Bhagavatula et al., 2020), Abduc-
tionRules (Young et al., 2022), and D*-Ab (Tafjord
et al., 2021). “Realistic” means whether the data is con-
sistent with the real world. “Multi-step” means whether
multiple reasoning steps are needed to get the result.

of rule confirmation from NLP requirement (rule 450

should not be trivial or incomplete). 451

5.2.2 Rule Generation 452

Yang et al. (2022b) assume that the inductive rea- 453

soning task is so difficult that a proper system 454

should contain a rule populator and (multiple) rule 455

verifiers that filter bad rules from different aspects. 456

Accordingly, they propose a framework named 457

chain-of-language-models (CoLM). Specifically, 458

one LM generates rules given facts and a rule 459

template, the other four LMs filter generated rules 460

mainly from inductive reasoning requirements that 461

were selected from philosophy literature. 462

6 Abductive Reasoning 463

6.1 Existing Task Formulations 464

Existing tasks for abductive reasoning can be sum- 465

marized as explanation classification, and explana- 466

tion generation w/o and w/ theory. Datasets for the 467

tasks are summarized in Table 4. In the table, the 468

“generation” tab and “theory included” tab can be 469

used to determine the task it is used for. 470

Explanation Classification Given observation 471

O1 at time t1, observation O2 at time t2 (t2 > 472

t1), a plausible hypothesis h+ and a implausible 473

hypothesis h− that explain O1 and O2, this task is 474

to select the most plausible hypothesis from h+ and 475

h−. O1 and O2 each contains a single sentence. 476

Explanation Generation without Theory 477

Given observation O1 at time t1, observation O2 at 478

time t2 (t2 > t1), this task is to generate a valid 479

hypothesis h+ given O1 and O2. O1 and O2 each 480

is described in a single sentence. 481

Explanation Generation with Theory Given a 482

theory C and a possible observation O not provable 483

from C, the task is to generate a new hypothetical 484

fact h such that C ∪ {h} |= O. Here C contains 485
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multiple facts and rules, where each fact or rule486

contains a single sentence. O is in single sentence.487

6.2 Methods488

6.2.1 Explanation Classification489

Methods for this task generally introduce knowl-490

edge in various ways to improve performance.491

Specifically, Mitra et al. (2019) explore ways to492

incorporate additional unstructured textual knowl-493

edge retrieved from a story corpus through prompt;494

Paul and Frank (2020) encode and incorporate495

knowledge from COMET’s generation (Bosselut496

et al., 2019) directly into transformer’s internal at-497

tention; Lourie et al. (2021) and Paul and Frank498

(2021) incorporate knowledge by multi-task train-499

ing; Du et al. (2021) incorporate knowledge with500

an additional pre-training stage using ARI inde-501

pendent story corpora;502

In addition to knowledge integration, many dif-503

ferent aspects of explanation classification tasks504

are also investigated. Specifically, Bhagavatula505

et al. (2020) rewrite the objective using Bayes Rule506

and formulate a set of probabilistic models that507

make various independence assumptions on the508

new objective. They find that the most sophisti-509

cated probabilistic model works the best; Zhu et al.510

(2020) frame this task as a ranking task to also511

measure the plausibility of hypothesis in addition512

to discriminating it; Paul and Frank (2021) conduct513

this task in an unsupervised setting by pretrain-514

ing on a counterfactual reasoning dataset, which515

is related to abductive reasoning. Kadikis et al.516

(2022) propose a method to select suitable PLMs517

for this task. It is based on the cosine similarity518

of embed(O1, O2) and embed(hi) for each PLM519

without finetuning. Zhao et al. (2023) assume that520

different h are mutually exclusive, and improve521

performance by incorporating an additional loss522

item as regularization to enforce an unbalanced523

probability prediction over different h.524

6.2.2 Explanation Generation without Theory525

In general, methods for this task either incorporate526

knowledge or improve the decoding method to be527

more suitable for this task.528

For knowledge integration, Bhagavatula et al.529

(2020) utilize textual knowledge generated from530

COMET and investigate two ways of knowledge531

integration — via texts or via embeddings, and find532

that the embedding-based method is more effective;533

Ji et al. (2020) leverage structural knowledge from534

ConceptNet (Speer et al., 2017) for this task.535

For improving decoding method, Qin et al. 536

(2020) are motivated by the fact that the target h+ 537

to generate happens before O2. They accordingly 538

propose an unsupervised decoding algorithm that 539

can incorporate both past and future contexts. 540

6.2.3 Explanation Generation with Theory 541

Tafjord et al. (2021) explore the ability of a fine- 542

tuned T5-11B (Raffel et al., 2020) on P (h|C,O). 543

Their results indicate that finetuned T5-11B can 544

reach a high test accuracy of 93% on D*-Ab. 545

7 Challenges of LRNL 546

Computationally Efficient Reasoner Many 547

tasks in logical reasoning over formal language 548

have very high algorithmic complexity (Muggle- 549

ton et al., 2012). Thanks to the low computational 550

cost of each deduction step over formal language, 551

such complex tasks could be possible. However, 552

each deduction step in LRNL typically costs one 553

inference of a LLM, which makes tasks with high 554

algorithmic complexity nearly prohibitive. 555

Robust Deductive Reasoner Symbolic deduc- 556

tive reasoners are not restricted to train data distri- 557

butions, while neural deductive reasoners are re- 558

stricted to their training data (Gontier et al., 2020; 559

Richardson and Sabharwal, 2022); In addition, neu- 560

ral deductive reasoners are also vulnerable to adver- 561

sarial attacks (Gaskell et al., 2022), while symbolic 562

reasoners are robust to the attacks. The lack of ro- 563

bustness can lead to restricted application domains 564

and incorrect deductive inferences. 565

Reliable Rule Generation Currently, the rule 566

generation method in inductive reasoning relies on 567

out-of-box LLMs, since a finetuned rule genera- 568

tion model could be restricted in a domain. The 569

annotation of an inductive reasoning dataset should 570

only be done by experts and is very time consum- 571

ing (Yang et al., 2022b). Given the two restrictions, 572

how to improve the quality of generated rules given 573

related facts could be a challenging open problem. 574

Reliable Explanation Generation Abduction is 575

a form of non-monotonic reasoning (Paul, 1993), 576

and potentially has a large search space of conclu- 577

sions given premises. Therefore, how to generate 578

more (all) reasonable explanations can be challeng- 579

ing (Bhagavatula et al., 2020). 580

Reliable Verifier on Reasoning Steps Many 581

state-of-the-art methods on deductive reason- 582

ing (Yang et al., 2022a; Tafjord et al., 2022; 583
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Sprague et al., 2022) and inductive reasoning (Yang584

et al., 2022b) use verifier to check the correctness of585

generated reasoning results. However, the current586

verifiers only reflect the internal beliefs of PLMs. It587

is doubtful whether PLMs have obtained the knowl-588

edge for verification.589

Better Automatic Evaluation Metrics It is gen-590

erally difficult to automatically evaluate generative591

reasoning implications, especially with realistic592

and not synthetic datasets. The difficulty mainly593

lies in that the same semantic meaning can be ex-594

pressed with diversified forms, and that different595

conclusions might be all acceptable (especially in596

abductive and inductive reasoning). This may lead597

to biased evaluation when using automatic metrics.598

Building Larger Benchmarks For complicated599

reasoning tasks especially in realistic and natural600

language settings, usually experts are needed for601

annotation, and the process is very time consum-602

ing (Dalvi et al., 2021; Sprague et al., 2022; Yang603

et al., 2022b). Therefore it can be challenging to604

construct significantly larger benchmarks.605

Understanding the Internal Mechanism of606

PLMs for Reasoning Until now research works607

only focus on investigating whether the in-608

put/output behaviors of PLMs can be used to sim-609

ulate a reasoner (Clark et al., 2020) or complete610

reasoning tasks. However, it is still a challenging611

open research question to understand the internal612

mechanism of PLMs for reasoning.613

More Impacts on (NLP) Applications As il-614

lustrated in §3, overall LRNL can be seen as a615

new type of neuro-symbolic method, which takes616

the advantages from both the symbolic and sub-617

symbolic aspects, and can systematically alleviate618

many main challenges of both symbolic and sub-619

symbolic methods. These characteristics make a620

LRNL system possible (but might still challeng-621

ing) to deal with many (NLP) applications such622

as medical diagnosis and legal NLP tasks, since623

many medical and legal problems could be seen624

as pure logical reasoning problems with very large625

rule base (e.g., medical knowledge and laws).626

8 Possible Future Directions627

Probabilistic Inference In reality, pure deduc-628

tive reasoning has not always been used. When629

people include “likely” in their expressions, uncer-630

tainty is introduced, which makes the reasoning631

process probabilistic; In addition, inductive reason- 632

ing and abductive reasoning are by default non- 633

monotonic reasoning. This uncertainty aspect has 634

not been focused in current research. It is probably 635

beneficial to learn from how symbolic reasoning 636

handles uncertainty (Halpern, 2017). 637

Reasoning with Incomplete Information The 638

current proof generation task requires all necessary 639

premises provided to create a proof tree. Only 640

one work (Sprague et al., 2022) focuses on proof 641

generation with the incomplete information task. 642

However, the task they adopt only overlooks one 643

premise, while in reality more might be missing. 644

Inductive Reasoning on Web Corpora Cur- 645

rently, the dataset for rule generation tasks in 646

inductive reasoning provides manually selected 647

facts (Yang et al., 2022b). However, to best lever- 648

age a system’s ability in handling natural language, 649

it should be able to work on raw web corpora to 650

induce rules, which leads to a more challenging 651

task of inductive reasoning on web corpora. 652

Abductive Reasoning with (Long) Theory 653

Many tasks such as medical diagnosis conduct ab- 654

ductive reasoning with a long theory (e.g., medical 655

knowledge). However, current abductive reason- 656

ing research only covers abductive commonsense 657

reasoning (Bhagavatula et al., 2020) without given 658

theory, or only given short, synthetic, not realistic 659

knowledge as theory (Tafjord et al., 2021). 660

Interactions between Reasoning Types Multi- 661

ple reasoning types can be used together for com- 662

plex tasks. Existing works only utilize deduc- 663

tive reasoning with abductive reasoning to create 664

a proof tree (Hong et al., 2022; Sprague et al., 665

2022). However, many other collaborations are 666

possible, such as using inductive reasoning to col- 667

lect a (large) rule base, which is to be used as the 668

theory base for deductive reasoning. 669

9 Conclusion 670

In this paper, we propose a new concept, logical 671

reasoning over natural language as knowledge rep- 672

resentation (LRNL), and provide a detailed and 673

up-to-date review of LRNL. Moreover, we have in- 674

troduced the philosophical foundations, advantages 675

of LRNL, benchmarks and methods, challenges, de- 676

sirable tasks & methods, and the relation of LRNL 677

to related NLP fields (§A.1). 678
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10 Limitations679

The scope of this survey paper does not cover out-680

of-box LLMs’ prompting techniques such as chain-681

of-thought (Wei et al., 2022) for reasoning. How-682

ever, chain-of-thought methods do not specifically683

focus on any specific reasoning type of logical rea-684

soning – including deductive reasoning, inductive685

reasoning, and abduction reasoning. Instead, they686

focus on mathematical reasoning and common-687

sense reasoning. We also discuss the difference688

of mathematical and commonsense reasoning from689

logical reasoning in §A.1. More discussions on the690

difference between chain-of-thought and papers691

reviewed in this paper can be found in §A.1.1.692

11 Ethics Statement693

This article follows the ACL Code of Ethics. To our694

best knowledge, there are no foreseeable potential695

risks to use the datasets and methods in this paper.696
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A Appendix1171

A.1 Relation to Related (NLP) Fields1172

In this section, we first introduce related NLP fields1173

to general logical reasoning, then introduce fields1174

that are only related to deductive reasoning, induc-1175

tive reasoning, or abductive reasoning. We hope1176

that this section could be helpful to form a clear1177

shape of LRNL in NLP.1178

A.1.1 Logical Reasoning 1179

Neuro-Symbolic Computing Neural-symbolic 1180

computing (NeSy) is a hybrid of symbolism and 1181

connectionism to exploit advantages from both 1182

sides (Wang and Yang, 2022; Cambria et al., 2022). 1183

The knowledge representation of its symbolic part 1184

basically is a knowledge graph or propositional 1185

logic or first-order logic (Wang and Yang, 2022). 1186

LRNL could be seen as a new type of NeSy in addi- 1187

tion to the existing 6 types summarized by Kautz 1188

(2022), as its goal and design of methodology are 1189

typically symbolic (logical reasoning with knowl- 1190

edge bases), while avoiding any symbolic represen- 1191

tation, using (currently pure) neural methods. 1192

Natural Language Inference Natural language 1193

inference (NLI) is generally considered as the 1194

semantic concepts of entailment and contradic- 1195

tion (Bowman et al., 2015). Here logical reasoning 1196

tasks can be viewed as special types of NLI focus- 1197

ing on particular reasoning aspects. 1198

Question Answering The form of LRNL looks 1199

similar to question answering (QA), however, QA 1200

is conducting one-step logical reasoning only when 1201

the context provides enough information to answer 1202

the question (deductive reasoning), or the answer 1203

is a generalization of an argument in context or 1204

question (inductive reasoning), or the answer is 1205

to provide explanations to the question (abductive 1206

reasoning). 1207

Commonsense Reasoning Commonsense rea- 1208

soning (CR) and logical reasoning (LR) are similar 1209

in that they both involve “knowledge” and “rea- 1210

soning”. Compared to LR, CR focuses more on 1211

the “knowledge” aspect. Some typical tasks in- 1212

clude whether a system has commonsense knowl- 1213

edge (Bosselut et al., 2019; Yang et al., 2020), 1214

and whether a system’s answer is commonsense- 1215

knowledge-aware (Bisk et al., 2020); LR focuses 1216

more on the “reasoning” aspect, e.g., whether a 1217

system’s i/o behaviors follow reasoning require- 1218

ments (Clark et al., 2020). 1219

Chain of Thoughts Chain of 1220

thoughts (COT) (Wei et al., 2022) is a prompting 1221

technique that can elicit the step-by-step reasoning 1222

ability of LLMs without finetuning. 1223

COT can potentially be used for each of the three 1224

sub-reasoning types of logical reasoning. In fact, 1225

for a given (commonsense reasoning) question, 1226

some reasoning steps of COT could be deductive, 1227
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and others can be inductive or abductive. Since the1228

purpose of this paper is to provide a finer analysis1229

on logical reasoning, we do not intentionally cover1230

prompting techniques such as COT.1231

It is also argued by several modular-based de-1232

ductive reasoning methods that COT’s reasoning is1233

not casual (Creswell et al., 2022), limited by input1234

size (Ribeiro et al., 2022), and contains unrelated1235

or incorrect steps (Hong et al., 2022; Tafjord et al.,1236

2022).1237

Overall, it could be interesting to use COT-1238

related methods specifically for deductive, induc-1239

tive, or abductive reasoning (as opposed to modular-1240

based methods), and it is a less-explored research1241

direction.1242

A.1.2 Deductive Reasoning1243

Multi-hop Reasoning Compared to proof gen-1244

eration, many multi-hop reasoning tasks (Yang1245

et al., 2018; Jiang et al., 2020; Min et al., 2019;1246

Sinha et al., 2019) are much simpler, often being1247

single-branched (Qu et al., 2022), consisting of1248

only 2-3 supporting facts, and are more coarse-1249

grained, involving large chunks of texts such as1250

passages instead of simple, short sentences (Yang1251

et al., 2022a).1252

Nevertheless, some multi-hop reasoning datasets1253

can be considerd as conducting deductive reason-1254

ing. For instance, for each data in CLUTRR (Sinha1255

et al., 2019) dataset, a set of facts that can make1256

conclusive support to the target kinship relation is1257

included in background information as input for1258

each target relation, hence from the philosophical1259

definition (Salmon, 1989), it requires to perform1260

deductive reasoning.1261

Mathematical Reasoning In many mathemati-1262

cal reasoning tasks such as math word problem1263

solving (Koncel-Kedziorski et al., 2015) and geom-1264

etry problem solving (Seo et al., 2015), the conclu-1265

sion can be conclusively entailed by the premise.1266

Therefore these tasks belong to deductive reason-1267

ing. We do not review math-related papers because1268

we want to focus solely on the challenge of de-1269

ductive reasoning while mathematical reasoning1270

involves numbers in the text, which introduces ad-1271

ditional challenges.1272

A.1.3 Inductive Reasoning1273

Information Extraction Information Extrac-1274

tion (IE) is a task of extracting pre-specified types1275

of facts from written texts or speech transcripts, and1276

converting them into structured representations (Ji,1277

2018). The rule generation task here also extracts 1278

rules from facts represented in written texts. The 1279

difference is that IE pursues extracting the exact 1280

information from existing texts, while inductive rea- 1281

soning aspires to induce more general rules from 1282

existing texts, where the information in rules goes 1283

beyond what is exactly stated in the texts. 1284

Case-based Reasoning Case-based Reason- 1285

ing (CBR) is a classic AI subject, whose methods 1286

share a general methodology of four steps: retrieve, 1287

reuse, revise, and retain (Aamodt and Plaza, 1994). 1288

Recently there has been research works devoting 1289

to bridge the research of CBR and NLP, by using 1290

NLP techniques for CBR challenges (Yang et al., 1291

2023) and improving NLP tasks with CBR method- 1292

ologies (Das et al., 2021, 2022; Yang et al., 2023). 1293

CBR could be seen as a type of analogical rea- 1294

soning (Kolodner, 1997), and analogical reason- 1295

ing belongs to inductive reasoning (Salmon, 1989). 1296

However, CBR is a different inductive reasoning 1297

type than the “generalization” process (from facts 1298

to rules) described in Flach and Kakas (2000), but 1299

more on the general description on inductive rea- 1300

soning (Salmon, 1989) that premises cannot pro- 1301

vide conclusive support to the conclusion. 1302

A.1.4 Abductive Reasoning 1303

Casual Reasoning In logic research, causal rea- 1304

soning aims at an epistemological problem of estab- 1305

lishing precise causal relationships between causes 1306

and effects. It is generally considered a form of 1307

inductive reasoning (Goertzel et al., 2011), since 1308

inductive reasoning is to derive rules that lead from 1309

one to another. When the focus is to derive pos- 1310

sible causes from effects, the problem belongs to 1311

abductive reasoning (Goertzel et al., 2011). 1312

A.2 More Details About the Difference 1313

Between Inductive Reasoning and 1314

Abductive Reasoning 1315

We adopt Console and Saitta (2000)’s view on 1316

the difference between inductive and abductive rea- 1317

soning: both inductive and abductive reasoning 1318

provide explanations about the world but their ex- 1319

planations differ in the degree of generality. 1320

For instance, an inductive hypothesis allows the 1321

validity of properties, observed on a set of individ- 1322

uals, to be generalized to other individuals not in 1323

the observations, whereas an abductive one allows 1324

unobserved properties to be applied to observed 1325

individuals. 1326
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The distinction between inductive and abduc-1327

tive hypotheses strictly parallels the dichotomy ex-1328

tension vs. intension, or generality vs. informa-1329

tiveness. In other words, an inductive hypothesis1330

extends or generalizes to unobserved individuals,1331

while an abductive one provides more specific infor-1332

mation (e.g., unobserved properties) about existing1333

specific individuals.1334

For example, if a white ball is found in a bag,1335

inductive reasoning might lead to the conclusion1336

that “all balls in this bag are white”, while abduc-1337

tive reasoning might lead to the conclusion that1338

“someone put the white ball into this bag”.1339

In this example, inductive hypothesis generalizes1340

the property of existing individual (a found white1341

ball) to unobserved individuals (other not seen balls1342

in the bag), while abductive hypothesis provides1343

more specific information about the current indi-1344

vidual (who brought this ball to the bag).1345

To summarize in simple words, in common sit-1346

uations, pure inductive reasoning is to only pro-1347

vide (usually sample to population) generalizations,1348

while pure abductive reasoning is to only provide1349

specific explanations.1350

In reality, some hypotheses can be both induc-1351

tive and abductive. Console and Saitta (2000) la-1352

bels non-deductive hypotheses as inductive, induc-1353

tive/abductive or abductive.1354

A.3 Related Surveys on Reasoning1355

Huang and Chang (2022); Qiao et al. (2022) mainly1356

reviews the prompting techniques for LLMs, but1357

do not focus on papers that specialized on logical1358

reasoning (the coverage of the two fields are quite1359

different).1360

Yu et al. (2023) is a concurrent work of ours and1361

reviews papers related to reasoning. However, it1362

does not focus on logical reasoning, particularly the1363

three subtypes of logical reasoning. The advantage1364

of our survey is that we provide a finer analysis on1365

logical reasoning (including more detailed defini-1366

tion and categorization of logical reasoning from1367

philosophy literature, comparison with the classic1368

AI paradigm on logical reasoning, and organizing1369

the survey based on the three subtypes of logical1370

reasoning).1371

A.4 Experiments Summarization1372

In this section, we summarize the experiment re-1373

sults of important and literature-abundant task.1374

Until now there has been only one or two pa-1375

pers working on inductive reasoning. Methods1376

for abductive reasoning generally leverage dif- 1377

ferent resources (such as multi-task, additional 1378

knowledge resources, and ancillary loss) and lack 1379

an progressive relationship between each other, 1380

therefore are less comparable. Currently the 1381

ProofGeneration task in deductive reasoning 1382

are the most literature-abundant, and methods for 1383

this task have progressive relationships with each 1384

other. Therefore here we mainly summarize results 1385

and analyze for the ProofGeneration task. 1386

Table 5 shows the summarized experiment re- 1387

sults. We select the most widely used tasks to 1388

display their performance. Among the task, the 1389

setting of ParaRules is trained on D3 (D* dataset 1390

with depth 3) and test on ParaRules test set; the 1391

setting of Birds-Electricity is trained on D5 (D* 1392

dataset with depth 5) and test on bird-electricity 1393

set; setting for EntailmentBank is the task 3 which 1394

uses full corpus as input (so that many distractors 1395

exist in input); setting for OBQA and QuaRTz are 1396

zero-shot setting while model pretrained on another 1397

dataset (EntailmentBank). 1398

Among the methods, Creswell et al. (2022) and 1399

Bostrom et al. (2022) design unique metrics using 1400

EntailmentBank dataset, and Sprague et al. (2022) 1401

focus on a unique task (proof generation task with 1402

incomplete information), therefore we do not list 1403

their experiments results in the table. 1404

Overall methods for proof generation tasks tend 1405

to use different datasets for evaluation, making 1406

them less comparable. 1407

A.5 Meaning of “More General” Required by 1408

Inductive Reasoning 1409

This section is collected from Yang et al. (2022b)’s 1410

appendix, to help illustrate inductive reasoning. 1411

Given an argument consisting of a premise and 1412

a conclusion, if the conclusion involves new infor- 1413

mation that is not covered by the premise and can 1414

not be conclusively entailed by the premise, the 1415

argument is an inductive argument (Salmon, 1989). 1416

When the conclusion has a larger scope of infor- 1417

mation coverage than the premise, and can entail 1418

the premise, it can be said that the conclusion is 1419

“more general” to the premise (Yang et al., 2022b). 1420

In this case, we termed the premise as a “fact”, and 1421

the conclusion as a “rule”; When the conclusion 1422

contains new pieces of information and cannot en- 1423

tail the premise, as defined by Salmon (1989), the 1424

argument is still an inductive argument. But in this 1425

case, we termed the premise as a “fact”, and the 1426
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Methods
ParaRules Birds-Electricity EntailmentBank (Task 3) OBQA QuaRTz

Full Accuracy (FA) Full Accuracy (FA) Leaves F1 Leaves All-Cor. Steps F1 Steps All-Cor. Intermediates F1 Intermediates All-Cor. Overall All-Correct Accuracy Accuracy

PRover 95.1 80.5 - - - - - - - - -
multiPRover 94.5 81.8 - - - - - - - - -
EntailmentWriter - - 39.7 3.8 7.8 2.9 36.4 13.2 2.9 - -
ProofWriter 98.5 97.0 - - - - - - - - -
EVR - 63.1 - - - - - - - - -
IBR 95.7 93.5 - - - - - - - - -
IRGR - - 45.6 12.1 16.3 11.8 38.8 36.5 11.8 - -
Selection-Inference - - - - - - - - - - -
FaiRR 98.6 - - - - - - - - - -
MetGen - - 34.8 8.7 9.8 8.6 36.7 20.4 8.6 - -
SCSearch - - - - - - - - - - -
ADGV - - - - - - - - - - -
NLProofS - - 43.2 8.2 11.2 6.9 42.9 17.3 6.9 - -
Entailer - - - - - - - - - 76.8 74.3
Teachme - - - - - - - - - 77.0 75.9

Table 5: Proof Generation Task Results.

conclusion as another “fact”.1427

For instance, if facts that are about cats and dogs1428

are good accompaniment of humans, then some1429

examples of a “more general” rule can be (1) mam-1430

mals are good accompaniment of humans, or (2)1431

domesticated animals are good accompaniment of1432

humans, or (3) animals with four legs are good1433

accompaniment of human.1434

In these examples, the rules cover a larger scope1435

than the facts (e.g., mammals compared to cats;1436

domesticated animals compared to cats), and there-1437

fore the rules are “more general” than the facts.1438

“More general” means not only about finding1439

higher taxonomic rank, but can be in unlimited1440

forms. For instance, if the fact is about the Sun1441

rises and falls every day, then some examples of a1442

“more general” rule can be (1) the Earth is the king1443

of the universe or (2) the Earth is rotating itself.1444

Both rule examples are “more general” than the1445

given fact, since the rule can entail not only the1446

given fact, but also other not mentioned facts such1447

as the observable movements of the other stars in1448

the Milky Way.1449
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